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Abstract—The fragile nature of quantum information makes
it practically impossible to completely isolate a quantum state
from noise under quantum channel transmissions. Quantum
networks are complex systems formed by the interconnection
of quantum processing devices through quantum channels. In
this context, characterizing how channels introduce noise in
transmitted quantum states is of paramount importance. Pre-
cise descriptions of the error distributions introduced by non-
unitary quantum channels can inform quantum error correction
protocols to tailor operations for the particular error model. In
addition, characterizing such errors by monitoring the network
with end-to-end measurements enables end-nodes to infer the
status of network links. In this work, we address the end-to-end
characterization of quantum channels in a quantum network by
introducing the problem of Quantum Network Tomography. The
solution for this problem is an estimator for parameters that
define a Kraus decomposition for all quantum channels in the
network, using measurements performed exclusively in the end-
nodes. We study this problem in detail for the case of arbitrary
star quantum networks with quantum channels described by a
single Pauli operator, like bit-flip quantum channels. We provide
solutions for such networks with polynomial sample complexity.
Our solutions provide evidence that pre-shared entanglement
brings advantages for estimation in terms of the identifiability of
parameters.

I. INTRODUCTION

Quantum networks are communication systems formed by

the interconnection of quantum processors with channels that

enable the communication of quantum information [1]–[4].

They extend the capabilities of quantum computers, aug-

menting the computing power of interconnected quantum

processors with distributed quantum computing [5], [6], and

enable novel applications such as quantum key distribution [7]

and entanglement-enabled very-long-baseline interferometric

telescopes [8]. As with any quantum processing system, noise

is inherent to quantum networks due to the fragile nature of

quantum information.

In networked systems, noise arises both in the commu-

nication of quantum information through channels and in

the quantum operations performed by the nodes. The diverse

ecosystem of physical platforms for qubit implementations, as

well as the communication media used, have drastic impacts

on errors introduced during communication, such that the

development of technologies to transduce quantum informa-

tion is critical [9], [10]. With respect to communication,

quantum information encoded in photons is subject to different

errors when propagated through optical fiber and through free-

space [11]. Therefore, characterizing communication errors

is central in a heterogeneous quantum network that includes

satellites and optical fibers. For instance, quantum error correc-

tion processes [12] and entanglement purification methods [13]

can benefit from a precise description of error models to

improve efficiency.

In the context of characterizing quantum systems, the theory

of quantum estimation determines the fundamental limits to

what can be inferred from measurements and the efficiency

of realizable estimators [14], [15]. Thus, quantum estimation

is the key tool to describe errors introduced by noise in

communication in a quantum network. Quantum Tomography

refers to a set of quantum estimation methods for inferring

the description of quantum systems [16]. Quantum State

Tomography [17] and Quantum Process Tomography [18]

refer to methods for describing quantum states and quantum

evolution processes, respectively. Hence, one could attempt

to characterize errors in a quantum network using standard

quantum tomography methods, where the network would be

treated as a black-box and probed through the transmission

of quantum states which would be measured to estimate the

behavior of the entire network.

Unfortunately, such methods are not directly applicable if

one wants to characterize the behavior of individual network

links through measurements at only end-nodes. Consequently,

investigating methods that use prior knowledge of the net-

work topology and the form of errors that arise from noise

introduced by quantum channel transmissions brings a new

perspective to such a tomography problem.

Exploiting prior knowledge to characterize channels in clas-

sical networks has been previously investigated and motivated

the development of classical Network Tomography [19], [20].

Classical Network Tomography refers to a set of methods that

aim to estimate the status of network links through end-to-end

measurements. The key idea is to transmit packets among end-

nodes in the network with the necessary meta-information to

measure classical quantities such as transmission delay and

packet loss. In the classical network scenario, tomography
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methods that use both unicast and multicast communication

were proposed. Interestingly, link correlations introduced by

multicast communication in packet loss were exploited to

provide estimators for the loss probability per link in multicast

trees from end-to-end measurements [21], [22].

A. Contributions

The goal of this work is to bridge quantum tomography

with classical network tomography by introducing the problem

of Quantum Network Tomography. Our contributions are as

follows.

• We formally define the problem of Quantum Network To-

mography for generic quantum networks as the estimation

of parameters determining operator-sum representations

for all quantum channels in a network. The definition

captures end-to-end parameter estimation, including pa-

rameters internal to the network, considering estimators

based on measurements performed exclusively in the end-

nodes.

• We define a generic multi-party state distribution process

for the network tomography of arbitrary trees.

• We solve quantum network tomography problems in star

networks using the above multi-party state distribution

process. In particular, we focus on the case of random

unitary channels characterized by a single Pauli operator,

such as a bit-flip channel, and provide estimators for

network parameters with polynomial sample complexity.

Our estimators attain the Quantum Cramèr-Rao bound

and provide evidence that, even for single Pauli chan-

nels, pre-shared entanglement may bring advantages for

estimation in terms of parameter identifiability.

• Finally, we compare the performance of our estimators

numerically for a four-node star network.

The remainder of this article is structured as follows. In

Section II, we provide the necessary mathematical background

to discuss our results. We define the problem of quantum

network tomography in Section III and describe the multi-

party state distribution process in Section IV. We report

our results for the tomography problem in the case of star

networks with channels described by a single Pauli operator

in Section V. Finally, we discuss our results and present

concluding remarks in Section VI.

II. DEFINING QUANTUM NETWORK TOMOGRAPHY

In this work, we consider quantum networks to be systems

formed by the interconnection of quantum processing devices

with quantum channels that allow for communication of quan-

tum information. We do not assume any particular physical

implementation of the underlying quantum channels, nor any

choice of qubit platform. In addition, we use the term quantum

processing device, or quantum processor, to abstract quantum

computers, routers, switches and repeaters.

We represent a quantum network as a graph G = (V,E),
where the nodes in V denote the quantum processors and the

edges in E represent the quantum channels interconnecting the

nodes. In addition, the node set is partitioned as V = VE∪VI ,

where VE and VI determine the sets of end and intermediate

nodes in the network.

Quantum processors are assumed capable of performing

generic, unitary quantum operations on its quantum registers

and perfect quantum measurements. This assumption implies

that the only source of error in the network comes from the

transmission of quantum information through the channels.

Despite being unrealistic, assuming perfect quantum opera-

tions in the nodes is the initial step for the investigation of the

estimation problems within the scope of this article.

A star quantum network is a system consisting of one inter-

mediate node interconnecting n end-nodes. In this particular

case, we have |V | = n + 1, |E| = n and each end-node

identifies one edge of the star. For simplicity, we label the

intermediate node as node n and edge (v, n) as the v-th edge,

for v ∈ {0, 1, . . . , n − 1}, i.e VE = {0, 1, . . . , n − 1} and

VI = {n}.

In what concerns notation, we use HK to represent the

Hilbert space with dimension 2K formed by K qubits and DK

to represent the space of density matrices of K-qubit systems.

The Greenberger-Horne-Zeillinger (GHZ) basis is formed by

maximally entangled states and generalizes the Bell basis to

multiple qubits. Let s = s0 . . . sn−2 ∈ {0, 1}n−2 be a binary

string of length (n − 1) and b ∈ {0, 1} be a single bit. We

represent states in the n-qubit GHZ basis as

∣∣Φb
s

〉
=

|0s0 . . . sn−1〉+ (−1)b |1s0 . . . sn−1〉√
2

, (1)

where sk is the logical negation of bit sk. For simplicity, we

often use a single variable s to refer to a binary string, with

s representing its bit-wise logical negation. As an example,

the standard three-qubit GHZ state ( |000〉 + |111〉)/√2 is

expressed as |Φ0
00〉 in (1). GHZ-basis projectors are defined

as Φb
s = |Φb

s〉〈Φb
s|. We use the standard notation of [., .] :

[A,B] = AB − BA and {., .} : {A,B} = AB + BA to

respectively denote the commutator and anti-commutator of

operators.

A. Quantum channels in the network

The edges in |E| represent Completely Positive Trace-

Preserving (CPTP) single-qubit maps, which implies that

qubits are never lost after channel transformations. We assume

that, for every edge e = (u, v) ∈ E, the quantum channel

Ev : D2 → D2 that interconnects nodes u and v corresponds

to the mapping

Ee(ρ) =
de−1∑
k=0

KekρK
†
ek (2)

where {Kek} is a set of Kraus operators for link e and ρ is a

one-qubit density matrix. In the case of random unitary quan-

tum channels, the Kraus operators become Kek =
√
θekUek,

where Uek is a unitary operator and {θek} are probabilities

with
∑

k θek = 1.
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The generalized depolarizing channel is a random unitary

channel with Kraus operators described by Pauli operators,

having an operator-sum representation of form

Ee(ρ) =
3∑

k=0

θekσkρσk, (3)

where θe ∈ R
4 and {σk} denote the set of Pauli operators,

with σ0 = I . When channels are described by a single Pauli

operator, (3) reduces to

Ee(ρ) = θeρ+ (1− θe)σρσ (4)

where σ ∈ {X,Y, Z} is one of the Pauli operators and the

channel is described by a single parameter θe ∈ R.

B. Quantum estimation

Quantum estimation theory addresses how measurements

can be used to obtain information from quantum systems.

There are three fundamental aspects of any quantum estima-

tion problem [15]. Assume that it is of interest to estimate a

parameter vector θ. First, it is necessary to obtain a quantum

state ensemble ρ that is parameterized by θ, what is normally

referred to as parameterization. Second, it is necessary to

measure ρ to obtain measurement statistics. Finally, we need

to design estimators for θ based on measurement outcomes.

Suppose that we are given a parameterized state ensemble of

N qubits. In particular, let ρ : RM → DN denote the density

matrix of the system that depends on a parameter vector θ ∈
R

M as

ρ(θ) =

R−1∑
k=0

λk(θ)Λk(θ), (5)

where R is the rank of ρ(θ), {Λk} is the set of projectors for

the eigenspace of ρ(θ) and λk : RM → R are θ-dependent

probability values for which
∑

k λk(θ) = 1. We are interested

in the following quantum estimation problem.

Problem 1 (Quantum parameter estimation). Find an estima-
tor θ̂ for θ from measurements performed in an ensemble of
states prepared following the density matrix ρ(θ).

The measurement statistics used to describe θ̂ will de-

pend on the measurement performed. For any set of Positive
Operator-Valued Measure (POVM) elements {Πl}, the prob-

ability of having outcome l as a measurement result is

pθ(Πl) =

R−1∑
k=0

λk(θ) Tr(Λk(θ)Πl). (6)

Note that POVM elements can act on any subset of the N
qubits in the system. Thus, if the form of pθ is known,

measuring an ensemble of states described by ρ(θ) with {Πl}
yields estimators p̂θ(Πl) ∈ R

+ for pθ(Πl), and θ̂ can be

obtained by solving the inverse problem

pθ̂(Πl) = p̂θ(Πl), for all l, (7)

where pθ̂(Πl) is the analytical description in the r.h.s of (6).

There are two aspects of such an estimation problem.

First, the number of equations obtained is the number of

POVM elements. For projective measurements, the number

of equations grows as O(2N ) because of the completeness

relation. Second, the dependence of pθ(Πl) on θ does not

guarantee that the inverse problem in (7) has a unique solution.

C. Estimation efficiency

In general, different parametrization processes provide

mixed states described by different density matrices, which

leads to distinct estimators θ̂ for θ. In addition, different

POVMs yield distinct estimators for the same density matrix

ρ(θ). Thus, we analyze the efficiency of different estimators

for Problem 1 with two metrics of interest: the identifiability
of θ̂ and the Quantum Fisher Information Matrix (QFIM) for

θ [15].

We say that an estimator θ̂ identifies θ if it determines a

unique value for θ from a sequence of observations. In the case

of (7), θ̂ identifies the parameters if it is the unique solution

to the inverse problem.

The QFIM F of a density matrix ρ(θ) [14] is a positive

semi-definite real matrix with entries

Fjk =
1

2
Tr(ρ {Lj , Lk}), (8)

where Lk is the Symmetric Logarithmic Derivative operator
(SLD) of ρ(θ) with respect to θj given by the differential

matrix equation

∂ρ

∂θj
=

1

2
(Ljρ+ ρLj). (9)

The diagonal entry Fjj is the Quantum Fisher Information
(QFI) for parameter θj . The QFIM yields the Quantum
Cramèr-Rao bound (QCRB) for multi-parameter estimation,

which is a lower bound on the covariance matrix of any

estimates based on statistics generated by any POVM [15].

An estimator that reaches the QCRB for the joint estimation

of θ is attainable if, and only if Lj and Lk commute for all

pairs θj , θk [15].

Furthermore, consider the following simple theorem.

Theorem 1. If ρ(θ) =
∑

k λk(θ)Λk is diagonalized by a set
of θ-independent projectors {Λk}, then {Λk} diagonalizes Lj ,
for all j.

Proof. Under the assumption that Λk(θ) = Λk, ρ(θ) =∑
k λk(θ)Λk and

∂ρ(θ)
∂θj

=
∑

k
∂λ(θ)
∂θj

Λk for all j. Thus, by

taking the ansatz Lj =
∑

k ljkΛk, one verifies that (9) is

solved with ljk = ∂λ(θ)
∂θj

1
λ(θ) , for all j.

When Theorem 1 is valid, Li and Lj commute for all

i, j and an estimator θ̂ from projective measurements on the

{Λk} basis is asymptotically optimal given ρ(θ). Plugging the

description for Lj from Theorem 1 in (8) yields

Fab =
∑
k

1

λk

∂λk

∂θa

∂λk

∂θb
. (10)
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(a) State distribution. (b) End-to-end measurements. (c) Collection and estimation.

Fig. 1: Quantum network tomography on trees. The tree shown is formed by two intermediate nodes and each link is described

by a Kraus decomposition of known form (Equation 11). The goal is to estimate the probabilities describing each link in the

tree. (a) A mixed state ρ(θ) is distributed from the root r towards the leaves lj . To perform distribution, the root and the

intermediate nodes (gray circles) transmit a qubit state to its neighbors following arrow direction. (b) When all leaves receive

qubits, measurements are performed to obtain classical data for estimation. (c) Finally, end-nodes transmit the classical data

from measurements to a single node in the network, represented here by the root node, for estimation to be performed.

III. QUANTUM NETWORK TOMOGRAPHY

In this section we formally define the problem of quantum

network tomography. We begin by describing the problem

of quantum link tomography, which naturally leads to the

definition of the network version. Consider the simplest non-

trivial network system formed by two end-nodes u and v
connected by an edge e = (u, v) representing the quantum

channel Ee following (2). The link tomography problem refers

to quantum process tomography of Ee. In its most general

form, one does not assume any knowledge of Ee and its

solution is a description of a set of Kraus operators {Kek}
that characterize Ee [18].

This general problem is difficult, since the Kraus operators

must be characterized from measurements, treating Ee as a

black-box. We simplify this problem by assuming that a

parametric description of (2) of the form

Ee(ρ) =
∑
k

Kek(θ) ρK
†
ek(θ), (11)

is known and focus on estimation of the parameter θ. Thus,

the formal definition of the channel tomography problem of

interest is as follows.

Problem 2 (Quantum Link Tomography). Given a set of M
Kraus operators {Kk}e for which the quantum channel Ee
represented by link e has the form given in (11), estimate a
parameter vector θ̂e ∈ R

M that characterizes Ee.

The link tomography problem is an instance of Problem

1 since, in order to estimate the probability vector, it is

necessary to use channel Ee to prepare and measure an

ensemble of mixed states that depends on θ to obtain statistics

for estimation. In this case, u and v are end-nodes and can

perform arbitrary measurements on the ensemble, share the

classical results of the measurements and compute θ̂e.
The quantum network tomography problem, which is de-

picted in Figure 1 for trees, extends the channel problem to

networks with the caveat that only end-nodes can contribute

information for estimation. We now present the formal defi-

nition of the quantum network tomography problem, which is

one of the main contributions of this article.

Problem 3 (Quantum Network Tomography). Given a quan-
tum network G, with nodes partitioned into disjoint sets VE

and VI and a set of Kraus operators {Kk}e for each e ∈ E,
find an estimator θ̂e for the parameter vector θe characterizing
Ee as in (11), for all e ∈ E, using measurement statistics from
nodes in VE exclusively.

Problem 3 generalizes 2 to generic networks adding the

restriction that measurement observations used for estimation

must come from end-nodes. If such a restriction is dropped,

the network problem reduces to the link problem and the

most efficient way to obtain estimators is to solve Problem 2

independently for all links in the network. When the restriction

is considered, joint estimation of the channel parameters must

be carried out in the general case. The joint estimation reflects

the fact that links must be jointly used to prepare an ensemble

ρ(θ) of states that can be measured by the end-nodes to provide

statistics for estimation.

IV. PARAMETERIZATION AND STATE DISTRIBUTION

We now propose a family of parameterization processes that

cast Problem 3 into an instance of Problem 1 for a network

with a tree topology as depicted in Figure 1. A tree T = (V,E)
is a connected graph with no cycles. Tree tomography is

interesting since trees are connected graphs with minimum

edge density |E|/|V | when |V | is fixed, reducing the number

of parameters to be simultaneously estimated. Furthermore,

all the links of a network can be covered with multiple trees

and characterized through tree tomography through such a

covering, although we focus on quantum network tomography

of single trees.

In principle, the preparation of ρ(θ) must target qubits in the

end-nodes for measurements to be performed. Such a prepa-

ration must use the channels in the network in order to make

the ensemble dependent on θ. Regardless of how channels are

used to prepare the ensemble, the parameterization process can

be expressed as an abstract, multi-qubit quantum channel Nθ

acting on a locally-prepared ensemble ρ0 as ρ(θ) = Nθ(ρ0).
In our terminology, a locally-prepared state is any state that is

separable with respect to the nodes of the network such that

ρ0 follows

ρ0 =
⊗
v∈V

ρ0v, (12)
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where ρ0v is a multi-qubit state located in a quantum register

in node v. The key aspect of quantum network tomography is

that both ρ0 and Nθ are allowed to be chosen as part of the

problem’s solution.

We describe the abstract quantum channel Nθ, and hence

the parameterization process, as a network state distribution

process. The state distribution problem refers to the prepara-

tion of generic quantum states across target end-nodes, using

channels and intermediate nodes to propagate entanglement. In

this setting, nodes start with a state that follows (12), which

is progressively transformed through local operations and

quantum state transmissions across channels. State distribution

is a natural approach to define Nθ because qubits transmitted

across a link e evolve according to Ee and, thus, can be

used to incorporate {θek} into the density matrix describing

the distributed state. This process yields a quantum channel

Nθ that is a composition of {Ee} for all e ∈ E used for

distribution.

We propose a distribution process for trees (Algorithm 1) to

distribute quantum states across the network with properties

tailored for tomography. Since trees have no cycles, there

exists exactly one path interconnecting any two nodes in the

network. Moreover, the process uses each link in the network

to transmit a qubit among neighboring nodes exactly once.

Such a process is very general in the sense that it captures

any quantum state distribution operation across a tree under

the restriction that a single qubit is transmitted between the

nodes for distribution.

Thus, consider the following definitions. Let T = (V,E)
be a tree rooted at node r. The height function h : V → Z

+

is defined such that h(v) is the hop-distance of the path

connecting v and r in T . Note that h(r) = 0. Let the pre-

decessor of v be the neighbor Pv of v with h(Pv) = h(v)−1,

which is not defined for r. Let the successor set of v be

Sv = {u : (v, u) ∈ E and u �= Pv}, v ∈ T . A leaf v
of T is a node with no successor, Sv = ∅. Let the set

LT = {v : Sv = ∅} denote the set of leaves of T and

H(k) = {v : h(v) = k} the set of all nodes of T with height

h. Furthermore, let C denote the description of a quantum

circuit applied in the nodes of the network such that Cv is

a generic, multi-qubit circuit applied in node v. Given the

circuit Cv , let nv denote the number of qubits in Cv . Let

η : E → Z
+ be a function determining the index of qubits

to be transmitted between neighbors. η(u, v) determines the

index of the output qubit from Cu to be transmitted from u to

v after Cu is performed. Finally, let |0n〉〈0n| denote the pure

state |0〉〈0|⊗n
.

The process in Algorithm 1 is understood as follows. The

inputs are the rooted tree T , a quantum circuit description C
and a qubit index function η. In order to simplify the process

description, we assume that the initial local state ρ0 is encoded

in the circuit description C, such that all nodes start with

registers prepared in a pure state of form |0n〉〈0n|. The process

begins with the root node executing Cr. Note that, since the

root has no predecessor, line 3 has no effect for v = r. Then,

the root sends one qubit from the output of Cr(|0nr
〉〈0nr

|)
to each one of its successors, and keeps nr − |Sr| qubits in

memory. The function η(r, v) specifies which of the nr qubit

is transmitted from r to v, for all neighbors v of r. Whenever

node v receives a qubit, the channel EPv interconnecting Pv

and v transforms the initially transmitted state. Thus, node v
applies the quantum circuit Cv with nv local qubits in state

|0nv
〉〈0nv

| and with the qubit that went through EPv
as input.

The node proceeds by transmitting one qubit to each one of

its successors following η, again keeping nv − |Sv| qubits in

memory. The process terminates when each leaf receives a

qubit state from its predecessor.

The generality of the process described in Algorithm 1

stems from the freedom of defining both C and η, although

it should be clear from its description that the distributed

mixed state depends on θek, for all e ∈ E, as long as Cv
contains non-separable quantum operations. There exists a

direct mapping determining the form of Nθ from T , C and

η, although writing the mathematical form for the general

case is lengthy. In the remainder of this article, we consider

distribution circuits where no qubits remain in intermediate

nodes after distribution, where each leaf of receives one qubit

and where the root may or may not keep one qubit in memory

after transmitting to its descendants. Furthermore, we focus on

the description of ρ(θ) directly rather than explicitly writing

Nθ.

V. TOMOGRAPHY IN STAR NETWORKS

In this section we apply Algorithm 1 to solve tomography

problems in star quantum networks. The star graph is a

simple type of tree for which we can observe the workings

of the distribution process and study tomography in detail.

We consider the bi-partition of the nodes defined in Section

II, where all leaves are end-nodes and the intermediate node

is the center node, as depicted in Figure 2. This bi-partition of

nodes is interesting because the distance between end-nodes

is always two. Thus, the star is a minimal set-up with a single

intermediate node that allows us to investigate the effects of

restricting measurements for estimation to end-nodes.

In addition, we simplify the problem further by considering

a scenario where every link is described by a single Pauli

operator following (4). This simplification helps both the

description and evaluation of estimators without rendering the

problem trivial. Such class of channels suffices to demonstrate

the difficulty of performing tomography in a network and

builds intuition on how to approach the problem for more

complex channels like the generic depolarizing channel in (3),

which is described by all Pauli operators. The formal problem

statement is as follows.

Problem 4 (Quantum Network Tomography of Star Net-

works). Given a quantum network with star topology T =
(V,E), with nodes partitioned into disjoint sets VE and VI

and channels described by a single Pauli operator as in (4),
find an estimator θ̂e for the probability vector characterizing
Ee, for all e ∈ E, using measurement statistics from nodes in
VE exclusively.

We describe our methods for pure bit-flip channels and

discuss how they generalize to channels described by the other

two Pauli operators. Note that we consider the same Pauli

operator to describe all channels in the star.
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Algorithm 1: Tree state distribution

input : tree T ; circuit C; function η
output: distributed state ρ(θ) across r ∪ LT

1 for k ∈ {0, 1, . . . , hmax}:
2 for v ∈ H(k):
3 v receives qubit η(Pv, v) from Pv;

4 v performs circuit Cv with received qubit and nv local qubits in state |0nv
〉〈0nv

| as input;

5 for u ∈ Sv:
6 v sends qubit indexed by η(v, u) to u;

7 end
8 end
9 end

Fig. 2: Star quantum networks with n end-nodes depicted as

blue circles. Each channel j in the network is described by

a Pauli operator σ and a probability θj . The operator-sum

representation for the channels is written along the edges of

the network.

A. Tomography in the basis of Pauli operators

We start by describing a solution for the tomography in the

star that uses states in the Pauli basis. Under the assumption

of bit-flip channels, we target states in the Z basis. The

same analysis follows for the other single Pauli channels by

selecting a different basis according to the Pauli operator under

consideration. In the case of Z we use the X basis and in the

case of Y we can use either the Z or the X basis.

We are interested in the following distribution process based

on Algorithm 1. The root prepares a single qubit in state

|0〉. Since the distribution process assumes that qubits are

initialized in state |0〉, the root applies the identity operator

as a circuit, i.e C0 = I . The root transmits the state to the

intermediate node, which receives the mixed state

E0(ρn) = θ0 |0〉〈0|+ (1− θ0) |1〉〈1| . (13)

The intermediate node applies the generalized Toffoli gate

Tn = |0〉〈0| ⊗ I⊗n−1 + |1〉〈1| ⊗X⊗n−1 (14)

controlled by the qubit it received on n − 1 qubits in its

quantum register such that C(n) = Tn−1, what yields the

mixed state

θ0 |0〉〈0|⊗n−1
+ (1− θ0) |1〉〈1|⊗n−1

. (15)

The intermediate node assigns its qubits to end-nodes follow-

ing the order of node labels, such that the qubit indexed by

j is sent to node j + 1, with 0 ≤ j ≤ (n − 2). In terms of

the inputs of the distribution process, the mapping function

selected in the intermediate node is η(n, j + 1) = j for

j ∈ {0, 1, . . . , n − 2}. The final mixed state received by the

end-nodes is the (n− 1)-qubit state

ρ(θ) =
∑

s∈Bn−1

α(s) |s〉〈s| , (16)

where

α(s) = θ0β0(s) + (1− θ0)β1(s), (17)

β0(s) =

n−1∏
j=1

δsjθj + δsj , (1− θj), (18)

β1(s) =

n−1∏
j=1

δsjθj + δsj , (1− θj), (19)

δsj is the discrete pulse function equal to 1 if bit sj = 1 and

we define sj = 1 − sj . In this case, the final density matrix

spans binary strings with n− 1 bits and is diagonal on the Z
basis.

We select the POVM to be the set of projective measure-

ments on the Z basis for the Hilbert space of n − 1 qubits

attained by locally measuring each qubit in the Z basis. Given

that local measurements are performed by the end-node, we

can write the statistics of flips in each particular bit as follows.

Let Sj ∈ {0, 1} denote the measurement outcome of the qubit

in node j. A bit-flip is measured in node j if a flip occurs

exclusively on one of the channels 0 and j. Let Fj ∈ {0, 1}
denote the absence or presence of a bit flip on channel j. We

have Sj = F0 ⊕ Fj , where ⊕ denotes the XOR operation.

Thus, the probability of measuring a bit-flip in qubit j is

Pr[Sj = 1] = θ0(1− θj) + (1− θ0)θj , (20)

for all j ∈ {1, . . . n − 1}. Using (20) for all channels in the

star yields a system of n− 1 first-order, bi-variate polynomial

equations over n variables. However, all of these equations

depend on θ0 and, if θ0 can be computed, the system reduces

to a system of n− 1 independent linear equations.

The dependency between Sj and F0 introduces dependen-

cies between all pairs of variables Sj , Sk for all cases where

θ0 �= 0.5. This dependency can be exploited to obtain an

equation for θ0 as follows. Let Sjk = SjSk denote the joint
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random variable obtained by concatenating Sj and Sk. Also,

let Pr[Sj = 1] = pj and Pr[Sjk = 11] = pjk. The probability

that any two flips are jointly measured by end-nodes j and k
is

pjk = θ0(1− θj)(1− θk) + (1− θ0)θjθk. (21)

The probability in (20) can be re-arranged to obtain

θj =
pj − θ0
1− 2θ0

, (22)

which is valid for all j ∈ {1, 2, . . . , n− 1}. Plugging back on

(21) yields the quadratic equation

ajk(1− θ0)θ0 + cjk = 0 (23)

for θ0, where

ajk = 1 + 4pjk − 2(pj + pk), (24)

cjk = pjpk − pjk. (25)

The form of (23) is symmetric with respect to probabilities

since if θ∗ solves the equation, (1 − θ∗) also does. This

inherent symmetry implies that solving (23) for a specific pair

of end-nodes (j, k) determines two possible values for θ0 that

are valid for the measurement results. More interestingly, the

symmetry cannot be broken even when considering (23) for

all pairs of end-nodes.

Finally, combining the system from (20) with (23) gives

two vectors θ̂ for the channel parameters that are compatible

with the observations. Following our characterization, the

estimators obtained from this method do not identify the

parameters completely, since we have two possible values of θ̂.

Given the form of the solutions, identifiability can be obtained

by assuming either low or high noise regime for θ0. In this

case, it suffices to select the solution of (23) that is greater

than 0.5 in the low noise regime and the smaller one in the

high noise regime.

We simulate a four-node star with bit-flip channels char-

acterized by θ = [0.8, 0.3, 0.4] to demonstrate the estimators

using Z basis measurements. We plot the estimated value for

the three parameters with respect to the number of measure-

ment outcomes used for estimation in Figure 3. The symmetry

in the estimators appears in the form of the two curves

obtained for each parameter. The two values obtained for θ are

[0.8, 0.3, 0.4] and [0.2, 0.7, 0.6], and identifiability can only be

achieved by making an assumption on the error model.

B. Tomography in the GHZ basis

The need to introduce another assumption to obtain iden-

tifiability of the parameters motivates the search for other

estimators. We now proceed to describe how GHZ states

can be used to address this issue. In particular, we define

estimators that use global measurements in the end-nodes,

which can be attained by pre-sharing entanglement among the

end-nodes. One can argue that end-to-end entanglement is an

important resource in a quantum network, and using global

measurements introduces complexity in the implementation of

our tomography process. Nonetheless, it is of interest to the

Fig. 3: Estimator using Z basis measurements for a four-

node star graph with ground-truth parameter vector θ =
[0.8, 0.3, 0.4]. The dotted lines show ground-truth values for

the parameters. The estimators cannot identify the parameters

and there are two solutions compatible with observations.

scope of this work to analyze the benefits that entanglement

may provide in the network tomography setting.

The GHZ basis generalizes the Bell basis to multiple qubits.

From (1), n bits are necessary to describe an n-qubit state

in the GHZ basis. Such states are maximally entangled and

interesting in this scenario because they remain in the GHZ

basis after applying Pauli operators. Formally, the state |Φb
s〉

evolves under the application of a Pauli operator σ on its j-th

qubit as

σ |Φb
s〉 =

⎧⎪⎨
⎪⎩

|Φb
s⊕sj 〉 , σ = X,

i |Φb⊕1
s⊕sj 〉 , σ = Y,

|Φb⊕1
s 〉 , σ = Z,

(26)

where sj is a binary string with 1 in position j if j > 0 and

string 11 . . . 1 if j = 0.

The instance of the distribution process used previously

to distribute a mixed state diagonal on the Z basis can be

modified to distribute a mixed state diagonal on the GHZ

basis by simply changing the circuit applied by the root.

Instead of sending state |0〉 to the intermediate node, the

root prepares the Bell state |Φ0
0〉 and sends the second qubit

to the intermediate node. This is achieved by the circuit

C0 = [H ⊗ I,CNOT], assuming that the CNOT gate is

controlled by the first argument. When describing circuits with

multiple gates, we use an ordered list notation [, ] to indicate

that gates are applied on the order they appear inside the square

brackets. We select the second qubit to be transmitted just

to simplify notation because (1) uses the first qubit as the

reference binary value in the GHZ state superposition. If this

is indeed the only modification considered, the mixed state

received by the intermediate node is

I ⊗ E0(Φ0
0) = θ0Φ

0
0 + (1− θ0)Φ

0
1 (27)

and the final mixed state distributed is

ρ(θ) =
∑

s∈Bn−1

α(s)Φ0
s, (28)
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with probabilities α(s) given by (17).

By comparing (16) and (28), there is no gain when using

GHZ states. This is intuitively understood by considering

the fact that only n − 1 bits of the GHZ state are used to

parameterize the necessary information, which is the same

amount of bits used in the initial case. Thus, the key to

obtain parameter identifiability is to slightly modify the circuit

applied by the intermediate node to transform the r.h.s of (27)

into the mixed state

θ0Φ
0
0 + (1− θ0)Φ

1
0 (29)

before the intermediate node transmits. Departing from (29),

the final mixed state distributed is described by the n-qubit

density matrix

ρ(θ) =
∑

s∈Bn−1

θ0β0(s)Φ
0
s + (1− θ0)β1(s)Φ

1
s, (30)

where β0 and β1 are given in (18) and (19), respectively.

The implications of (30) for estimation are profound. In

particular, assume that the state in (30) is measured in the GHZ

basis, yielding the state |Φb
s〉. A bit-flip occurred in channel 0

if, and only if, b = 1, while a flip occurred in channel j > 0
if, and only if, sj = 1. Thus, we estimate all the parameters

in the network by computing the number of times b = 1 and

sj = 1 in the strings obtained from GHZ measurements in a

given set of observations.

In order to transform (27) into (29) it is necessary to modify

the circuits applied by the root and the intermediate node.

The root circuit is incremented by applying the single qubit

gate XHX on the qubit that remains in the root after the

CNOT, leading to C0 = [H ⊗ I,CNOT, XHX ⊗ I]. For the

intermediate node, the circuit is extended with the application

of the single qubit gate HZ to the received qubit before using

it as the control for the generalized (n−1)-qubit Toffoli gate,

which yields Cn = [HZ ⊗ I⊗n−2, Tn−1].

The same circuit can be used to identify parameters for

Y channels with a modification on the estimators. When

channels are described by Y , the intermediate node receives

the state θ0Φ
0
0 + (1 − θ0)Φ

1
1. The estimators must change

when such state is transmitted because the phase bit b and

the string s determine together the occurrence of flips in

the first channel, what occurs iff b �= ⊕n−1
j=0 sj . Since the

occurrence of a flip in E0 can always be detected, it is

simple to relate sj to the occurrence of a flip in channel

j. For the Z case, it suffices to add the (n − 1)-qubit

Hadamard gate H⊗n−1 to the intermediate node circuit, such

that C0 = [H ⊗ I,CNOT, HX ⊗ I,H⊗n−1]. In addition, the

n − 1 end-nodes receiving the qubits from the intermediate

node must apply a Hadamard gate before measuring in the

GHZ basis. In this case, the bits characterizing the measured

GHZ state provide direct estimators for the channel parameters

as for X channels.

We simulate the same four-node system used in the analysis

of Z-basis measurement estimators with the GHZ scheme for

the purpose of comparison. The results reported in Figure 4

show that a single, correct value for θ is identified. Moreover,

the curves in Figure 4 are smoother than the ones in Figure

Fig. 4: Estimators based on GHZ measurements for the four-

node star graph with ground-truth parameter vector θ =
[0.8, 0.3, 0.4]. The estimators identify θ and provide a single

solution for the tomography problem. Dotted lines show

ground-truth values.

3, indicating that the GHZ-based estimator has less variance

than the Z-based one.

C. Estimators and the QCRB

The form of (16) and (30) fits into the definition of Theorem

1, such that the QFIM follows (10) for both estimators.

Moreover, we do not explicitly compute the QFIM, although

it follows from Theorem 1 that we attain the QCRB in

both cases since we use projective measurements on the

basis that diagonalize the SLD of all parameters. Finally, the

eigenvalues of ρ(θ) are first-order multivariate polynomials

on both scenarios and evaluating (10) for such functions is

straightforward, albeit space consuming.

VI. CONCLUSION

The definition of quantum network tomography is key

among the main contributions of this work, connecting quan-

tum tomography with classical network tomography. It defines

the characterization of links in a quantum network when

intermediate nodes do not provide information for estimation.

The new problem differs from quantum process tomography

on the assumption of a priori knowledge on the form of

Kraus operators characterizing network links, while preventing

generic measurements for estimation.

We formally described a state distribution process across

trees that provides the necessary mixed states for quantum

network tomography. The process can be used for trees of

arbitrary topology and gives a direct way to address the

problem for graphs, since any graph be decomposed into trees.

The process was used to solve quantum network tomography

in the scenario of star networks with channels described by a

single Pauli operator. Our results indicate that entanglement

may provide advantages for quantum network tomography.

The estimator obtained from global measurements outcomes

in the end-nodes identifies the parameters without the need

for any additional assumptions, in contrast with the lack of
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identifiability observed for local measurements. This evidence

motivates the description for the conditions under which

entanglement enhances network tomography, as it has been

previously investigated for other quantum estimation problems

such as quantum sensing networks [23].

We identify four directions for future work. First, solving

the tomography problem for star systems with more complex

quantum channels, like the depolarizing channel, is key to pro-

vide useful tomography methods for real quantum networks.

Second, obtaining descriptions for estimators that maximizes

the QFIM for star graphs is of interest. Third, solving the

problem for generic trees will provide further understanding

on the limits of estimation with measurements exclusively at

the end-nodes. Finally, framing the optimization problem to

characterize the optimal way to partition a network into trees

for tomography will bring insights on how the tomography

problem generalizes to arbitrary networks.
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