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Abstract—Quantum teleportation channels can overcome the
effects of photonic loss, a major challenge in the implementation
of a quantum network over fiber. Teleportation channels are
created by distributing an entangled state between two nodes,
which is a probabilistic process requiring classical communica-
tion. This causes critical delays that can cause information loss as
quantum data suffers from decoherence when stored in memory.
In this work, we quantify the effect of decoherence on fidelity
at a node in a quantum network due to the storage of qubits
in noisy memory platforms. We model a memory platform as
a buffer that stores incoming qubits waiting for the creation of
a teleportation channel. Memory platforms are parameterized
with decoherence rate and buffer size. We show that fidelity at a
node is a linear sum of terms, exponentially decaying with time,
where the decay rate depends on the decoherence rate of the
memory platform. This allows us to utilize Laplace transforms
to derive computable functions of average fidelity with respect
to the load, buffer size, and decoherence rate of the memory
platform. We prove that serving qubits in a Last In First Out
order with pushout for buffer overflow management maximizes
average fidelity. Last, we apply this framework to model a single
repeater node to calculate the average fidelity of the end-to-
end entanglement created by this repeater assuming perfect gate
operations.

Index Terms—Quantum Networks, Quantum Teleportation,
Decoherence, Fidelity, Queuing Theory, Quantum Memory,
Quantum Repeaters,

I. INTRODUCTION

Quantum networks face many problems inherently different
from those in classical networks, as qubits differ from bits
[1]. One of these problems arises from the (in)famous no-
cloning theorem [2]. Quantum networks implemented over
fiber suffer from exponential photonic loss with respect to
fiber length [3]. Classical networks overcome similar loss
by using signal amplification. Unfortunately, the no-cloning
theorem bars the use of signal amplification, which means
quantum networks need to find another solution to the problem
of loss. Quantum teleportation allows us to transfer quantum
information between two spatially separated parties using a
distributed entangled state and classical communication with-
out transferring the physical entity carrying that information
across the network [4], making it invulnerable to loss. Another
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essential property of quantum teleportation is that it allows for
secure communication and is a central part of quantum key
distribution [1].

Quantum teleportation is enabled through entangled quan-
tum states. The most common examples of entangled states
are Einstein—Podolsky—Rosen (EPR) states or Bell Pairs [4].
Therefore, a critical job for quantum networking devices like
repeaters, switches, etc., is to distribute these EPR pairs
between two nodes so that quantum information can be
shared between them, creating a teleportation channel. Many
protocols exist for generating and distributing EPR pairs [5],
but all are probabilistic processes that can fail because of
imperfections in physical operations such as gate errors, signal
loss in fiber, etc. These probabilistic failures naturally give
rise to many optimization, control, and design problems in
quantum networking devices. There have been many recent
results regarding the modeling and analysis of entanglement
distribution rates for nodes in quantum networks [6], but a sig-
nificant assumption in most of these is the presence of noise-
less memories. This is an issue as most noisy intermediate-
scale quantum (NISQ) era quantum memory platforms cause
fidelity loss on any qubit stored in them due to decoherence
[7].

When a qubit arrives at a node requesting teleportation,
the node must await the generation of an EPR pair between
itself and the destination, which causes delays. While the
EPR pair is being generated, The request qubit has to be
stored in a noisy memory platform. This means that even
if the EPR pair is perfect, the request will suffer some
decoherence. The sensitivity of a memory platform to noise
is parameterized by decoherence time, or decoherence rate,
and fidelity decays exponentially with time. Quantifying the
effects of this decoherence on the fidelity of the teleportation
allows us to come up with specifications for memory platforms
for different applications. Another vital question is memory
management. Given the fact that one can only store a finite
amount of requests and EPR pairs, how should one schedule
and service requests to minimize decoherence and deal with
the arrival of new requests when memory is full.

In this paper, we quantify the fidelity loss for a node in
a quantum network due to decoherence from memory and
provide a way to derive the fidelity distribution or the average
fidelity. We use dephasing noise characterized by a dephasing
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rate I' to model noise in the memory platform and derive an
expression for fidelity with respect to time spent in memory by
a request. Furthermore, we model teleportation as a queuing
process where requests are generated according to a Poisson
process with rate A and EPR pairs are also generated according
to a Poisson process with rate p. This allows us to calculate the
wait times in memory using simple continuous-time Markov
models.

The expected fidelity of a qubit teleported by the node
depends on load, dephasing rate, memory size, and service
discipline. Since the relation between fidelity of a qubit and
its age is not linear, the order in which requests are served
can affect the expected fidelity of the qubit. This order of
service is referred to in this paper as the service discipline.
Even when the average wait times of two service disciplines
are the same, the average fidelities can differ. We consider both
first in first out (FIFO) and last in first out (LIFO) disciplines
with both finite and infinite buffers. When buffers are finite,
we introduce a pushout buffer management policy. Coupled
with FIFO and LIFO, we refer to the combined policies as
FIFOPO and LIFOPO respectively. Here pushout operates as
follows, if a qubit arrives to a full buffer, the oldest request
in the buffer is kicked out to make space for the incoming
qubit. We consider pushout because intuitively, it maximizes
fidelity as older requests, i.e., qubits that have suffered the
most decoherence, are kicked out. We prove that LIFOPO is
the optimal discipline for optimizing fidelity.

We consider a scenario where we have two memory plat-
forms, One for storing teleportation requests and one for
caching EPR pairs. We model this as two competing queues
where at least one is always empty. Lastly, we extend this
model to show how this can be applied to calculate the
average fidelity of the teleportation channel created by a single
repeater chain. The novelty in our construction stems from its
simplicity and flexibility for calculating fidelity distributions.
It also considers the effects of scheduling disciplines which, to
the authors’ knowledge, have not been considered in quantum
networks at the time of writing. The flexibility of this model
also allows for easy extensions to different noise models,
probability distributions, etc. This leads to future work in
integrating elements from different works. We will go further
into this in section VII-A.

A. Related work

As stated, the analysis and modeling of quantum network
devices is an active field of study. There have been many stud-
ies on modeling switches and repeaters to analyze and design
protocols [6], [8], but these studies focus on entanglement
generation capacity, not on fidelity. This work can be thought
of as adding noisy memory to those studies. [9] focuses on
the fidelity of EPR pairs generated by repeater chains of
different lengths, but does not account for a continuous stream
of requests, so it can be seen as deriving a more accurate
distribution for the EPR generation distribution for a node
at the beginning of a repeater chain. [10] analyses fidelity
loss from wait times in memory using queues and is a very

flexible model as it also abstracts hardware implementations
and protocols into a set of tunable parameters. However, it
focuses primarily on the local network of a quantum processor
whereas the model presented in this paper can be extended to
model repeater nodes as well as other quantum nodes. They
only consider a FIFO queue.

II. SYSTEM MODEL

In this section, we formally define the process we are
modeling. We define the parameters that govern our physical
process and how a memory platform in a quantum network
node behaves.

Consider two nodes in a quantum network. one node
constantly receives quantum information that it must teleport
to the other node. We assume this node receives information
as pure state qubits arriving according to a Poisson process
with rate parameter A. Any time this node receives a qubit, it
teleports it to the other node. This requires the generation and
consumption of an EPR pair between itself and the destination.
Since it is rarely the case that the initial fidelity of a distributed
Bell pair is one, we assume that the generated EPR pairs have
initial fidelities of 0.9.

The distribution of EPR pairs between two nodes is a
stochastic process [11] where the probability of successful
EPR pair generation depends on the distribution protocol and
physical implementation of the EPR pair generating platform.
If we consider a discrete-time model, the number of time
steps required to generate an EPR pair is characterized by a
geometric distribution. If we consider the time for one trial to
be very small and the probability of successfully generating an
EPR pair also to be small, then we can approximate the EPR
generation process by a Poisson process [10] where the time
taken to generate an EPR pair is sampled from an exponential
distribution with mean p. We define the “load” on a node
as A\/u. We can then model the occupancy (number of stored
qubits to be teleported and EPR pairs) of the memory platform
as a continuous time Markov process (CTMC) and derive
steady-state distributions, or Laplace transforms for the time
a qubit spends in memory (wait time). We can then utilize
memory error models to obtain statistical descriptions of the
final unconditional fidelity of the teleported qubits.

A. Memory Model

A request qubit is stored in a noisy memory when waiting
for an EPR pair. A queue forms when more requests arrive
while one is already in memory. As stated previously, this
allows us to model the memory platform as a CTMC, allowing
for the calculation of wait time distributions. To quantify the
effects of decoherence, we need a continuous time noise model
that captures information loss. We choose the dephasing or the
phase damping model [2] represented by the operator £(p),
where p is the density matrix of a one qubit system. It is
mathematically defined as
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where p;; is the ijth entry of the density matrix p, I' is
a constant dephasing rate in a given environment, and ¢ is
the time elapsed. Dephasing noise is the most common noise
associated with memories, and the results of this paper can be
extended to account for any error model as long as it can be
expressed as a linear sum of exponentially decaying terms.

One important caveat here is that we only account for
dephasing errors, not erasure errors. Therefore there is no
separate notion of efficiency as is common in the experimental
literature [12]. The fidelity measured here is after the qubit has
been served, i.e., retrieved from memory. The fidelity distri-
butions derived later represent the probability of the fidelity
given that the qubit has been teleported. This assumption can
be relaxed, and we discuss this in VII-A.

B. Fidelity loss of a single qubit

Fidelity of a density matrix p to some pure state |¢) is given
by the formula

E([g) (@l p) = w() (] p)- ()

We can use this with (1) to calculate the fidelity of a single
qubit 1)) = «|0)+ 3 |1) after spending time ¢ in memory. We
get the formula

F(t) = |a/* + 27 Ma?|B2 +18]*, t>0.  (3)
Note that the fidelity depends on the initial state of the pure
qubit, i.e., a and [ influence the fidelity loss experienced by
that qubit. We need the inverse of F'(t) in order to obtain
the fidelity distribution from the wait time distribution (|ct|* +

IB* < f <D,
F7Hf) =T In2[e*|B)? —In(f — |a[* = [8]*)). @)

1) Fidelity loss in a Bell pair: The effect of dephasing on
the fidelity of a Bell pair is well studied and is given by

14+ e*ZFt

t>
2 ’ =0

F(t)
where ¢ is time spent in the system and I' is the dephasing
rate of the memory [13]. If we consider an initial fidelity of
0.9 at time ¢ = 0, it is modified to

0847

)= =,

t>0. 5)
Dephasing causes the Bell state to turn into a mixture of a
Bell state and maximally mixed 2-qubit state I/4, which can
be written in terms of its fidelity with respect to the Bell state

as a non-maximally entangled Bell state:
1-F

4F —1
puo =T+

oY (DT,
5 — [o%) (@]

Here F is the fidelity of p,, with respect to the Bell pair |®T).
This is precisely the F' that decays in (5).

2) Fidelity loss experienced by a qubit due to teleportation
by a non maximally entangled state: Teleportation using a
maximally entangled Bell pair results in perfect teleportation,
and no information is lost. However, this is rarely the case
in practice, so we look at how teleportation using a non-
maximally entangled Bell state acts as a linear map on the
input state. We consider a Werner state p,, as the teleportation
resource and use it to teleport p(t), which is the density matrix
for some request qubit that has spent time ¢ in memory. This
allows us to represent the effect of teleportation on p(t) as a
linear map [14]:

1

Ar(p(t) = D (bl pul6) - Usp®UL,  ©

,7=0

where |¢;;) are Bell states, Ar(+) is the standard teleportation
algorithm represented as a linear transformation and

Uoo = I,Up1 = 04, U1g = 0.,U11 = ioy,.

If F' is the fidelity of the Werner state p,, with respect to the
target Bell state ®+, then

§

Ar(p(t)) = Fplt) + = (0ep(t)t + op(t)o

+iayp(t)(ioy)T).

This equation can be further simplified to get an equation for
the fidelity of a qubit being teleported by a non-maximally
entangled Bell state, both suffering dephasing errors for times
t1 and to respectively. Therefore the final fidelity of the
teleported qubit is

tr(p(0)Arp(ty))
—2I'to
OB otk 81t + 26T a5
_ —2I'ts
%(%J“Ialﬂﬁﬁ)
12—ty 2 ?
+ (ol + 18 — e ((0"8) + (5" ))).

)

In the considered model, either the EPR pairs or the request
qubits have to be stored in memory, so if £; > 0, then to =0
and vice versa. Therefore, we further simplify (7) in these
cases. If ¢; = 0, the error in teleportation is only due to
dephasing suffered by the EPR pair, the formula simplifies
to

_24+4+12¢1 | 3—01 20t
N 6 6 ’
where ¢; = 1+ 2|a|?|8]? — (a*B)% — (B*a)?. When t, = 0,
we obtain the expression in (3):

5.6 5.8 0.2
Fi(t) = 5t (?03 - ?04) +e 1
where ca = (Ja* + |B[Y), s = (|a]?|B]?), and ¢4 =
((a*B)? + (B*«)?)). The critical observation is that fidelity
is a linear sum of exponentially decaying terms. If time is a

Fy(t) t>0

t>0
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random variable and its Laplace transform with parameter s,
denoted by T*(s) is known, we obtain the equation

E[F] = ci + ¢;Ele ™) = ¢; + ¢;T*(T;). ®)

This approach of using the Laplace transform to get the
moments for the fidelity is helpful as in the processes we
consider, it is easier to obtain closed form solutions of the
Laplace transforms for the wait time distributions than the
distributions themselves. This will be especially useful when
we consider models with finite memory. In these equations, c;
and c; are determined by the input qubit being teleported. In
this paper, we use |+) as the example input qubit and

_ 093, 0.9§€,w7

Alt) = =3 2

t>0 9)

18 1 o,

F2 (t) = 3 + 36 5

These are the simplified error models considered in this paper.

All of the aforementioned functions are monotonic scalar

functions of fidelity in terms of the wait time of a request.

Therefore, we can transform wait time into fidelity. Thus it

suffices to derive wait time distributions under different service

and buffer management policies and then transform to fidelity
distributions as we will see in the upcoming sections.

t>0. (10)

III. DOUBLE QUEUE MODEL

In this section, we consider a node with a memory platform
available for storing multiple EPR pairs, which are generated
according to a Poisson process with rate \.. Teleportation
requests arrive according to a Poisson process with rate \,.
We assume gate operations are instantaneous as times taken
to perform gate operations are orders of magnitude smaller
than the time taken to generate an EPR pair. This process can
be modeled as two competing queues where the service rate
for one queue is the request rate for another. The memory
platform for the request qubits can store B, qubits, and the
platform for EPR pairs can store B, qubits. We model this as
a CTMC with the state being the number of request qubits in
the system denoted as N. We represent a surplus of EPR pairs
as a negative number of requests, making —B, < N < B,.
This gives us the process presented in Fig. 1 From its Markov
chain formulation,

Tp =P[N =n] =m_p, p" "B,

. B.+B,
Since m_p, Zi:‘J =1,

—B. <n < B,.

1- P n+B,

= et Besns B (D

T

Let p. and p,. denote the probabilities that an arriving EPR
pair and request are placed in a buffer, respectively. Then

0 B,
Pe = Z Tn andprzzﬂ'rr
n=0

n=—B.,

Let P, and P; . be the probabilities that a request qubit
is teleported and an EPR pair is used, respectively. Define:
P, ; = P[an arrival of type ¢ gets served], i« € {e,r}. Then

B;—1
P.:ijo A

DY IV R ET

(12)

The Markov chain formulation shows that this system alter-
nates between two phases, as shown in Figure 2. In phase 1,
request qubits are stored in memory waiting for EPR pairs
and suffer decoherence during the wait. In phase 2, EPR pairs
queue up in memory and wait for requests to arrive that they
can teleport. The system alternates between these two phases,
so either only the request qubit spends time in the memory or
the EPR pair but never both. Due to this, We can individually
analyze the fidelity loss for each phase and then derive a joint
distribution by conditioning on the phase.

Let us take a closer look at the process during a phase. If we
restrict ourselves to one phase, the memory platform behaves
like a standard finite buffer M/M/1. We know from queuing
theory that different orders of service for buffered requests
and EPR pairs lead to different wait time distributions. If we
have the wait time distributions, we can easily derive fidelity
distributions using a Jacobian transformation. When it is too
complex to explicitly derive the wait time distribution, it is
usually straightforward to calculate the Laplace transform for
the wait time and use it to calculate average fidelity.

Let fw, (t) be the probability density function (pdf) for the
wait time incurred by a random request during phase i =
1,2. The qubit fidelity distribution will depend on whether
the request qubit or the EPR pair incurred the wait (phases 1
and 2). In our case, we will use (9) or (10) depending on what
type of qubit we are considering,

d

We also define W;(s) = E[e™*], i.e., the Laplace transform
of the wait time during phase ¢ = 1, 2. We use (8) to calculate
E[F;] given W}.

In the next section, we give explicit expressions for fg, (¢) or
W7 (s) for four memory platforms differentiated by the type of
memory management or service discipline used. Meanwhile,
assuming we have descriptions for the wait times of the
two individual queues, we can get the fidelity probability
distribution of served requests accounting for both phases by
adding the conditional distributions of fidelity of a served
request which waited in a particular queue and normalizing
it. This yields

N /\epeRe,eng (1’) + )\TprPs,rfFT (x)
fr(z) =
)\epePs,e + )\TpTPs,T
Therefore,

fr(x) = fw (F (@)

. 2>0. (13)

epePs,eE[Fe] + )\TpTPs,TE[FT]

)\epeps,e + )\'rprPs,r .
This expression is very flexible as it allows us to calculate
the average fidelity for double queue models even when the

E[F] = 2

(14)
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Fig. 1: Markov Chain formulation of Double Queue model
with buffer size B, for EPR pairs and B, for request qubits
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Fig. 2: Typical teleportation behavior.

memory platforms have different decoherence rates, buffer
sizes, control, etc.

IV. SINGLE QUEUE MODELS

In this section, we take a closer look at the phases mentioned
in the previous section by focusing on a single memory
platform for the incoming “request” with no memory for the
”service”. Applied to the double queue model, we must be
careful whether the “request” is an actual request qubit or an
EPR pair, as they will flip depending on which phase we are
in. Once the request arrives in memory, it waits for service. As
stated before, inter-arrival and service times are sampled from
exponential distributions reducing the process to an M/M/1
queue. We will now take a look at five different kinds of
queues, each modeling a different kind of memory control
for the platform

A. Infinite buffer FIFO

The buffer size is infinite, and no incoming request is
blocked. The buffer serves the qubits using FIFO. We know
from literature [18] that

fir(®) = O = Ajem O,

where )\, is the arrival rate, and )\, is the service rate. We
can transform this into the probability density function for the
fidelity using the formula derived in (3) as the function is
scalar and monotonic to get

t>0

f (er) — (/\E - >\7‘)
Y exp(In o)t + B — Inz — 2[af?]8[2)Oe—A)/T
Ffl
N, = >0.

e+ 13 =)

(15)
The Laplace transform for fy (t) is

Ae — A

W= (s) PV w— e(s) >0 (16)

One key thing about this model is that it is only valid if
Ar < Ag; otherwise the queue keeps growing, wait times
increase, and fidelities decrease to a minimum. To combat this,
we consider LIFO, which prioritizes younger requests.

B. Infinite Buffer LIFO

This is very similar to the previous model, except that
the derivation of the wait time distribution is different. We
consider a system where requests are served in a LIFO order,
i.e., the buffer is a stack with infinite capacity. The busy period
of a queue is defined as the time measured between the instant
a request arrives to an empty buffer and the next time the
buffer is empty. For an M/M/1 queue, the distribution of the
busy period is given by

e~ Qe A (20 /A Ne), >0 a7

NG

where p = A,/ ). is the load. Since LIFO always places a new
request at the front of the buffer the wait time distribution is
the same as the busy period distribution [18], i.e.,

fw(t) = fp(t), t=0. (18)

With the inverse of the function of fidelity with respect to time

g () =T (In(2fe|B* —In(f —|a* = [B]*) (19

we can now transform the wait time pdf into the the fidelity
pdf

F71
l, >0, (20

fr(@) = fBlg” (@)|m ;

We also know the Laplace transform of the busy period and
by extension of the wait time is:

W*(s) = = (Ar + Ae + 5= V(A + A +5)2 — 4N Ne).

@n

2/\

C. FIFOPO

In this section, we consider a system in which incoming
requests are stored in a queue with a maximum buffer capacity
B < oo. When a request arrives to find the buffer full, the
oldest request is discarded, and the incoming request is stored
in the queue. This makes the probability of service for a
requesting FIFOPO dependent on its position in the queue
(k) and the number of qubits behind it (j) as it might get
pushed out. Therefore, we need to define a new probability,
W.(4, k, t), which is the probability that a request in position
k with j requests behind it is served and its remaining wait
time is t.

We know from [17] that the Laplace transform
W*(j,k,s) =[5 e s*W(j k,t)dt can be described by
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the following set of recursive equations where j, k € [0, B]
and Re(s) > 0:

W(5,0,8) =1 (Vj,s),

A
W*(B—1,1,s):m7
W*(j, k,s) = ﬁW*(j +1,k,5)
—i—ﬁw;*(j,k—l,s), k>0,j<N-—k,
W*(B -k, k,s) = #W*(B—k+l7k—l7s)
+ﬁw*(37k,k71,s) k> 1.

Since this is in terms of the joint probability of service and
wait time. We need to turn this into a conditional probability
of waiting time given the request will be served, which we can
get by normalizing with the probability of a random request
getting service Ps. Therefore, the Laplace transform is

[T W k)| W, 0,5)
W*(s) =E[e "] = 2 .

This can be used to calculate E[F]. Next, we consider LI-

FOPO.

D. LIFOPO

The main difference between this section and the previous
one is that incoming request qubits are stored in a stack instead
of a queue. We still discard the oldest qubit when a request
arrives and the stack is full. Unfortunately, it is difficult to
work directly with the wait time pdf. Instead, we work with the
Laplace Transform. Unlike the previous model, the wait time
only depends upon its position in the queue k. Let W (k,t)
denote the probability density that a request in buffer position
k gets served eventually, and its wait time will be t. Assuming
k =1 corresponds to the head of the stack and k € [0, B + 1]
and Re(s) > 0, from classical results [17],

wW*(0,s) =1,W*(B;+1,8) =0, Re(s)>0

Aq
“(k,s) = ——W*(k+1
W (k,s) A6+AT+5W( +1,9)
)‘i’
— Wk -1 1<k<B
+)\e+)\r+s ( ,8) SEsE
/\7‘/
W*(B,s) = - B-1
(B,5) Ae + A\ + 5 ( »8)
* Ai *
WiLs) = s (29)
— 2 WH*B-1,s).
+A€+/\T+SW( ,8)
They can be solved to produce
. r1()Fra(s)” = ra(5)Fr (5)”
k,s) = 22
W (k, 5) ro(5)B — ra(s)k 22)
where

Ae +Ar +8) £/ (Ae + A +8)2 —4A N,
2X; '

7'1,2(5) =

We need to normalize this Laplace transform as in the previous

section with P, also, since a new request is always placed in

the first position, we have

W*(1,s)
Py

V. OPTIMALITY OF LIFOPO

W*(s) = Ele*"] = , Re(s) >0.

We have analyzed several memory management and service
disciplines. Naturally, this raises the question as to which
performs best. In this section, we answer this question by
establishing that, out of a large class of work conserving
disciplines, LIFOPO is optimal in that it maximizes the final
average fidelity of a teleported qubit. This result should not
come as a surprise as it is well known that, out of the class of
work conserving non-preemptive policies II’, LIFO maximizes
E[f(W™)] for any convex function f where W™ is the sojourn
time under policy m € II’ for an infinite buffer G/G/1 queue
[15], [16].

Let 7 denote a policy that assigns requests to EPR pairs and
determines what teleportation qubits and EPR pairs to discard
from the respective buffers to avoid overflows. We first observe
that there is no benefit to removing a qubit from a buffer before
it is full; hence we only consider polices that remove qubits at
the time overflow occurs. Second, we restrict ourselves to work
conserving policies; those that always teleport qubits whenever
possible. Let II denote the set of such double buffer policies.
We introduce LIFOPO, which always assigns the youngest
qubit to be teleported to a newly created EPR pair or the
youngest EPR pair to a newly made teleportation request, and
always discards the oldest qubit from the buffer when it is
about to overflow. A formal definition of this policy is given
in the Appendix. Henceforth we refer to LIFO-PO as .

Theorem 1: Out of the class of policies IT LIFOPO maxi-
mizes average fidelity,

E[FW} < E[FLIFOPO}.

where F; is the teleportation fidelity under 7.

Proof sketch. A complete proof is found in the appendix.
Here we provide a sketch of the proof. The system can
be decomposed into two single buffer subsystems, one for
teleportation requests and the other for EPR pairs. Let FT and
FT denote the fidelity for EPR pairs and teleportation requests
respectively. We show that E[F7] and E[F] are maximized
when 7 = LIFO-PO. As E[F™] is a weighted average of
E[FT] and E[F[], this establishes the theorem.

Focusing on the request buffer, we condition on the first
n departures of qubits from the request buffer, either due to
successful teleportation or removal due to overflow. Let w™ =
(wT,...,wr) denote the wait times of these requests. Because
request qubits can be removed from the buffer without service,
we will assign wait times of infinity to those requests. Let m
denote the number of these removed qubits. Our proof that ~y
is optimal is based on establishing the following majorization
result between w™ an d w?, m € I, ™ # v, w™ < w". Here
<" is defined as follows.
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Fig. 3: Plot for average fidelity vs. load. B = 10, I' = 0.01,
Ae =5 and A, € (0,5), therefore, load € [0, 1].

Definition 1: Let z,y € R™™ x {o0}™; y weakly super-
majorizes x written x <" y iff

k k
Slaw =D ye, k=1,...
i=1 i=1

where x(;) (resp. y(;)) correspond to the components of x (y)
in increasing order.

, M — M.

This is useful in our context because of the following property
of <*,

> dleay) <D dya) (23)
i=1 i=1
for any continuous decreasing convex function ¢.

The proof that w™ <" w? is straightforward and consists of
transforming 7 into ~ by taking each non-LIFOPO decision
and replacing it with an LIFOPO decision such that the
weak majorization is propagated until the resulting policy is
LIFOPO. Property (23) can now be applied with ¢() = F()
where F() is given in (9), (10), n allowed to go to infinity,
and the conditioning on arrival and departure times removed
yielding E[F(WT)] < E[F(W}FOPO)]. The EPR buffer is
handled in a similar manner.

VI. RESULTS

It was proven in Section V that LIFOPO maximizes average
fidelity. We can visualize this in Figure 3. We plot the
average fidelity of a teleported request with respect to load
for different service disciplines. The models are named in the
format: X-Y, where X represents the buffer system used by
memory for the qubit being teleported and Y represents the
buffer system used by the EPR qubits, for example, FIFOPO-
LIFOPO denotes a system where the incoming qubits are
stored in a FIFOPO buffer, and the EPR pairs are stored in
a LIFOPO buffer. We consider FIFOPO-LIFOPO, LIFOPO-
LIFOPO and FIFOPO-FIFOPO. Another thing to note is that
we only consider models where the buffer sizes for both the

0.933
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Fig. 4: Plot for average fidelity vs. load comparing different
buffer sizes. I' = 0.01, A, = 5 and A, € (0, 10), therefore,
load € [0, 2].
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Fig. 5: Plot for Probability a random request reciever service
vs. load for a LIFOPO-LIFOPO queue.

EPR buffer and the request buffer are equal, i.e. B, = B, =
B. The dephasing rate I' = 0.01, the EPR generation rate is
Ae = b, the teleportation request rate A\, between zero and ten.
To reiterate, We observe that LIFOPO-LIFOPO outperforms
FIFOPO-LIFOPO and FIFOPO-FIFOPO. The reason for
the lower performance of FIFOPO-FIFOPO at low loads is
explained by the fact that the EPR pairs are being queued up
waiting for requests, but since they have to be used in order
of creation, the requests are served by stale EPR pairs rather
than fresh ones as is the case of systems that use LIFOPO for
the EPR pair. Of course, LIFOPO-LIFOPO performing the
best is consistent with Theorem 1. Another thing to note is
the increasing nature of FIFOPO-FIFOPO. Since we have
a pushout mechanism for the oldest qubit in the queue,
increasing the load means a greater chance of older requests
being discarded. On the other hand, in the case of LIFOPO-
LIFOPO, we observe that as the load approaches one, the
fidelity stops decreasing and starts increasing. This is because
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Fig. 6: Plot for average fidelity loss vs. load for a single
repeater chain for different buffer sizes following LIFOPO-
LIFOPO. T = 0.01.

EPR pairs are served more quickly and have incurred less
decoherence. In Figure 4 we explore the performance of
LIFOPO-LIFOPO and LIFOPO-FIFOPO as a function of
load for three different buffer sizes of 2, 5, and 10. Here we
allow the load to vary from zero to two (A, varies from zero
to 10). In all cases, average fidelity first decreases and then
increases. In the case of buffer size of 10, the minimum occurs
close to a load of one. This behavior should not come as a
surprise as the time qubits spend in either buffer is the same
at load one. The minimum average fidelity does not occur at
load one because request qubits and EPR pairs decohere at
different rates, and the asymmetry becomes more pronounced
as buffer size decreases. Last average fidelity decreases with
buffer size because increasing the size allows qubits more
time to decohere before use. Figure 5 examines the behavior
of probability of service as a function of load for the three
different LIFOPO-LIFOPO buffer sizes.

A. Application to a repeater node

In this section, we apply the double queue model to a
quantum repeater between two nodes, A and B, as shown
in Figure 7. This repeater constantly generates EPR pairs
between A and B by generating EPR pairs between itself
and A, and itself and B, and then performing entanglement
swaps. Entanglement swapping is a form of teleportation of
one qubit of an EPR pair "a’ using EPR pair ’b’. This ”swaps”
the entanglement as now one of the qubits of the resource
EPR pair ‘b’ has been entangled with the non-teleported qubit
of EPR pair ‘a’, and the original entanglements have been
destroyed. This repeater contains two buffers, one to store EPR
pairs between the repeater and node A and the other between
the repeater and node B.

Our teleportation model requires the following modification:
request qubits suffer the same type of decoherence as EPR
pairs. Since we consider the initial fidelity of the Werner state
created to be 0.9, the fidelity of the final EPR pair generated
between A and B is equivalent to the fidelity loss suffered
by the EPR pair that has waited in memory multiplied by

0.9 as the fidelity of the final Werner state created by the
entanglement swapping of two Werner states is the product of
the fidelities of the two initial Werner states [20]. The fidelity
of a Bell pair dephasing with time is given by (5) which is
the fidelity function we use for both queues.

As modeled before, EPR pairs are generated according to
a Poisson process, and the time between consecutive EPR
generations between the repeater and node z is sampled
from an exponential distribution with mean p,, x = A, B.
Assuming the router is equidistant between node A and node B
and uses similar technologies for generating the EPR pair, we
set u4 = pp. To keep it consistent, we keep the decoherence
rate, I' = 0.01. We plot the average infidelity defined as E[F]
with respect to 1 in Figure 6. Average fidelity increases with
the increasing rate because when the rate is low, one queue
receives a pair, but since the other queue has a low rate, the
arrived pair has to wait a long time before it has a counterpart
for service. We also see larger infidelity in larger buffers, but
this comes at the cost of a greater chance of rejection, as
observed in Figure 5.

VII. SUMMARY

In this paper, we have modeled and quantified the effects
of decoherence in a teleportation process. We model memory
platforms in networks as queues and utilize queuing theory to
calculate how much time a request has to wait for teleportation.
We then map these waiting times to fidelity loss due to
dephasing. This allows us to derive efficiently computable
functions for the average fidelity of the qubits teleported by a
node. We consider a case where there are two queues to model
caching of EPR pairs and provide a framework to extend
results from classical queuing theory on single buffer queues to
the double buffer systems. We quantify how service disciplines
affect teleportation fidelities in NISQ era devices and calculate
average fidelities for different disciplines. We prove the opti-
mality of LIFOPO-LIFOPO for serving teleportation requests
and compare it to other disciplines. We analyze the effects of
buffer sizes and compare their Service probabilities. Lastly,
we apply this framework to analyze the average transportation
fidelity of a quantum repeater between two nodes and see how
different buffer sizes compare in terms of fidelity and service
completion probability.

A. Future Work

There are many open questions and directions this work
can take. A most natural extension is to account for mixed
states as requests. One can achieve this by modifying (7)
and using the fidelity formula for comparing two mixed states
instead of assuming a state is pure. Another direction would
be to use more accurate distribution models for the EPR
pair generation as in [9] and apply this model to longer
repeater chains. Another natural extension would be to model
a constant timeout policy so that if a request has been in
the queue for longer than some time C, we can guarantee
a minimum fidelity for the teleported information. As stated
in II-A, we do not account for erasure or loss errors in the
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Repeater with two queues

Buffer A

Buffer B

SWAP

Fig. 7: A single repeater between two nodes, It has two buffers to store EPR pairs and only one can non empty at the same
time. If the repeater has a qubit from an EPR pair in buffer A, and an EPR pair is generated between it and B, it performs a

swap and discards the qubits.

memory. This can be rectified by considering queues with
impatient customers. As long as the errors can be modeled as
exponential equations, the CTMC formulation can be applied
to account for them.
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APPENDIX

Proof of Theorem 1. We focus separately on the two buffers
and focus on the amount of time qubits to be teleported and
EPR pairs are allowed to decohere waiting to be matched up
with each other. Henceforth we focus on the request buffer
and only on requests that arrive when no EPR pair is stored
in the EPR buffer. We focus on the arrivals and departures of
n requests under policy = € II. Let a4, ...,a, and dy, ..., d,
denote the arrival and departure times for these requests.

Here a departure corresponds either to a pairing with a
newly creation of an EPR pair followed by a successful
teleportation or removal from the buffer. Let m < n denote
the number of qubits removed from the buffer. A policy
7 € 1l |ro—o satisfies the following properties:

o There exists no pair of requests j, k that are served such

that a < a; < dj < dj,

« there exists no pair of requests j, k where k is served and

j is discarded such that a < a; < d,
« there exists no pair of requests j, K that are discarded
such that a;, < a; < d; <dy
Let w™ (wT,...,wl) denote the wait times of these
teleportation requests. Because requests can be removed from
the buffer without service, we will assign wait times of infinity
to those requests. Our proof that v is optimal is based on
showing w™ <" w?, w € Il where <" is defined in Section
V. Note that the standard definition [19] corresponds to the
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case m = 0. We introduce an operator T;;, called the ”T'-
transform”, as follows. Let z € R";

Ty = M+ (1-2Qy

where I is the identity operator, ();; is an operator that
permutes the i-th and j-th components of z and 0 < A < 1.
In other words,

Tij(E = (.’L’l,. C L1, AT+ (1 - A)xj,xiﬂ, ceey
Tj1, (1= N2 + A%y, Tjyn, .05 Tn)

It is easily shown that T;;2 <* x provided x;,xz; < oo. Note
that <" Q;;2 (A = 0). Last, define the function S;(z) as

Si(x) = (1, ..

with 0 < o < 1. Then = <" ().

Consider the system with n requests arriving at times
ai,...,a, and depart at times dy,...,d,.

We transform 7 to y through a sequence of steps that creates
a sequence of policies mg = m, 71, w2, ..., 7 =7 € U Fo-0
such that w™ <Y w™+, [ =0,...h — 1

Assume m; violates the LIFO-O property. There are three
cases depending on whether the two requests are served, one
is served and the other removed or both removed.

3 Lj—1, L5, Tjy1y-- .,xn)

1) Both are served. Request k is served before a younger
request j, ar < a; < di < d; (we omit dependence on
7). We construct ;1 from m; by switching the order in
which j and k are served. The wait times for requests j
and & under 7; are w;” =dj—a; and wy' = dj—ay and
under ;41 are w;”“ =dy —a; and w;,'™" = d; — ay.
Here w™ and w™+! satisfy

w™ = Tj L™
with
aj — ag

(aj —ar) + (dj — di)”
Hence w™ <" w™+!. See Figure 8.

2) One request is served. Request k is served while a
younger request is discarded, ar < a; < di. We
switch the order in which these two requests are handled
resulting in the servicing of j at time dj and removal
of k at time d;. Then w™ and w™+! satisfy

wm+1 — S(ijwm)

with o = (di, — a;)/(dy — ag). Hence w™ <¥ w™+1.
See Figure 9.

3) Both are removed. A younger request j is removed
from the buffer before an older job k under m;, ap <
a; < dj < di. We switch the order of the removals
under 7;4 ;. This does not affect wait times and w™ <"
w™+1. See Figure 10.

A=

This procedure is repeated until the LIFO-O properties are
satisfied and, consequently w”™ <" w?.

We fixed the arrival and service times. Remove the con-
ditioning on them and let W7™(n) denote the wait time
of a randomly chosen request from the first n requests

that are served. From the above majorization result and
the equivalence (23), we conclude that E[¢p(WFOPO(n)] >
E[¢(W™(n))] for every convex decreasing function ¢. More-
over if the limits WYFOPO — lim, ,  WUYFOPO(n) and
W™ =lim,_,o W7 (n) exist, then E[¢p(WFOPO] > E[IW 7).

w; p j
™ wzl T
Tak Taj dk: d]
¢ wﬂ'Hl J k
Ti+1 — w;rl+1 _)T T
Tak Taj dk: d]
Fig. 8: Case 1.

wy! Tk J

M X
T(lk- Taj dk dj

«— w’.”*l .7 k

T+1 ’ _)T =
Tak Taj dk dj

Fig. 9: Case 2.
J

! X A
Tak Ta]— d] dk:

k J

Ti+1 A A
Tak Ta]— d] dk

Fig. 10: Case 3.

Returning to our teleportation system, under the assumption
that requests and EPR pairs are generated according to Poisson
processes, when placed in their respective buffers, they will
exhibit stationary wait time W and W[ respectively. The
respective qubits decohere at different rates F).(¢) and F,(t) in
the two memories according to (9), (10), As these decoherence
functions are decreasing and convex, we conclude that there
exists a LIFOPO € Tl ro_o such that E[F,.(WFOPO(n)] >
E[F,(W™(n))] and E[F(WUFOPO(n)] > E[F,(W™(n)) .
The expected teleportation fidelity for the entire system, E[F'™]
is E[F™] = gE[F™] + (1 — q)E[F™] where ¢ is the probability
that a request qubit arrives to a system where no EPR qubits
are available. Finally, we conclude E[F'FOPO] > E[F™] for
all 7 € II.
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