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Abstract—Quantum switches distribute entangled pairs among
end nodes by entanglement swapping and are critical compo-
nents in quantum networks. In this work, we design protocols
that schedule entanglement swapping in quantum switches. In
contrast to most existing studies, we consider that entanglement
requests randomly arrive at the switch, and determine the
capacity region of rate vectors that the switch can support stably.
For a rate vector inside the capacity region, we develop protocols
that not only stabilize the switch, but also achieve zero average
latency. Among these protocols, the on-demand protocols are
computationally efficient and achieve high fidelity and low latency
demonstrated by results obtained using a quantum network
discrete event simulator.

Index Terms—quantum switch, entanglement distribution,
quantum networking

I. INTRODUCTION

Quantum networks will play a critical role in enabling nu-

merous quantum applications such as quantum key distribution

[1]–[4], teleportation [5]–[7], and quantum sensing [8]–[10].

One of the major tasks of quantum networks is distributing

quantum entanglement among geographically separated nodes.

Such a task usually involves generating Einstein-Podolsky-

Rosen (EPR) pairs through quantum channels and then per-

forming entanglement swapping among the generated EPR

pairs. For example, consider a star-shape network consisting

of a center node and a collection of end nodes. Entanglement

swapping is performed at the center node to establish entangle-

ment among end nodes. The center node serves as a quantum

switch, a critical building block in quantum networks. See

Figure 1 for details.

A key problem in the implementation of a quantum switch

is decision-making about which EPR pairs to perform en-

tanglement swapping operations on. The prioritization of en-

tanglement swapping affects the performance of the switch,

such as the fidelity of the distributed entanglement, the

latency of the entanglement requests, and the throughput

of the switch. Existing studies on entanglement swapping

generally focus on maximizing entanglement generation rate,

and the quantum network establishes entanglement whenever

This research was supported in part by the NSF grant CNS-1955744, NSF-
ERC Center for Quantum Networks grant EEC-1941583, by the National
Science Foundation to the Computing Research Association for the CIFellows
2020 Program, and the MURI ARO Grant W911NF2110325.

Fig. 1: Illustration for a quantum switch. The big circle

represents the switch and the rectangles represent end nodes.

Solid colorful dots represent entangled qubits, and empty dots

represent empty memory slots in the quantum switch or end

nodes. Different colors correspond to different end nodes. The

lines connecting the switch and end nodes represent quantum

channels. A colorful dashed line implies that the two colorful

dots connected by the dashed line consist of an EPR pair.

possible. Relevant work is summarized in Section III. In this

manuscript, we consider a more generic and practical scenario

where entanglement requests randomly arrive at the switch,

and the switch aims to address these requests. Instead of

maximizing entanglement generation rate, we tackle seemingly

more difficult problems that involve the concept of stability.

Roughly speaking, a quantum switch being stable implies

that the number of unaddressed entanglement requests is not

very large with a high probability. Note that a protocol that

maximizes the entanglement generation rate may not stabilize

the switch since the number of unaddressed entanglement

requests may grow to infinity sub-linearly with respect to

time. The goal of this manuscript is to solve the following

two problems: What is the capacity region of the switch? Is

there an entanglement swapping protocol that can stabilize the

switch for any workload vector within this capacity region?
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Note that in classical data networks, stability is widely

used to investigate protocols for data routing and resource

allocation [11]–[13]. These studies cannot be directly applied

to quantum networks because entanglement swapping involve

two interfaces, whereas data transmission in classical data

networks normally involves one link. Moreover, entanglement

generated through quantum channels can be stored to satisfy

future entanglement requests whereas in classical networks,

data have to arrive first and then get transmitted through

channels. Though these fundamental differences precludes our

directly applying existing results in classical networks, the

mathematical tools, such as Lyapunov drift analysis, used

to obtain them are useful for the analysis of the entangle-

ment swapping protocols in a quantum switch. With different

Lyapunov functions tailored for the quantum switch, we can

develop several protocols that can stabilize the switch. The

key contributions of this manuscript are as follows:

• We determine the capacity region for the entanglement

rates. In particular, we show that if the entanglement

rates are outside of this region, no entanglement swapping

protocol can stabilize the switch.

• For any entanglement rates being an interior point of

the capacity region, we develop stationary protocols that

stabilize the switch.

• We develop on-demand protocols that stabilize the switch.

These protocols are computationally efficient and do not

require statistical knowledge of the entanglement requests

and the quantum channels.

• We further show that the stationary protocol and the on-

demand protocol with a small modification achieve zero

average latency. This means that almost all requests are

served immediately when they arrive at the switch.

• We evaluate the proposed protocols with a quantum

network discrete event simulator. We compare the pro-

tocols according to the fidelity and latency. The on-

demand protocol is computationally efficient and achieves

high fidelity and low latency demonstrated by numerical

results.

II. BACKGROUND

In this section, we provide some background information

used in this manuscript. An EPR pair is a quantum state

consisting of two qubits:

|ΨAB〉 = 1√
2
(|0A〉 |0B〉+ |1A〉 |1B〉)

where |0〉 and |1〉 are qubits represented by two-dimensional

vectors, and the subscripts A and B represent two physics

systems.

One can use entanglement swapping at an intermediate party

C to generate an EPR pair between two parties A and B [14].

In our setup, the quantum switch generates EPR pairs with end

nodes through quantum channels, and performs entanglement

swapping to generate EPR pairs between end nodes.

Generating EPR pairs between the quantum switch and end

nodes requires qubit transmission through quantum channels.

One of the widely used mediums for qubit transmission is

optical fiber, and correspondingly, the quantum information

in qubits are carried by photons. For a single photon that

goes through optical fiber, with probability p this photon

successfully reaches the receiver, and with probability 1−p it is

lost. Note that we consider heralded entanglement generation,

i.e., the results of entanglement generation, either success or

failure, are known to the switch.

Entanglement swapping requires making Bell state measure-

ments on two qubits at the quantum switch. This can be done

by performing a CNOT operation and making measurements

with standard computation basis. In practice, CNOT operations

are not always successful when implemented using linear

optics [15]–[17] or photon-spin interaction [18]. Therefore, we

model the Bell state measurement as a probabilistic operator:

with probability q, it succeeds and the EPR pair between the

corresponding two end nodes is generated; with probability

1 − q, no EPR pair is generated between the two end nodes

although the two EPR pairs between the quantum switch and

the two end nodes are consumed.

III. RELATED WORK

Quantum switches are important components of quantum

networks, and have attracted increasing research interest [19]–

[22]. In [19], a quantum switch that serves multipartite entan-

glement to a set of end nodes is analyzed. In [20], a similar

setup that focuses on bipartite entanglement distribution is

considered. Compared to [19], the model of the quantum

switch in [20] is more general, accounting for decoherence

of quantum states in the memory and finite memory size.

The setup in this manuscript is significantly different from

these studies in three aspects. First, entanglement generation

between the quantum switch and end nodes in these studies

is formulated as a continuous-time Markov chain, i.e., at

each time slot, one and only one of entanglement pair is

generated through the quantum channels. In this manuscript,

instead of the continuous-time Markov chain, we adopt the

discrete-time Markov chain, which is shown to be much more

challenging for analysis [21]. Second, [19]–[22] implicitly

assume that the number of entanglement requests for every

pair of users is infinite at any time slot, and when the quantum

switch performs entanglement swapping or GHZ projection

successfully, the generated bipartite or tripartite entanglement

is immediately released from memory to address the entangle-

ment requests. In this manuscript, the entanglement requests

randomly arrive at the switch according to a stochastic process

model. Correspondingly, the definition of stability is different

from [19], and we focus on the unaddressed entanglement

requests at the quantum switch. Third, one of the contributions

of this manuscript is the design of entanglement swapping

protocols, whereas in [19]–[22], the operations of the quantum

switch are relatively simple. The reason for such differences is

the introduction of entanglement requests, and the objective of

the switch is to address these requests instead of maximizing

the entanglement switching rate.

Entanglement swapping protocols are proposed for networks

with other structures than the star-shaped ones. In a recent

paper [23], entanglement distribution for a network consisting

of quantum switches and users is considered. Similarly to this
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manuscript, entanglement requests are considered. However,

the setup in this manuscript is significantly different that in

[23]. First, the lifetime of a qubit is assumed to be one

cycle in [23], but the lifetime is assumed to be infinite

in this manuscript. Second, the protocols proposed in [23]

have high computational complexities, whereas most of the

protocols, especially the on-demand protocols, proposed in

this manuscript are efficient. Third, we show the proposed

protocols can achieve zero average latency in addition to sta-

bility. Another example of entanglement swapping protocols

is [24], where the authors propose an approach to calculate

the average waiting time for generating an entangled pair

in quantum repeater chains. Similarly to the studies on the

quantum switch, this work aims at maximizing entanglement

generating rate rather than addressing entanglement requests

between end nodes.

IV. SYSTEM MODEL

Consider a star-shape network consisting of K + 1 nodes,

where node 0 is a quantum switch and the rest are end nodes.

The quantum switch has K interfaces that serve EPR pairs,

where interface k serves EPR pairs between the switch and

node k, k ∈ K = {1, 2, . . . ,K}. Time is slotted and at each

time slot t, three types of events may occur, described as

follows.

Entanglement Generation: The quantum switch attempts to

generate EPR pairs with end nodes. An EPR pair between

the quantum switch and node k is generated with probability

pk, k ∈ K using a quantum channel. One qubit of each EPR

pair is stored at the switch and the other at the end node.

Let C0i(t) denotes the number of EPR pairs |Ψ0i〉 generated

between the quantum switch and node i ∈ K at time slot t,
and we assume that {C0i(t) : t ≥ 0}, i ∈ K are mutually

independent Bernoulli processes.1

Entanglement Swapping: The quantum switch performs

entanglement swapping operations. In particular, an EPR pair

|Ψij〉 is created with probability q by consuming two EPR

pairs, |Ψ0i〉 and |Ψ0j〉.2
Entanglement Request: During time slot t, entanglement

requests randomly arrive at the switch, and the quantum switch

maintains a queue for storing entanglement requests. Let

Aij(t) denote the number of entanglement requests between

nodes k and j at time slot t, and we assume that {Aij(t) : t ≥
0} are mutually independent sequences of random variables.

For the entanglement requests {Aij(t) : t ≥ 0}, we assume it

is a stationary and ergodic process with rates λij .

A. System Dynamics

We now describe the variables and evolution of the switch.

Let Eij(t) denote the number of EPR pairs |Ψij〉 stored in

nodes i, j ∈ K at time t ≥ 0. Let Uij(t) denote the number of

1If multiplexing techniques can be used, {C0i(t)} can be modelled as
Binomial random variables. Results in this work can be easily generalized to
accommodate multiplexing techniques.

2The entanglement swapping probability does not need to be the same for
all node pairs. Results in this work can be easily generalized to accommodate
different entanglement swapping probabilities among node pairs.

pending entanglement requests for |Ψij〉 at time t ≥ 0, i, j ∈
K. At each time slot, the quantum switch makes decisions

about what link EPR pairs to perform entanglement swapping

operations on. In particular, the quantum switch attempts to

create entanglement |Ψij〉 by consuming Fij(t) pairs of |Ψ0i〉
and |Ψ0j〉 from the stored entanglement in the quantum switch,

i, j ∈ K.3 The following constraints need to be satisfied:∑
i∈K

Fij(t) ≤ E0j(t) + C0j(t), ∀j ∈ K; t ≥ 0.

Moreover, we consider that at each time slot, the quantum

switch can perform at most W entanglement swapping oper-

ations, leading to the following constraint:∑
i,j∈K

Fij(t) ≤ W ; t ≥ 0.

Outcomes of entanglement swapping operations are indepen-

dent events, each succeeding with probability q. Let μij(t)
denote the number of successfully generated pairs |Ψij〉,
i, j ∈ K. Let [x]+ = max{x, 0}. We assume entanglement

swapping is performed at the beginning of each time slot,

whereas entanglement requests may arrive at any time during

a time slot. Then, Uij(t) and E0i(t) evolve as follows:

Uij(t+ 1) = [Uij(t)+Aij(t)− Eij(t)− μij(t)]
+, ∀i, j ∈ K

Eij(t+ 1) = [Eij(t) + μij(t)− Uij(t)−Aij(t)]
+, ∀i, j ∈ K

E0i(t+ 1) = E0i(t)−
∑
j∈K

Fij(t) + C0i(t), ∀i ∈ K.

Without loss of generality, we assume Uij(0) = Eij(0) = 0,

i, j ∈ K. Since no entanglement swapping is performed at

time 0, we have μij(0) = 0.

With the introduction of the system dynamics, we further

assume that the second moment of entanglement requests is

bounded at every time slot, regardless of history, i.e.,

E
[
A2

ij(t)|H(t) = h
] ≤ A2

max, ∀i, j ∈ K. (1)

where H(t) denotes the history of system states.

The goal of the quantum switch is to maintain as small a

queue backlog Uij(t) for user pairs i, j as possible and to

stabilize the system. For now, we assume that there is no

limit to the number of EPR pairs that can be stored in the

nodes. Moreover, we assume that a qubit never decoheres.

These assumptions will be relaxed in a later section of this

manuscript.

B. Stability and Capacity Region

We follow the definition of stability in classical networks

[12]. Consider the following function:

gij(V ) := lim sup
t→∞

1

t

t−1∑
τ=0

P[Uij(τ) > V ], ∀i, j ∈ K. (2)

This function characterizes the fraction of time that the number

of unfinished requests for EPR pairs |Ψij〉 exceeds a certain

value V .

3We do not distinguish between the order of nodes i and j, i.e., Fij(t) =
Fji(t), ∀i, j ∈ K.
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Notation Definition

K Number of end nodes

K Set of end nodes

pk Success probability of generating an EPR pair between the switch and node k

|Ψij〉 EPR pair between node i and j

q Success probability of entanglement swapping

Aij(t) Number of entanglement requests between nodes i and j at time t

Eij(t) Number of |Ψij〉 stored in nodes i and j at time t

E0j(t) Number of |Ψ0j〉 stored in the switch and node j at time t

Uij(t) Number of requests for |Ψij〉 at time t

Fij(t) Number of |Ψ0i〉 and |Ψ0j〉 consumed to create |Ψij〉 at time t

W Maximum number of entanglement swaps per time slot

μij (t) Number of successfully generated |Ψij〉 at time t via entanglement swapping

C0i(t) Number of successfully generated |Ψ0i〉 at time t via the quantum channel

λij Rate of entanglement request Aij(t)

H(t) All the history information at time t

Amax Upper bound for the second moment of Aij(t) defined in (1)

Λ Capacity region

Mi
ij(t) Set of |Ψ0i〉 labelled as (i, j) that are not consumed up to time t in πstat

TABLE I: Notations of Important Quantities.

Definition 1: The quantum switch is stable if gij(V ) → 0
as V → ∞, for all i, j ∈ K.

We can then define the capacity region for the quantum

switch system as follows.

Definition 2: The capacity region for the quantum switch is

the closure of the set of matrices (λij)i,j∈K such that there

exists an entanglement swapping algorithm that stabilizes the

switch.

Theorem 1 (Capacity Region): With given parameters pk,

k ∈ K, q, and W , the capacity region Λ is the set of

all matrices (λij)i,j∈K for which there exist non-negative

variables {fij}i,j∈K satisfying:4∑
i∈K

fij ≤ pj , ∀j ∈ K (3)

∑
i,j∈K

fij ≤ W (4)

λij ≤ q fij , ∀i, j ∈ K. (5)

We skip the proof here due to space constraints and refer to

the full version [25] for the detailed proof.

V. PROTOCOL DESIGN

In this section, we design several protocols, namely, the

stationary and the on-demand protocol, for entanglement

swapping in a quantum switch. More importantly, we show

that these protocols stabilize the switch when the rate matrix

is within the capacity region. For simplicity, we assume

that the quantum switch can perform an arbitrary number of

entanglement swapping operations (i.e., W = ∞), but all of

4We do not distinguish between the order of nodes i and j, i.e., fij = fji,
∀i, j ∈ K.

the protocols can be easily modified to satisfy the constraint

on the number of entanglement swapping operations per time

slot. The stationary protocol requires knowing the rate matrix

and channel parameters, and does not depend on the states

of the system. The on-demand protocols do not require any

knowledge of rate matrix or channel parameters. Though they

need to solve an optimization problem every time slot, this

optimization problem can be efficiently solved.

A. Stationary Protocol

We first design a stationary protocol πstat as follows.

Stationary Protocol: Suppose the rate matrix (λij)i,j∈K is

known to the quantum switch and there exists ε > 0 such that

(λij + ε)i,j∈K ∈ Λ. (6)

Then there exists a set of variables {f̃ij}i,j∈K such that∑
i∈K

f̃ij ≤ pj , ∀j ∈ K (7)

λij + ε ≤ q f̃ij , ∀i, j ∈ K. (8)

In fact, determining {f̃ij}i,j∈K is straightforward since we

can set f̃ij = (λij + ε)/q and the conditions (7) and (8) hold

if (λij + ε)i,j∈K ∈ Λ. For an EPR pair |Ψ0i〉 generated at

time slot t, i ∈ K, label it as (i, j) with probability f̃ij/pi.
Let Mi

ij(t) denote the set of EPR pairs |Ψ0i〉 labelled as

(i, j) that are not consumed for entanglement swapping up

to time slot t. If Mi
ij(t) 
= ∅ and Mj

ij(t) 
= ∅, the quantum

switch performs entanglement swaps to create EPR pair |Ψij〉
by consuming EPR pairs |Ψ0i〉 and |Ψ0j〉 until either Mi

ij(t)

or Mj
ij(t) is empty.
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Theorem 2: The quantum switch is stable using the station-

ary discard protocol πstat if (λij)i,j∈K is an interior point in

Λ, i.e., (6) holds for some ε > 0.

We skip the proof here due to space constraints and refer to

the full version [25] for the detailed proof.

Though the stationary protocol can stabilize the switch, it

requires knowing not only the parameters pk, k ∈ K, but also

the rate matrix (λij)i,j∈K in order to find {f̃ij}i,j∈K. Such

knowledge of all the rates may not be available in practice,

and we may need protocols that requires less information. This

motivates the design of on-demand protocols.

B. On-demand Protocol

We next develop an on-demand protocol that has the flexi-

bility to prioritize entanglement requests as long as they satisfy

certain constraints.

On-demand Protocols: At each time slot, the quantum

switch attempts to create entanglement |Ψij〉 using Fij pairs of

entanglement |Ψ0i〉 and Fij pairs of entanglement |Ψ0j〉. The

decisions {Fij}i,j∈K need to satisfy the following constraints:∑
i∈K

Fij ≤ E0j(t) + C0j(t), j ∈ K (9)

Fij ≤ Uij(t) +Aij(t), i, j ∈ K (10)

Fij = Fji ∈ N, i, j ∈ K(
E0i(t) + C0i(t)−

∑
k∈K

Fik

)(
E0j(t) + C0j(t)−

∑
k∈K

Fkj

)
· (Uij(t) +Aij(t)− Fij

)
= 0, i, j ∈ K. (11)

Then the quantum switch attempts to create entanglement

|Ψij〉 using Fij pairs of entanglement |Ψ0i〉 and Fij pairs

of entanglement |Ψ0j〉. An on-demand protocol is denoted by

πod.

Remark 1: The intuition of (10) in on-demand protocols is

that the quantum switch creates entanglement only to serve

existing requests. Moreover, the quantum switch should not

“waste” any opportunities to create entanglement, in the sense

that for any i, j, it should attempt to create as many pairs

of |Ψij〉 as possible provided that (10) holds. This gives the

condition (11). Note that there may be multiple choices of

{Fij}i,j∈K that satisfy the constraints. The quantum switch

can select any one of them for entanglement swapping.

Remark 2: One way to satisfy constraints (9)-(11) is to

first set Fij = 0, i, j ∈ K and then check the unfinished

entanglement requests {Uij(t)}i,j∈K in any order. Details are

given in Algorithm 1. Note that the complexity is O(K2) since

the iteration is over i, j ∈ K. Comparatively, the stationary

protocol also has a complexity O(K2) in average since the

switch has to randomly label every EPR generated between the

switch and nodes. In practice the complexity is much lower. In

fact, as shown later in Appendix I, Fij(t) = Uij(t) + Aij(t)
with a high probability, and there is no need to solve any

optimization problem.

In order to establish stability of the on-demand protocols,

we need to make the following assumption with on-demand

protocols.

Algorithm 1 On-demand Protocol

Input: E0j(t), C0j(t), ∀j ∈ K, Uij(t), Aij(t), ∀i, j ∈ K
Output: Fij ∀i, j ∈ K that satisfy (9) to (11)

1: Initialization: Fij = 0 ∀i, j ∈ K
2: for i, j ∈ K do

3: Fij ← min{Uij(t) + Aij(t), E0i(t) + C0i(t) −∑
k∈K,k �=i Fkj , E0j(t) + C0j(t)−

∑
k∈K,k �=i Fkj}

4: end for

Assumption 1: For an arbitrary ε0 > 0, consider the

following event:

B0 : ∃i, j,
∣∣∣∣ 1

t+ 1

t∑
τ=0

Aij(τ) − λij

∣∣∣∣ > ε0. (12)

There exists a c1(ε0) < ∞ independent of t such that

{Aij(t)}i,j∈K satisfies

E

[ t∑
τ=0

Aij(τ)
∣∣B0

]
P[B0] ≤ c1(ε0). (13)

Note that Assumption 1 holds for many random processes.

For example, if Aij(t) is i.i.d over time and Var
[
Aij(t)

]
=

σ2, where σ is a constant irrelevant of t, then one can use

Chebyshev’s inequality to verify that Assumption 1 holds.

Theorem 3: The quantum switch system is stable using an

on-demand protocol πod if (λij)i,j∈K is an interior point in

Λ under Assumption 1.

The proof is found in Appendix I.

VI. ZERO AVERAGE LATENCY

In previous sections, we showed that the stationary and on-

demand protocols stabilize the switch provided the rate matrix

is an interior point of the capacity region. In this section, we

take a step further and show that with slight modification, these

protocols achieve zero average latency.

It suffices to show for all i, j ∈ K
lim
t→∞

E[Uij(t)] = 0. (14)

Therefore, we only need to show the expected queue length

E[Uij(t)] converges to 0. This coupled with Little’s law [26]

allows us to conclude that average latency is zero. To do this,

we need a stronger assumption than Assumption 1.

Assumption 2: For an arbitrary ε0 > 0, consider the

following event:

C0 : ∃i, j, 1

t+ 1

t∑
τ=0

Aij(τ) > λij + ε0. (15)

Then entanglement requests {Aij(t)}i,j∈K satisfies

lim
t→∞

E

[ t∑
τ=0

Aij(τ)
∣∣C0

]
P[C0] = 0. (16)

Note that though stronger than Assumption 1, Assumption 2

still holds for many random processes. For example, if Aij(t)
is i.i.d over time, its support has an upper bound, and

P

[
1

t+ 1

t∑
τ=0

Aij(t) > λij + ε0

]
∼ o(1/t).
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Assumption 2 allows us to show that the stationary protocol

achieves zero average latency.

Theorem 4: The quantum switch system achieves zero

average latency using the stationary protocol if (λij)i,j∈K is

an interior point in Λ under Assumption 2.

Proof: For ε in (6), define events:

C̃0 :
1

t

t−1∑
τ=0

Aij(τ) > λij + ε/2 (17)

C̃1 :
1

t

t−1∑
τ=0

μij(τ) ≤ λij + ε/2. (18)

Note that if neither C̃0 nor C̃1 occurs, then(∑t−1
τ=0Aij(τ) −

∑t−1
τ=0 μij(τ)

)+

= 0. As a consequence,

E
[
Uij(t)

] ≤ E

[ t−1∑
τ=0

Aij(τ)|C̃0

]
P[C̃0]

+ E

[ t−1∑
τ=0

Aij(τ)|C̃1

]
P[C̃1]. (19)

The first term in (19) converges to zero due to Assumption 2.

Regarding the second term in (19),

E

[ t−1∑
τ=0

Aij(τ)|C̃1

]
P[C̃1] = E

[ t−1∑
τ=0

Aij(τ)
]
P[C̃1] = λijtP[C̃1].

Using Chernoff bounds on
∑t−1

τ=0 Fij(τ),
∑t−1

τ=0X
(i)
ij , and∑t−1

τ=0X
(j)
ij , one can easily verify that P[C̃1] decays expo-

nentially with respect to t. Therefore, (19) converges to zero

as t goes to infinity. This concludes the proof.

As mentioned in the previous section, the stationary protocol

requires knowing the rate matrix (λij)i,j∈K, which may not

be available in practice. To address this issue, we develop on-

demand protocols with virtual requests that provide for zero

latency. They allow the switch to create and store end-to-end

entanglement that can be used to some future requests, so

latency can be made arbitrarily small. In particular, select α ∈
(1/2, 1) and define

Ãij(t) = Aij + �(t+ 1)α� − �tα� (20)

where the term �(t+1)α�−�tα� is the virtual request. In this

section, we also define

Ũij(t) = Uij(t)− Eij(t) + �tα�. (21)

Then one can verify that

Ũij(t+ 1) = Ũij(t) + Ãij(t)− μij(t)

Uij(t) =
[
Ũij(t)− �tα�]+.

On-demand Protocols with Virtual Requests: At each time

slot, the quantum switch attempts to create entanglement

|Ψij〉 using Fij pairs of entanglement |Ψ0i〉 and Fij pairs of

Algorithm 2 On-demand Protocol with Virtual Requests

Input: E0j(t), C0j(t), ∀j ∈ K, Eij(t), Uij(t), Aij(t), ∀i, j ∈
K

Output: Fij ∀i, j ∈ K that satisfy (22) to (24)

1: Initialization: Fij = 0 ∀i, j ∈ K
2: Determine the requests (real and virtual ones) Ãij(t) from

Aij(t) as in (20), ∀i, j ∈ K
3: Determine the unfinished requests with virtual requests

Ũij(t) from Uij(t) as in (21), ∀i, j ∈ K
4: for i, j ∈ K do

5: Fij ← min
{[

Ũij(t)+ Ãij(t)
)
/q
]+

, E0i(t)+C0i(t)−∑
k∈K,k �=i Fkj , E0j(t) + C0j(t)−

∑
k∈K,k �=i Fkj

}
6: end for

entanglement |Ψ0j〉. The decisions {Fij}i,j∈K need to satisfy

the following constraints:∑
i∈K

Fij ≤ E0j(t) + C0j(t), j ∈ K (22)

Fij ≤
⌈[
Ũij(t) + Ãij(t)

]+
/q
⌉
, i, j ∈ K (23)

Fij = Fji ∈ N, i, j ∈ K(
E0i(t) + C0i(t)−

∑
k∈K

Fik

)(
E0j(t) + C0j(t)−

∑
k∈K

Fkj

)

·
[⌈[

Ũij(t) + Ãij(t)
)
/q
]+⌉− Fij

]
= 0, i, j ∈ K. (24)

Details are given in Algorithm 2. Compared with constraints

(9) to (11), there are two main differences. The first is the

presence of virtual requests in Ãij(t), and the second is the

factor 1/q in (23) and (24). With this factor, the expected value

μij(t) is almost the same as
(
Ũij(t)+Ãij(t)

)
/q provided that

there is sufficient entanglement |Ψ0i〉 and |Ψ0j〉 for swapping.

With these two modifications, we can show that an on-demand

protocol with virtual requests, denoted by π̃od, can achieve

zero average latency.

Theorem 5: The quantum switch system achieves zero

average latency using an on-demand protocol with virtual

requests π̃od if (λij)i,j∈K is an interior point in Λ under

Assumption 2.

The proof is found in Appendix II.

VII. NUMERICAL RESULTS

In this section, we investigate the performance of the sta-

tionary and the on-demand protocols with a quantum network

discrete event simulator, NetSquid [27]. Since the stability of

these protocols are proven in previous sections, we focus on

other performance metrics in practical scenarios. Moreover,

we relax several assumptions including the infinite amount of

memory for storing EPR pairs and the infinite qubit lifetime.

A. Simulation Setting

A quantum switch can be implemented with different tech-

nologies. For example, qubits stored in quantum memories can

be realized with electron spins of SiV defect centers [28]. A

quantum switch is equipped with photon sources, and each of
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them generates a pair of entangled photons in each time slot.

One of the photons interacts with the electron spin, and the

other photon is sent to one of the end nodes through a quantum

channel and interacts with the electron spin at the end node. A

photon-spin interaction is essentially a CNOT operation on the

photon and the spin. After the photon-spin interaction, photons

are measured in the X basis by beamsplitters and photon

detectors. Entanglement swapping in the quantum switch can

also be realized with photon-spin interactions. To be consistent

with practical devices, we assume that qubits stored in the

memory suffer from decoherence. Furthermore, we assume

that the quantum switch has a finite number of memory

slots, and these memory slots are equally distributed among

interfaces. With these practical constraints, we can evaluate

more performance metrics:

• Average fidelity: for a state ρ shared between node i and

j, the fidelity is defined as F (ρ) = 〈Ψij | ρ |Ψij〉. Note

that a generated EPR pair may decohere in the memory

slots before being used to serve entanglement requests.

• Average latency: the latency of an entanglement request is

defined as the amount of time to address the entanglement

request. Note that the entanglement request may occur at

any time in a slot, and we evaluate the latency in units

of nanoseconds rather than slots.

The developed protocols do not specify how to prioritize

the EPR pairs and unserved requests, but such prioritization

impacts fidelity and latency. In this section, we apply the First-

In-First-Out (FIFO) method to process entanglement requests,

i.e., the oldest request is the first to serve. Regarding the order

of EPR pairs, we consider two methods: Oldest-Qubit-First

(OQF) and youngest-Qubit-First (YQF), which use the oldest

and youngest qubit for entanglement swapping, respectively.

All the protocols discard EPR pairs when their fidelities fall

below a preset threshold.

Each time slot is 1 μs long. The number of entanglement

requests between any two end nodes i and j in a time slot is

given by a mixture of two Poisson distributions with different

rates. Specifically, Aij(t) is i.i.d over time and given by

Aij(t) = Z · Y1 + (1− Z) · Y2

where Z is a Bernoulli random varable with mean 1/2, and Y1

and Y2 are independent Poisson random variables with mean

λ1 and λ2.

B. Performance Analysis

In this subsection, unless otherwise specified, the number of

memory slots is 100 per interface and the entanglement swap-

ping probability q = 0.9. The channels between the switch

and end nodes are lossy optical fibers, and the entanglement

generation probability p = 0.9 is the same for all interfaces.

Note that p = 0.9 corresponds to a distance between the switch

and end nodes of 2.3 km given a fiber attenuation coefficient

of 0.2 dB/km.5 The qubits suffer from dephasing noise [29]

5When p = 0.9 (i.e., the distance between the switch and end nodes is
2.3 km), the link level entanglement rate is 0.9 EPR pair per μs. This is
reasonable since ideally photon sources can emit photons at the rate of 107

Hz, corresponding to 10 EPR pairs per μs.

when staying idle in memory slots, and the T2 time for the

dephasing noise in each memory slot is set to 1 millisecond.

Specifically, the dephasing noise model in a memory slot is

modelled as follows:

Ndephase : ρ → (1− pdephase)ρ+ pdephaseσZρσZ

where ρ is the density matrix of a qubit, σZ = |0〉 〈0|− |1〉 〈1|
is one of the Pauli operators, and pdephase is the dephasing

probability, given by

pdephase =
1

2
(1− exp{−Δt/T2})

in which Δt denotes the time that a qubit stays idle in the

memory slot. If one qubit of an EPR |Ψ〉 is stored in a

memory qubit, then after time Δt, one can verify that its

fidelity becomes (1 + exp{−Δt/T2})/2.

Protocol Average Fidelity Average Latency (μs)

Stationary (YQF) 0.976 15.6

Stationary (OQF) 0.908 14.2

On-demand (YQF) 0.975 12.4

On-demand (OQF) 0.916 14.4

TABLE II: Performance of Entanglement Swapping Protocols:

λij = 0.2/μs, ∀i, j ∈ K.

Protocol Average Fidelity Average Latency (μs)

Stationary (YQF) 0.961 0.092

Stationary (OQF) 0.752 0.089

On-demand (YQF) 0.960 0.080

On-demand (OQF) 0.752 0.067

TABLE III: Performance of Entanglement Swapping Proto-

cols: λij = 0.12/μs, ∀i, j ∈ K.

We begin with a comparison of the stationary protocol to an

on-demand protocol. For each protocol, we further implement

the YQF and OQF methods to prioritize EPR pairs. The

number of interfaces is K = 5. Tables II and III show the

performance of the developed protocols for λij = 0.2/μs
and λij = 0.12/μs, ∀i, j ∈ K, respectively. First, the on-

demand protocols and stationary protocols perform similarly in

terms of fidelity. Regarding latency, the on-demand protocols

perform the best in most cases. Note that the on-demand

protocol does not require any statistical knowledge of the

requests or the systems, and that it involves low computational

overhead. Therefore, the on-demand protocol is a desirable

choice in practice. Second, the average fidelities of the YQF

protocols are much higher than those of the OQF protocols,

but the average latencies are generally greater than those of

the OQF protocols, especially when λij is small. This agrees

with intuition. YQF tends to use newly generated EPR pairs for

entanglement swapping, so the fidelities are higher. Moreover,

since the EPR pairs are discarded when their fidelities are

low, more EPR pairs are discarded when YQF is used. Since

fewer EPR pairs are used, latencies increase. We next use the
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Fig. 2: Average fidelity as a function of the memory size. The

x-axis denote the number of memory slots normalized by K .

on-demand protocol as the default protocol to evaluate the

performance of quantum switch in different settings.

Figures 2 and 3 respectively show average fidelity and

latency of the quantum switch achieved by the on-demand

protocols (YQF and OQF) as functions of the number of

memory slots. In these two figures, we set
∑

i,j λij = 1.2/μs.
For K = 8, the average fidelity and average latency decrease

with memory size; for K = 4, the average fidelity and average

latency remain constant. This is because for K = 4, the

rates (λij)1≤i,j≤4 lie outside the capacity region. The quantum

switch is then unstable, leading to high latencies. Since there

are many unserved entanglement requests, most of the time

the generated qubits between the switch and end nodes are

used immediately for entanglement swapping, and this leads

to a fidelity close to one. For K = 8, the rates (λij)1≤i,j≤8

lie inside the capacity region. In many occasions, there are

no unserved entanglement requests, and qubits in the memory

suffer from decoherence. An increase in memory slots results

in qubits staying in the memory longer before consumed,

leading to a decrease in fidelity. In addition, more memory

slots imply that the quantum switch discards fewer EPR pairs

and therefore reduces latency.

Figures 4 and 5 respectively show average fidelity and

latency of the quantum switch achieved by the on-demand

protocols (YQF and OQF) as functions of the entanglement

swapping success probability q. In these two figures, we set∑
i,j λij = 2/μs. First, fidelity initially decreases with q

and then remains constant. This is because for small q, the

rates are outside the capacity region, and the generated qubits

between the switch and end nodes are used immediately for

entanglement swapping, leading to fidelities close to one. As

q increases, the rates gradually move into the capacity region,

and some qubits stay in the memory before being consumed

for entanglement swapping, leading to a decrease in fidelity.

When q is sufficiently large, the memory slots are full most

of the time, and increasing q does not significantly improve

the memory occupancy rate. In these occasions, the average

fidelity does not change with q. Second, the average latency

10 20 30 40 50 60 70 80 90 100
100

101

102

103

104

105

106

Fig. 3: Average latency as a function of the memory size. The

x-axis denote the number of memory slots normalized by K .
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Fig. 4: Average fidelity as a function of entanglement swap-

ping success probability q.

first decreases with q and then remains constant. The reasoning

for this behavior is almost the same as that for fidelity. Third,

one observes that the sudden change of fidelity and latency

occurs around q = 0.33 for K = 8 and q = 0.67 for

K = 4. These two points exactly correspond to the boundary

points for the capacity region. This shows that the switch

demonstrate entirely different behavior inside or outside the

capacity region, which is consistent with the stability analysis

in earlier sections. This figure also shows that if q corresponds

to a boundary point of the capacity region, increasing q
provides limited performance improvement.

VIII. CONCLUSION

We develop efficient entanglement swapping protocols for

a quantum switch and analyze their performance in terms of

stability of the switch, fidelity of EPR pairs and latency of

entanglement requests. We determine the capacity region for

entanglement rates under the assumption of infinite memory

size and infinite qubit lifetime. Specifically, we show that no

entanglement swapping protocols can stabilize the switch if
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Fig. 5: Average latency as a function of entanglement swap-

ping success probability q.

the entanglement rates lie outside this capacity region, and

develop different protocols that stabilize the switch when

the entanglement rates correspond to an interior point of the

capacity region. The performance of the developed protocols

is evaluated using NetSquid, and practical constraints such as

decoherence in memory slots are accounted for. We show

that stationary protocols and on-demand protocols exhibit

high fidelity and low latency. Moreover, the tradeoff between

memory size, decoherence rate, fidelity, and latency shown in

the simulation results offer guidance in the implementation of

quantum switches.

A potential future direction is the design and analysis of

switches with a finite memory size and finite lifetime. Note

that in this manuscript, simulation results are obtained in

practical scenarios, whereas the stability analysis is based on

the assumptions that the switch has sufficiently many memory

slots and that qubits have infinite lifetime when stored in the

memory. The capacity region for a finite memory size and

lifetime must be different, and the entanglement swapping

protocols must be designed accordingly.
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APPENDIX I

SKETCH OF THE PROOF FOR THEOREM 3

We consider a random event S(t) defined as follows:

S(t) =
{∑

i∈K

[
Uij(t) +Aij(t)

] ≤ E0j(t) + C0j(t), ∀j ∈ K
}

(25)

When the event S(t) occurs, then the quantum switch has

sufficient entanglement to address the entanglement request,

i.e., Fij ≥ Uij(t), i, j ∈ K when an on-demand protocol is

used.

Lemma 1: Under Assumption 1, if an on-demand protocol

is used, then there exists a constant c2 irrelevant of t, such

that for any ĩ, j̃ ∈ K

E

[ t∑
τ=0

Aĩj̃(τ)|S(t)
]
P
[
S(t)

] ≤ c2. (26)

We skip the proof for Lemma 1 here due to space constraints

and refer to the full version [25] for the detailed proof.

Let u denote a matrix with (i, j)-th element uij . Define

Lod(u) =
∑
i,j∈K

uij (27)

as a Lyapunov function of unprocessed entanglement request.

For a control policy, we consider the following unconditional

1-step Lyapunov drift

Δ̃π
1 (t) = E

[
Lod(U(t+ 1))− Lod(U(t))

]
. (28)

Lemma 2: For an on-demand protocol, the 1-step Lyapunov

drift at any slot t satisfies

Δ̃π
1 (t) ≤

∑
i,j∈K

[
λij + qc2 − q E

[
Uij(t)

]]

where c2 is the constant in (26).

Proof: Recall the definition of S(t) in (25). Note that

Δ̃π
1 (t) = P

[
S(t)

] ∑
i,j∈K

E

[
Uij(t+ 1)− Uij(t)|S(t)

]

+ P
[
S(t)

] ∑
i,j∈K

E

[
Uij(t+ 1)− Uij(t)|S(t)

]
. (29)

Note that if S(t) occurs, then the control variable Fij(t) =
Uij(t) +Aij(t), for all i, j ∈ K. This leads to

E

[
Uij(t+ 1)− Uij(t)|S(t)

]
≤ (1− q)E

[
Aij(t)|S(t)

]
− q E

[
Uij(t)|S(t)

]
. (30)

If S(t) occurs, we have

E

[
Uij(t+ 1)− Uij(t)|S(t)

]
≤ E

[
Aij(t)|S(t)

]
. (31)

Combining (29),(30), and (31), we have

Δ̃π
1 (t) ≤

∑
i,j∈K

[
λij − qP[S(t)]E

[
Uij(t)|S(t)

]]
. (32)

On the other hand,

E
[
Uij(t)

]
= P[S(t)]E

[
Uij(t)|S(t)

]
+ P[S(t)]E

[
Uij(t)|S(t)

]
≤ c2 + P[S(t)]E

[
Uij(t)|S(t)

]
(33)

where the last inequality is because of Lemma 1.

Combining (32) and (33), we have

Δ̃π
1 (t) ≤

∑
i,j∈K

[
λij + qc2 − q E

[
Uij(t)

]]

which completes the proof of Lemma 2.
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Lemma 2 implies∑
i,j∈K

[
E
[
Uij(t+ 1)

]− E
[
Uij(t)

]]

≤
∑
i,j∈K

[
λij + qc2 − qE

[
Uij(t)

]]
. (34)

Summing (34) over t from 0 to T − 1 gives

1

T

T−1∑
t=0

∑
i,j∈K

qE
[
Uij(t)

] ≤ ∑
i,j∈K

(
λij + qc2 + E

[
Uij(0)

]
/T

)
.

Then for any i0, j0 ∈ K

1

T

T−1∑
t=0

P
[
Ui0j0(t) > V

]

≤
∑

i,j∈K(λij + qc2 + E
[
Uij(0)

]
/T )

qV

Taking lim supt→∞, we see that gi0j0(V ) defined in (2) is

on the order of O(1/V ). Taking limits as V → ∞, we have

gij(V ) → 0, i, j ∈ K.

APPENDIX II

SKETCH OF THE PROOF FOR THEOREM 5

We consider a random event S0(t) defined as follows:

S0(t) =
{∑

i∈K

⌈[
Ũij(t) + Ãij(t)

]
/q
⌉

≤ E0j(t) + C0j(t), ∀j ∈ K
}

(35)

where Ũij(t) and E0j(t) are the number of backlog and

entanglement requests |Ψij〉 and the number of entanglements

|Ψ0j〉 achieved by the used on-demand protocol. If event S0(t)
occurs, then the quantum switch has sufficient entanglement

to address the requests, i.e., Fij(t) ≥
⌈[
Ũij(t) + Ãij(t)

]
/q
⌉

,

i, j ∈ K.

Lemma 3: Under Assumption 2, if an on-demand protocol

is used, then for any ĩ, j̃ ∈ K

lim
t→∞

E

[ t∑
τ=0

Ãĩj̃(τ)|S0(t)
]
P
[
S0(t)

]
= 0. (36)

The proof for Lemma 3 is similar to that for Lemma 1, and

we skip it here due to space constraints.

We now consider E
[[
Ũij(t+1)−�(t+1)α�]+]. Note that

E

[[
Ũij(t+ 1)− �(t+ 1)α�]+]

= E

[[
Ũij(t+ 1)− �(t+ 1)α�]+|S0(t)

]
P
[
S0(t)

]
+ E

[[
Ũij(t+ 1)− �(t+ 1)α�, 0]+|C0

]
P
[
C0

]
+ E

[[
Ũij(t+ 1)− �(t+ 1)α�]+|S0(t) ∩ C0

]
P
[
S0(t) ∩ C0

]
.

(37)

We next show that the three terms in (37) converge to 0 as t
goes to infinity and thus complete the proof of Theorem 5.

The first term in (37) converges to 0 because

E

[[
Ũij(t+ 1)− �(t+ 1)α�]+|S0(t)

]
P
[
S0(t)

]
≤ E

[ t∑
τ=0

Ãij(τ)|S0(t)
]
P
[
S0(t)

]
which converges to 0 because of Lemma 3.

Similarly, the second term in (37) converges to 0 because

E

[[
Ũij(t+ 1)− �(t+ 1)α�]+|C0

]
P
[
C0

]
≤ E

[
Ũij(t+ 1)|C0

]
P
[
C0

] ≤ E

[ t∑
τ=0

Ãij(τ)|C0

]
P
[
C0

]
which converges to 0 because of Assumption 2.

We now consider the third term in (37). The third term is

a conditional expectation when the event S0(t) ∩ C0 occurs.

Note that Ũij(t+ 1) = Ũij(t) + Ãij(t)− μij(t). Let

D1 =
{
Ũij(t) + Ãij(t) > �(t+ 1)α�}.

If D1 occurs, then
[
Ũij(t+ 1)− �(t + 1)α�]+ = 0. We next

consider that D1 occurs. Let β ∈ (0, α − 0.5) and consider

the following event

D2 =
{
Ũij(t+ 1) ≥ [(

Ũij(t) + Ãij(t)
)
/q
]0.5+β}

.

Note that P[D2 |D1] can be bounded by

P[D2 |D1] ≤ 2 exp
{
− 2

[
(Ũij(t) + Ãij(t))/q

]2β}
≤ 2 exp

{−2(t+ 1)αβ
}

where the first inequality is based on Chernoff’s bound and

the last inequality is because D1 occurs. If D2 occurs, then[
Ũij(t+ 1)− �(t+ 1)α�]+
≤

[[(
Ũij(t) + Ãij(t)

)
/q
]0.5+β − �(t+ 1)α�

]+
≤

[[
(λij + ε̃)t/q

]0.5+β − �(t+ 1)α�
]+

.

Then by discussing whether D1 and D2 occur, one can bound

the third term in (37) as

E

[[
Ũij(t+ 1)− �(t+ 1)α�]|S0(t) ∩ C0

]
P
[
S0(t) ∩ C0

]
≤ 2(λij + ε̃)t exp

{−2(t+ 1)αβ
}

+
[[
(λij + ε̃)t/q

]0.5+β − �(t+ 1)α�
]+

which converges to 0 as t goes to infinity because β < α−0.5.

This shows that the last term in (37) converges to 0.
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