2022 IEEE International Conference on Quantum Computing and Engineering (QCE) | 978-1-6654-9113-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/QCE53715.2022.00061

2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

Quantum Network Tomography with Multi-party
State Distribution

Matheus Guedes de Andrade', Jaime Diaz?, Jake Navas?, Saikat Guha®, Inés Montafio?, Brian Smith*, Michael
Raymer*, and Don Towsley'

!College of Information and Computer Science, University of Massachusetts Amherst
’Department of Applied Physics and Materials Science, Northern Arizona University
3College of Optical Sciences, University of Arizona
“Department of Physics, University of Oregon

Abstract—The fragile nature of quantum information makes
it practically impossible to completely isolate a quantum state
from noise under quantum channel transmissions. Quantum
networks are complex systems formed by the interconnection
of quantum processing devices through quantum channels. In
this context, characterizing how channels introduce noise in
transmitted quantum states is of paramount importance. Pre-
cise descriptions of the error distributions introduced by non-
unitary quantum channels can inform quantum error correction
protocols to tailor operations for the particular error model. In
addition, characterizing such errors by monitoring the network
with end-to-end measurements enables end-nodes to infer the
status of network links. In this work, we address the end-to-end
characterization of quantum channels in a quantum network by
introducing the problem of Quantum Network Tomography. The
solution for this problem is an estimator for parameters that
define a Kraus decomposition for all quantum channels in the
network, using measurements performed exclusively in the end-
nodes. We study this problem in detail for the case of arbitrary
star quantum networks with quantum channels described by a
single Pauli operator, like bit-flip quantum channels. We provide
solutions for such networks with polynomial sample complexity.
Our solutions provide evidence that pre-shared entanglement
brings advantages for estimation in terms of the identifiability of
parameters.

I. INTRODUCTION

Quantum networks are communication systems formed by
the interconnection of quantum processors with channels that
enable the communication of quantum information [1]-[4].
They extend the capabilities of quantum computers, aug-
menting the computing power of interconnected quantum
processors with distributed quantum computing [5], [6], and
enable novel applications such as quantum key distribution [7]
and entanglement-enabled very-long-baseline interferometric
telescopes [8]. As with any quantum processing system, noise
is inherent to quantum networks due to the fragile nature of
quantum information.

In networked systems, noise arises both in the commu-
nication of quantum information through channels and in
the quantum operations performed by the nodes. The diverse
ecosystem of physical platforms for qubit implementations, as
well as the communication media used, have drastic impacts
on errors introduced during communication, such that the

development of technologies to transduce quantum informa-
tion is critical [9], [10]. With respect to communication,
quantum information encoded in photons is subject to different
errors when propagated through optical fiber and through free-
space [11]. Therefore, characterizing communication errors
is central in a heterogeneous quantum network that includes
satellites and optical fibers. For instance, quantum error correc-
tion processes [12] and entanglement purification methods [13]
can benefit from a precise description of error models to
improve efficiency.

In the context of characterizing quantum systems, the theory
of quantum estimation determines the fundamental limits to
what can be inferred from measurements and the efficiency
of realizable estimators [14], [15]. Thus, quantum estimation
is the key tool to describe errors introduced by noise in
communication in a quantum network. Quantum Tomography
refers to a set of quantum estimation methods for inferring
the description of quantum systems [16]. Quantum State
Tomography [17] and Quantum Process Tomography [18]
refer to methods for describing quantum states and quantum
evolution processes, respectively. Hence, one could attempt
to characterize errors in a quantum network using standard
quantum tomography methods, where the network would be
treated as a black-box and probed through the transmission
of quantum states which would be measured to estimate the
behavior of the entire network.

Unfortunately, such methods are not directly applicable if
one wants to characterize the behavior of individual network
links through measurements at only end-nodes. Consequently,
investigating methods that use prior knowledge of the net-
work topology and the form of errors that arise from noise
introduced by quantum channel transmissions brings a new
perspective to such a tomography problem.

Exploiting prior knowledge to characterize channels in clas-
sical networks has been previously investigated and motivated
the development of classical Network Tomography [19], [20].
Classical Network Tomography refers to a set of methods that
aim to estimate the status of network links through end-to-end
measurements. The key idea is to transmit packets among end-
nodes in the network with the necessary meta-information to
measure classical quantities such as transmission delay and
packet loss. In the classical network scenario, tomography
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methods that use both unicast and multicast communication
were proposed. Interestingly, link correlations introduced by
multicast communication in packet loss were exploited to
provide estimators for the loss probability per link in multicast
trees from end-to-end measurements [21], [22].

A. Contributions

The goal of this work is to bridge quantum tomography
with classical network tomography by introducing the problem
of Quantum Network Tomography. Our contributions are as
follows.

« We formally define the problem of Quantum Network To-
mography for generic quantum networks as the estimation
of parameters determining operator-sum representations
for all quantum channels in a network. The definition
captures end-to-end parameter estimation, including pa-
rameters internal to the network, considering estimators
based on measurements performed exclusively in the end-
nodes.

« We define a generic multi-party state distribution process
for the network tomography of arbitrary trees.

« We solve quantum network tomography problems in star
networks using the above multi-party state distribution
process. In particular, we focus on the case of random
unitary channels characterized by a single Pauli operator,
such as a bit-flip channel, and provide estimators for
network parameters with polynomial sample complexity.
Our estimators attain the Quantum Cramer-Rao bound
and provide evidence that, even for single Pauli chan-
nels, pre-shared entanglement may bring advantages for
estimation in terms of parameter identifiability.

o Finally, we compare the performance of our estimators
numerically for a four-node star network.

The remainder of this article is structured as follows. In
Section II, we provide the necessary mathematical background
to discuss our results. We define the problem of quantum
network tomography in Section III and describe the multi-
party state distribution process in Section IV. We report
our results for the tomography problem in the case of star
networks with channels described by a single Pauli operator
in Section V. Finally, we discuss our results and present
concluding remarks in Section VI.

II. DEFINING QUANTUM NETWORK TOMOGRAPHY

In this work, we consider quantum networks to be systems
formed by the interconnection of quantum processing devices
with quantum channels that allow for communication of quan-
tum information. We do not assume any particular physical
implementation of the underlying quantum channels, nor any
choice of qubit platform. In addition, we use the term quantum
processing device, or quantum processor, to abstract quantum
computers, routers, switches and repeaters.

We represent a quantum network as a graph G = (V, E),
where the nodes in V' denote the quantum processors and the
edges in F represent the quantum channels interconnecting the
nodes. In addition, the node set is partitioned as V = Vg UV,
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where Vg and V; determine the sets of end and intermediate
nodes in the network.

Quantum processors are assumed capable of performing
generic, unitary quantum operations on its quantum registers
and perfect quantum measurements. This assumption implies
that the only source of error in the network comes from the
transmission of quantum information through the channels.
Despite being unrealistic, assuming perfect quantum opera-
tions in the nodes is the initial step for the investigation of the
estimation problems within the scope of this article.

A star quantum network is a system consisting of one inter-
mediate node interconnecting n end-nodes. In this particular
case, we have |V| = n + 1, |E| = n and each end-node
identifies one edge of the star. For simplicity, we label the
intermediate node as node n and edge (v, n) as the v-th edge,
for v € {0,1,...,n — 1}, i.e Vg = {0,1,...,n — 1} and
Vi ={n}.

In what concerns notation, we use H¥X to represent the
Hilbert space with dimension 2% formed by K qubits and D¥
to represent the space of density matrices of K -qubit systems.
The Greenberger-Horne-Zeillinger (GHZ) basis is formed by
maximally entangled states and generalizes the Bell basis to
multiple qubits. Let s = sq...5,-2 € {0,1}"72 be a binary
string of length (n — 1) and b € {0,1} be a single bit. We
represent states in the n-qubit GHZ basis as

_ |080 PN Sn71> + (—l)b |180 e Sn,1>

7 ;

where 5}, is the logical negation of bit s;. For simplicity, we
often use a single variable s to refer to a binary string, with
S representing its bit-wise logical negation. As an example,
the standard three-qubit GHZ state (|000) + [111))/v/2 is
expressed as |®9,) in (1). GHZ-basis projectors are defined
as ®° |®5)(D?|. We use the standard notation of [.,.] :
[A,B] = AB—BA and {.,.} : {A,B} = AB+ BA to
respectively denote the commutator and anti-commutator of
operators.

|25) M

A. Quantum channels in the network

The edges in |E| represent Completely Positive Trace-
Preserving (CPTP) single-qubit maps, which implies that
qubits are never lost after channel transformations. We assume
that, for every edge e = (u,v) € F, the quantum channel
&, : D — D? that interconnects nodes u and v corresponds
to the mapping

de—1

Eelp) =D KenpKl, )
k=0

where { K.} is a set of Kraus operators for link e and p is a
one-qubit density matrix. In the case of random unitary quan-
tum channels, the Kraus operators become Ko = /o Uet,
where U, is a unitary operator and {0.;} are probabilities
with >, e = 1.
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The generalized depolarizing channel is a random unitary
channel with Kraus operators described by Pauli operators,
having an operator-sum representation of form

3
Ee(p) = Oeronpos, 3)
k=0

where 6. € R* and {0} denote the set of Pauli operators,
with o9 = I. When channels are described by a single Pauli
operator, (3) reduces to

Ee(p) =0cp+ (1 —06.)opo %)

where 0 € {X,Y,Z} is one of the Pauli operators and the
channel is described by a single parameter 6. € R.

B. Quantum estimation

Quantum estimation theory addresses how measurements
can be used to obtain information from quantum systems.
There are three fundamental aspects of any quantum estima-
tion problem [15]. Assume that it is of interest to estimate a
parameter vector 6. First, it is necessary to obtain a quantum
state ensemble p that is parameterized by 6, what is normally
referred to as parameterization. Second, it is necessary to
measure p to obtain measurement statistics. Finally, we need
to design estimators for € based on measurement outcomes.

Suppose that we are given a parameterized state ensemble of
N qubits. In particular, let p : RM — DV denote the density
matrix of the system that depends on a parameter vector 6 €
RM as

R—1
p(0) = A(0)Ak(0), ©)
k=0
where R is the rank of p(0), {Ax} is the set of projectors for
the eigenspace of p(f) and A\, : RM — R are §-dependent
probability values for which >~ Ax(6) = 1. We are interested
in the following quantum estimation problem.

Problem 1 (Quantum parameter estimation). Find an estima-
tor 0 for 0 from measurements performed in an ensemble of
states prepared following the density matrix p(0).

The measurement statistics used to describe 6 will de-
pend on the measurement performed. For any set of Positive
Operator-Valued Measure (POVM) elements {11;}, the prob-
ability of having outcome [/ as a measurement result is

R—-1
po(Il) = Y Ae(6) Tr(Ax(O)IL). (6)
k=0

Note that POVM elements can act on any subset of the N
qubits in the system. Thus, if the form of py is known,
measuring an ensemble of states described by p(#) with {IT;}
yields estimators py(I;) € RT for py(Il;), and 6 can be
obtained by solving the inverse problem

ps(I1y) = pe(1l;), for all [, 7

where p;(1I;) is the analytical description in the r.h.s of (6).
There are two aspects of such an estimation problem.
First, the number of equations obtained is the number of

POVM elements. For projective measurements, the number
of equations grows as O(2V) because of the completeness
relation. Second, the dependence of py(II;) on 6 does not
guarantee that the inverse problem in (7) has a unique solution.

C. Estimation efficiency

In general, different parametrization processes provide
mixed states described by different density matrices, which
leads to distinct estimators 6 for 0. In addition, different
POVMs yield distinct estimators for the same density matrix
p(0). Thus, we analyze the efficiency of different estimators
for Problem 1 with two metrics of interest: the identifiability
of 6 and the Quantum Fisher Information Matrix (QFIM) for
0 [15].

We say that an estimator 6 identifies @ if it determines a
unique value for § from a sequence of observations. In the case
of (7), 6 identifies the parameters if it is the unique solution
to the inverse problem.

The QFIM F of a density matrix p(#) [14] is a positive
semi-definite real matrix with entries

Fix = 3 (o Ly, Ii), ®)
where Ly is the Symmetric Logarithmic Derivative operator
(SLD) of p(#) with respect to 6; given by the differential
matrix equation

1

%‘; = 5 (Lip + pLy). ©

The diagonal entry Fj; is the Quantum Fisher Information

(QFI) for parameter ¢;. The QFIM yields the Quantum

Crameér-Rao bound (QCRB) for multi-parameter estimation,

which is a lower bound on the covariance matrix of any

estimates based on statistics generated by any POVM [15].

An estimator that reaches the QCRB for the joint estimation

of 0 is attainable if, and only if L; and L, commute for all
pairs 0, 0y [15].

Furthermore, consider the following simple theorem.

Theorem 1. If p(0) = >, M\e(0)Ay is diagonalized by a set
of O-independent projectors { Ay}, then { Ay} diagonalizes L;,
for all j.

Proof. Under the assumption that Ap(f) = Ay, p(0) =
> A(0)Ay and agéf) = > %\—éf)/\k for all j. Thus, by
taking the ansatz L; = ), l;5Ay, one verifies that (9) is

solved with I3, = ag‘éf) ﬁ, for all j. O

When Theorem 1 is valid, L; and L; commute for all
i,7 and an estimator 6 from projective measurements on the
{A}} basis is asymptotically optimal given p(6). Plugging the
description for L; from Theorem 1 in (8) yields

1 O\p s
=S Ok Ok 10
Fab zk: X\, 00, 00, (10)
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(a) State distribution.

(b) End-to-end measurements.

(c) Collection and estimation.

Fig. 1: Quantum network tomography on trees. The tree shown is formed by two intermediate nodes and each link is described
by a Kraus decomposition of known form (Equation 11). The goal is to estimate the probabilities describing each link in the
tree. (a) A mixed state p(¢) is distributed from the root r towards the leaves I;. To perform distribution, the root and the
intermediate nodes (gray circles) transmit a qubit state to its neighbors following arrow direction. (b) When all leaves receive
qubits, measurements are performed to obtain classical data for estimation. (c) Finally, end-nodes transmit the classical data
from measurements to a single node in the network, represented here by the root node, for estimation to be performed.

III. QUANTUM NETWORK TOMOGRAPHY

In this section we formally define the problem of quantum
network tomography. We begin by describing the problem
of quantum link tomography, which naturally leads to the
definition of the network version. Consider the simplest non-
trivial network system formed by two end-nodes w and v
connected by an edge e = (u,v) representing the quantum
channel &, following (2). The link tomography problem refers
to quantum process tomography of &.. In its most general
form, one does not assume any knowledge of &, and its
solution is a description of a set of Kraus operators {K.j}
that characterize &, [18].

This general problem is difficult, since the Kraus operators
must be characterized from measurements, treating £, as a
black-box. We simplify this problem by assuming that a
parametric description of (2) of the form

Ee(p) =Y Ker(0) p K[, (0), (an
k

is known and focus on estimation of the parameter #. Thus,
the formal definition of the channel tomography problem of
interest is as follows.

Problem 2 (Quantum Link Tomography). Given a set of M
Kraus operators {Ky}. for which the quantum channel &,
represented by link e has the form given in (11), estimate a
parameter vector 0, € RM that characterizes E,.

The link tomography problem is an instance of Problem
1 since, in order to estimate the probability vector, it is
necessary to use channel £ to prepare and measure an
ensemble of mixed states that depends on 6 to obtain statistics
for estimation. In this case, v and v are end-nodes and can
perform arbitrary measurements on the ensemble, share the
classical results of the measurements and compute 6.

The quantum network tomography problem, which is de-
picted in Figure 1 for trees, extends the channel problem to
networks with the caveat that only end-nodes can contribute
information for estimation. We now present the formal defi-
nition of the quantum network tomography problem, which is
one of the main contributions of this article.

Problem 3 (Quantum Network Tomography). Given a quan-
tum network G, with nodes partitioned into disjoint sets Vg

and Vi and a set of Kraus operators {K}}. for each e € E,
find an estimator éc for the parameter vector 0. characterizing
Ee asin (11), for all e € E, using measurement statistics from
nodes in Vg exclusively.

Problem 3 generalizes 2 to generic networks adding the
restriction that measurement observations used for estimation
must come from end-nodes. If such a restriction is dropped,
the network problem reduces to the link problem and the
most efficient way to obtain estimators is to solve Problem 2
independently for all links in the network. When the restriction
is considered, joint estimation of the channel parameters must
be carried out in the general case. The joint estimation reflects
the fact that links must be jointly used to prepare an ensemble
p(0) of states that can be measured by the end-nodes to provide
statistics for estimation.

IV. PARAMETERIZATION AND STATE DISTRIBUTION

We now propose a family of parameterization processes that
cast Problem 3 into an instance of Problem 1 for a network
with a tree topology as depicted in Figure 1. A tree T' = (V, E)
is a connected graph with no cycles. Tree tomography is
interesting since trees are connected graphs with minimum
edge density |E|/|V| when |V| is fixed, reducing the number
of parameters to be simultaneously estimated. Furthermore,
all the links of a network can be covered with multiple trees
and characterized through tree tomography through such a
covering, although we focus on quantum network tomography
of single trees.

In principle, the preparation of p(#) must target qubits in the
end-nodes for measurements to be performed. Such a prepa-
ration must use the channels in the network in order to make
the ensemble dependent on 6. Regardless of how channels are
used to prepare the ensemble, the parameterization process can
be expressed as an abstract, multi-qubit quantum channel Ny
acting on a locally-prepared ensemble pg as p(6) = Na(po).
In our terminology, a locally-prepared state is any state that is
separable with respect to the nodes of the network such that
po follows

Po = ®P0v7 (12)

veV
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where pg, is a multi-qubit state located in a quantum register
in node v. The key aspect of quantum network tomography is
that both pg and Ny are allowed to be chosen as part of the
problem’s solution.

We describe the abstract quantum channel Ny, and hence
the parameterization process, as a network state distribution
process. The state distribution problem refers to the prepara-
tion of generic quantum states across target end-nodes, using
channels and intermediate nodes to propagate entanglement. In
this setting, nodes start with a state that follows (12), which
is progressively transformed through local operations and
quantum state transmissions across channels. State distribution
is a natural approach to define Ay because qubits transmitted
across a link e evolve according to & and, thus, can be
used to incorporate {6} into the density matrix describing
the distributed state. This process yields a quantum channel
Ny that is a composition of {&.} for all e € E used for
distribution.

We propose a distribution process for trees (Algorithm 1) to
distribute quantum states across the network with properties
tailored for tomography. Since trees have no cycles, there
exists exactly one path interconnecting any two nodes in the
network. Moreover, the process uses each link in the network
to transmit a qubit among neighboring nodes exactly once.
Such a process is very general in the sense that it captures
any quantum state distribution operation across a tree under
the restriction that a single qubit is transmitted between the
nodes for distribution.

Thus, consider the following definitions. Let 7' = (V, E)
be a tree rooted at node r. The height function h : V — ZT
is defined such that h(v) is the hop-distance of the path
connecting v and 7 in 7. Note that h(r) = 0. Let the pre-
decessor of v be the neighbor P, of v with h(P,) = h(v) —1,
which is not defined for r. Let the successor set of v be
Sy = {u : (v,u) € Fandu # P,}, v € T. A leaf v
of T is a node with no successor, S, = (. Let the set
Ly = {v : S, = 0} denote the set of leaves of T" and
H(k) = {v: h(v) = k} the set of all nodes of T" with height
h. Furthermore, let C denote the description of a quantum
circuit applied in the nodes of the network such that C, is
a generic, multi-qubit circuit applied in node v. Given the
circuit C,, let n, denote the number of qubits in C,. Let
n: E — Z% be a function determining the index of qubits
to be transmitted between neighbors. 7(u,v) determines the
index of the output qubit from C,, to be transmitted from u to
v after C, is performed. Finally, let |0,,)(0,| denote the pure
state |0)(0]%".

The process in Algorithm 1 is understood as follows. The
inputs are the rooted tree 7', a quantum circuit description C
and a qubit index function 7. In order to simplify the process
description, we assume that the initial local state pg is encoded
in the circuit description C, such that all nodes start with
registers prepared in a pure state of form |0,,)0,,|. The process
begins with the root node executing C,. Note that, since the
root has no predecessor, line 3 has no effect for v = r. Then,
the root sends one qubit from the output of C, (|0, )0y, |)
to each one of its successors, and keeps n, — |S,| qubits in
memory. The function n(r,v) specifies which of the n,. qubit
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is transmitted from r to v, for all neighbors v of . Whenever
node v receives a qubit, the channel £p, interconnecting P,
and v transforms the initially transmitted state. Thus, node v
applies the quantum circuit C,, with n, local qubits in state
|0, X0, | and with the qubit that went through £p, as input.
The node proceeds by transmitting one qubit to each one of
its successors following 7, again keeping n, — |S,| qubits in
memory. The process terminates when each leaf receives a
qubit state from its predecessor.

The generality of the process described in Algorithm 1
stems from the freedom of defining both C and 7, although
it should be clear from its description that the distributed
mixed state depends on 6., for all e € FE, as long as C,
contains non-separable quantum operations. There exists a
direct mapping determining the form of Ay from 7', C and
7, although writing the mathematical form for the general
case is lengthy. In the remainder of this article, we consider
distribution circuits where no qubits remain in intermediate
nodes after distribution, where each leaf of receives one qubit
and where the root may or may not keep one qubit in memory
after transmitting to its descendants. Furthermore, we focus on
the description of p(6) directly rather than explicitly writing
No.

V. TOMOGRAPHY IN STAR NETWORKS

In this section we apply Algorithm 1 to solve tomography
problems in star quantum networks. The star graph is a
simple type of tree for which we can observe the workings
of the distribution process and study tomography in detail.
We consider the bi-partition of the nodes defined in Section
II, where all leaves are end-nodes and the intermediate node
is the center node, as depicted in Figure 2. This bi-partition of
nodes is interesting because the distance between end-nodes
is always two. Thus, the star is a minimal set-up with a single
intermediate node that allows us to investigate the effects of
restricting measurements for estimation to end-nodes.

In addition, we simplify the problem further by considering
a scenario where every link is described by a single Pauli
operator following (4). This simplification helps both the
description and evaluation of estimators without rendering the
problem trivial. Such class of channels suffices to demonstrate
the difficulty of performing tomography in a network and
builds intuition on how to approach the problem for more
complex channels like the generic depolarizing channel in (3),
which is described by all Pauli operators. The formal problem
statement is as follows.

Problem 4 (Quantum Network Tomography of Star Net-
works). Given a quantum network with star topology T =
(V, E), with nodes partitioned into disjoint sets Vg and Vi
and channels described by a single Pauli operator as in (4),
find an estimator 0. for the probability vector characterizing
Ee, for all e € E, using measurement statistics from nodes in
Vi exclusively.

We describe our methods for pure bit-flip channels and
discuss how they generalize to channels described by the other
two Pauli operators. Note that we consider the same Pauli
operator to describe all channels in the star.
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Algorithm 1: Tree state distribution

input : tree T'; circuit C; function 7
output: distributed state p(¢) across r U L

1 for k€ {0,1,..., hyax}:

2 for v € H(k):

3 v receives qubit 7(P,,v) from P,;

4 v performs circuit C,, with received qubit and n,, local qubits in state |0, X0,,,| as input;
5 for u € S,:

6 ‘ v sends qubit indexed by 7(v,u) to u;

7 end

8 end

9 end

Fig. 2: Star quantum networks with n end-nodes depicted as
blue circles. Each channel j in the network is described by
a Pauli operator o and a probability 6;. The operator-sum
representation for the channels is written along the edges of
the network.

A. Tomography in the basis of Pauli operators

We start by describing a solution for the tomography in the
star that uses states in the Pauli basis. Under the assumption
of bit-flip channels, we target states in the Z basis. The
same analysis follows for the other single Pauli channels by
selecting a different basis according to the Pauli operator under
consideration. In the case of Z we use the X basis and in the
case of Y we can use either the Z or the X basis.

We are interested in the following distribution process based
on Algorithm 1. The root prepares a single qubit in state
|0). Since the distribution process assumes that qubits are
initialized in state |0), the root applies the identity operator
as a circuit, i.e Cy = I. The root transmits the state to the
intermediate node, which receives the mixed state

Eo(pn) = 00 10)(0] + (1 — 6o) [1)1] . (13)
The intermediate node applies the generalized Toffoli gate
T =[0)Y0] @ I9" 4 1)1 @ X*"71 (14)

controlled by the qubit it received on n — 1 qubits in its
quantum register such that C(n) = T,_;, what yields the
mixed state

00 |0X0®" " + (1 — o) [1)1[*" . (15)

The intermediate node assigns its qubits to end-nodes follow-
ing the order of node labels, such that the qubit indexed by

j is sent to node j + 1, with 0 < j < (n — 2). In terms of
the inputs of the distribution process, the mapping function
selected in the intermediate node is n(n,j + 1) = j for
j€{0,1,...,n — 2}. The final mixed state received by the
end-nodes is the (n — 1)-qubit state

p0) = > als)ls)s|, (16)
s€Bn—t
where

a(s) = 0oBo(s) + (1 —00)B1(s), (17)

n—1
Bo(s) = [ 65,6, + 6s,, (1 = 6), (18)

j=1

n—1
Bi(s) = ] 85,05 + 65, (1 = 6;), (19)

j=1

ds; is the discrete pulse function equal to 1 if bit s; = 1 and
we define 5; = 1 — s;. In this case, the final density matrix
spans binary strings with n — 1 bits and is diagonal on the Z
basis.

We select the POVM to be the set of projective measure-
ments on the Z basis for the Hilbert space of n — 1 qubits
attained by locally measuring each qubit in the Z basis. Given
that local measurements are performed by the end-node, we
can write the statistics of flips in each particular bit as follows.
Let S; € {0,1} denote the measurement outcome of the qubit
in node j. A bit-flip is measured in node j if a flip occurs
exclusively on one of the channels 0 and j. Let F; € {0,1}
denote the absence or presence of a bit flip on channel j. We
have S; = Fy @ Fj, where @ denotes the XOR operation.
Thus, the probability of measuring a bit-flip in qubit j is

P’I“[Sj :1] :00(170]')4‘(1*90)9]', (20)

for all j € {1,...n — 1}. Using (20) for all channels in the
star yields a system of n — 1 first-order, bi-variate polynomial
equations over n variables. However, all of these equations
depend on 6y and, if y can be computed, the system reduces
to a system of n — 1 independent linear equations.

The dependency between S; and Fy introduces dependen-
cies between all pairs of variables S, S}, for all cases where
0y # 0.5. This dependency can be exploited to obtain an
equation for ¢y as follows. Let S, = S;S denote the joint
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random variable obtained by concatenating S; and Sj. Also,
let Pr[S; = 1] = p; and Pr[S;, = 11] = pji. The probability
that any two flips are jointly measured by end-nodes j and &
is

pjk = 0o(1 —0;)(1 = k) + (1 — 60)0;05. 21
The probability in (20) can be re-arranged to obtain

0. — Pi — 0o
7120y

(22)

which is valid for all j € {1,2,...,n — 1}. Plugging back on
(21) yields the quadratic equation

a]-k(l - 90)00 + cjk = 0 (23)

for 6y, where
ajk = 1+ 4pjr — 2(p; + i), 24)
Cjk = PjPk — Djk- (25)

The form of (23) is symmetric with respect to probabilities
since if 6* solves the equation, (1 — 6*) also does. This
inherent symmetry implies that solving (23) for a specific pair
of end-nodes (j, k) determines two possible values for 6 that
are valid for the measurement results. More interestingly, the
symmetry cannot be broken even when considering (23) for
all pairs of end-nodes.

Finally, combining the system from (20) with (23) gives
two vectors § for the channel parameters that are compatible
with the observations. Following our characterization, the
estimators obtained from this method do not identify the
parameters completely, since we have two possible values of 6.
Given the form of the solutions, identifiability can be obtained
by assuming either low or high noise regime for 6y. In this
case, it suffices to select the solution of (23) that is greater
than 0.5 in the low noise regime and the smaller one in the
high noise regime.

We simulate a four-node star with bit-flip channels char-
acterized by 6 = [0.8,0.3,0.4] to demonstrate the estimators
using Z basis measurements. We plot the estimated value for
the three parameters with respect to the number of measure-
ment outcomes used for estimation in Figure 3. The symmetry
in the estimators appears in the form of the two curves
obtained for each parameter. The two values obtained for 6 are
[0.8,0.3,0.4] and [0.2,0.7,0.6], and identifiability can only be
achieved by making an assumption on the error model.

B. Tomography in the GHZ basis

The need to introduce another assumption to obtain iden-
tifiability of the parameters motivates the search for other
estimators. We now proceed to describe how GHZ states
can be used to address this issue. In particular, we define
estimators that use global measurements in the end-nodes,
which can be attained by pre-sharing entanglement among the
end-nodes. One can argue that end-to-end entanglement is an
important resource in a quantum network, and using global
measurements introduces complexity in the implementation of
our tomography process. Nonetheless, it is of interest to the
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Fig. 3: Estimator using Z basis measurements for a four-
node star graph with ground-truth parameter vector 6 =
[0.8,0.3,0.4]. The dotted lines show ground-truth values for
the parameters. The estimators cannot identify the parameters
and there are two solutions compatible with observations.

scope of this work to analyze the benefits that entanglement
may provide in the network tomography setting.

The GHZ basis generalizes the Bell basis to multiple qubits.
From (1), n bits are necessary to describe an n-qubit state
in the GHZ basis. Such states are maximally entangled and
interesting in this scenario because they remain in the GHZ
basis after applying Pauli operators. Formally, the state |®?)
evolves under the application of a Pauli operator ¢ on its j-th
qubit as

|(I)g@5j>> g
o|®Y) = {i|®E,), o
(o

sDs;

X,
Y, (26)
|21, Z,

where s; is a binary string with 1 in position j if j > 0 and
string 11...1if j = 0.

The instance of the distribution process used previously
to distribute a mixed state diagonal on the Z basis can be
modified to distribute a mixed state diagonal on the GHZ
basis by simply changing the circuit applied by the root.
Instead of sending state |0) to the intermediate node, the
root prepares the Bell state |®J) and sends the second qubit
to the intermediate node. This is achieved by the circuit
Co = [H ® I,CNOT], assuming that the CNOT gate is
controlled by the first argument. When describing circuits with
multiple gates, we use an ordered list notation [,] to indicate
that gates are applied on the order they appear inside the square
brackets. We select the second qubit to be transmitted just
to simplify notation because (1) uses the first qubit as the
reference binary value in the GHZ state superposition. If this
is indeed the only modification considered, the mixed state
received by the intermediate node is

I ® E(PY) = @Y + (1 — 6) Y 27
and the final mixed state distributed is

p0) = Y a(s)®, (28)

seBn—1
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with probabilities «(s) given by (17).

By comparing (16) and (28), there is no gain when using
GHZ states. This is intuitively understood by considering
the fact that only n — 1 bits of the GHZ state are used to
parameterize the necessary information, which is the same
amount of bits used in the initial case. Thus, the key to
obtain parameter identifiability is to slightly modify the circuit
applied by the intermediate node to transform the r.h.s of (27)
into the mixed state

6o®) + (1 — o) @ (29)

before the intermediate node transmits. Departing from (29),
the final mixed state distributed is described by the n-qubit
density matrix

p(O) = Y OoBo(s)®Y+ (1—00)i(5)®},  (30)

seBn—1

where Sy and 3 are given in (18) and (19), respectively.

The implications of (30) for estimation are profound. In
particular, assume that the state in (30) is measured in the GHZ
basis, yielding the state |®%). A bit-flip occurred in channel 0
if, and only if, b = 1, while a flip occurred in channel j > 0
if, and only if, s; = 1. Thus, we estimate all the parameters
in the network by computing the number of times b = 1 and
s; = 1 in the strings obtained from GHZ measurements in a
given set of observations.

In order to transform (27) into (29) it is necessary to modify
the circuits applied by the root and the intermediate node.
The root circuit is incremented by applying the single qubit
gate X HX on the qubit that remains in the root after the
CNOT, leading to Cyp = [H ® I,CNOT, XHX ® I]. For the
intermediate node, the circuit is extended with the application
of the single qubit gate H Z to the received qubit before using
it as the control for the generalized (n — 1)-qubit Toffoli gate,
which yields C,, = [HZ ® I®"~2,T,,_].

The same circuit can be used to identify parameters for
Y channels with a modification on the estimators. When
channels are described by Y, the intermediate node receives
the state 9o®3 + (1 — 6p)®@1. The estimators must change
when such state is transmitted because the phase bit b and
the string s determine together the occurrence of flips in
the first channel, what occurs iff b # @?;01 sj. Since the
occurrence of a flip in & can always be detected, it is
simple to relate s; to the occurrence of a flip in channel
j. For the Z case, it suffices to add the (n — 1)-qubit
Hadamard gate H®"~! to the intermediate node circuit, such
that Cy = [H ® I,CNOT, HX ® I, H®"~1]. In addition, the
n — 1 end-nodes receiving the qubits from the intermediate
node must apply a Hadamard gate before measuring in the
GHZ basis. In this case, the bits characterizing the measured
GHZ state provide direct estimators for the channel parameters
as for X channels.

We simulate the same four-node system used in the analysis
of Z-basis measurement estimators with the GHZ scheme for
the purpose of comparison. The results reported in Figure 4
show that a single, correct value for € is identified. Moreover,
the curves in Figure 4 are smoother than the ones in Figure
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Fig. 4: Estimators based on GHZ measurements for the four-
node star graph with ground-truth parameter vector 6 =
[0.8,0.3,0.4]. The estimators identify 6 and provide a single
solution for the tomography problem. Dotted lines show
ground-truth values.

3, indicating that the GHZ-based estimator has less variance
than the Z-based one.

C. Estimators and the QCRB

The form of (16) and (30) fits into the definition of Theorem
1, such that the QFIM follows (10) for both estimators.
Moreover, we do not explicitly compute the QFIM, although
it follows from Theorem 1 that we attain the QCRB in
both cases since we use projective measurements on the
basis that diagonalize the SLD of all parameters. Finally, the
eigenvalues of p(6) are first-order multivariate polynomials
on both scenarios and evaluating (10) for such functions is
straightforward, albeit space consuming.

VI. CONCLUSION

The definition of quantum network tomography is key
among the main contributions of this work, connecting quan-
tum tomography with classical network tomography. It defines
the characterization of links in a quantum network when
intermediate nodes do not provide information for estimation.
The new problem differs from quantum process tomography
on the assumption of a priori knowledge on the form of
Kraus operators characterizing network links, while preventing
generic measurements for estimation.

We formally described a state distribution process across
trees that provides the necessary mixed states for quantum
network tomography. The process can be used for trees of
arbitrary topology and gives a direct way to address the
problem for graphs, since any graph be decomposed into trees.
The process was used to solve quantum network tomography
in the scenario of star networks with channels described by a
single Pauli operator. Our results indicate that entanglement
may provide advantages for quantum network tomography.
The estimator obtained from global measurements outcomes
in the end-nodes identifies the parameters without the need
for any additional assumptions, in contrast with the lack of
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identifiability observed for local measurements. This evidence
motivates the description for the conditions under which
entanglement enhances network tomography, as it has been
previously investigated for other quantum estimation problems
such as quantum sensing networks [23].

We identify four directions for future work. First, solving
the tomography problem for star systems with more complex
quantum channels, like the depolarizing channel, is key to pro-
vide useful tomography methods for real quantum networks.
Second, obtaining descriptions for estimators that maximizes
the QFIM for star graphs is of interest. Third, solving the
problem for generic trees will provide further understanding
on the limits of estimation with measurements exclusively at
the end-nodes. Finally, framing the optimization problem to
characterize the optimal way to partition a network into trees
for tomography will bring insights on how the tomography
problem generalizes to arbitrary networks.
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