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Abstract—Quantum switches distribute entangled pairs among
end nodes by entanglement swapping and are critical compo-
nents in quantum networks. In this work, we design protocols
that schedule entanglement swapping in quantum switches. In
contrast to most existing studies, we consider that entanglement
requests randomly arrive at the switch, and determine the
capacity region of rate vectors that the switch can support stably.
For a rate vector inside the capacity region, we develop protocols
that not only stabilize the switch, but also achieve zero average
latency. Among these protocols, the on-demand protocols are
computationally efficient and achieve high fidelity and low latency
demonstrated by results obtained using a quantum network
discrete event simulator.

Index Terms—quantum switch, entanglement distribution,
quantum networking

I. INTRODUCTION

Quantum networks will play a critical role in enabling nu-
merous quantum applications such as quantum key distribution
[1]-[4], teleportation [5]-[7], and quantum sensing [8]-[10].
One of the major tasks of quantum networks is distributing
quantum entanglement among geographically separated nodes.
Such a task usually involves generating Einstein-Podolsky-
Rosen (EPR) pairs through quantum channels and then per-
forming entanglement swapping among the generated EPR
pairs. For example, consider a star-shape network consisting
of a center node and a collection of end nodes. Entanglement
swapping is performed at the center node to establish entangle-
ment among end nodes. The center node serves as a quantum
switch, a critical building block in quantum networks. See
Figure 1 for details.

A key problem in the implementation of a quantum switch
is decision-making about which EPR pairs to perform en-
tanglement swapping operations on. The prioritization of en-
tanglement swapping affects the performance of the switch,
such as the fidelity of the distributed entanglement, the
latency of the entanglement requests, and the throughput
of the switch. Existing studies on entanglement swapping
generally focus on maximizing entanglement generation rate,
and the quantum network establishes entanglement whenever

This research was supported in part by the NSF grant CNS-1955744, NSF-
ERC Center for Quantum Networks grant EEC-1941583, by the National
Science Foundation to the Computing Research Association for the CIFellows
2020 Program, and the MURI ARO Grant W911NF2110325.

End Node

Quantum Switch

30‘;‘

(o

Fig. 1: Illustration for a quantum switch. The big circle
represents the switch and the rectangles represent end nodes.
Solid colorful dots represent entangled qubits, and empty dots
represent empty memory slots in the quantum switch or end
nodes. Different colors correspond to different end nodes. The
lines connecting the switch and end nodes represent quantum
channels. A colorful dashed line implies that the two colorful
dots connected by the dashed line consist of an EPR pair.

possible. Relevant work is summarized in Section III. In this
manuscript, we consider a more generic and practical scenario
where entanglement requests randomly arrive at the switch,
and the switch aims to address these requests. Instead of
maximizing entanglement generation rate, we tackle seemingly
more difficult problems that involve the concept of stability.
Roughly speaking, a quantum switch being stable implies
that the number of unaddressed entanglement requests is not
very large with a high probability. Note that a protocol that
maximizes the entanglement generation rate may not stabilize
the switch since the number of unaddressed entanglement
requests may grow to infinity sub-linearly with respect to
time. The goal of this manuscript is to solve the following
two problems: What is the capacity region of the switch? Is
there an entanglement swapping protocol that can stabilize the
switch for any workload vector within this capacity region?
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Note that in classical data networks, stability is widely
used to investigate protocols for data routing and resource
allocation [11]-[13]. These studies cannot be directly applied
to quantum networks because entanglement swapping involve
two interfaces, whereas data transmission in classical data
networks normally involves one link. Moreover, entanglement
generated through quantum channels can be stored to satisfy
future entanglement requests whereas in classical networks,
data have to arrive first and then get transmitted through
channels. Though these fundamental differences precludes our
directly applying existing results in classical networks, the
mathematical tools, such as Lyapunov drift analysis, used
to obtain them are useful for the analysis of the entangle-
ment swapping protocols in a quantum switch. With different
Lyapunov functions tailored for the quantum switch, we can
develop several protocols that can stabilize the switch. The
key contributions of this manuscript are as follows:

« We determine the capacity region for the entanglement
rates. In particular, we show that if the entanglement
rates are outside of this region, no entanglement swapping
protocol can stabilize the switch.

For any entanglement rates being an interior point of
the capacity region, we develop stationary protocols that
stabilize the switch.

We develop on-demand protocols that stabilize the switch.
These protocols are computationally efficient and do not
require statistical knowledge of the entanglement requests
and the quantum channels.

We further show that the stationary protocol and the on-
demand protocol with a small modification achieve zero
average latency. This means that almost all requests are
served immediately when they arrive at the switch.

We evaluate the proposed protocols with a quantum
network discrete event simulator. We compare the pro-
tocols according to the fidelity and latency. The on-
demand protocol is computationally efficient and achieves
high fidelity and low latency demonstrated by numerical
results.

II. BACKGROUND

In this section, we provide some background information
used in this manuscript. An EPR pair is a quantum state
consisting of two qubits:

1
7
where |0) and |1) are qubits represented by two-dimensional
vectors, and the subscripts A and B represent two physics
systems.

One can use entanglement swapping at an intermediate party
C to generate an EPR pair between two parties A and B [14].
In our setup, the quantum switch generates EPR pairs with end
nodes through quantum channels, and performs entanglement
swapping to generate EPR pairs between end nodes.

Generating EPR pairs between the quantum switch and end
nodes requires qubit transmission through quantum channels.
One of the widely used mediums for qubit transmission is
optical fiber, and correspondingly, the quantum information

Wap) = —=(104)[08) + [14) [15))
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in qubits are carried by photons. For a single photon that
goes through optical fiber, with probability p this photon
successfully reaches the receiver, and with probability 1 —p it is
lost. Note that we consider heralded entanglement generation,
i.e., the results of entanglement generation, either success or
failure, are known to the switch.

Entanglement swapping requires making Bell state measure-
ments on two qubits at the quantum switch. This can be done
by performing a CNOT operation and making measurements
with standard computation basis. In practice, CNOT operations
are not always successful when implemented using linear
optics [15]-[17] or photon-spin interaction [18]. Therefore, we
model the Bell state measurement as a probabilistic operator:
with probability ¢, it succeeds and the EPR pair between the
corresponding two end nodes is generated; with probability
1 — ¢, no EPR pair is generated between the two end nodes
although the two EPR pairs between the quantum switch and
the two end nodes are consumed.

III. RELATED WORK

Quantum switches are important components of quantum
networks, and have attracted increasing research interest [19]—
[22]. In [19], a quantum switch that serves multipartite entan-
glement to a set of end nodes is analyzed. In [20], a similar
setup that focuses on bipartite entanglement distribution is
considered. Compared to [19], the model of the quantum
switch in [20] is more general, accounting for decoherence
of quantum states in the memory and finite memory size.
The setup in this manuscript is significantly different from
these studies in three aspects. First, entanglement generation
between the quantum switch and end nodes in these studies
is formulated as a continuous-time Markov chain, i.e., at
each time slot, one and only one of entanglement pair is
generated through the quantum channels. In this manuscript,
instead of the continuous-time Markov chain, we adopt the
discrete-time Markov chain, which is shown to be much more
challenging for analysis [21]. Second, [19]-[22] implicitly
assume that the number of entanglement requests for every
pair of users is infinite at any time slot, and when the quantum
switch performs entanglement swapping or GHZ projection
successfully, the generated bipartite or tripartite entanglement
is immediately released from memory to address the entangle-
ment requests. In this manuscript, the entanglement requests
randomly arrive at the switch according to a stochastic process
model. Correspondingly, the definition of stability is different
from [19], and we focus on the unaddressed entanglement
requests at the quantum switch. Third, one of the contributions
of this manuscript is the design of entanglement swapping
protocols, whereas in [19]-[22], the operations of the quantum
switch are relatively simple. The reason for such differences is
the introduction of entanglement requests, and the objective of
the switch is to address these requests instead of maximizing
the entanglement switching rate.

Entanglement swapping protocols are proposed for networks
with other structures than the star-shaped ones. In a recent
paper [23], entanglement distribution for a network consisting
of quantum switches and users is considered. Similarly to this
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manuscript, entanglement requests are considered. However,
the setup in this manuscript is significantly different that in
[23]. First, the lifetime of a qubit is assumed to be one
cycle in [23], but the lifetime is assumed to be infinite
in this manuscript. Second, the protocols proposed in [23]
have high computational complexities, whereas most of the
protocols, especially the on-demand protocols, proposed in
this manuscript are efficient. Third, we show the proposed
protocols can achieve zero average latency in addition to sta-
bility. Another example of entanglement swapping protocols
is [24], where the authors propose an approach to calculate
the average waiting time for generating an entangled pair
in quantum repeater chains. Similarly to the studies on the
quantum switch, this work aims at maximizing entanglement
generating rate rather than addressing entanglement requests
between end nodes.

IV. SYSTEM MODEL

Consider a star-shape network consisting of K + 1 nodes,
where node 0 is a quantum switch and the rest are end nodes.
The quantum switch has K interfaces that serve EPR pairs,
where interface k& serves EPR pairs between the switch and
node k, k € K = {1,2,..., K}. Time is slotted and at each
time slot ¢, three types of events may occur, described as
follows.

Entanglement Generation: The quantum switch attempts to
generate EPR pairs with end nodes. An EPR pair between
the quantum switch and node & is generated with probability
Pk, k € K using a quantum channel. One qubit of each EPR
pair is stored at the switch and the other at the end node.
Let Co;(t) denotes the number of EPR pairs |Uy;) generated
between the quantum switch and node i € K at time slot ¢,
and we assume that {Co;(t) : ¢ > 0}, ¢ € K are mutually
independent Bernoulli processes.'

Entanglement Swapping: The quantum switch performs
entanglement swapping operations. In particular, an EPR pair
|W;;) is created with probability ¢ by consuming two EPR
pairs, |¥;) and |¥o;).2

Entanglement Request: During time slot ¢, entanglement
requests randomly arrive at the switch, and the quantum switch
maintains a queue for storing entanglement requests. Let
A;;(t) denote the number of entanglement requests between
nodes k and j at time slot ¢, and we assume that {A;;(t) : ¢t >
0} are mutually independent sequences of random variables.
For the entanglement requests {A4;;(t) : t > 0}, we assume it
is a stationary and ergodic process with rates A;;.

A. System Dynamics

We now describe the variables and evolution of the switch.
Let E;;(t) denote the number of EPR pairs |¥;;) stored in
nodes 4, j € I at time ¢ > 0. Let U;;(¢) denote the number of

'If multiplexing techniques can be used, {Co;(t)} can be modelled as
Binomial random variables. Results in this work can be easily generalized to
accommodate multiplexing techniques.

2The entanglement swapping probability does not need to be the same for
all node pairs. Results in this work can be easily generalized to accommodate
different entanglement swapping probabilities among node pairs.
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pending entanglement requests for |¥;;) at time ¢t > 0, 4,j €
K. At each time slot, the quantum switch makes decisions
about what link EPR pairs to perform entanglement swapping
operations on. In particular, the quantum switch attempts to
create entanglement |¥;;) by consuming F;; () pairs of |¥o;)
and |Wy;) from the stored entanglement in the quantum switch,
i,j € K.3 The following constraints need to be satisfied:

ZFij(t) < Ey; (t) + Coj(t), VjieK;t>0.

i€
Moreover, we consider that at each time slot, the quantum
switch can perform at most W entanglement swapping oper-
ations, leading to the following constraint:

> Fyt) < Wit >0.

i,jeK
Outcomes of entanglement swapping operations are indepen-
dent events, each succeeding with probability g. Let s;;(t)
denote the number of successfully generated pairs |¥,;),
i,j € K. Let [z]7 = max{x,0}. We assume entanglement
swapping is performed at the beginning of each time slot,
whereas entanglement requests may arrive at any time during
a time slot. Then, U;;(t) and Ey;(t) evolve as follows:

Uj(t +1) = [Uy(t)+Ai5(t) — Eij(t) — i (1), Vi, je K
Eij (t + 1) = [Elj (t) + ,U”(f) — Ul(t) — Aij(t)]+, V?,j cK

JjEK
Without loss of generality, we assume U;;(0) = E;;(0) = 0,
i,j € K. Since no entanglement swapping is performed at
time 0, we have y,;(0) = 0.

With the introduction of the system dynamics, we further
assume that the second moment of entanglement requests is
bounded at every time slot, regardless of history, i.e.,

E[AZ;(t)|H(t) = h] < A, Vi, j € K.

max?

ey

where H (t) denotes the history of system states.

The goal of the quantum switch is to maintain as small a
queue backlog U;;(t) for user pairs ¢,j as possible and to
stabilize the system. For now, we assume that there is no
limit to the number of EPR pairs that can be stored in the
nodes. Moreover, we assume that a qubit never decoheres.
These assumptions will be relaxed in a later section of this
manuscript.

B. Stability and Capacity Region
We follow the definition of stability in classical networks
[12]. Consider the following function:

t—1

1
9i;(V) = limsup > PU(r) > V], VijeK. (2)
7=0

t—o00
This function characterizes the fraction of time that the number
of unfinished requests for EPR pairs |¥;;) exceeds a certain
value V.

3We do not distinguish between the order of nodes ¢ and j, i.e., Fi; ) =
Fji(t), Vi, j € K.
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Notation Definition

K Number of end nodes

K Set of end nodes

Pk Success probability of generating an EPR pair between the switch and node k
(W) EPR pair between node 4 and j

q Success probability of entanglement swapping

Ay (t) Number of entanglement requests between nodes ¢ and j at time ¢

E;j(t) Number of |¥;;) stored in nodes ¢ and j at time ¢

Eo;(t) Number of [¥q;) stored in the switch and node j at time ¢

Wrigi() Number of requests for |¥;;) at time ¢

Fi;(t) Number of |¥o;) and |¥¢;) consumed to create |¥;;) at time ¢

w Maximum number of entanglement swaps per time slot

i (t) Number of successfully generated |¥;;) at time ¢ via entanglement swapping
Clo;(t) Number of successfully generated |¥(;) at time ¢ via the quantum channel
Aij Rate of entanglement request A;; ()

H(t) All the history information at time ¢

Amax Upper bound for the second moment of A;;(t) defined in (1)

A Capacity region

M:] (t) Set of |Wo;) labelled as (¢, j) that are not consumed up to time ¢ in Tstat

TABLE I: Notations of Important Quantities.

Definition 1: The quantum switch is stable if g;;(V) — 0
as V — oo, for all 4,5 € K.

We can then define the capacity region for the quantum
switch system as follows.

Definition 2: The capacity region for the quantum switch is
the closure of the set of matrices (\;;); jex such that there
exists an entanglement swapping algorithm that stabilizes the
switch.

Theorem 1 (Capacity Region): With given parameters pg,
k € K, ¢, and W, the capacity region A is the set of
all matrices (\;;);,jec for which there exist non-negative
variables {f;;}: jexc satisfying:*

> fiy<py, Viek 3)
i€
M fiy<w “
,jEKX
Xij <qfij, Vi,jeK. Q)

We skip the proof here due to space constraints and refer to
the full version [25] for the detailed proof.

V. PROTOCOL DESIGN

In this section, we design several protocols, namely, the
stationary and the on-demand protocol, for entanglement
swapping in a quantum switch. More importantly, we show
that these protocols stabilize the switch when the rate matrix
is within the capacity region. For simplicity, we assume
that the quantum switch can perform an arbitrary number of
entanglement swapping operations (i.e., W = 00), but all of

“We do not distinguish between the order of nodes 4 and 7, i.e., fij = fji,
Vi, j € K.
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the protocols can be easily modified to satisfy the constraint
on the number of entanglement swapping operations per time
slot. The stationary protocol requires knowing the rate matrix
and channel parameters, and does not depend on the states
of the system. The on-demand protocols do not require any
knowledge of rate matrix or channel parameters. Though they
need to solve an optimization problem every time slot, this
optimization problem can be efficiently solved.

A. Stationary Protocol

We first design a stationary protocol 7y, as follows.
Stationary Protocol: Suppose the rate matrix (X\;;); jeic is
known to the quantum switch and there exists € > 0 such that

(Nij + €)ijex € A (6)
Then there exists a set of variables { fﬂij}v:,jelc such that
Zfi]épj, vjeK N
iek
Nij +e<qfiy, Vijek. (8)

In fact, determining {f;;}i jex is straightforward since we
can set ﬁ] = (A\ij +€)/q and the conditions (7) and (8) hold
if (Aij + €)ijex € A. For an EPR pair |¥,) generated at
time slot ¢, i € K, label it as (i,7) with probability f?] /Di-
Let M;(t) denote the set of EPR pairs [¥;) labelled as
(4,4) that are not consumed for entanglement swapping up
to time slot . If M, (t) # @ and M, (t) # &, the quantum
switch performs entanglement swaps to create EPR pair | ;)
by consuming EPR pairs [¥o;) and |Wo;) until either M (t)
or MZ] (t) is empty.
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Theorem 2: The quantum switch is stable using the station-
ary discard protocol mgiay if (/\ij),,;,je,c is an interior point in
A, i.e., (6) holds for some ¢ > 0.

We skip the proof here due to space constraints and refer to
the full version [25] for the detailed proof.

Though the stationary protocol can stabilize the switch, it
requires knowing not only the parameters pg, k € IC, but also
the rate matrix (\ij); jex in order to find {f;}ijex. Such
knowledge of all the rates may not be available in practice,
and we may need protocols that requires less information. This
motivates the design of on-demand protocols.

B. On-demand Protocol

We next develop an on-demand protocol that has the flexi-
bility to prioritize entanglement requests as long as they satisfy
certain constraints.

On-demand Protocols: At each time slot, the quantum
switch attempts to create entanglement |¥,;) using Fj; pairs of
entanglement |Wo;) and F;; pairs of entanglement |¥q;). The
decisions {F;; }; jex need to satisfy the following constraints:

Y Fyj < Eoi(t)+ Coy(t), jek ©
€K
Fij = F‘]Z eN, i, jE K
(Eoi(t) + Coilt Z Fir) (Eo;(t) + Coj;(t) Z Fij)
ke ke
(Ui (t) + Agj(t) — Fij) =0, i,j€K. (an

Then the quantum switch attempts to create entanglement
|¥;;) using Fj; pairs of entanglement |W(;) and F;; pairs
of entanglement |¥o;). An on-demand protocol is denoted by
Tod-

Remark 1: The intuition of (10) in on-demand protocols is
that the quantum switch creates entanglement only to serve
existing requests. Moreover, the quantum switch should not
“waste” any opportunities to create entanglement, in the sense
that for any ¢, j, it should attempt to create as many pairs
of |¥;;) as possible provided that (10) holds. This gives the
condition (11). Note that there may be multiple choices of
{Fi;}ijex that satisfy the constraints. The quantum switch
can select any one of them for entanglement swapping.

Remark 2: One way to satisfy constraints (9)-(11) is to
first set F;; = 0, 4,7 € K and then check the unfinished
entanglement requests {U;;(¢)}; jex in any order. Details are
given in Algorithm 1. Note that the complexity is O(K?) since
the iteration is over 4,5 € K. Comparatively, the stationary
protocol also has a complexity O(K?) in average since the
switch has to randomly label every EPR generated between the
switch and nodes. In practice the complexity is much lower. In
fact, as shown later in Appendix I, Fj;(t) = Uj;(t) + Ai; (¢)
with a high probability, and there is no need to solve any
optimization problem.

In order to establish stability of the on-demand protocols,
we need to make the following assumption with on-demand
protocols.
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Algorithm 1 On-demand Protocol
Input: on(t), Coj(t), V] e, Uij(t), Ai]‘ (t), VZ,] ck
Output: F;; Vi,j € K that satisfy (9) to (11)

1: Initialization: F;; =0 Vi,j € K

2: for i,j € K do

3: Fl‘j — min{Uij(t) + Aij (t),Em(t) + C()i(t) —
> kerc i Frjs Boj(t) + Coj(t) = D pexc ki Frj b
end for

Assumption 1:
following event:

For an arbitrary ¢y > 0, consider the

By : 3, j, > €. (12)

t
There exists a c¢1(eg) < oo 1ndependent of ¢ such that
{4;;(t)}i jex satisfies

E{i AM(T)\BO}P[BO] < erleo).

Note that Assumption 1 holds for many random processes.
For example, if A;;(t) is ii.d over time and Var [A,-j(t)}

13)

o2, where o is a constant irrelevant of ¢, then one can use
Chebyshev’s inequality to verify that Assumption 1 holds.
Theorem 3: The quantum switch system is stable using an
on-demand protocol moq if (Xij)ijex is an interior point in
A under Assumption 1.
The proof is found in Appendix I.

VI. ZERO AVERAGE LATENCY

In previous sections, we showed that the stationary and on-
demand protocols stabilize the switch provided the rate matrix
is an interior point of the capacity region. In this section, we
take a step further and show that with slight modification, these
protocols achieve zero average latency.

It suffices to show for all 7, j € K

lim E[U;;(1)] = 0. (14)

Therefore, we only need to show the expected queue length
E[U;;(t)] converges to 0. This coupled with Little’s law [26]
allows us to conclude that average latency is zero. To do this,
we need a stronger assumption than Assumption 1.

Assumption 2: For an arbitrary €y > 0, consider the
following event:

Co : 3, 4, t+1ZA” ) > \ij + €o. (15)
Then entanglement requests {A;;(t)}; jex satisfies
¢
tli)H;OE{ZOAi]'(THCO}P[Co} =0. (16)

Note that though stronger than Assumption 1, Assumption 2
still holds for many random processes. For example, if A;;(t)
is i.i.d over time, its support has an upper bound, and

PL% ;Am‘ (t) > Nij + eo] ~ o(1/t).
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Assumption 2 allows us to show that the stationary protocol
achieves zero average latency.

Theorem 4: The quantum switch system achieves zero
average latency using the stationary protocol if (A;;); jex is
an interior point in A under Assumption 2.

Proof: For € in (6), define events:

Co:~ ZAU > N\ij +€/2 (17)
C - %;W(T) < Nij +€/2. (18)
Note that if neither 50 nor 5’1 occurs, then
(Zt;:lo Ay (1) — Zi_:lo i (7—))+ = 0. As a consequence,
E[U, [i \CO}P[CO}
[Z DIGPIEL (9)

The first term in (19) converges to zero due to Assumption 2.
Regarding the second term in (19),

[ZAU |Cl}

Using Chernoff bounds on Zi;lo Fi;(7), Zf ! Xl(j), nd
Zt X L(J] ), one can easily verify that P[Cy] decays expo-
nentlally with respect to ¢. Therefore, (19) converges to zero
as t goes to infinity. This concludes the proof. LJ
As mentioned in the previous section, the stationary protocol
requires knowing the rate matrix (\;;); jex, which may not
be available in practice. To address this issue, we develop on-
demand protocols with virtual requests that provide for zero
latency. They allow the switch to create and store end-to-end
entanglement that can be used to some future requests, so
latency can be made arbitrarily small. In particular, select o €
(1/2,1) and define
Aij (t)

= Aij + [+ 1) = [t7]

[t~] is the virtual request. In this

(20)

where the term [(¢+1)%] —
section, we also define

Uij(t) = Uy(t) — Eij(t) + [t]. 1)

Then one can verify that

Uit + 1) = Uy (t) + Ay (t) —
U )"

Uyj(t) = [Uij(t) -

pij (t)

On-demand Protocols with Virtual Requests: At each time
slot, the quantum switch attempts to create entanglement
|W;;) using F;; pairs of entanglement |U,;) and F;; pairs of

[ZA” }P[Cl = A tP[Cy].
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Algorithm 2 On-demand Protocol with Virtual Requests
Illpllt: E()j (t), C()j (t), V] e K, EZJ (t), UZJ (t), A,J (t), V’l,] S
K

Output: Fj; Vi, j € K that satisfy (22) to (24)
1: Initialization: F;; =0 Vi,j € K _
2: Determine the requests (real and virtual ones) A;;(t) from
A;;(t) as in (20), Vi,j € K
3: Determine the unfinished requests with virtual requests
Ui;(t) from U;;(t) as in (21), Vi,j € K
: for i,j € K do
5: F7J < min { [U,J (t) +Aij (t))/q] +, Eo,'(t) +00i(t) —

D onerc ki Fris Boj(t) + Coj(t) — Xpeic pri Fk]‘}
6: end for

entanglement | ¥ ;). The decisions {F};}; jeic need to satisfy
the following constraints:

ST Fy < Egi(t) + Cot), jek 22)

e

Fy; < “ﬁzj(t) +Zij(t)]+/qw, i,jeK (23)

FiszjiEN ZjGIC

(E()i( + Coi(t Z sz) (on + Co; (1) Z Fk])
ke ke

. U[(}U(twﬁ”( ) /4] 1 -

Details are given in Algorithm 2. Compared with constraints
(9) to (11), there are two main_differences. The first is the
presence of virtual requests in A;;(t), and the second is the
factor 1/¢ in (23) and (24). With this factor, the expected value
1 (t) is almost the same as (U (t) + Ai;(t)) /q provided that
there is sufficient entanglement |¥y;) and |¥y;) for swapping.
With these two modifications, we can show that an on-demand
protocol with virtual requests, denoted by 7.q, can achieve
zero average latency.

Theorem 5: The quantum switch system achieves zero
average latency using an on-demand protocol with virtual
requests Toq if (Aij)ijex is an interior point in A under
Assumption 2.

The proof is found in Appendix II.

}70 ijeK. (24

VIIL

In this section, we investigate the performance of the sta-
tionary and the on-demand protocols with a quantum network
discrete event simulator, NetSquid [27]. Since the stability of
these protocols are proven in previous sections, we focus on
other performance metrics in practical scenarios. Moreover,
we relax several assumptions including the infinite amount of
memory for storing EPR pairs and the infinite qubit lifetime.

NUMERICAL RESULTS

A. Simulation Setting

A quantum switch can be implemented with different tech-
nologies. For example, qubits stored in quantum memories can
be realized with electron spins of SiV defect centers [28]. A
quantum switch is equipped with photon sources, and each of
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them generates a pair of entangled photons in each time slot.
One of the photons interacts with the electron spin, and the
other photon is sent to one of the end nodes through a quantum
channel and interacts with the electron spin at the end node. A
photon-spin interaction is essentially a CNOT operation on the
photon and the spin. After the photon-spin interaction, photons
are measured in the X basis by beamsplitters and photon
detectors. Entanglement swapping in the quantum switch can
also be realized with photon-spin interactions. To be consistent
with practical devices, we assume that qubits stored in the
memory suffer from decoherence. Furthermore, we assume
that the quantum switch has a finite number of memory
slots, and these memory slots are equally distributed among
interfaces. With these practical constraints, we can evaluate
more performance metrics:

« Average fidelity: for a state p shared between node ¢ and
Jj, the fidelity is defined as F'(p) = (¥U;;| p|¥;;). Note
that a generated EPR pair may decohere in the memory
slots before being used to serve entanglement requests.

« Average latency: the latency of an entanglement request is
defined as the amount of time to address the entanglement
request. Note that the entanglement request may occur at
any time in a slot, and we evaluate the latency in units
of nanoseconds rather than slots.

The developed protocols do not specify how to prioritize
the EPR pairs and unserved requests, but such prioritization
impacts fidelity and latency. In this section, we apply the First-
In-First-Out (FIFO) method to process entanglement requests,
i.e., the oldest request is the first to serve. Regarding the order
of EPR pairs, we consider two methods: Oldest-Qubit-First
(OQF) and youngest-Qubit-First (YQF), which use the oldest
and youngest qubit for entanglement swapping, respectively.
All the protocols discard EPR pairs when their fidelities fall
below a preset threshold.

Each time slot is 1 us long. The number of entanglement
requests between any two end nodes ¢ and j in a time slot is
given by a mixture of two Poisson distributions with different
rates. Specifically, A;;(t) is i.i.d over time and given by

Aij()=Z - Yi+(1—2) Yy

where Z is a Bernoulli random varable with mean 1/2, and Y3
and Y, are independent Poisson random variables with mean
)\1 and /\2.

B. Performance Analysis

In this subsection, unless otherwise specified, the number of
memory slots is 100 per interface and the entanglement swap-
ping probability ¢ = 0.9. The channels between the switch
and end nodes are lossy optical fibers, and the entanglement
generation probability p = 0.9 is the same for all interfaces.
Note that p = 0.9 corresponds to a distance between the switch
and end nodes of 2.3 km given a fiber attenuation coefficient
of 0.2 dB/km.’ The qubits suffer from dephasing noise [29]

SWhen p = 0.9 (i.e., the distance between the switch and end nodes is
2.3 km), the link level entanglement rate is 0.9 EPR pair per ps. This is
reasonable since ideally photon sources can emit photons at the rate of 107
Hz, corresponding to 10 EPR pairs per pus.
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when staying idle in memory slots, and the T2 time for the
dephasing noise in each memory slot is set to 1 millisecond.
Specifically, the dephasing noise model in a memory slot is
modelled as follows:

Ndephase : 1% — (1 - pdephase)ﬂ + pdephasegZpUZ

where p is the density matrix of a qubit, oz = |0) (0] — |1) (1]
is one of the Pauli operators, and pgephase i the dephasing
probability, given by

%(1 — exp{—At/T5))

in which At denotes the time that a qubit stays idle in the
memory slot. If one qubit of an EPR |¥) is stored in a

memory qubit, then after time At, one can verify that its
fidelity becomes (1 + exp{—At/T2})/2.

Pdephase =

Protocol Average Fidelity | Average Latency (us)
Stationary (YQF) 0.976 15.6
Stationary (OQF) 0.908 14.2
On-demand (YQF) 0.975 12.4
On-demand (OQF) 0.916 14.4

TABLE II: Performance of Entanglement Swapping Protocols:
)\ij = 02/#S,VZ,] ekK.

Protocol Average Fidelity | Average Latency (us)
Stationary (YQF) 0.961 0.092
Stationary (OQF) 0.752 0.089
On-demand (YQF) 0.960 0.080
On-demand (OQF) 0.752 0.067

TABLE III: Performance of Entanglement Swapping Proto-
cols: \j; = 0.12/ps, Vi, j € K.

‘We begin with a comparison of the stationary protocol to an
on-demand protocol. For each protocol, we further implement
the YQF and OQF methods to prioritize EPR pairs. The
number of interfaces is K = 5. Tables II and III show the
performance of the developed protocols for X;; = 0.2/us
and X\;; = 0.12/pus, Vi,j € K, respectively. First, the on-
demand protocols and stationary protocols perform similarly in
terms of fidelity. Regarding latency, the on-demand protocols
perform the best in most cases. Note that the on-demand
protocol does not require any statistical knowledge of the
requests or the systems, and that it involves low computational
overhead. Therefore, the on-demand protocol is a desirable
choice in practice. Second, the average fidelities of the YQF
protocols are much higher than those of the OQF protocols,
but the average latencies are generally greater than those of
the OQF protocols, especially when A;; is small. This agrees
with intuition. YQF tends to use newly generated EPR pairs for
entanglement swapping, so the fidelities are higher. Moreover,
since the EPR pairs are discarded when their fidelities are
low, more EPR pairs are discarded when YQF is used. Since
fewer EPR pairs are used, latencies increase. We next use the
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Fig. 2: Average fidelity as a function of the memory size. The
x-axis denote the number of memory slots normalized by K.

on-demand protocol as the default protocol to evaluate the
performance of quantum switch in different settings.

Figures 2 and 3 respectively show average fidelity and
latency of the quantum switch achieved by the on-demand
protocols (YQF and OQF) as functions of the number of
memory slots. In these two figures, we set 3, - Aij = 1.2/ps.
For K = 8, the average fidelity and average latency decrease
with memory size; for K = 4, the average fidelity and average
latency remain constant. This is because for K = 4, the
rates (\;;)1<i,j<4 lie outside the capacity region. The quantum
switch is then unstable, leading to high latencies. Since there
are many unserved entanglement requests, most of the time
the generated qubits between the switch and end nodes are
used immediately for entanglement swapping, and this leads
to a fidelity close to one. For K = 8§, the rates ()\ij)lgi.’jgg
lie inside the capacity region. In many occasions, there are
no unserved entanglement requests, and qubits in the memory
suffer from decoherence. An increase in memory slots results
in qubits staying in the memory longer before consumed,
leading to a decrease in fidelity. In addition, more memory
slots imply that the quantum switch discards fewer EPR pairs
and therefore reduces latency.

Figures 4 and 5 respectively show average fidelity and
latency of the quantum switch achieved by the on-demand
protocols (YQF and OQF) as functions of the entanglement
swapping success probability ¢. In these two figures, we set
Z” Xij = 2/ps. First, fidelity initially decreases with ¢
and then remains constant. This is because for small ¢, the
rates are outside the capacity region, and the generated qubits
between the switch and end nodes are used immediately for
entanglement swapping, leading to fidelities close to one. As
q increases, the rates gradually move into the capacity region,
and some qubits stay in the memory before being consumed
for entanglement swapping, leading to a decrease in fidelity.
When g is sufficiently large, the memory slots are full most
of the time, and increasing ¢ does not significantly improve
the memory occupancy rate. In these occasions, the average
fidelity does not change with g. Second, the average latency
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Fig. 4: Average fidelity as a function of entanglement swap-
ping success probability q.

first decreases with ¢ and then remains constant. The reasoning
for this behavior is almost the same as that for fidelity. Third,
one observes that the sudden change of fidelity and latency
occurs around ¢ 0.33 for K = 8 and ¢ = 0.67 for
K = 4. These two points exactly correspond to the boundary
points for the capacity region. This shows that the switch
demonstrate entirely different behavior inside or outside the
capacity region, which is consistent with the stability analysis
in earlier sections. This figure also shows that if g corresponds
to a boundary point of the capacity region, increasing ¢
provides limited performance improvement.

VIII. CONCLUSION

We develop efficient entanglement swapping protocols for
a quantum switch and analyze their performance in terms of
stability of the switch, fidelity of EPR pairs and latency of
entanglement requests. We determine the capacity region for
entanglement rates under the assumption of infinite memory
size and infinite qubit lifetime. Specifically, we show that no
entanglement swapping protocols can stabilize the switch if

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 26,2023 at 01:22:26 UTC from IEEE Xplore. Restrictions apply.



10°F

Average Latency (ns)

—©-YQF, K =4
-3 OQF, K =4
——YQF, K =8
—#-OQF, K =8

10° L L L
0.2 0.4 0.6 0.8 1

Entanglcnllent Swappiilg Probability ¢
Fig. 5: Average latency as a function of entanglement swap-
ping success probability g.

the entanglement rates lie outside this capacity region, and
develop different protocols that stabilize the switch when
the entanglement rates correspond to an interior point of the
capacity region. The performance of the developed protocols
is evaluated using NetSquid, and practical constraints such as
decoherence in memory slots are accounted for. We show
that stationary protocols and on-demand protocols exhibit
high fidelity and low latency. Moreover, the tradeoff between
memory size, decoherence rate, fidelity, and latency shown in
the simulation results offer guidance in the implementation of
quantum switches.

A potential future direction is the design and analysis of
switches with a finite memory size and finite lifetime. Note
that in this manuscript, simulation results are obtained in
practical scenarios, whereas the stability analysis is based on
the assumptions that the switch has sufficiently many memory
slots and that qubits have infinite lifetime when stored in the
memory. The capacity region for a finite memory size and
lifetime must be different, and the entanglement swapping
protocols must be designed accordingly.

ACKNOWLEDGMENT

The authors thank Philippe Nain for his helpful suggestions
and careful reading of the manuscript.

APPENDIX I
SKETCH OF THE PROOF FOR THEOREM 3

We consider a random event S(t) defined as follows:

St = { D [Uis() + Ay (8)] < Eoy() + Cos (1), Vs € K}
ick

(25)

When the event S(t) occurs, then the quantum switch has

sufficient entanglement to address the entanglement request,

ie., F;j > Ui (t), i,j € K when an on-demand protocol is
used.

Lemma 1: Under Assumption 1, if an on-demand protocol
is used, then~ tl}ere exists a constant co irrelevant of ¢, such
that for any i, j € K

E[ Y 45(0IS®)|B[S@)] <o 6)
7=0

We skip the proof for Lemma 1 here due to space constraints
and refer to the full version [25] for the detailed proof.
Let w denote a matrix with (i, j)-th element ;. Define

Loa(uw) = Y ui; (27)
i,jeK
as a Lyapunov function of unprocessed entanglement request.

For a control policy, we consider the following unconditional
1-step Lyapunov drift

AT(t) = E[Loa(U(t + 1)) — Loa(U(t))]. (28)

Lemma 2: For an on-demand protocol, the 1-step Lyapunov
drift at any slot ¢ satisfies

510 X [h + o - a[us0]|
1,jEK

where ¢ is the constant in (26).
Proof: Recall the definition of S(¢) in (25). Note that

A7) =PB[S®)] Y E[Uy(t+1) - Uy(0)IS()]

ijek

+P[S®)] Y E[Us(t+ 1) - Us0IS®)]. 29

i,jEK
Note that if S(t) occurs, then the control variable F;;(t) =
Uij(t) + A;j(t), for all 4,5 € K. This leads to

E[Usy(t +1) ~ Uy (8 S(0)
< (1- QE[45(0IS(®)] - aE[U50IS®)]. GO
If S(t) occurs, we have
E[U,(t+1) - U5 0)[50)] <E[4,050]. 61

Combining (29),(30), and (31), we have

510 < X v - aEs@IE[U0ls0) | o

1,jEK
On the other hand,
E[Us(1)] = PISOIE[ Uy (1)]S(0)]
+ PIS(OIE[U(1)|S(1)]
<o+ PISOE[U;0I80)]  33)

where the last inequality is because of Lemma 1.
Combining (32) and (33), we have

MOESY [)\i]’ +qca — qE[Ui]-(t)H
ijex

which completes the proof of Lemma 2. C
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Lemma 2 implies
> [B[Ust+ 1] - B[Uy )]
i,jEX

<

3 [Aij +ges — qE[U (t)]] . (34)

i,jeK

Summing (34) over ¢t from 0 to 7' — 1 gives

)< 3 (A +ace +E[U50))/7).

i,jEK

P[Uiyjo (t) > V]

Zz]EKI()‘lJ +QC2+E[ ( )}/T)

qV

Taking limsup,_, ., we see that g, ;, (V) defined in (2) is
on the order of O(1/V'). Taking limits as V' — oo, we have
gij(V) — 0, i,j c K.

APPENDIX II
SKETCH OF THE PROOF FOR THEOREM 5

We consider a random event Sy(t) defined as follows:

So(t) = { D [ [0 (t) + A1) /4]

i€

< By(H) + Co(t). G €K} (39)

where ﬁij (t) and Ey;(t) are the number of backlog and
entanglement requests |¥;;) and the number of entanglements
|¥,) achieved by the used on-demand protocol. If event Sy (¢)
occurs, then the quantum switch has sufficient entanglement
to address the requests, i.e., Fi;(t) > “ﬁ”(t) + gz-j ()] /q—‘,
i,7 € K.

Lemma 3: Under Assumption 2, if an on-demand protocol
is used, then for any i, j € K

IS0 PS®] =0 @6

The proof for Lemma 3 is similar to that for Lemma 1, and
we skip it here due to space constraints.

We now consider E[[ﬁij(t—i— )= [(t+1)~]] q. Note that

B[ [Tt +1) = [t +1)°1] "]
(t+1) = [+ 1)°1) [So(6) | P[So(8)]
0]"|Co|P[Co]

7] "[So(t) N GO}P[SO(t) NCol.
(37

E[ [T
JE[[ (1) = [(t+ 1),
JE[[ S — [(E+1)
We next show that the three terms in (37) converge to 0 as ¢
goes to infinity and thus complete the proof of Theorem 5.
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The first term in (37) converges to O because

E[WH 1) = [t +1)°7] " [S0(0) | P[So()]

<E[ZA,J )[Solt ]Pso(t)]

which converges to 0 because of Lemma 3.
Similarly, the second term in (37) converges to 0 because

E[ [Tt +1) = [t + 1)@1}100}1?[0 ]
< E[T;(t + 1)|Co] B[Co) <]E[ZA” )ICo|P[Co]

which converges to 0 because of Assumption 2.

We now consider the third term in (37). The third term is
a conditional expectation when the event Sy(t) N Co occurs.
Note that Ui]‘ (t + 1) = UZ’]' (t) + Aij (t) — Mij (t) Let

Dy = {Uy(t) + Ay (1) > [(t+ 1)1}

If Dy occurs, then [Uy;(t +1) — [(t + 1)”]]+ = 0. We next
consider that D; occurs. Let 5 € (0,a — 0.5) and consider
the following event

Dy = {TUi;(t+1) > [(Ty(t) + A (1) /q] 7).
Note that P[D5 | D;] can be bounded by
P[D: | D] < 2exp { = 2[(Ts(t) + Ay (8))/a)*’ }
< 2exp{-2(t +1)*"}

where the first inequality is based on Chernoff’s bound and
the last inequality is because Dy occurs. If Dy occurs, then

[Tt +1) = [t +1)°7]"

~ ~ 5 +
< [[(@0) + A5 0)) /4] = [+ 1))
< [0 + e/ 1+ 11

Then by discussing whether D; and Dy occur, one can bound
the third term in (37) as

E[[ﬁ,ﬂt—k 1) = [(t +1)°1]1S0(t) ﬂ@o]IP’[So(t) N T
< 2(\i; + Etexp{—2(t +1)**}
+ ([0 +at/a) " — 1101

which converges to 0 as ¢ goes to infinity because § < a—0.5.
This shows that the last term in (37) converges to 0.
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