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Abstract—Quantum teleportation channels can overcome the
effects of photonic loss, a major challenge in the implementation
of a quantum network over fiber. Teleportation channels are
created by distributing an entangled state between two nodes,
which is a probabilistic process requiring classical communica-
tion. This causes critical delays that can cause information loss as
quantum data suffers from decoherence when stored in memory.
In this work, we quantify the effect of decoherence on fidelity
at a node in a quantum network due to the storage of qubits
in noisy memory platforms. We model a memory platform as
a buffer that stores incoming qubits waiting for the creation of
a teleportation channel. Memory platforms are parameterized
with decoherence rate and buffer size. We show that fidelity at a
node is a linear sum of terms, exponentially decaying with time,
where the decay rate depends on the decoherence rate of the
memory platform. This allows us to utilize Laplace transforms
to derive computable functions of average fidelity with respect
to the load, buffer size, and decoherence rate of the memory
platform. We prove that serving qubits in a Last In First Out
order with pushout for buffer overflow management maximizes
average fidelity. Last, we apply this framework to model a single
repeater node to calculate the average fidelity of the end-to-
end entanglement created by this repeater assuming perfect gate
operations.

Index Terms—Quantum Networks, Quantum Teleportation,
Decoherence, Fidelity, Queuing Theory, Quantum Memory,
Quantum Repeaters,

I. INTRODUCTION

Quantum networks face many problems inherently different

from those in classical networks, as qubits differ from bits

[1]. One of these problems arises from the (in)famous no-

cloning theorem [2]. Quantum networks implemented over

fiber suffer from exponential photonic loss with respect to

fiber length [3]. Classical networks overcome similar loss

by using signal amplification. Unfortunately, the no-cloning

theorem bars the use of signal amplification, which means

quantum networks need to find another solution to the problem

of loss. Quantum teleportation allows us to transfer quantum

information between two spatially separated parties using a

distributed entangled state and classical communication with-

out transferring the physical entity carrying that information

across the network [4], making it invulnerable to loss. Another

This research was supported in part by the NSF grant CNS-1955744, NSF-
ERC Center for Quantum Networks grant EEC-1941583, by the National
Science Foundation to the Computing Research Association for the CIFellows
2020 Program, and the MURI ARO Grant W911NF2110325.

essential property of quantum teleportation is that it allows for

secure communication and is a central part of quantum key

distribution [1].

Quantum teleportation is enabled through entangled quan-

tum states. The most common examples of entangled states

are Einstein–Podolsky–Rosen (EPR) states or Bell Pairs [4].

Therefore, a critical job for quantum networking devices like

repeaters, switches, etc., is to distribute these EPR pairs

between two nodes so that quantum information can be

shared between them, creating a teleportation channel. Many

protocols exist for generating and distributing EPR pairs [5],

but all are probabilistic processes that can fail because of

imperfections in physical operations such as gate errors, signal

loss in fiber, etc. These probabilistic failures naturally give

rise to many optimization, control, and design problems in

quantum networking devices. There have been many recent

results regarding the modeling and analysis of entanglement

distribution rates for nodes in quantum networks [6], but a sig-

nificant assumption in most of these is the presence of noise-

less memories. This is an issue as most noisy intermediate-

scale quantum (NISQ) era quantum memory platforms cause

fidelity loss on any qubit stored in them due to decoherence

[7].

When a qubit arrives at a node requesting teleportation,

the node must await the generation of an EPR pair between

itself and the destination, which causes delays. While the

EPR pair is being generated, The request qubit has to be

stored in a noisy memory platform. This means that even

if the EPR pair is perfect, the request will suffer some

decoherence. The sensitivity of a memory platform to noise

is parameterized by decoherence time, or decoherence rate,

and fidelity decays exponentially with time. Quantifying the

effects of this decoherence on the fidelity of the teleportation

allows us to come up with specifications for memory platforms

for different applications. Another vital question is memory

management. Given the fact that one can only store a finite

amount of requests and EPR pairs, how should one schedule

and service requests to minimize decoherence and deal with

the arrival of new requests when memory is full.

In this paper, we quantify the fidelity loss for a node in

a quantum network due to decoherence from memory and

provide a way to derive the fidelity distribution or the average

fidelity. We use dephasing noise characterized by a dephasing

437

2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

978-1-6654-9113-6/22/$31.00 ©2022 IEEE
DOI 10.1109/QCE53715.2022.00065

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 Q

ua
nt

um
 C

om
pu

tin
g 

an
d 

En
gi

ne
er

in
g 

(Q
C

E)
 | 

97
8-

1-
66

54
-9

11
3-

6/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
Q

C
E5

37
15

.2
02

2.
00

06
5

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 26,2023 at 01:08:23 UTC from IEEE Xplore.  Restrictions apply. 



rate Γ to model noise in the memory platform and derive an

expression for fidelity with respect to time spent in memory by

a request. Furthermore, we model teleportation as a queuing

process where requests are generated according to a Poisson

process with rate λ and EPR pairs are also generated according

to a Poisson process with rate μ. This allows us to calculate the

wait times in memory using simple continuous-time Markov

models.

The expected fidelity of a qubit teleported by the node

depends on load, dephasing rate, memory size, and service

discipline. Since the relation between fidelity of a qubit and

its age is not linear, the order in which requests are served

can affect the expected fidelity of the qubit. This order of

service is referred to in this paper as the service discipline.

Even when the average wait times of two service disciplines

are the same, the average fidelities can differ. We consider both

first in first out (FIFO) and last in first out (LIFO) disciplines

with both finite and infinite buffers. When buffers are finite,

we introduce a pushout buffer management policy. Coupled

with FIFO and LIFO, we refer to the combined policies as

FIFOPO and LIFOPO respectively. Here pushout operates as

follows, if a qubit arrives to a full buffer, the oldest request

in the buffer is kicked out to make space for the incoming

qubit. We consider pushout because intuitively, it maximizes

fidelity as older requests, i.e., qubits that have suffered the

most decoherence, are kicked out. We prove that LIFOPO is

the optimal discipline for optimizing fidelity.

We consider a scenario where we have two memory plat-

forms, One for storing teleportation requests and one for

caching EPR pairs. We model this as two competing queues

where at least one is always empty. Lastly, we extend this

model to show how this can be applied to calculate the

average fidelity of the teleportation channel created by a single

repeater chain. The novelty in our construction stems from its

simplicity and flexibility for calculating fidelity distributions.

It also considers the effects of scheduling disciplines which, to

the authors’ knowledge, have not been considered in quantum

networks at the time of writing. The flexibility of this model

also allows for easy extensions to different noise models,

probability distributions, etc. This leads to future work in

integrating elements from different works. We will go further

into this in section VII-A.

A. Related work

As stated, the analysis and modeling of quantum network

devices is an active field of study. There have been many stud-

ies on modeling switches and repeaters to analyze and design

protocols [6], [8], but these studies focus on entanglement

generation capacity, not on fidelity. This work can be thought

of as adding noisy memory to those studies. [9] focuses on

the fidelity of EPR pairs generated by repeater chains of

different lengths, but does not account for a continuous stream

of requests, so it can be seen as deriving a more accurate

distribution for the EPR generation distribution for a node

at the beginning of a repeater chain. [10] analyses fidelity

loss from wait times in memory using queues and is a very

flexible model as it also abstracts hardware implementations

and protocols into a set of tunable parameters. However, it

focuses primarily on the local network of a quantum processor

whereas the model presented in this paper can be extended to

model repeater nodes as well as other quantum nodes. They

only consider a FIFO queue.

II. SYSTEM MODEL

In this section, we formally define the process we are

modeling. We define the parameters that govern our physical

process and how a memory platform in a quantum network

node behaves.

Consider two nodes in a quantum network. one node

constantly receives quantum information that it must teleport

to the other node. We assume this node receives information

as pure state qubits arriving according to a Poisson process

with rate parameter λ. Any time this node receives a qubit, it

teleports it to the other node. This requires the generation and

consumption of an EPR pair between itself and the destination.

Since it is rarely the case that the initial fidelity of a distributed

Bell pair is one, we assume that the generated EPR pairs have

initial fidelities of 0.9.

The distribution of EPR pairs between two nodes is a

stochastic process [11] where the probability of successful

EPR pair generation depends on the distribution protocol and

physical implementation of the EPR pair generating platform.

If we consider a discrete-time model, the number of time

steps required to generate an EPR pair is characterized by a

geometric distribution. If we consider the time for one trial to

be very small and the probability of successfully generating an

EPR pair also to be small, then we can approximate the EPR

generation process by a Poisson process [10] where the time

taken to generate an EPR pair is sampled from an exponential

distribution with mean μ. We define the ”load” on a node

as λ/μ. We can then model the occupancy (number of stored

qubits to be teleported and EPR pairs) of the memory platform

as a continuous time Markov process (CTMC) and derive

steady-state distributions, or Laplace transforms for the time

a qubit spends in memory (wait time). We can then utilize

memory error models to obtain statistical descriptions of the

final unconditional fidelity of the teleported qubits.

A. Memory Model

A request qubit is stored in a noisy memory when waiting

for an EPR pair. A queue forms when more requests arrive

while one is already in memory. As stated previously, this

allows us to model the memory platform as a CTMC, allowing

for the calculation of wait time distributions. To quantify the

effects of decoherence, we need a continuous time noise model

that captures information loss. We choose the dephasing or the

phase damping model [2] represented by the operator ε(ρ),
where ρ is the density matrix of a one qubit system. It is

mathematically defined as

ε

([
ρ00 ρ01
ρ10 ρ11

])
=

[
ρ00 e−Γtρ01

e−Γtρ10 ρ11

]
, (1)
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where ρij is the ijth entry of the density matrix ρ, Γ is

a constant dephasing rate in a given environment, and t is

the time elapsed. Dephasing noise is the most common noise

associated with memories, and the results of this paper can be

extended to account for any error model as long as it can be

expressed as a linear sum of exponentially decaying terms.

One important caveat here is that we only account for

dephasing errors, not erasure errors. Therefore there is no

separate notion of efficiency as is common in the experimental

literature [12]. The fidelity measured here is after the qubit has

been served, i.e., retrieved from memory. The fidelity distri-

butions derived later represent the probability of the fidelity

given that the qubit has been teleported. This assumption can

be relaxed, and we discuss this in VII-A.

B. Fidelity loss of a single qubit

Fidelity of a density matrix ρ to some pure state |ψ〉 is given

by the formula

F (|ψ〉 〈ψ| , ρ) = tr(|ψ〉 〈ψ| ρ). (2)

We can use this with (1) to calculate the fidelity of a single

qubit |ψ〉 = α |0〉+β |1〉 after spending time t in memory. We

get the formula

F (t) = |α|4 + 2e−Γt|α|2|β|2 + |β|4, t ≥ 0. (3)

Note that the fidelity depends on the initial state of the pure

qubit, i.e., α and β influence the fidelity loss experienced by

that qubit. We need the inverse of F (t) in order to obtain

the fidelity distribution from the wait time distribution (|α|4+
|β|4 ≤ f ≤ 1),

F−1(f) = Γ−1(ln(2|α|2|β|2 − ln(f − |α|4 − |β|4)). (4)

1) Fidelity loss in a Bell pair: The effect of dephasing on

the fidelity of a Bell pair is well studied and is given by

F (t) =
1 + e−2Γt

2
, t ≥ 0

where t is time spent in the system and Γ is the dephasing

rate of the memory [13]. If we consider an initial fidelity of

0.9 at time t = 0, it is modified to

F (t) =
0.8 + e−2Γt

2
, t ≥ 0. (5)

Dephasing causes the Bell state to turn into a mixture of a

Bell state and maximally mixed 2-qubit state I/4, which can

be written in terms of its fidelity with respect to the Bell state

as a non-maximally entangled Bell state:

ρw =
1− F

3
I +

4F − 1

3
|Φ+〉 〈Φ+| .

Here F is the fidelity of ρw with respect to the Bell pair |Φ+〉.
This is precisely the F that decays in (5).

2) Fidelity loss experienced by a qubit due to teleportation
by a non maximally entangled state: Teleportation using a

maximally entangled Bell pair results in perfect teleportation,

and no information is lost. However, this is rarely the case

in practice, so we look at how teleportation using a non-

maximally entangled Bell state acts as a linear map on the

input state. We consider a Werner state ρw as the teleportation

resource and use it to teleport ρ(t), which is the density matrix

for some request qubit that has spent time t in memory. This

allows us to represent the effect of teleportation on ρ(t) as a

linear map [14]:

ΛT (ρ(t)) =

1∑
i,j=0

〈φij | ρw |φij〉 · Uijρ(t)U
†
ij , (6)

where |φij〉 are Bell states, ΛT (·) is the standard teleportation

algorithm represented as a linear transformation and

U00 = I, U01 = σx, U10 = σz, U11 = iσy.

If F is the fidelity of the Werner state ρw with respect to the

target Bell state Φ+, then

ΛT (ρ(t)) = Fρ(t) +
1− F

3
(σxρ(t)σ

†
x + σzρ(t)σ

†
z

+ iσyρ(t)(iσy)
†).

This equation can be further simplified to get an equation for

the fidelity of a qubit being teleported by a non-maximally

entangled Bell state, both suffering dephasing errors for times

t1 and t2 respectively. Therefore the final fidelity of the

teleported qubit is

tr
(
ρ(0)ΛT ρ(t1)

)
=

0.8 + e−2Γt2

2
(|α|4 + |β|4 + 2e−Γt1 |α|2|β|2)

+
1.2− e−2Γt2

6
(4e−Γt1 |α|2|β|2)

+
1.2− e−2Γt2

6
(|α|4 + |β|4 − e−Γt1((α∗β)2 + (β∗α)2)).

(7)

In the considered model, either the EPR pairs or the request

qubits have to be stored in memory, so if t1 > 0, then t2 = 0
and vice versa. Therefore, we further simplify (7) in these

cases. If t1 = 0, the error in teleportation is only due to

dephasing suffered by the EPR pair, the formula simplifies

to

F2(t) =
2.4 + 1.2c1

6
+

3− c1
6

e−2Γt2 , t ≥ 0

where c1 = 1 + 2|α|2|β|2 − (α∗β)2 − (β∗α)2. When t2 = 0,

we obtain the expression in (3):

F1(t) =
5.6

6
c2 +

(5.8
3

c3 − 0.2

6
c4
)
+ e−Γt, t ≥ 0

where c2 = (|α|4 + |β|4), c3 = (|α|2|β|2), and c4 =
((α∗β)2 + (β∗α)2)). The critical observation is that fidelity

is a linear sum of exponentially decaying terms. If time is a
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random variable and its Laplace transform with parameter s,

denoted by T ∗(s) is known, we obtain the equation

E[Fi] = ci + cjE[e
−ΓiT ] = ci + cjT

∗(Γi). (8)

This approach of using the Laplace transform to get the

moments for the fidelity is helpful as in the processes we

consider, it is easier to obtain closed form solutions of the

Laplace transforms for the wait time distributions than the

distributions themselves. This will be especially useful when

we consider models with finite memory. In these equations, ci
and cj are determined by the input qubit being teleported. In

this paper, we use |+〉 as the example input qubit and

F1(t) =
0.93

2
+

0.93

2
e−Γ1t, t ≥ 0 (9)

F2(t) =
1.8

3
+

1

3
e−2Γ2t, t ≥ 0. (10)

These are the simplified error models considered in this paper.

All of the aforementioned functions are monotonic scalar

functions of fidelity in terms of the wait time of a request.

Therefore, we can transform wait time into fidelity. Thus it

suffices to derive wait time distributions under different service

and buffer management policies and then transform to fidelity

distributions as we will see in the upcoming sections.

III. DOUBLE QUEUE MODEL

In this section, we consider a node with a memory platform

available for storing multiple EPR pairs, which are generated

according to a Poisson process with rate λe. Teleportation

requests arrive according to a Poisson process with rate λr.

We assume gate operations are instantaneous as times taken

to perform gate operations are orders of magnitude smaller

than the time taken to generate an EPR pair. This process can

be modeled as two competing queues where the service rate

for one queue is the request rate for another. The memory

platform for the request qubits can store Br qubits, and the

platform for EPR pairs can store Be qubits. We model this as

a CTMC with the state being the number of request qubits in

the system denoted as N . We represent a surplus of EPR pairs

as a negative number of requests, making −Be ≤ N ≤ Br.

This gives us the process presented in Fig. 1 From its Markov

chain formulation,

πn = P[N = n] = π−Be
ρn+Be , −Be ≤ n ≤ Br.

Since π−Be

∑Be+Br

i=0 ρi = 1,

πn =
1− ρ

1− ρBe+Br+1
ρn+Be , −Be ≤ n ≤ Br. (11)

Let pe and pr denote the probabilities that an arriving EPR

pair and request are placed in a buffer, respectively. Then

pe =

0∑
n=−Be

πn and pr =

Br∑
n=0

πn.

Let Ps,r and Ps,e be the probabilities that a request qubit

is teleported and an EPR pair is used, respectively. Define:

Ps,i = P[an arrival of type i gets served], i ∈ {e, r}. Then

Ps,i =

∑Bi−1
j=0 ρj∑Bi

j=0 ρ
j

=
1− ρBi

1− ρBi+1
. (12)

The Markov chain formulation shows that this system alter-

nates between two phases, as shown in Figure 2. In phase 1,

request qubits are stored in memory waiting for EPR pairs

and suffer decoherence during the wait. In phase 2, EPR pairs

queue up in memory and wait for requests to arrive that they

can teleport. The system alternates between these two phases,

so either only the request qubit spends time in the memory or

the EPR pair but never both. Due to this, We can individually

analyze the fidelity loss for each phase and then derive a joint

distribution by conditioning on the phase.

Let us take a closer look at the process during a phase. If we

restrict ourselves to one phase, the memory platform behaves

like a standard finite buffer M/M/1. We know from queuing

theory that different orders of service for buffered requests

and EPR pairs lead to different wait time distributions. If we

have the wait time distributions, we can easily derive fidelity

distributions using a Jacobian transformation. When it is too

complex to explicitly derive the wait time distribution, it is

usually straightforward to calculate the Laplace transform for

the wait time and use it to calculate average fidelity.

Let fWi
(t) be the probability density function (pdf) for the

wait time incurred by a random request during phase i =
1, 2. The qubit fidelity distribution will depend on whether

the request qubit or the EPR pair incurred the wait (phases 1

and 2). In our case, we will use (9) or (10) depending on what

type of qubit we are considering,

fFi(x) = fW
(
F−1
i (x)

) ∣∣∣∣ ddy
(
F−1
i (x)

)∣∣∣∣ , x ≥ 0.

We also define W ∗
i (s) = E[e−st], i.e., the Laplace transform

of the wait time during phase i = 1, 2. We use (8) to calculate

E[Fi] given W ∗
i .

In the next section, we give explicit expressions for fFi
(t) or

W ∗
i (s) for four memory platforms differentiated by the type of

memory management or service discipline used. Meanwhile,

assuming we have descriptions for the wait times of the

two individual queues, we can get the fidelity probability

distribution of served requests accounting for both phases by

adding the conditional distributions of fidelity of a served

request which waited in a particular queue and normalizing

it. This yields

fF (x) =
λepePs,efFe(x) + λrprPs,rfFr (x)

λepePs,e + λrprPs,r
, x ≥ 0. (13)

Therefore,

E[F ] =
λepePs,eE[Fe] + λrprPs,rE[Fr]

λepePs,e + λrprPs,r
. (14)

This expression is very flexible as it allows us to calculate

the average fidelity for double queue models even when the
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−Be −2 0 1.... −1 Br2 ....

λr λr λrλrλr λr λr λr

λeλe
λeλeλeλeλeλe

Fig. 1: Markov Chain formulation of Double Queue model

with buffer size Be for EPR pairs and Br for request qubits

Request cycle EPR cycle

t

Fig. 2: Typical teleportation behavior.

memory platforms have different decoherence rates, buffer

sizes, control, etc.

IV. SINGLE QUEUE MODELS

In this section, we take a closer look at the phases mentioned

in the previous section by focusing on a single memory

platform for the incoming ”request” with no memory for the

”service”. Applied to the double queue model, we must be

careful whether the ”request” is an actual request qubit or an

EPR pair, as they will flip depending on which phase we are

in. Once the request arrives in memory, it waits for service. As

stated before, inter-arrival and service times are sampled from

exponential distributions reducing the process to an M/M/1

queue. We will now take a look at five different kinds of

queues, each modeling a different kind of memory control

for the platform

A. Infinite buffer FIFO
The buffer size is infinite, and no incoming request is

blocked. The buffer serves the qubits using FIFO. We know

from literature [18] that

fW (t) = (λe − λr)e
−(λe−λr)t, t ≥ 0

where λr is the arrival rate, and λe is the service rate. We

can transform this into the probability density function for the

fidelity using the formula derived in (3) as the function is

scalar and monotonic to get

fF (x) =
(λe − λr)

exp(ln |α|4 + |β|4 − lnx− 2|α|2|β|2)(λe−λr)/Γ

· | Γ−1

(|α|4 + |β|4 − x)
|, x ≥ 0.

(15)

The Laplace transform for fW (t) is

W ∗(s) =
λe − λr

λe − λr − s
, Re(s) ≥ 0. (16)

One key thing about this model is that it is only valid if

λr < λe; otherwise the queue keeps growing, wait times

increase, and fidelities decrease to a minimum. To combat this,

we consider LIFO, which prioritizes younger requests.

B. Infinite Buffer LIFO

This is very similar to the previous model, except that

the derivation of the wait time distribution is different. We

consider a system where requests are served in a LIFO order,

i.e., the buffer is a stack with infinite capacity. The busy period

of a queue is defined as the time measured between the instant

a request arrives to an empty buffer and the next time the

buffer is empty. For an M/M/1 queue, the distribution of the

busy period is given by

fB(t) =
1

t
√
ρ
e−(λr+λe)tI1(2t

√
λrλe), t ≥ 0 (17)

where ρ = λr/λe is the load. Since LIFO always places a new

request at the front of the buffer the wait time distribution is

the same as the busy period distribution [18], i.e.,

fW (t) = fB(t), t ≥ 0. (18)

With the inverse of the function of fidelity with respect to time

g−1(f) = Γ−1(ln(2|α|2|β|2 − ln(f − |α|4 − |β|4)) (19)

we can now transform the wait time pdf into the the fidelity

pdf

fF (x) = fB(g
−1(x))| Γ−1

(|α|4 + |β|4 − x)
|, x ≥ 0, (20)

We also know the Laplace transform of the busy period and

by extension of the wait time is:

W ∗(s) =
1

2λr

(
λr + λe + s−

√
(λr + λe + s)2 − 4λrλe

)
.

(21)

C. FIFOPO

In this section, we consider a system in which incoming

requests are stored in a queue with a maximum buffer capacity

B ≤ ∞. When a request arrives to find the buffer full, the

oldest request is discarded, and the incoming request is stored

in the queue. This makes the probability of service for a

requesting FIFOPO dependent on its position in the queue

(k) and the number of qubits behind it (j) as it might get

pushed out. Therefore, we need to define a new probability,

Wr(j, k, t), which is the probability that a request in position

k with j requests behind it is served and its remaining wait

time is t.

We know from [17] that the Laplace transform

W ∗(j, k, s) =
∫∞
0

e−stW (j, k, t)dt can be described by

441

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 26,2023 at 01:08:23 UTC from IEEE Xplore.  Restrictions apply. 



the following set of recursive equations where j, k ∈ [0, B]
and Re(s) ≥ 0:

W ∗(j, 0, s) = 1 (∀j, s),
W ∗(B − 1, 1, s) =

λe

λe + λr + s
,

W ∗(j, k, s) =
λr

λr + λe + s
W ∗(j + 1, k, s)

+
λe

λr + λe + s
W ∗

r (j, k − 1, s), k > 0, j < N − k,

W ∗(B − k, k, s) =
λr

λr + λe + s
W ∗(B − k + 1, k − 1, s)

+
λe

λr + λe + s
W ∗(B − k, k − 1, s) k > 1.

Since this is in terms of the joint probability of service and

wait time. We need to turn this into a conditional probability

of waiting time given the request will be served, which we can

get by normalizing with the probability of a random request

getting service Ps. Therefore, the Laplace transform is

W ∗(s) = E[e−sW ] =

[∑Br

j=1 W
∗(j, k, s)

]
+W ∗(N, 0, s)

Ps
.

This can be used to calculate E[F ]. Next, we consider LI-
FOPO.

D. LIFOPO
The main difference between this section and the previous

one is that incoming request qubits are stored in a stack instead

of a queue. We still discard the oldest qubit when a request

arrives and the stack is full. Unfortunately, it is difficult to

work directly with the wait time pdf. Instead, we work with the

Laplace Transform. Unlike the previous model, the wait time

only depends upon its position in the queue k. Let W (k, t)
denote the probability density that a request in buffer position

k gets served eventually, and its wait time will be t. Assuming

k = 1 corresponds to the head of the stack and k ∈ [0, B+1]
and Re(s) > 0, from classical results [17],

W ∗(0, s) = 1,W ∗(Bi + 1, s) = 0, Re(s) ≥ 0

W ∗(k, s) =
λi

λe + λr + s
W ∗(k + 1, s)

+
λi′

λe + λr + s
W ∗(k − 1, s) 1 < k < B,

W ∗(B, s) =
λi′

λe + λr + s
W (B − 1, s),

W ∗(1, s) =
λi

λe + λr + s
W ∗(2, s)

+
λi′

λe + λr + s
W ∗(B − 1, s).

They can be solved to produce

W ∗(k, s) =
r1(s)

kr2(s)
B − r2(s)

kr1(s)
B

r2(s)B − r2(s)k
(22)

where

r1,2(s) =
(λe + λr + s)±√

(λe + λr + s)2 − 4λeλr

2λi
.

We need to normalize this Laplace transform as in the previous

section with Ps, also, since a new request is always placed in

the first position, we have

W ∗(s) = E[e−sW ] =
W ∗(1, s)

Ps
, Re(s) ≥ 0.

V. OPTIMALITY OF LIFOPO

We have analyzed several memory management and service

disciplines. Naturally, this raises the question as to which

performs best. In this section, we answer this question by

establishing that, out of a large class of work conserving

disciplines, LIFOPO is optimal in that it maximizes the final

average fidelity of a teleported qubit. This result should not

come as a surprise as it is well known that, out of the class of

work conserving non-preemptive policies Π′, LIFO maximizes

E[f(Wπ)] for any convex function f where Wπ is the sojourn

time under policy π ∈ Π′ for an infinite buffer G/G/1 queue

[15], [16].

Let π denote a policy that assigns requests to EPR pairs and

determines what teleportation qubits and EPR pairs to discard

from the respective buffers to avoid overflows. We first observe

that there is no benefit to removing a qubit from a buffer before

it is full; hence we only consider polices that remove qubits at

the time overflow occurs. Second, we restrict ourselves to work

conserving policies; those that always teleport qubits whenever

possible. Let Π denote the set of such double buffer policies.

We introduce LIFOPO, which always assigns the youngest

qubit to be teleported to a newly created EPR pair or the

youngest EPR pair to a newly made teleportation request, and

always discards the oldest qubit from the buffer when it is

about to overflow. A formal definition of this policy is given

in the Appendix. Henceforth we refer to LIFO-PO as γ.

Theorem 1: Out of the class of policies Π LIFOPO maxi-

mizes average fidelity,

E[Fπ] ≤ E[F LIFOPO].

where Fπ is the teleportation fidelity under π.

Proof sketch. A complete proof is found in the appendix.

Here we provide a sketch of the proof. The system can

be decomposed into two single buffer subsystems, one for

teleportation requests and the other for EPR pairs. Let Fπ
e and

Fπ
r denote the fidelity for EPR pairs and teleportation requests

respectively. We show that E[Fπ
e ] and E[Fπ

r ] are maximized

when π = LIFO-PO. As E[Fπ] is a weighted average of

E[Fπ
e ] and E[Fπ

r ], this establishes the theorem.

Focusing on the request buffer, we condition on the first

n departures of qubits from the request buffer, either due to

successful teleportation or removal due to overflow. Let wπ =
(wπ

1 , . . . , w
π
n) denote the wait times of these requests. Because

request qubits can be removed from the buffer without service,

we will assign wait times of infinity to those requests. Let m
denote the number of these removed qubits. Our proof that γ
is optimal is based on establishing the following majorization

result between wπ an d wγ , π ∈ Π, π 
= γ, wπ ≺w wγ . Here

≺w is defined as follows.
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Fig. 3: Plot for average fidelity vs. load. B = 10, Γ = 0.01,

λe = 5 and λr ∈ (0, 5), therefore, load ∈ [0, 1].

Definition 1: Let x, y ∈ R
n−m
+ × {∞}m; y weakly super-

majorizes x written x ≺w y iff

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, . . . , n−m.

where x(i) (resp. y(i)) correspond to the components of x (y)

in increasing order.

This is useful in our context because of the following property

of ≺w,
n−m∑
i=1

φ(x(i)) ≤
n−m∑
i=1

φ(y(i)) (23)

for any continuous decreasing convex function φ.

The proof that wπ ≺w wγ is straightforward and consists of

transforming π into γ by taking each non-LIFOPO decision

and replacing it with an LIFOPO decision such that the

weak majorization is propagated until the resulting policy is

LIFOPO. Property (23) can now be applied with φ() = F ()
where F () is given in (9), (10), n allowed to go to infinity,

and the conditioning on arrival and departure times removed

yielding E[F (Wπ
r )] ≤ E[F (W LIFOPO

r )]. The EPR buffer is

handled in a similar manner.

VI. RESULTS

It was proven in Section V that LIFOPO maximizes average

fidelity. We can visualize this in Figure 3. We plot the

average fidelity of a teleported request with respect to load

for different service disciplines. The models are named in the

format: X-Y, where X represents the buffer system used by

memory for the qubit being teleported and Y represents the

buffer system used by the EPR qubits, for example, FIFOPO-

LIFOPO denotes a system where the incoming qubits are

stored in a FIFOPO buffer, and the EPR pairs are stored in

a LIFOPO buffer. We consider FIFOPO-LIFOPO, LIFOPO-

LIFOPO and FIFOPO-FIFOPO. Another thing to note is that

we only consider models where the buffer sizes for both the

Fig. 4: Plot for average fidelity vs. load comparing different

buffer sizes. Γ = 0.01, λe = 5 and λr ∈ (0, 10), therefore,

load ∈ [0, 2].

Fig. 5: Plot for Probability a random request reciever service

vs. load for a LIFOPO-LIFOPO queue.

EPR buffer and the request buffer are equal, i.e. Be = Br =
B. The dephasing rate Γ = 0.01, the EPR generation rate is

λe = 5, the teleportation request rate λr between zero and ten.

To reiterate, We observe that LIFOPO-LIFOPO outperforms

FIFOPO-LIFOPO and FIFOPO-FIFOPO. The reason for

the lower performance of FIFOPO-FIFOPO at low loads is

explained by the fact that the EPR pairs are being queued up

waiting for requests, but since they have to be used in order

of creation, the requests are served by stale EPR pairs rather

than fresh ones as is the case of systems that use LIFOPO for

the EPR pair. Of course, LIFOPO-LIFOPO performing the

best is consistent with Theorem 1. Another thing to note is

the increasing nature of FIFOPO-FIFOPO. Since we have

a pushout mechanism for the oldest qubit in the queue,

increasing the load means a greater chance of older requests

being discarded. On the other hand, in the case of LIFOPO-

LIFOPO, we observe that as the load approaches one, the

fidelity stops decreasing and starts increasing. This is because
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Fig. 6: Plot for average fidelity loss vs. load for a single

repeater chain for different buffer sizes following LIFOPO-

LIFOPO. Γ = 0.01.

EPR pairs are served more quickly and have incurred less

decoherence. In Figure 4 we explore the performance of

LIFOPO-LIFOPO and LIFOPO-FIFOPO as a function of

load for three different buffer sizes of 2, 5, and 10. Here we

allow the load to vary from zero to two (λr varies from zero

to 10). In all cases, average fidelity first decreases and then

increases. In the case of buffer size of 10, the minimum occurs

close to a load of one. This behavior should not come as a

surprise as the time qubits spend in either buffer is the same

at load one. The minimum average fidelity does not occur at

load one because request qubits and EPR pairs decohere at

different rates, and the asymmetry becomes more pronounced

as buffer size decreases. Last average fidelity decreases with

buffer size because increasing the size allows qubits more

time to decohere before use. Figure 5 examines the behavior

of probability of service as a function of load for the three

different LIFOPO-LIFOPO buffer sizes.

A. Application to a repeater node

In this section, we apply the double queue model to a

quantum repeater between two nodes, A and B, as shown

in Figure 7. This repeater constantly generates EPR pairs

between A and B by generating EPR pairs between itself

and A, and itself and B, and then performing entanglement

swaps. Entanglement swapping is a form of teleportation of

one qubit of an EPR pair ’a’ using EPR pair ’b’. This ”swaps”

the entanglement as now one of the qubits of the resource

EPR pair ‘b’ has been entangled with the non-teleported qubit

of EPR pair ‘a’, and the original entanglements have been

destroyed. This repeater contains two buffers, one to store EPR

pairs between the repeater and node A and the other between

the repeater and node B.

Our teleportation model requires the following modification:

request qubits suffer the same type of decoherence as EPR

pairs. Since we consider the initial fidelity of the Werner state

created to be 0.9, the fidelity of the final EPR pair generated

between A and B is equivalent to the fidelity loss suffered

by the EPR pair that has waited in memory multiplied by

0.9 as the fidelity of the final Werner state created by the

entanglement swapping of two Werner states is the product of

the fidelities of the two initial Werner states [20]. The fidelity

of a Bell pair dephasing with time is given by (5) which is

the fidelity function we use for both queues.

As modeled before, EPR pairs are generated according to

a Poisson process, and the time between consecutive EPR

generations between the repeater and node x is sampled

from an exponential distribution with mean μx, x = A,B.

Assuming the router is equidistant between node A and node B

and uses similar technologies for generating the EPR pair, we

set μA = μB . To keep it consistent, we keep the decoherence

rate, Γ = 0.01. We plot the average infidelity defined as E[F ]
with respect to μ in Figure 6. Average fidelity increases with

the increasing rate because when the rate is low, one queue

receives a pair, but since the other queue has a low rate, the

arrived pair has to wait a long time before it has a counterpart

for service. We also see larger infidelity in larger buffers, but

this comes at the cost of a greater chance of rejection, as

observed in Figure 5.

VII. SUMMARY

In this paper, we have modeled and quantified the effects

of decoherence in a teleportation process. We model memory

platforms in networks as queues and utilize queuing theory to

calculate how much time a request has to wait for teleportation.

We then map these waiting times to fidelity loss due to

dephasing. This allows us to derive efficiently computable

functions for the average fidelity of the qubits teleported by a

node. We consider a case where there are two queues to model

caching of EPR pairs and provide a framework to extend

results from classical queuing theory on single buffer queues to

the double buffer systems. We quantify how service disciplines

affect teleportation fidelities in NISQ era devices and calculate

average fidelities for different disciplines. We prove the opti-

mality of LIFOPO-LIFOPO for serving teleportation requests

and compare it to other disciplines. We analyze the effects of

buffer sizes and compare their Service probabilities. Lastly,

we apply this framework to analyze the average transportation

fidelity of a quantum repeater between two nodes and see how

different buffer sizes compare in terms of fidelity and service

completion probability.

A. Future Work

There are many open questions and directions this work

can take. A most natural extension is to account for mixed

states as requests. One can achieve this by modifying (7)

and using the fidelity formula for comparing two mixed states

instead of assuming a state is pure. Another direction would

be to use more accurate distribution models for the EPR

pair generation as in [9] and apply this model to longer

repeater chains. Another natural extension would be to model

a constant timeout policy so that if a request has been in

the queue for longer than some time C, we can guarantee

a minimum fidelity for the teleported information. As stated

in II-A, we do not account for erasure or loss errors in the
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Fig. 7: A single repeater between two nodes, It has two buffers to store EPR pairs and only one can non empty at the same

time. If the repeater has a qubit from an EPR pair in buffer A, and an EPR pair is generated between it and B, it performs a

swap and discards the qubits.

memory. This can be rectified by considering queues with

impatient customers. As long as the errors can be modeled as

exponential equations, the CTMC formulation can be applied

to account for them.
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APPENDIX

Proof of Theorem 1. We focus separately on the two buffers

and focus on the amount of time qubits to be teleported and

EPR pairs are allowed to decohere waiting to be matched up

with each other. Henceforth we focus on the request buffer

and only on requests that arrive when no EPR pair is stored

in the EPR buffer. We focus on the arrivals and departures of

n requests under policy π ∈ Π. Let a1, . . . , an and d1, . . . , dn
denote the arrival and departure times for these requests.

Here a departure corresponds either to a pairing with a

newly creation of an EPR pair followed by a successful

teleportation or removal from the buffer. Let m ≤ n denote

the number of qubits removed from the buffer. A policy

π ∈ ΠLIFO−O satisfies the following properties:

• There exists no pair of requests j, k that are served such

that ak < aj < dk < dj ,

• there exists no pair of requests j, k where k is served and

j is discarded such that ak < aj < dk,

• there exists no pair of requests j,K that are discarded

such that ak < aj < dj < dk
Let wπ = (wπ

1 , . . . , w
π
n) denote the wait times of these

teleportation requests. Because requests can be removed from

the buffer without service, we will assign wait times of infinity

to those requests. Our proof that γ is optimal is based on

showing wπ ≺w wγ , π ∈ Π where ≺w is defined in Section

V. Note that the standard definition [19] corresponds to the
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case m = 0. We introduce an operator Tij , called the ”T -

transform”, as follows. Let x ∈ R
n
+;

Tij = λI + (1− λ)Qij

where I is the identity operator, Qij is an operator that

permutes the i-th and j-th components of x and 0 ≤ λ ≤ 1.

In other words,

Tijx = (x1, . . . , xi−1, λxi + (1− λ)xj , xi+1, . . . ,

xj−1, (1− λ)xi + λxj , xj+1, . . . , xn)

It is easily shown that Tijx ≺w x provided xi, xj < ∞. Note

that x ≺w Qijx (λ = 0). Last, define the function Sj(x) as

Sj(x) = (x1, . . . , xj−1, αxj , xj+1, . . . , xn)

with 0 ≤ α ≤ 1. Then x ≺w Sj(x).
Consider the system with n requests arriving at times

a1, . . . , an and depart at times d1, . . . , dn.

We transform π to γ through a sequence of steps that creates

a sequence of policies π0 = π, π1, π2, . . . , πh = γ ∈ ΠLIFO−O

such that wπl ≺w wπl+1 , l = 0, . . . h− 1.

Assume πl violates the LIFO-O property. There are three

cases depending on whether the two requests are served, one

is served and the other removed or both removed.

1) Both are served. Request k is served before a younger

request j, ak < aj < dk < dj (we omit dependence on

πl). We construct πl+1 from πl by switching the order in

which j and k are served. The wait times for requests j
and k under πl are wπl

j = dj−aj and wπl

k = dk−ak and

under πl+1 are w
πl+1

j = dk − aj and w
πl+1

k = dj − ak.

Here wπl and wπl+1 satisfy

wπl = Tjkw
πl+1

with

λ =
aj − ak

(aj − ak) + (dj − dk)
.

Hence wπl ≺w wπl+1 . See Figure 8.

2) One request is served. Request k is served while a

younger request is discarded, ak < aj < dk. We

switch the order in which these two requests are handled

resulting in the servicing of j at time dk and removal

of k at time dj . Then wπl and wπl+1 satisfy

wπl+1 = S(Qjkw
πl)

with α = (dk − aj)/(dk − ak). Hence wπl ≺w wπl+1 .
See Figure 9.

3) Both are removed. A younger request j is removed

from the buffer before an older job k under πl, ak <
aj < dj < dk. We switch the order of the removals

under πl+1. This does not affect wait times and wπl ≺w

wπl+1 . See Figure 10.

This procedure is repeated until the LIFO-O properties are

satisfied and, consequently wπ ≺w wγ .

We fixed the arrival and service times. Remove the con-

ditioning on them and let Wπ(n) denote the wait time

of a randomly chosen request from the first n requests

that are served. From the above majorization result and

the equivalence (23), we conclude that E[φ(W LIFOPO(n)] ≥
E[φ(Wπ(n))] for every convex decreasing function φ. More-

over if the limits W LIFOPO = limn→∞ W LIFOPO(n) and

Wπ = limn→∞ Wπ(n) exist, then E[φ(W LIFOPO] ≥ E[Wπ].

πl

ak aj

k

dk

j

dj

wπl

k

wπl
j

πl+1

ak aj

j

dk

k
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w
πl+1

k

w
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j

Fig. 8: Case 1.
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Fig. 9: Case 2.
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X
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j
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Fig. 10: Case 3.

Returning to our teleportation system, under the assumption

that requests and EPR pairs are generated according to Poisson

processes, when placed in their respective buffers, they will

exhibit stationary wait time Wπ
r and Wπ

e respectively. The

respective qubits decohere at different rates Fr(t) and Fe(t) in

the two memories according to (9), (10), As these decoherence

functions are decreasing and convex, we conclude that there

exists a LIFOPO ∈ ΠLIFO−O such that E[Fr(W
LIFOPO(n)] ≥

E[Fr(W
π(n))] and E[Fe(W

LIFOPO(n)] ≥ E[Fe(W
π(n))] .

The expected teleportation fidelity for the entire system, E[Fπ]
is E[Fπ] = qE[Fπ] + (1− q)E[Fπ] where q is the probability

that a request qubit arrives to a system where no EPR qubits

are available. Finally, we conclude E[F LIFOPO] ≥ E[Fπ] for

all π ∈ Π.
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