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Abstract

In this work, we study the quantum fluctuation dynamics in a Bose gas on a torus A =
(LT)? that exhibits BoseEinstein condensation, beyond the leading order Hartree—Fock—
Bogoliubov (HFB) theory. Given a Bose—Einstein condensate (BEC) with density N > 1
surrounded by thermal fluctuations with density 1, we assume that the system dynamics
is generated by a Hamiltonian with mean-field scaling. We derive a quantum Boltzmann
type dynamics from a second-order Duhamel expansion upon subtracting both the BEC
dynamics and the HFB dynamics, with rigorous etror control. Given a quasifree initial state,
we determine the time evolution of the centered correlation functions (a), {aa) — (a)?,
(ata)—|{a)|* at mesoscopic time scales 1 ~ 272, where 0 < A < 11is the coupling constant
determining the HFB interaction, and a, a™ denote annihilation and creation operators.
While the BEC and the HFB fluctuations both evolve at a microscopic time scale ¢ ~ 1,
the Boltzmann dynamics is much slower, by a factor 2. For large but finite N, we consider
both the case of fixed system size L ~ 1, and the case L ~ A727. In the case L ~ 1,
we show that the Boltzmann collision operator contains subleading terms that can become
dominant, depending on time-dependent coefficients assuming particular values in Q; this
phenomenon is reminiscent of the Talbot effect. For the case L ~ A~2, we prove that the

collision operator is well approximated by the expression predicted in the literature. In either
loglog N
log N

o
of those cases, we have A ~ ( ) , for different values of @ > 0.
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1 Introduction
1.1 Quantum Dynamics and Boltzmann Equations

The main question we set out to answer in this work is:

Is there a scaling regime in an interacting quantum field theory, for which the emer-
gence of collisional processes described by a Boltzmann equation can be rigorously
established?

1.1.1 Emergence of a Quantum Boltzmann Equation

In analogy to Maxwell’s and Boltzmann’s theory of collisions in classical systems, Nordheim
[251] in 1928 was the first to propose a Boltzmann equation for Bose and Fermi gases given
by

0 f(p) = Qa(f)
= /dm 8(p1+ p2 — p3 — pa)S(E(p1) + E(p2) — E(p3) — E(pa))

M (PP ((p — p1) +8(p — p2) = 8(p — p3) = 8(p — pa))
(£ Fp)A £ F(p)) f(p3)f(pa) = F(p1) f(p2)(A £ f(p3)(1 £ f(p4))).

(1.1)
Here, f denotes the particle density in the spatially homogeneous case; *+ refers to the
bosonic, and *—’ refers to the fermionic equation, and p;, = (p1, p2, p3, p4). In addition,

E(p) = %| p|? denotes the free dispersion, and My is the (microscopic) scattering cross
section for 2 <> 2 processes describing two thermal fluctuation scattering off of each other.
As Nordheim already argues, the distribution of the outgoing particles needs to be taken into
account, resulting in a quartic collision operator, in contrast to classical particles that are
described by a quadratic collision operator. It is shown in [251] that the equilibrium is given
by the Bose—Einstein, respectively the Fermi-Dirac statistics, and that an H-theorem holds
true. In 1933, Uehling and Uhlenbeck [297] studied the linearization about the equilibrium,
in order to determine the associated hydrodynamics, and to compute the heat conductivity
and the viscosity coefficient.

Subsequently, physicists have given formal derivations of the above quantum Boltzmann
equation, using diagrammatic techniques from quantum field theory, see, e.g., [1, 188, 300].
This has given rise to interesting fundamental effective theories, such as the Kadanoff-Baym
equations, see, e.g., [181, 277]. We also mention the important contributions by Bogoliubov
and collaborators [63] and Prigogine and collaborators [262].

The first mathematically rigorous works on the derivation of the classical Boltzmann
equation, a billiards model for a classical gas, go back to Cercignani [79] in 1972 and Lanford
[202] in 1975, where they studied the Grad-limit [161] of a hard-sphere model. These works
were later revisited and completed through works by Uchiyama [296], Cercignani—Illner—
Pulvirenti [81], Spohn [285], Cercignani—Gerasimenko—Petrina [80], and Gallagher—Saint—
Raymond-Texier [149].

In 1983, Hugenholtz [ 184] considered the commutator perturbation expansion with respect
to the weak coupling constant A. Implementing the kinetic time scale = TA~2 used by van
Hove [299], it was shown that, in the translation-invariant case, terms of order O (1) vanish
as A — 0, and that terms of order O(A?) are proportional to T. Using a selection rule,
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it is conjectured in [184] that only two-point correlations of higher orders in A survive,
motivating the assumption of quasifreeness. Quasifreeness, as we will see below, is, in a
sense, a quantum analogue to the *Sto3zahlansatz’, also known as *'molecular chaos’. Hence,
Hugenholtz argues, at leading order, the Boltzmann equation should arise for the evolution
of the two-point function. Ho and Landau [179] later proved that, to second order in A, this
holds true.

In 2004, Erdos, Salmhofer, and Yau [129] extended the results by Hugenholtz, and by Ho
and Landau, by introducing the concept of restricted quasi-freeness, i.e., quasi-freeness only
up to six- or eight-point correlations. Assuming propagation of restricted quasi-freeness, they
showed that a (time-dependent) Boltzmann equation arises from the second-order Duhamel
expansion, under certain assumptions. Around the same time, Benedetto, Castella, Esposito
and Pulvirenti, began a series of works that used Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchies to derive a quadratic Boltzmann equation with a quantum collision
kernel for a system obtained by iterating Duhamel’s formula, ignoring the tail, and truncating
the obtained hierarchy in the small-coupling limit [42, 45] respectively in the low-density
regime [44]. In [43], they went on to show that the contributions to second order in the coupling
recover (1.1) to leading order, evaluated at initial time with fj instead of f;. Further works
studying the BBGKY hierarchy in the context of the quantum Boltzmann equation include
works by Gerasimenko and collaborators [152, 153, 155], see also references therein. A
recent review in this direction can be found in [154]. For works using a second quantization
approach, we refer to Spohn and collaborators [148, 234, 287-289], see also references
therein.

In 2015, X. Chen and Y. Guo [94] showed that, if the marginals of the BBGKY hierarchy
converge in the weak-coupling limit in a strong sense, and if the W*!-regularity per particle
remains uniformly bounded for some positive time, then the limiting hierarchy is that asso-
ciated to the quadratic Boltzmann equation with a quantum collision kernel, instead of the
Boltzmann equation derived in [129].

In a different line of work addressing the weakly disordered Anderson model, scattering
of electrons at impurities in a lattice have been investigated extensively. For works studying
the derivation of the linear Boltzmann equation in this context, we refer to [82, 90, 91, 134,
178, 180, 283]. For a more recent treatment, we refer to [165].

Lukkarinen-Spohn [234, 235] showed that the nonlinear Schrodinger equation (NLS) with
random initial data leads to the wave kinetic equation: They present this system as a simplified
model to gain insights into the emergence of Boltzmann-type dynamics in a quantum Bose
gas. The study of wave-turbulence in the context of the long-time behavior of the NLS is a
very active area of research, see, e.g., [18, 75, 107, 108, 113, 114, 143, 156, 191, 270].

The derivation of Boltzmann equations from a system of classical interacting particles is
an extraordinarily active research field, see [20, 21, 58-61, 80, 81, 115, 149, 193, 202, 253,
264-266, 278, 284, 296] and references therein. The methods differ vastly from the quantum
field theoretic approach developed in the work at hand. For works studying well-posedness
and other analytical properties of the classical Boltzmann equation, we refer to [4-8, 10, 13,
19, 25, 41, 53, 54, 81, 83, 84, 116, 118, 119, 123, 125, 158, 160, 163, 170, 172, 173, 185,
189, 238, 291-293, 298, 301-303] and references therein.

1.1.2 Well-Posedness

The first well-posedness results for (1.1) go back to Dolbeaut [124] and Lions [219] for
the fermionic case. X. Lu and collaborators have made significant progress on the fermionic
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Boltzmann-Uhlenbeck-Uehling (BUU) equation, see, e.g., [222, 226, 231]. For a recent work
on the fermionic problem, we refer to [213].

A unified treatment of bosons and fermions can be found in [305, 306], and more recently
[252]. In addition, generalized statistics such as anyons [28], and Haldane statistics [26, 30]
have also been included in this line of study.

Works studying the relativistic quantum Boltzmann equation include [36, 136, 137] and
references therein.

The quantum Landau equation, which can be viewed as a limit of the Boltzmann equa-
tion accounting for long-range interactions, has been studied in [11, 12, 37, 38, 205, 220].
Recently, He-Lu-Pulvirenti [175] showed that it can be obtained as a weak semi-classical
limit from the quantum Boltzmann equation.

In 1924, Bose [64], and, independently in 1925, Einstein [127] predicted that, below a crit-
ical temperature, the ground state becomes gradually more populated, forming a macroscopic
state called the Bose—FEinstein condensate (BEC). In 1995, this phenomenon was indepen-
dently experimentally verified by groups around Cornell and Wiemann [24] and Ketterle
[111]. Both groups were awarded the 2001 Physics Nobel Prize.

In the mathematically rigorous PDE literature, the bosonic problem has been investigated
first by X. Lu [221]. The long-time behavior for radial initial data was studied, obtaining
global existence, local stability, conservation of energy, and estimates on moment production.
Moreover, at low temperatures, it is shown in [221] that a solution concentrates at p = 0 for
large time, and that, at high temperatures, the solution converges weakly to the Bose—Einstein
distribution. Escobedo—Mischler—Valle [137] showed that bosonic entropy maximizers are
given by

1
Jeq(P) = BEP-0 _ 1 + mod(p), (L.2)

where mg - © = 0, see, e.g., [141]. The BEC density mq, the chemical potential n
and the inverse temperature 8 are uniquely determined by the moments [ dpf.,(p) and
f dpE(p) feq(p), see, e.g., [223] and references therein. One has that m( vanishes above a
critical temperature 7., and is non-zero below 7.

Well-posedness results have been formulated to account for solutions that form a Dirac
mass at temperatures below 7, and that stay bounded for temperatures above 7,.. We refer to
[26, 76, 141, 142, 223, 224, 227-229, 232] for the isotropic and space-homogeneous case,
to [28, 29, 252, 272, 305, 306] for the space-dependent case, and to [73, 77, 212, 252] for
the anisotropic case. Further works studying the blow-up behavior related to condensation
include [40, 140, 290].

1.2 Collisions of Fluctuations About a Bose—Einstein Condensate

Pioneering works by Kirkpatrick and Dorfmann [195, 196] and Eckern [126] started analyzing
the interplay of the BEC with thermal excitation cloud surrounding the condensate. They
formally obtained a Boltzmann equation of the form

3 f(p) =ncQ3(f ) + Qa(f ), (1.3)
where Q4 is given by (1.1) with E replaced by the Bogoliubov dispersion Q =

VE(E + 2n.)), and

0s(f) == / dps 5(p1 + p2 — PSP + Q(p2) — 2(p3))
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|Ma1(p3)1>(3(p — p1) +8(p — p2) — 8(p — p3))
(L + FrO)A+ fF(p) f(p3) — F(pDf(p) A+ f(p3)). (14

Here 7. denotes the BEC density, f(¢*) the density of thermal fluctuation particles, A is the
coupling strength of the hard-sphere pair interaction A8, Mo is the cross section for 2 <> 1
processes describing collisions of 2 thermal particles, where one is either being absorbed into
or emitted from the BEC, and p; = (p1, p2, p3). Zaremba, Niguni and Griffin [304], see
also [164], later extended their approach to include the dynamics of the condensate. In the
Hartree-Fock-Bogoliubov-Popov approximation, and for a translation-invariant initial state,
they formally argue that the condensate wave function @ satisfies

i D(p) = (hyar + 22 (p) —i Q3(f )P (p)
+ 28 (p)®(—p), (1.5)

and it is linked to the density via n.(t,x) = |®;(x) |2. Here hpqr denotes the Hartree
Hamiltonian in momentum representation, see Sect. 1.4 below, and g(” ) denotes the rate of
pair absorption into the condensate, which they discarded as a lower-order contribution. One
of the motivations to study the coupled system between the condensate and the thermal cloud
is to understand the nucleation process of the BEC, see, e.g., [52, 151, 187, 201, 257, 275].
For a review, we also refer to [263, 268].

Observe that, for large values of the condensate density n., we expect that Q4 is of
subleading order.

For mathematical works studying the system describing the two-component gas consisting
of the condensate and the excitation cloud, we refer to [14, 27, 109, 110, 139, 250, 258-260,
279, 280].

1.3 Definition of the Mathematical Model

As a starting point for our analysis, we choose a single-species Bose gas at positive tempera-
ture trapped in a periodic box A = (LT)? of linear length L. We assume that the gas consists
of two phases:

(1) A Bose—FEinstein condensate (BEC) with density N,
(2) thermal fluctuations with density ~ 1.

We note that a significant part of this paper addresses the case of a fixed volume, where
we may think of N as the number of bosons when L = 1. On the other hand, we will also
consider the limit of large volume, where N > 0 will denote the number of bosons per unit
volume (that is, the density); for convenience, we are not changing the notation.

We assume mean-field interactions for which the kinetic energy of the condensate and
the total (pair) interaction potential among particles are balanced, and analyze the interplay
between the condensate dynamics and the dynamics of the fluctuation particles.

1.3.1 Definition of the Model

Let F =C® D, (L?(A))®sm denote the bosonic Fock space, equipped with the inner
product

(W, @) = > (W, By) 2o (1.6)
neNy
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forall ¥ = (Wp)neNy, @ = (Pulneny € F. Forn €N, f € LZ(R3), Ve (LZ(A))@)S‘W”,
and x,_; € R3=D e define

@O = Vi [ dxTewex,). (17)
A
For any n € N, let S,, denote the permutation group of {1, ..., n}. Forn € Ng, f € L?>(R3),
W e (L2(A)®»" and X4 1 = (X1, ..., Xpq1) € R3*FD we define
ST
@ OO = T D S )Y@ Xan) . (1)
TeSy41

Then we have that for all £ € L2(A), ®, ¥ € Fyiy

(@, a(HW) 5 = [a" (), W), . (19)

In addition, @ and a™ satisfy the canonical commutation relations (CCR) for any f, g €
L*(A)

la(f),a™ (@] = (f,g) . la(f)a@] = la"(f),a ()] = 0. (1.10)

Moreover, we
introduce the operator-valued distributions ay, a;r by requiring

atf) = [ axFeva.. (L11)
A
at(g) = / dx f(x)al (1.12)
A
forall f, g € L2(A).
These satisfy the CCR
lax,af1=38x(x —y) , lax,ay] = la;,af1=0. (1.13)

We call ¢ := (1,0,0,...) € F the Fock vacuum. Then we have that a, 29y = 0 for all
x € A.In addition, for ¥ € Fyip, x € A,n € N,and x, € R3", we have that

(ax V) (x,) = vV/n+ 19" D (x x,). (1.14)
We introduce the number operator
Np = / dxafay, (1.15)
A
which satisfies
W)™ = ™ (1.16)

see, e.g., [50].

The Hamiltonian of the system studied in this paper has the following form. Let v be a
sufficiently regular pair potential, see Sect. 2.2, and A > 0 a small coupling constant. Given
N > 0, we define

1 A
Hy = E/A dx a;r(—Ax)ax + N //\2 dxdyv(x —y) a;ra;rayax . (1.17)
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Our aim is to study the evolution associated with the Hamiltonian Hy given in (1.17).
The condensate is accounted for by a coherent state W[/ N|A|¢o]€20, where

WIS] = exp(a™(f) —a(f) = eXp(/Adx (fay = f(Dax)) (1.18)

denotes the Weyl operator, and ¢ is normalized, |[¢o|l;2(o) = 1. By the Baker-Campbell-
Hausdorff formula,

f®n
«/l? )neNo ’

see, e.g., [50]. That is, in each fixed particle sector, the wave function is the product state
determined by a single wave function f.
We assume that, at initial time ¢ = 0, the system is described by a state

Tr (e_KA)
Tr(e=X)
for all observables A € 2, where 2 denotes the Weyl algebra generated by W[ f], where

f € S(A) is a Schwartz function, see [70], Sect. 5.2.3. In addition, the Baker-Campbell-
Hausdorff formula yields

WIfIR = e 21l ( (1.19)

W(A) = (1.20)

W flaxWlf] = ax + f(x). (1.21)
Definition 1.1 (Quasifree state) Let v be a state and
v (A) := vOW[v(a)|[AW*[v(a)]) (1.22)

denote its centering. We say v is quasi-free iff
veem gtighr | gtmy = gtighllgtm
+-all pair contractions » (1.23)
pleem (ghighr  gtm-1y =0
where awa#z = vem (gfg#2) (1.23) is referred to as Wick’s Theorem.

Definition 1.2 (Number conserving state) A state v is called number conserving iff
v([A, Np]) = 0 for every observable A € 2L.

We assume that the initial state vy is number conserving, quasifree, and translation-
invariant. In particular, we assume that the translation-invariant generator K is given by

K ;=f dp K(p)ayay, (1.24)
A*

where K (p) > ko for some ko > 0. Observe that, by being number conserving, vy is already
centered.
The state describing the two-phase Bose gas is then given by

1
o) = s T (WIYNTATgole™ W IV NTAIgol4 ) (1.25)

for all A € 2. The initial value problem (IVP) associated with the Hamiltonian Hy and the
initial state pg is then given by the von Neumann equation

i0,0,(A) = p([A, HN]) (1.26)
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for all observables A € 2. Below, we impose assumptions on v ensuring that Hy is self-
adjoint and that it induces a unitary evolution e ~/7tN | Then, the solution of (1.26) is given
by

pi(A) = po(eTtN AeTITN) (1.27)
By making specific choices for A, we will study effective equations of key correlation func-

tions characterized by the Bose gas.

1.4 Leading Order Condensate Dynamics: Hartree Equation

We expect the leading order dynamics of (1.26) to be described by the leading order con-
densate dynamics, as the BEC describes the bulk component of the Bose gas. Indeed, for
instance, [166—169, 269], based on Hepp’s method and using coherent states, have shown,
that, in a precise sense, e MY W/ NTA| ol is well approximated by W[/N|A|¢:]120
for N > 1, with approximation errors oy (1), where ¢, satisfies the Hartree equation

1
g = —5 A¢r + AAIw AR (1.28)

The volume factor in the nonlinear interaction term accounts for our assumption that the
L*-mass of the condensate is

IVNIAIG 72, = NIAI. (1.29)

In the case v = §, (1.28) yields the nonlinear Schrodinger equation (NLS). Analogous
statements have been proved for different choices of v with alternative approaches involving
the corresponding BBGKY hierarchy, see, e.g., [2, 85, 89, 93, 95-100, 130-133, 135, 162,
177, 182, 194, 197, 214, 286], and other approaches, see [9, 15-17, 22, 23, 39, 65, 69, 120-
122, 145-147, 157, 174, 183, 186, 192, 198, 203, 204, 207, 208, 215-218, 233, 236, 237,
245,255, 256,271, 276,281, 282]. For more background on the derivation of Hartree theory,
we refer to [50, 159, 171, 206, 216, 249, 273].

1.4.1 Stationary, Translation-Invariant Condensate

For simplicity, we choose to consider a stationary and translation-invariant solution of (1.28).
Due to the normalization constraint ||¢g|l2 = 1, we have

1

¢ =¢o=|A"2 eRy. (1.30)

Substituting this into (1.28) yields

A
0= A|A||¢o|2¢0/ dxv(x) = —/ dxv(x). (1.31)
A VAT A
In particular, we assume
/ dxv(x) =0, (1.32)
A

with additional regularity properties introduced below. Henceforth, we assume that ¢ is
stationary, translation-invariant and satisfies (1.30).
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1.5 Leading Order Fluctuation Dynamics: HFB Equations

We next turn to the leading order corrections of the full dynamics past the leading order
BEC Hartree dynamics. For this purpose, we consider the fluctuation dynamics described by

W*[/NTAlpole *HN W[ /NTA]¢o]. We show in Lemma B.1
W*[\/ N|A|¢0]HNW[\/ N|A|¢0] = Hurp + Heup + Hquart b (133)

where

1
Hyrp = / dxdy (ax*(—fé(x — YA +Av(x — y)ay
A2 2

A(x —
+ %(a;ra;r + axay)> , (1.34)
A + +
Heup = ﬁ " dxdyv(x — y)a/ (ay + a, )ay , (1.35)
A 4ot
Hyuart = N | dxdyv(x — y)a] ayayay , (1.36)
A

noting that (1.30) has been used to obtain these expressions. In particular, (1.33) implies that
the fluctuation dynamics is determined by the unitary operator

Uy (1) == W*[/N|Algole "™ W[/N|A|gol, (1.37)
where
iUy (t) = Hurs + Heus + Hauard)Un (1) . (1.38)

In the unitary evolution relative to the Hartree dynamics, the dynamics of thermal bosons
is determined by two types of processes:

(1) Emission and absorption of thermal bosons from and into the BEC, respectively.
(2) Collisions between thermal bosons.

In particular, the Hamiltonian H g p g +Hcup +Hguar: describing this relative dynamics is not
number conserving, as opposed to the original Hamiltonian 7. Observe that conjugation
by the Weyl operator W[/N|A|¢o] ’subtracts’ the condensate dynamics, thereby revealing
the relative dynamics. As a consequence, our focus will be on the IVP

. I.BEC I.BEC
za,pt(’e )(A) = pt(re )([A7 HHFB +chb +Hquart])a (1 39)
I.BEC - .
py @) = g Tr(eRA).
Notice that the initial state ,o(()rel'BEC) is chosen to be particle number conserving, in contrast

to 0.

Observe that Hz g = O(1), while Heup = O(J) and Hguare = O(3;) are of lower
order as N > 1. We thus expect the leading order fluctuation dynamics to be determined
by the Hartree-Fock-Bogoliubov (HFB) dynamics described by the Hamiltonian Hy rp.
Bogoliubov [62] observed that a Hamiltonian of the form of H g Fp can be diagonalized in
terms of rotated creation and annihilation operators b, = a(uy) + a™ (v,). Based on this
idea, and considering the more general case for a non-stationary, non-translation invariant
condensate wave function ¢;, there are many works analyzing the emergence of the HFB
dynamics, including [3, 31, 32, 55-57, 66-68, 71, 72, 78, 101-103, 105, 112, 166-168, 199,
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200, 209, 239-244, 246, 247, 254] and references therein. See also [206, 249] for more
details.

Let Wy rp(2)):cr denote the unitary group associated with the generator Hy rp, see (3.7)
below. Then the density of HFB fluctuation particles, we have that

VirsONpVHFE®) S Np + 1A, (1.40)

see Remark 4.9 for details. In particular, the HFB fluctuation density has the order of mag-
nitude

1
mpgd'mo (Vi rsONVHFE®) S 1, (1.41)

compared to the BEC density N, see also Lemma 4.1.
As we verify in Lemma 3.3, the HFB evolution captures oscillations between absorption
into and emission from the BEC with frequency

Q = VE(E +210), (1.42)

which is the Bogoliubov dispersion relation. Here v is the Fourier transform of v, see definition
(1.43), and E(p) = | p|?/2 denotes the free kinetic energy. We will assume © > 0 to be non-
negative. The Bogoliubov dispersion corresponds to the propagation of acoustic excitations,
see, e.g., [112, 274] for more details.

1.6 Fourier Transform

Before moving on to the next order corrections, we fix our conventions for the Fourier
transform. Let the Fourier transform be given by

Py i= [ arer peo. (1.43)

forall p € A* = (ZT”Z)3, where A = (LT)3. We denote by
ap i=a(e ") = /A dx e ay, (1.44)
a;r =at(ePV) = /A dx ef"p'xa;r (1.45)

the Fourier transforms of the operator-valued distributions ay, aj‘. These satisfy the discrete
CCR '

lap, af1=1A18,4 = Sa<(p —q), (1.46)
lap, ag] = la},af]1 = 0. (1.47)

When the context is clear, we will omit the subscript A*’ in §x.
Recalling (1.15), the number operator is given by

Ny = / dpajay,. (1.48)
A*
Thena,, a;' satisfy the bounds

i 1 1 L
lapWllr < e POl 20 N Wiz = AN ¥ £, (1.49)
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1 1
laf Wiz =/ lapWli%+ |A] < |AIZIIN, + DZW| £, (1.50)
see, e.g., [50].

For convenience, we will use the notation

1

d = — . 1.51
[ arrwr= 15 X o (151
PEA

In contrast, we will denote the Lebesgue integral by ng dq f(q). Moreover, we will denote

an n-tuple (g1, g2, ..., qn), n € N, of vectors g; € R4 for some d € N, as

q, = (q1,92,---+qn) - (1.52)

1.7 Lower Order Fluctuations: Emergence of Boltzmann Dynamics
In order to study corrections to the HFB dynamics, we subtract it from the dynamics (1.39)

relative to the BEC Hartree dynamics by conjugation with Vg rp (), the unitary group induced
by Hu rp. The resulting relative dynamics is determined by

(1.53)

i0vr(A) = v ([A, Heup(t) + Hquart ®D,
w(A) = gk Tr(e 7 A).
where
chb(t) = V;;FB(t)chbVHFB(t)
A
= — dps 8(p1 + p2 — p3)v(p2)
\/N (A*)3 3
. )\42
(el(Q(Pl)+9(172)*9(173))ta;1 a;rzam + h.c.) + O (—) (1.54)

VN

Hquart(t) = V]SFB(I)HquartVHFB(t)

A .
= */ dpy 8(p1 + p2 — p3 — pa)d(p1 — p3)
2N (A*)4

. 22
HQpD)+Q(P2)=Q(p3)=Q(pa)t ,+ + -
e 1 2 3 YPay a,,apap, + O (N) , (1.55)

see Corollary 3.3. For a derivation of (1.53), we refer to Lemma B.1.
We are interested in the evolution of the density of fluctuation particles

vi(ata,)
fi(p) = —2P7 |1<| L (1.56)
We have that
1
fo(p) = Ko 1’ (1.57)

see Remark 4.2. The case K(p) = B(E(p) — u), with inverse temperature 8 > 0, and
chemical potential ;1 < 0, corresponds to the Bose—Einstein distribution of the ideal Bose
gas.
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In order to study f;, we need to extend (1.53) to hold for a more general class of operators.
We prove in Lemma 4.1 a quantitative version of

(V) < 00, (1.58)
and in Corollary 4.10 a quantitative version of
v (V) < o0 (1.59)
for all kK € N. Thus, we may extend the IVP (1.53) to observables
A =alad}. . . df. (1.60)

In order to expand f;, we follow [129, 179, 184] and apply Duhamel’s formula three times

t

Ji(p) — folp) = dsvo([a ap, Hi(s)]) (1.61)

IAI
—ﬁ . dsylly =g vo(llayap, Hi(s)], Hi(s2)])  (1.62)
+Rem,(p), (1.63)
where we abbreviated
Hi() == chh(t) + Hquart (1) (1.64)
Rem;(p) := |A| d5315|2s22s3 vsy ([lay ap, Hi(s1)], Hi(s2)], Hi(s3)])

(1.65)

ands; = (s1,...,5;),j = 2.

Because a;,"a p commutes with e X, the transport term (1.61) vanishes.

Due to translation-invariance and vy being number conserving, the transport term (1.61)
vanishes.

For (1.62), observe that H,p, (1) ~ ﬁ is much larger than Hyyqr (t) ~ —. We thus
expect the main contribution in (1.62) to stem from the terms involving H;p.

It is key to our analysis that we exploit the fact that the HFB dynamics happens on a
much shorter time scale than the corrections coming from Hy, and Hyyars. Observing that
A defines the coupling strength at the level of the HFB evolution, we consider the kinetic
time scale defined by ¢ ~ 272> 1. In order to separate the corrections in (1.54) and (1.55)
from the HFB oscillations, we choose 0 < A < 1.

Using quasifreeness of vy, we thus expect the main contributions in (1.62) to be given by

% [ as Q(Sm”l)(fo)(p) (1.66)
- |T\| s vo (Lo, Hwb<s)1>|28<p>, (1.67)
where
0" (h)(p)
| sin (L35 (2001 + 2(p2) - 2(p2))
(A3 Q(p1) + Q2(p2) — 2(p3)
(B(p1) + 0(p2))*(8(p — p1) +8(p — p2) = 8(p — p3))

8(p1+ p2—p3)
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(1 + (P + h(p2))h(p3) — h(pOA(P2)(1 + h(p3))) (1.68)

is a mollification of the cubic Boltzmann operator given in (1.4). The fact that energy con-
servation only holds approximately up to an error of order A> = O(z~!) is consistent with
the time-energy Heisenberg uncertainty principle, see Remark 2.5 for more details. Q(Sm"l)
describes collisions between fluctuation particles, one of which is being absorbed into or
emitted from the BEC. We expect that (1.67) is of size NT—; and that it dominates the Boltz-
mann collision term % fOT as Q(Sm"l) . It turns out that the presence of (1.67) owes to the fact
that, above, we only subtracted the leading-order condensate dynamics. Thus, in order to
resolve Boltzmann dynamics collisions, we need to pass to centered moments according to

ap — ap, — vy(ap). Denoting
Vra-2 ((a;' —vp2(a))ap —vp; 2 (ap)))
[A]

2
3 u”_z(a;ap) — |vpa—2(ap)|
[A|

Fr(p) ==

, (1.69)

and using that vy is number conserving, we expect — and will indeed prove — to have

1 T mo
Fr(p) = Fo(p) = /0 ds 09" (fo)(p) +Remyp, 2(p) +Lot.,  (1.70)

where "l.o.t." abbreviates "lower order terms".
Before moving on, we would like to reflect on the validity of this identity.

1.7.1 Fixed, N-Independent Lattice A* = 73

Recall that the fluctuation particles, at leading order, propagate with the Bogoliubov disper-
sion 2. These acoustic waves have the phase velocity

Q E
vp(p) = £ ,/M-l-)»ﬁ(p). (1.71)
Ipl 2

Averaging this over all particles yields
(vp)o = / dp fo(p)vp(p) ~ 1, (1.72)
A*

where we assume that fy is sufficiently regular for this argument. During the time r ~ 172,
the corresponding acoustic waves propagate a distance ~ A~2. In particular, we have

272> L & acoustic waves interfere with themselves.

Thus, when A is small enough, lower-order terms in (1.54) and (1.55) can constructively
interfere to an extent as to contribute to leading order terms of F in (1.70). As we will see
below, the effect of these contributions is large, depending on whether certain time-dependent
expressions, coming from HFB oscillations, have particular values in Q. This phenomenon
is slightly reminiscent of the Talbot effect [128, 190]. The absence of this effect has been
discussed in the context of the kinetic wave equation, see, e.g., [75, 107, 108, 113, 114].
To the best of our knowledge, this phenomenon has not previously been discussed in the
literature in the context of the quantum field theoretic emergence of Boltzmann equations.
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1.7.2 Continuum Approximation A* — R3

In order to elucidate the link with the expression for the BUU collision operator that is widely
discussed in the literature, we present a continuum limit, that is derived here. However, we
emphasize that this limit applies to the kernel itself, but not to the dynamics because sharp
energy conservation cannot hold for finite times, due to the Heisenberg uncertainty.

As observed above, we expect that, for L > 22, the self-interactions of the HFB waves to
be negligible. In fact, we show that in this limit, we can approximate sums [, dp = ﬁ > »

by Lebesgue-integrals ﬁ ng, with control of errors that include oscillatory contributions,
see Lemma 5.5. In this case, we establish that

T 1
Fr(p) = Fo(p) = + Q(fo)(p) + Remy;2(p) + O <W) LT3
where
QU] == —— / dp1 dpsdp3 8(E(p1) + E(p2) — E(p3))8(p1 + pa — p3)
@15 Jao

B(p1) + D(p2)* (I (p1) + T (p2) — T (p3))
(A + folp)A + fo(p2)) fo(p3) — fo(p1) fo(p2)(1 + fo(p3))) (1.74)

is the energy-conserving cubic Boltzmann operator found in the above mentioned literature.

1.7.3 Propagation of Quasifreeness
If we can show that Remy,-2(p) is, in fact, of lower order compared to % fOT ds ngoz),
then, by rearranging (1.70), we find that

1 T mo
Fr(p) = Fo(p) = /O ds 0¢""(F)(p) + Loit., (1.75)

which would prove that the next-to-leading order correction to the HFB dynamics of the
particle density is described by a cubic Boltzmann equation. Comparing with the analysis of
collisions for classical systems, bounding Rem; (p) in the present context includes controlling
recollisions, as is necessary in the context of classical systems. For more details on the role
of recollisions in the classical case, we refer, e.g., to [81].

While drawing comparisons to the classical case, we address the role of quasifreeness.
With the given choice of a number conserving and translation-invariant initial state vy, we
have that the joint distribution function of n particles satisfies

+ .+ +
vo(aplap2 ..ap dp, S .Apyap))

Sjoint(Py) = AP (1.76)
= f&"(py) + O(AITh, (1.77)
where p, = (p1,..., pn). In particular, we have that asymptotically, for large L > 1,

quasifreeness implies molecular chaos in the classical sense, which refers to factorization of
the joint distribution. Propagation of the factorized form is called propagation of chaos in
the classical context.

In the present quantum field theoretic context, it is an important task to understand in
what sense and in which scaling regime propagation of quasifreeness can be observed. An
important property of the HFB evolution is that it preserves quasifreeness. In particular, if a
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state (-)o is quasifree, then so is (V}; 5 (1) (-)VH Fp(1))o. This is a natural consequence of the
fact that the HFB dynamics arises as a quasifree reduction of the full evolution. In the recent
literature, this is explained on the basis of the Dirac-Frenkel principle, see, for instance, [34]
and [51] for more details.

Notice that the full evolution clearly does not preserve quasifreeness, as is expected for
an interacting gas. In order to study propagation of quasifreeness, it is crucial to control the
Duhamel term Rem; (p) accounting for all quantum ’recollisions’. Indeed, if we expand the
evolution of arbitrary expectations

V-2 (alﬁ,‘] affz .. .af,’;() = VU(“lel af}z e alﬁ,i) + Remy;—2(py) » (1.78)
controlling Remy, -2 (p;) implies that vy, > is quasifree to k' order. Similar to [129], we
do not need to propagate quasifreeness to arbitrary orders to derive a Boltzmann equation;
instead, adopting their notion of restricted quasifreeness, it is sufficient to show that vy, -2 is
approximately restricted quasifree up to eight-point correlation functions, see (1.62). How-
ever, we choose not to explicitly prove such a statement, and, instead, calculate the evolution
of f explicitly. We leave the proof of a more general result of the form (1.78) to the interested
reader, which will be straightforward using the tools developed in this work.

It remains to understand how we can control Rem; (p). For that, we use the fact that v is
bounded to show that

A 3
'mwm—ﬁm+wﬁ (1.79)

A
WWMSNWﬁMW, (1.80)

see Lemmas 4.4 and 4.5. When bounding products of non number conserving operators,
one needs to take into account the growth of the particle number, see Lemma 4.3. This is
consistent with the fact that fluctuation particles are being absorbed into and emitted from
the BEC. It turns out that in order to control Rem; (p), it suffices to only consider three, and
thus a fixed number of Duhamel iterations. Hence, we apply the bounds (1.49), (1.50) on
a;;a,, with the bound (1.79) and (1.80) on H; (¢) to obtain

T3 11
|Remz; 2 (p)| $ — sup v ((Nb +IAD? (1 +

VN

In order to bound v; (V] bk), we employ a result by Rodnianski and Schlein [269], see also [74],
to obtain that

N72A3 te[0,72-2]

3
WHM) ) (18D)

£
(N +[AD2) Sjape eXHAT (1.82)
In particular, (1.81) then yields the constraint

1Al _logN

, 1.83
A " loglog N (1.83)

in order to suppress Remy;-2(p) compared to the leading order Boltzmann term in the
evolution of F, see (1.70). In particular, this implies the scaling

loglog N
(1) L ~ 1 fixed: A ~ "l%);]gv ,

12— ~ (loglogN\7~
Q) L~12":2 (710%) .
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1.8 Fluctuations Beyond HFB

Now that we understand that approximate restricted quasifreeness can be propagated, we
would like to comment on the fact that the fluctuation dynamics does not preserve number
conservation. We have that, for a non number conserving quasifree state 1, a more general
version of the Wick-Theorem holds: Let b* := a* — 11(a*). Then p is quasifree if and only
if it satisfies (1.23) with the operators a* replaced by their centered counterparts b*.

Since quasifreeness implies that n—point correlation functions (a*! ...a"") are deter-
mined by the one- and two-point correlation functions, and since by (1.78), vp;— is
approximately restricted quasifree, we need to include the dynamics of

L v (ao)
b, = Al (1.84)
L Vt(apafp)
&(p) = 7“\' (1.85)

in our analysis. We have that ®; captures the corrections to the condensate dynamics. g; is
the rate of absorption into or emission from the BEC of pairs of thermal bosons.

Recall that, due to translation-invariance of the condensate, v; is also translation-invariant,
which is why we have that v,(a,) = ®;6(p), see Lemma A.1. Due to vy being number
conserving, we have that &g = gg = 0. Arguing as in the case of f above, we are also
interested in the dynamics of the centered, mesoscopic counterparts

vr;-2(ao)

Uy o= T (1.86)
Gr(p) = V122 (0ptp) = Vli\kl’z @p)vp;2(a-p) (1.87)
We show that
Wy = M + 0 (%) , (1.88)
N2x N2+,
Gr = (T +T»0 <ﬁ) (1.89)

where, assuming that o is real-valued, c; ( fp) is real-valued. At leading order, we show that
the dynamics of G is completely determined by F. As a consequence of (1.89), and recalling
(1.61) and (1.62), we have that G merely contributes lower-order corrections to the Boltzmann
dynamics for F.

1.9 Scalingof A and N

We emphasize that the parameter N >> 1 accounts for the > mass of the BEC per unit volume,
and is unrelated to the ~ 1 density of fluctuation particles around the BEC. Hence 1 /N yields a
small perturbation parameter in the expansion of the full dynamics, in addition to the coupling
constant 0 < A « 1 characterizing the HFB dynamics. BoBmann et al. [67] give an entire
expansion of the fluctuation dynamics in powers of A /N, in terms of effective Hamiltonians
for a given order of precision. Our analysis differs in that we choose A < 1 and N > 1
suitably in order to be able to extract effective equations for the moments F, G, W, while
keeping the error sufficiently small. In particular, our time scale is O ((log N/loglog N)?),
o > 0, instead of O(1). In the latter case, the Boltzmann dynamics cannot be observed.
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In the derivation of Boltzmann equations in classical collisional systems along the lines of
Lanford’s approach, O (1) many collisions take place during the relevant time scale (which is
inversely proportional to the mean free path). In our result, we encounter a similar situation;
the error of order O(N~17), in (1.75) dominates after O (1) collisions have taken place; this
can be easily seen by iterating the Duhamel formula (1.75) twice (as the k-th order terms
in the Duhamel expansion, of size O(N _k), account for k collisions). We also note that,
compliant with a kinetic scaling regime, particle velocities do not scale in our problem.

Our results are limited to the parameter regime A ~ (loglog N/log N)!/7~ when L ~
1727, similar for A ~ loglog N/log N when L ~ 1, and N >> 1. This is, in part, due to
technical reasons, but we do not expect the fluctuation dynamics to remain of the form (1.75),
(1.88), (1.89) for longer time scales, even if our approach is extended to the next order of

magnitude. We expect the analogous to hold for the parameter regime A ~ lolgolgoi,}v when
L~ 1.

Remark 1.3 For works studying the perturbation expansion for a fermionic gas, we refer to
[33,46-49, 51, 86, 87, 90, 91, 104, 106, 210, 211, 248, 261] and references therein.

2 Main Results
2.1 Notation

We introduce the rescaled L4 (A*) norms

_1 .
I fllzaeas == [AI" @l flleaar) ifl <a<oo, (2.1)
and accordingly
I fllanco,a == Il fllLacaxy + I flleco(ay (2.2)
I flla = IIfl1nco.a » (2.3)
m
1l =30 40D f |, o ifm e N 2.4)
n=0
Moreover, we introduce the weight
w(p) =1+ —. (2.5)
Pl
Whenever wf € L°°(Br(0) \ {0}) for some R > 0, we define the weighted norms
I fllw,a == llwflla, (2.6)
I liw,e == lwfllm,c - 2.7

Recall that
A
Heun(t) = —ﬁ/ dp3 0(p2)8(p1 + p2 — p3)
cu N (A 3
elurs (a;r1 a;;zap3 + h.c.)eii’H”FB , (2.8)
A A
Hyuart (t) = 7/ dp3 v(p1 — p3)3(p1 + p2 — p3 — p4)

N (A*)3

itHuFB ,+ ,+ —itHyFB
e Ay a,,dp3ap,e , 2.9)
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where

N A «
Huyrp = /A* dp (E(p)—l—)»v(p))aﬁa,, + 7/1\* dp v(p) (a;afp + a,,a,p), (2.10)

2

2
E(p) = %, and f Ar = ﬁ > A+ In this context, we also recall the Bogoliubov dispersion
relation

Q(p) = VE(P(E(p) +200(p)). 2.11)
We are interested in the evolution of the correlation functions
VT);z(a())
Vp = 4 2 (2.12)
[A]
vpi—2(ata,) — |vp—2(ay)|?
Fr(p)= ———2 0~ 10 P7 (2.13)
[A]
v —2(@pa—p,) — vpy—2(ay)vr,—2(a—p)
Gr(p) = LA——p—pl T opl T2 Top 2.14)

|A]

Asexplainedin 1.7.1, there are additional dominant terms in the Boltzmann collision terms
for F, and also G in the case of L ~ 1 fixed. Thus, we introduce the collision operators

1
Qu.cra(W1 = £ / 15,25,d85 cola(h,2)[J1(S2/4%) . (2.15)
(0,772
a7 vs,5 (Hs)UJ1 = bol V) (H,2)[T1(S2/2%) . j € (1,2}, (2.16)

and the pair absorption operator
T
Ad;T,A(h)[J] = / ds absquart,d(h.)\z)[l](s/kz)
0

1
+

= 21slESstzabsmb,d(hml](sz/ﬂ), (2.17)
[0,T]

for any test function J, where S = (S, S2). The expressions for bol¥), j € {1, 2}, coly,
absguart,d, and abseyy, ¢ are lengthy, and we refer the reader to Sect. 5.1.1 for their definition.
In the case L ~ A~2~, we also define the continuous counterparts Q. G.7.1, Ac:7.5 by
replacing sums f A+ dp over momenta by Lebesgue integrals # ng.

The subscript ’d’ in the notation refers to the fact that momentum is summed over the
discrete set A*; ’c’ on the other hand refers to the continuum approximation. Henceforth, we
refer to the case with L ~ 1 fixed as the ’discrete case’, and L ~ A ™2~ as the ’continuum
approximation’.

Q4.G6:1,2(h) 1resp.Qc G.1,,(h) is a Boltzmann collision operator for G, and it is, after
cancellations, quadratic in &, and Ay 7 5 (h) resp. A¢. 7,5 (h) corresponds to the leading order
of the expected rate of absorption of a pair of fluctuation bosons into the BEC, and it is linear
in h.

We denote the mollified cubic Boltzmann operator in the evolution of F by

Oa:r-s(Fs)[J]
sin (Q(Pl)"'Q;];Z)—Q(PS) (T _ S))

= / dp';
(A3 Q(p1) + QL(p2) — 2(p3)

3(p1+ p2— p3)
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(B(p1) + 8(p2)*(J(p1) + T (p2) — T (p3))
(A + Fs(p)(1 + Fs(p2))Fs(p3) — Fs(p1)Fs(p2)(1 + Fs(p3))). (2.18)

Again, in the continuum approximation, Q.. 7—s is defined by replacing the lattice sum |, ,
by the Lebesgue integral ﬁ Jrs3-

In addition, q[(l] ;'"'52 , are higher order Boltzmann type collision terms for the equations

governing Fr, where j accounts for the order A/ from which they are derived. As explained
above, they are of lower order when L ~ A2,

2.2 Assumptions

We summarize all the assumptions described in the previous section. We also add the fol-
lowing restrictions required in our results.

(D

vp(A) =

Tr:_,c Tr (e_KA) (2.19)

for all observables A, is a quasifree, translation-invariant state that is number conserving,
with

K= / dp K(p)aya,, (2.20)
A*
wo(atap) 1
= = , 2.21
folw) = =1 Ko @21)
and K(p) > ko > 0.
(2) v, satisfies
00 vy (A) =1 ([A, chb(t) + Hquart(t)]) s
w(d) = L= Tr (e FA) (2.22)
0 = e K
for all observables A.
(3) The Fourier transform v of v, see Sect. 1.6, is a non-negative, radial function.
(4) If L ~ 1is fixed, assume ||0|y.4, || folla < oo.
(5) If L ~ )\727, assume ||ﬁ||2(L%J+1),U),C’ ||f0||2(|_%J+1),C < Q.
In either case, we assume that v satisfies
/ dxv(x) = 0v(0) =0. (2.23)
A

Moreover, this implies that the leading order condensate wave function ¢g = |A| —1/2 can be
chosen to be a stationary, translation-invariant solution of the Hartree equation

idpr = —Adr + MA| % |2 . (2.24)

As described above, N denotes the BEC density, and A > 0 is an (additional) coupling
constant, defining the HFB coupling, see (1.34).
We are now ready to formulate our main results.
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2.3 Statement of Results

Theorem 2.1 (Discrete case) Let T > 0, L > 1, and let N > 0 denote the BEC density.
Choose

loglog N
= 208 (2.25)
log N
Then, under the assumptions stated in Sect. 2.2 and with the notations in Sect. 2.1, there exist
constants
Co = Co(I0llw,a, Il folla, 1A], T), (2.26)
No = No(I0llw,a, IAl, T), 2.27)

such that, for all N > Ny we have that
log 1 1 4logl
_ g A > 0 _ g A

51 = s = —
! log N 2 2  logN

>0, (2.28)

and that

i

T
v+~ [Cas [ apiorrs)
Nz2)AJO A*

Co
= N%"’B‘)\’ (2.29)
1 T
| / dp (Fr(p) — Fo(p))J (p) — N( f dS Qu;r—s5.(Fs)lJ]
A* 0
2
i, )
+ /MP dSy 1y,=y, ; A qd,F;SZ,ngz)[J])\
CollJ [l ¢oo(a%)
S TN (2.30)
1
| / dp Gr(p)J (p) =~ (Asra (P + Qugira(PLI])]
A*
CollJ 120004
= TN (2.31)

for all test functions J.
The error terms on the right-hand sides of (2.29)—(2.31) are subleading in N with respect
to the main terms appearing on the respective left-hand sides.

Theorem 2.2 (Continuum approximation) Let T > 0, r > 6, ¢ > 0, and let N > 0 denote
the BEC density. Fix

- (loglogN)m 232)
log N ’ '
L=A2%" (2.33)

Then, under the assumptions stated in Sect. 2.2 and with the notations in Sect. 2.1, there exist
constants

Co = Colldlag 5 | +1ymes Ifollag(g f41y.e07 & T). (234)
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C1=Ci(r,e), (2.35)
No = No(Illa( 5 | +1)m,e: 78 T) s (2.36)
such that, for all N > Ny, and for
Cilogl
— 1%%% L, (2.37)
log N

we have that

i r A
r - [“as [ apors)
Q2m)3NzA Jo R3

Co
, 2.38
N%-"—Sk ( )
1 T
[ dp (Fr) = ) s = [ 5 Qar—satrs)|
A* 0
Coll /1l 5 200
< %’ (2.39)
1
[ ar 611 = {(Acr P + QuiratP)|
A*
- Coll Il 5 J+1).c (2.40)

- N1+6

for all test functions J.

The error terms on the right-hand sides of (2.38)—(2.39) are subleading in N with respect
to the main terms appearing on the respective left-hand sides.

The main order term in the evolution of F is given by % O(fo)lJ], where

o(folJ]
= (2”7)6 /IR9 dp1dpadp3 $(E(p1) + E(p2) — E(p3))8(p1 + p2 — p3)

B(p1) + 0(p2))* (I (p1) + J (p2) — T (p3))
(A + folp) (1 + fo(p2) fo(p3) — fo(p1) fo(p2)(1 + fo(p3)) (2.41)

denotes the (energy conserving) quantum Boltzmann collision operator.

Remark 2.3 Theorem 2.2 is not the continuum limit for the dynamics. Instead, it quantifies
how the collision operator can be approximated by its continuous counterpart. In particular,
energy conservation cannot hold precisely for finite times, in consistence with the Heisenberg
uncertainty principle, see Remark 2.5.

Remark 2.4 1n this work, we are not attempting to analyze G in more detail beyond (2.40).
We expect a more detailed analysis to yield

Aot (O] + Qegira(F)IJ]I~T + T2, (2.42)

based on similar arguments as we present to control the Boltzmann collision term for F.

Remark 2.5 We point out that Q4,755 resp. Q..7—s,) contain the Bogoliubov dispersion
2 for sound waves propagating as fluctuations around the BEC. As stated in Theorem 2.2,
the collision operator Q emerges in the limit A N\ 0. In the limit A Y\ 0, we have that
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Q(p) — E(p), whereby we retrieve the Dirac-8 on the hypersurface {(p1, p2) € R® |
E(p1) + E(p2) = E(p1 + p2)} of energy conservation. Let

1 sin®(x/e) e sin®(x/e)
8e(x) = = - : 243
O = e T r 2 (243)
which defines a Dirac sequence, fR dx é:(x) = 1. Observing that
sin (Acubg%>
T A —BS((T — 52 (Acubﬁ)), (2.44)

where ApQ2(py) = Q2(p1) +2(p2) — 2(p1 + p2), this implies that the mollified quantum
Boltzmann collision terms in (2.30) and (2.39) have the form

T
/0 dS Qcra:T—s2(Fs)[J]

/r i5 [ a sin (A 202 57 )
= S H
A P Aor2(p) s(P3)

_aT / 4P3 332 (A 2B Hops; 1)
D

T
+7T/(; ds /de 8 22 (Acup(P))(T — S)dsHs(p3: J) (2.45)

T

where p; = (p1, p2, p3) and D = (A*)? in the discrete case, and D = R? for the continuum
approximation. Here,

Hs(ps; J)
= 0(p1) + d(p)*(J (p1) + T (p2) — J(p3))8(p1 + p2 — p3)
(14 Fs(p)(1 + Fs(p2)) Fs(p3) — Fs(p1)Fs(p2)(1 + Fs(p3))). (2.46)

where, in the continuum approximation, H contains an additional factor 1/(27)°. In par-
ticular, this representation makes manifest that the mollification of the quantum Boltzmann
collision operator corresponds to approximate energy conservation up to an error of order
0@t~ = O(A*/T), in compliance with the time-energy Heisenberg uncertainty principle.

Remark 2.6 Q in (2.41) can be evaluated via the Coarea Formula, yielding

Q(folJ]
_ T dH’ (py)
- @O JEprEo=Epipm) P2
(J(p») + J(p2) = J(p1 + p2))
(A + folp)A + fo(p2)) folp1 + p2) — fo(pD) fo(p2)(1 + folp1 + p2))).
(2.47)

@(p1) + D(p2))?

where d’H° is the induced Hausdorff measure on the hypersurface {(p;, p2) € R® | E( p1)+
E(p2) = E(p1 + p2)}.
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Remark 2.7 Theorem 2.2 implies that, for high regularity r > 6, for the maximal time scale
b ~ A2~ (log N/loglog N)%_ and length L ~ 272" & tyax, We obtain that

Wy ~ + O(NTY), (2.48)

1

N2~
T e
Fr — Fo~— + O(N™') (2.49)

for N > 1, where Fy ~ 1. We point out that one of the difficulties in extracting a quantum
Boltzmann dynamics for F stems from the fact that F is centered with |W|2, which is at least
an order O(NOF) larger than the Boltzmann collision term for F itself.

There are five characteristic length scales involved in our derivation:

(1) a BEC with large density N,

(2) thermal fluctuations with density ~ 1,
(3) the HFB coupling of size A,

(4) the linear system size L,

(5) the time scale 7.

A major difficulty that is overcome in this work is to identify a parameter regime which
allows the Boltzmann dynamics to dominate over error terms.

Remark 2.8 The collision term for G is a functional only of F, due to our choice of initial
data with Go = 0. Therefore, solving the Boltzmann equation for F, and substituting into

1
N2
integration time, yields G7. A key reason for which the extraction of the Boltzmann equation

for F is a difficult problem, is the fact that we expect Zg (F)[J] to be of the same order of
magnitude as the collision operator for F,

1
I(P[J] = NAc;T,)L(F)[J] + Qe.G;r A (F)J], (2.50)

1 T
Ir(FJ] = N/o dS Qc;r—sa(Fo)lJ]. (2.51)

In our case, Zg (F)[J] does not depend on G because the initial state vy is chosen to conserve
the particle number A},. The explicit expression for Zg (F) is somewhat lengthy and not
sufficiently enlightening to be presented here. We obtain a closed system of equations for
(¥, F, G) because of the approximate persistence of (restricted) quasifreeness of vg in the
scaling regime of this problem.

If we expand the dynamics of (W, F, G) to lower orders, we expect Zr (W, F, G) and
Zc (¥, F, G) to be coupled non-trivially.

Remark 2.9 Our purpose of introducing a condensate of large density N is due to the fact that
its subleading order interactions with the fluctuation field are of Boltzmann type (the leading
order is determined by the HFB dynamics); the latter are not drowned out by the error term,
due to the largeness of N. On the other hand, a quartic Boltzmann collision term emerges,
as expected, from our analysis, but it is a lower order term that is buried in the error terms
because it does not couple to the condensate.

We refer to Proposition 5.1 for more details. We do expect an analysis to the next sub-
leading order, conjecturally involving appropriate quantum corrections to the BEC and HFB
dynamics, to reveal this fourth order collision term of Boltzmann-Uhlenbeck-Uehling type,
separated from the error term.
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Remark 2.10 1If it is assumed that the BEC is non-stationary and that both the BEC and
the thermal fluctuation field are not translationally invariant, the first term in the Duhamel
expansion for v; (al‘j"aq), expressed with a single time integral, does not vanish, contrary to
the situation considered in the paper at hand. This additional term couples nontrivially to
both the HFB and the Boltzmann dynamics, and will lead to a different system of PDEs than
the one derived here. We expect the rigorous analysis of this system to be considerably more
involved, and leave it for future work.

2.4 Sketch of the Proof

The strategy of our proof is to start by calculating one collision, corresponding to calculating
the Duhamel expansion to second order in the coupling A. The tail in the Duhamel expansion
corresponds to recollisions. Using bounds available in the second-quantization formulation,
we are able to bound this tail. For that, it is crucial to exploit the fact that the initial condensate
density N provides a large perturbation parameter. Accordingly, the resulting leading order
cubic Boltzmann collision operator appears with an overall factor 1/N. This allows us to
compare the density of thermal fluctuation particles for positive times with the initial density.
We can observe that the superposition of HFB oscillations results in corrections to the leading
order 2 <> 1 processes coming from the collision of two thermal particles and one of those
being absorbed into or emitted from the BEC. In addition, if we consider the continuous
approximation, we show that the collision operator can be approximated by its continuous
counterpart.

We start by applying Duhamel’s principle to (2.22), using one recursion for ®, and two
for f and g. The main term is recovered by evaluating the terms involving vg. In Sect. 4, in
order to control higher-order terms involving the full dynamics v;, we establish uniform-in-
time bounds on f[J1, g[J1, Heup (t), and Hyuar: (t) with respect to the number operator N,.
We use an a-priori bound on the growth of v, (] bk ) established in [74, 269]. This will yield
the restriction |A|/A = O(log N/loglog N). Moreover, we show closeness of v; to vy in a
suitable sense, which allows us to exploit that vg is approximately quasifree.

In Sect.5, we control the tail term in the Duhamel expansion using the previously
established operator bounds and quantify propagation of moments of the number oper-
ator, using [74, 269]. The terms in the Duhamel expansion are expressed by way of
a(t) = Vi pp(aVyrp(t) and at (1). Hyrp is quadratic in a and a™, thus a(r) and a™ (1)
are linear combinations of a and a*. That enables us to control the proximity of v, to vy,
which is quasifree, in order to evaluate the main terms in the Duhamel expansion by means
of Wick’s Theorem.

In the discrete case, we observe interference phenomena in our scaling regime L <
t ~ A72. The Boltzmann collision terms are lattice sums in momentum space, and their
magnitudes depend on whether terms that vary with time have particular values in Q. This
effect becomes negligible for box length L ~ 172~ > ¢ and A = A(N) > 0 chosen small
enough. The latter means that we will ultimately set A = A(NN), and choose N large enough.

We prove a discretization Lemma 5.5 that allows us to improve the rate of convergence
dependent on the regularity of fy and 0, beyond the trivial bound. As we noticed after
completing this work, our approach here appears to be related to the numerical error estimates
for the trapezoid rule in numerical mathematics via Poisson summation, see [294].

We use the Duhamel expansion and the approximate quasifreeness of v; to relate fj back
to f. In order to control the large magnitude of condensate terms in the expansion, we need
to rewrite the equations for the centered expectations fs(p) — | D, |28 (p)and gs(p) — <I>%8 (p).
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In Sect. 6, we collect all results to compute the main order terms in Theorem 2.1 and 2.2,
and in Sect. 7, we compute the effective equations.

Remark 2.11 We note that the Boltzmann-type equations in Theorem 2.1 and 2.2 are presented
in their integral and weak forms. No smallness assumption on f is necessary for our result
to hold. In this work, we will not further investigate questions regarding the well-posedness
of the corresponding Cauchy problem of kinetic equations in the context of nonlinear PDE.
Some works in this direction are referenced in Sect. 1.1.2, see in particular [27, 29, 140-142].

3 Preliminaries

Some of our estimates will be formulated for finite number subspaces of F. We introduce
the projectors

P, := Pr,. 3.1
We will consider F;, embedded into F and we identify P, as maps F — F. By the spectral
theorem,

1 dz

P = .
" 2mi 3B 2 (n) Nb —Z

(3.2)

Observe that ay |f, defines a map
ax : Fp = Fy— (3.3)

for all n € N, with formal adjoint a} |g,_,: F,—1 — Fy. To study the weak formulation of
the effective equations, we introduce

flJ] = / dp J(p)atay,,

glJ] = / dp J(p)a_pay,

g1 = glJ1" = f dp J(p)aja”,. 3.4
As a convenient notation for iterating Duhamel’s formula, let
A, j):={sj 10,1} |s1> ... > s} (3.5)
be a j-simplex, where ¢t > 0 and j € N. We also recall that
HI (t) = chb(t) + Hquart(t) . (36)
Let (Vg Fp(t)):er be the solution of
10 Vurp(t) =HursVurp(t),
Vurg(0) =1.

We denote the d — 1-dimensional Hausdorff measure of a smooth, embedded hypersurface
in R? by dH~L.

If needed, we will keep track of the dependence of constants on parameters by adding the
respective parameters in a subscript. Whenever the constants have no explicit dependence,
they are assumed to be universal.

The following result is a direct consequence from iterating (2.22).

3.7
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Lemma 3.1 Assume that A € 2 is an observable, and that v, is defined as in (2.22). Then,
for any k € N, we have that

k—1

vi(A) =) (=)' / dse vo([[- - [A, Hi(sD1. -+ 1. Hi(s0)])
=0 Alr,]
FEDk [ s (AR GOL L HG0) . G)
Alt,k]

We will be particularly interested in the cases A € {ao, f[J], g[J/]}. To study the expan-
sion, we derive the following useful identity.

Lemma3.2 Let

Q(p) = VE(p)(E(p) +230(p)) (3.9)
denote the dispersion function for acoustic excitations, and let
ay (1) = Vipp0ay Varp), (3.10)
ap(t) = Vypg®)apVurp(t). (3.11)
Moreover, let
_ (—E(p)—=2u(p) —2r0(p)
Mp) = ( W) E(p)+ mm) : (.12)
Then,
ay (1) sin(tQ(p)) at )
p = g p
(a_p(t)> [cose(pn1—i ) M(p)] <a_,, . (3.13)

Proof We obtain the following system of ODE:s,

it (t) = Vipp () ab, My p 1 Virs (1)

= —(E(p) + Aﬁ(p))a,‘f(t) — AV(pla_p(t), (3.14)
idra_p(t) = Viypp (1) [ap, K pp) Vi rs (@)
= (E(p) + 20(p)a_p(1) + Aﬁ(p)a,f @, (3.15)
where E(p) = %2, so that
o (af@Y a()
i0; (ai,(t)) = M(p) (J,,(r)) (3.16)
with
_ (—E(p)—=2u(p) —2r0(p)
M(p) = ( W) E(p)+ mp>> ' ©17)
We observe that M (p) satisfies
M (p) = Q*(p)1, (3.18)
where
Q(p) := VE(p)(E(p) + 220(p)) (3.19)
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denotes the dispersion function of acoustic excitations; see, for instance, [112, 274]. In
particular, we have M~!(p) = ﬁM(p).

Hence,
<a;f <f>) — exp (_i, (—E(p)A —A0(p)  —A0(p) )) (a;,*)
a_, (1) Wp)  E@+anp)) \as,
+
= (cos(tQ(p)) 1—i sin(tQ(p))%) (;j’p) . (3.20)
This finishes the proof. O

Corollary 3.3 Assume g € [1,00] andn € {0, 1,2, 3}.
Moreover, recall the assumptions v > 0 with v(0) = 0 from Sect.2.2.
Vi, Vo, defined by

af @) = (P +ix*sin(Q(p))Vi(p)*)a) + irsin(Q(p))Va(pla—_,. (3.21)
are given by

(p)?

Vi(p)? = — (3.22)
: Q(p)(Q(p) + E(p) + 15(p)
v(p)
Va(p) == . (3.23)
Q(p)
They satisfy the bounds
nys2 ~An+2
ID"Villy < CIIvIIZ(L%JH),w,C, (3.24)
n ~Anpn+l1
1D Vallg = CUOIL 5 g1y e - (3.25)
Similarly,
up(t, p) := P L id2sin(Q(p)r) Vi (p)? (3.26)
.(t, p) == irsin(Q(p)t)Va(p) (3.27)
satisfy
3. (2, e amy < CA+ 20112, ), (3.28)
o (z, Ma < CAlID]lw,a (3.29)
forallq € [1,00], all . € (0, 1], and all t > 0.
Proof Lemma 3.2 implies
. —E(p) — A(p) v(p)
at(t) = cos(tQ(p))a; —isin(t2(p)) (—a+ —A a_, ). (3.30)
’ r Q(p) Porep)
Define a := E(p) and b := E(p) + 210(p). Setting
1 ja+b
Vip)r = =(—= —1), 3.31
7= 557 (3:31)
1b—a (p)
Va(p) = — = , 3.32)
X0 = 557 T e (
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we have that

ab () = (P +i2?sin(Q(p))Vi(p))a + ixsin(Q(p)1) Va(p)ap .

We start by establishing pointwise bounds. We have

2
avp __ (Va-VB)  a-ap
2v/ab 2+/ab 2/ab (ﬁ-i— ﬁ)z
In particular, we get
20 2
Vi(p)? = o) ——
Q(p)(WE(p)+E(p)+210(p))
(p)?

Q(P)(Q(p) + E(p) + 10(p))

Using v > 0, we have the pointwise bounds

~2

2 )
|Vl|§2ﬁ’

We thus have that

2 A2
IVilla = Cliolly.q-
IValla = Clivllw,d -

Finally, set

2x2
hi(x) == 5
VT4 2xx(1 4 /1 +2x)

‘We have that

b(p) )
E(p)’’
v(p)

Va(p) = h2(?p))

Vi(p)?* = h(

Using Lemma C.3 with n € {1, 2, 3}, we obtain
nys2 . Ann
ID"Vily < C“hl”C"([0'”””2(L5J+1>,u,»,c])”v”2(|_§J+1),w,c’
n SN
ID"Vally < Cllhz||cn([o,Hﬁnz(LﬂH)M])IIUIIZ(L%JH)MC~
A straight-forward calculation yields
)
||h1||c"([0,||a\|2(L%JHMC]) < Cllvllz(L%JH)’w,c,
2l ool | 1y ed = CION25J+0,0,c

Combining (3.43), (3.44), (3.45), and (3.46) finishes the proof.
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4 Trace Estimates

In this chapter, we omit the subscript A* from f A% in our notation, as we will only consider
f = fA* as sums over A* in the sense of (1.51).

4.1 Computation of the Partition Function

We establish estimates on the partition function on finite particle number subspaces of the
Fock space F. The estimates derived here are needed to control the error terms coming from
the expansion in Lemma 3.1.
For the next lemma, let us introduce some notation. Let us denote
al(,l) = a;' and ag,_l) = ap. 4.1)
Let

Pla.a*1 = | [ dpihtoy. ) [1e? 1k €N, At € S@),
j=1

(Bk:(ol,...,ok)e{:lzl}k} 4.2)

denote all monomials in a, a™. Here and henceforth, we define ordered operator products
via multiplication from the right, by

n+1

]_[A, .=(1_[A> we1.n €Ny, 4.3)

0
[T4 = 4.4)

Jj=1

Let us denote

k
sign(4) := Y o (4.5)
whenever A = [ dpyh(py, @) ]_[] 1 ap . Note that we have

k k
Nb,]_[ =30 [Tan. (4.6)
j=1  j=1

which, in turn, gives
[Np, A] = sign(A)A 4.7)
whenever A = [ dpyh(py. oK) ]_[ -1 a’ 171 Us1ng the spectral decomposition
1 dz

P, = — , 4.8)
" 2mi BBl(n)Nb_Z
2
with counter-clockwise contour, it follows that
P,A = APnfsign(A) (49)

@ Springer



85 Page300f123 T. Chen, M. Hott

for all A € Pla, at]. We will refer to (4.9) as the Pull-Through Formula for projectors, see
[35].
Moreover, if sign(A) # 0, (4.7) implies that

V() = V([Np, A]) = 0. (4.10)

1
ign(A)
Lemma 4.1 (Moments of the number operator) We have for all £ € Ny that

L L
vo((Np + 1)2) < Cojpolal AIZ . 4.11)
Proof Let K, := [,.dp (K(p) — u)a;rap. Then we obtain that

Zo(p) = Tr(e *n)

[o¢]
1_[ Zefn(K(p)fu)

peA* n=0
-] —
e 1 — e~ EK(p)—p)
oAl s dplog (1=~ (K71 (4.12)
for any u < ko. Let
Kn = _(_aﬂ)"|M=0/A* dplog (1 — e~ KP=1) (4.13)

denote the n'" cumulant for n € N. Let ( ) denote the multinomial coefficient, and R(¢) :=
{ry € Né | anl nr, = £}. Then the Faa di Bruno formula, see [295], yields

(=00)° ], o Zo(10)

vo(N) = Z (0)
Y ]_[ (|A|K”) . (4.14)
reR(0) n=1 n!
Observe that we have
1
= dp ———— = d , 4.15
K1 /A P K —1 /A pfo(p) (4.15)

recalling fy from (1.57). More generally, Lemma A.2 implies
kn = Cnll folla (4.16)
for all n € N. As a consequence of (4.14) and (4.16), we find that
(Vs + DY) < CoppalAl’, @.17)
where we used that |A| > 1. Using
v (N + 1)F) < uo(Wp + D) Tup (W + D (.18)

yields the half-integer case. This concludes the proof. O
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Remark 4.2 We use an argument from [117]. Using the fact that

- _+_ K _ K(p) +
e tayer = ay , 4.19)

cyclicity of the trace implies
Tr ( Ka*ap)
CTre KAl
Tr (a;re”ca,,)
Tre—K|A|
o T (e Xapaf)
" e Fial
= P (fo(p) + 1), (4.20)

fo(p) =

— oK)

Thus, we have

1
Jo(p) = Ko 1 4.21)

Lemma 4.3 (Operator product bound) Let A € Pla, at] be monomials in a,a™, yj > 0,
and k; € N be such that

I PnAj Posignapll < vjm+ AN (4.22)

forall j €{1,...,¢}and all m € Ny. Then we have that

e
|v(l_[A ) < (1_[ ~)u((N+Z|sign(Am)|+|A|)Zf':1"f/2) (4.23)

j=1 m=1
for any state v.
Proof Observe that
sign(A) = Z sign(A;) . (4.24)
j=1
In addition,
o.¢]
dop=1, (4.25)
Puf(Np) = Puf(n) (4.26)

holds for any measurable function f. Hence and by applying (4.9), we have that

™M¢

[v(A)| < [v(Py APy —sign(a))|

3
Il
=}

tnqg

‘ < l_[ Pn Zm 151gn(Am /Pn—z’{z:l sign(Am))P”_Sig“(A))‘ - (4.27)
j=1

3
Il
o
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. ¢
Denoting B, := ]_[j 1 P, _y! mgn(Am)Aan—Z',;:l sign(A,,)* Wecan apply Cauchy-Schwarz

to v to obtain the upper bound

oo

1 1
[v(A)| < Z v(P,)?2 V(Pn—sign(A) B;Bn Pn—sign(A)) 2
n=0

o0

1 1

< D IBullv(P) 2 v(Po—gign(4))?
n=0

8

1

(Z 1Ballv(Pn))’ (Z B Prsenia)
n=0
= (;

1 (e

AR (X Busmalven)’. @28)
Here, we used Cauchy-Schwarz to ZZO:U, followed by the fact that P, _gjgn(4) = 0 for all
n < sign(A)4+, as A > 0 in the sense of quadratic forms. Notice that we have

Nl—=

i M8 I

n=sign(A)_

J4
I1Bnll < 1_[ I Z’ ! slgn(Am)Aj P"—Z;];I:l sign(Am)“
j=1
14 Jj—1
= [T7i((n =Y signcan),, + |A|)
j=1 m=1
4 e 1
. >i=1kj/2
= (TTw)(n+ X rsiencaml +1a1) = (4.29)
j=1 m=1

by assumption (4.22). Similarly, we have that

4
. . kj/2
1Bnssisncar | = [T v ((n +sign(a) = 37 sign(am) , + A1)

m=1

~.
~

[ .
[Tr((n+ Y siencam), + |A|)k"/2

(l£[ )(n+Z |s1gn<Am>|+|A|) s (4.30)

m=1

~.

due to (4.24). Collecting (4.28)—(4.30) and applying (4.26) again, we then obtain

TN = Tharki/2
pl = ([Tn) X (n+ 3 Isign(An) + max &) V()

j=1 n=0
4 4
= (TT2s)e(v + X 1sign(anml + 1a)==47) 431
Jj=1 m=1
O
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4.2 Operator Estimates w.r.t. \V,,

In our analysis, we will bound various operators relative to powers of the particle number
operator N\j, in conjunction with previously established estimates on the partition function.

Lemma 4.4 (Hcup(t) bound) We have that

16
Heun(t) = Y A% (1) (4.32)
k=1
with monomials Agu)b (t) € Pla, at] such that
3
. . MM + |A])2
(k) 6
1AL, O Pull < Cllvllw,a(l 4+ A0]lw.a) —Jv (4.33)
for any M € Ny, and | sign(A%) (1))| < 3.
Proof Corollary 3.3 and evenness of 0 imply that
chb(t)
A
- - + +
= ﬁ f( oy 123 DPDIP1 + P2 = P (g, (s 6) + hc.
(0})
Z / dps 8(2 ojpj)d(p2) ]"[(g,(p,, opap’’) + h.c.
3 A*)3
a e{£1)’ Jj=1
(4.34)
where 03 = (01, 02, 03), and
8j(pj,0j) =8¢, 1u5(t, pj) + 80,102, pj), J€{l,2}, (4.35)
83(p3, 03) 1= 803, —1Un(t, P3) + 803,105 (F, P3) - (4.36)
Abbreviating
3 3 )
A (o
Acup(03) == /a’p38 Zajpj v(p2) 1_[ (gj(pj,gj)apj./ )’ 4.37)
j=1 j=1
it is sufficient to prove (4.33) for A.,5(03), since the adjoint satisfies
|Acub(@3)* Pyl = |1 Py, 30 Acub(@3) Py |l = | Acun(03) Py, M-y3_ ol (438)
due to the Pull-Through formula (4.9).
Using Wick’s Theorem in Appendix A, we have that
3
a;gl)agz)agﬂ(g(z ojpj) = g:l) ;(;2) (03) . 8(2 aip;)
j=1
+8(p1— pz>a<p3>6m,_lsm 1ay™
+8(p1 — P3)S(P2)day, 1503 105
+8(p2 = P3Py 1805105 . (439)
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We want to apply Lemma A.4 to each of the terms associated with the terms in (4.39). For

that, we need to ensure integrability for each of those terms. The terms involving aég) contain

2 momentum-é where the only free momentum comes with a coefficient vy, resp. v,. Using
lag Pyl = llaoPars1 1l (4.40)

Lemma A.4 then implies

IIG(()U)PMII = 8o,1llag Pull + 80,1 llao Pull

<VIAIM+1). (4.41)

For the cubic term in (4.39) and if not all 6; = 1 or all 0; = —1, Lemma A.4 implies

I+ Acup(@3) : Pyl
2 3 2

~ 1 Sg i — .
< Mo 12 [T o™ ua(pa) P8 | 3 pjoy | g 12,
j=1 j=1 T

1
2 s 3 2
~ 1 o1 Jor o
|||v(p2)|21_[1|MA(Pj)| 7 foa(p3)lPosts .lef"f g, 13,
Jj= Jj=

2
3 1
M+ o; g, (4.42)
=t

using the notation in Lemma A.4 with n = 3. Integrability of 0(p,) is sufficient to yield that
the RHS is, indeed, finite. If o; = 1 for all j, we have that

s Acup(1, 1, 1) 2 Pyl
< (I9(pus(t, pous(t, p2)vi(t, p3>||§%2L;ol LM =2)

HI0(p2)ur(t, pOus(t, p2)oi(t, p1 + Pz)lli[z’zlAl)%\/M(M -D. (443

Similarly, we find that

Il :Acup(=1, =1, —=1) : Pyl
< (1020, vt P pITs e M+ 1)

1
HID(p2)va (e, prVA (. p)TE(E, p1+ P23 1o |A]) V(M +3)(M +2)

(4.44)
Observe that
1
”H”LZ(A*) = ﬁ”H“ZZ(A*)
< | Hlla- (4.45)

Since we are summing over a lattice, there are terms for which momentum requires the
summation over 9(2p) or v, (2p) resp. v;(2p). In order to use the upper bound [|9]|y,4, we
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employ the fact that

| > HEP)| = 1H - (4.46)
PpEA*

Collecting (4.38), (4.41), (4.42), (4.43), (4.44), (4.45), and employing Corollary 3.3, we have
shown that

~ N 3
1 Acub(@3) Parll < Clldllw.a (1 + AlIDllw.a)*(M + AT, (4.47)
where we also used the fact that |[A| > 1. Together with (4.34), this finishes the proof. O
Lemma 4.5 (Hyyar:(t) bound) We have that
16
k

Hauart (1) = Y Al (1) (4.48)
k=1
with monomials Aqua” (t) € Pla, at] such that

g MM + |A])?

k
AR i O Py < CllDlla (1 + 2018].0) .

(4.49)

forany M € No, and | sign(Aly,, ()] < 4.

Proof We follow the steps of the proof of Lemma 4.4. We have that
7_(quart (t )

A R
= 5N /dp4 0(p1 = p3)3(p1 + p2 — p3 — pa)ay (Da), (D)ap, (t)ap, (1)

=on f dpy Zo,p, v(cnp]+agp3)]'[(g,<p,,a,)ap,) (450)

LSS Jj=1

where 04 = (01, 02, 03, 04), and

351 3o —1 .
“l([»P') J UA(I»P') '/' ’ ]6{172}7
gj(pjooj) =~ T (4.51)
u(t, pj) v, pj) i, j € {3,4}).
Analogously to above, we denote
4 4 )
A~ agj
Aquart (04) = / dpy 5 (Y oip; | d@ipn+asp) [T (2ipsn0p)ay)”) - 452)
j=1 j=1

Wick-ordering using Lemma A.3 yields

Zglpj Ha(aj
=3 fojpj Hapj’) + Z 8(pji — Pj)8;,.~180,.1
j=1

]l <]2
J3<Jja

(0j3) (o)) |

(3(01'3]7/'3 +Gj4pj4) : ap]3 ap]4 T+ |A|8(pjz - pj4)8<7_,~3,—18014,1) s (453)
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where {ji, ..., ja} ={1,...,4}.

We start with the 0-order terms. These occur whenever two pairs aa™ exist, each with an
annihilation operator to the left of a creation operator. This implies an integrable coefficient
vy, resp. v, for each of the corresponding momenta. Together with the deltas coming from
the contraction, the resulting terms are integrable and are bounded by

+

IAIH > /dmv(mpl+U3ps)]_[gj(p,,6,)

Jl<12
J3<Ja

8(pji = Pj)8(Pj5s — Pjy)da;,,~180,,185,,,~180;,.1 Py H
< CAZ|AIIDI, 4 (1 + 2215115, )% (4.54)

where, as above {ji, ..., ja} ={1,...,4}.

For terms quadratic in a, a™, there again remain two independent momenta in the inte-
gration after integrating out the §’s coming from momentum conservation and the single
contraction. Observe that one of these §’s comes from a contraction with an annihilation
operator left to a creation operator. Thus, the corresponding momentum comes with an

integrable factor vy (¢, pj,) resp. v;.(¢, pj,). The other momentum comes with a coefficient
S =1 . (U/z) (9jy)
ualt, Pj3) 7 : 7’13 a*"/3“/41’/3

v(o1p1 + o3p3) : aﬁ,‘?)ag‘zmm .. Then, integrating first over pj,, pj, and then pj,,

Lemma A.4 implies

:, unless j3 = 3. In that case, we have a coefficient

” Z /dp4v(01p1+03P3)HgJ(PJ!UJ)

Jl <12
J3<Ja

©@3) (@)
8(pji — Pp)S(O 1)y + 0P ju)Se; ~180),,1 1 Ap ap PMH
< Cldllw,a(1+ 27 [19llw.a)* (M + |A]) . (4.55)
Finally, if not all 0; = 1 or 0; = —1, Lemma A.4 implies

” : quart(‘74) : PM”

4
<C|||U(01P1+03P3)|21_[|Uk(f PP st pje2)l f+2-‘a<Zo,p,)anoo ,
j=1 j=1 SR
I16(o1p1 + 03p3)12 sz P e, pj42)l f+218<Zo,p,>z||Loo .
Jj=1 j=1 PI-%pyy
(M +1)*. (4.56)

By flipping the roles of (1, 2) and (3, 4), it is sufficient to show boundedness of only one
of the norms. If 1 € J_, we can use integrability of |v, (¢, p1)|, if 2 € J_, there is a factor
|up(t, p2)|. Integrability w.r.t. to p3 and p4 is always given due to the factor |0(o)p; +
J3p3)|8(2j:] ojpj).Incase J_ = (J, Lemma A.4 implies

[l : Aquart(lv L1, 1): Pyl

< (I0(p1 + p3)va(t, pOvalt, pux(t, p3)u(t, P4)||212)2L2c% o (M —3)
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A — — 1
+19(p1 + p3)vale, po)va(t, pis(t, p3)aa(t, pr + pa — p3)||2le)3 |A])?

VMM —1)(M =2). 4.57)

I : Aguare(=1, =1, =1, —=1) : Pyl can be similarly bounded. Collecting (4.54), (4.55),
(4.56) and (4.57), and using |A| > 1, we have shown that

1Aquari @) Parll < ClIdllw.a(L+ AlDllw.a)® (M + [A]). (4.58)
Using (4.50), this concludes the proof. O
Proposition 4.6 Let A € Pla, a™] be a monomial in a,a™, y > 0 and £ € N be such that
£
APyl < y(M +|A]?, (4.59)

and that | sign(A)| < €. Letsj i € Alt, j+k]andt > 0. For the moment, we abbreviate by

AHiulegua”(sj_,_k) all terms that contain one factor A, j factors Heyp, k factors Hyuart,
all at possibly different times s,,. Then we have that

|v(AHZubHIt;uart (sj+k))|
_ YCMDlw.a) A+ Al a)
- N%-Hc

(4.60)

3j+4k+l>

V(NG +3) +4k+ 41D
for any state v and all A > 0 small enough.

Proof Decomposing Hyp, and Hyyars into monomials as in Lemmata 4.4 and 4.5, we apply
Lemmata 4.3, 4.4, 4.5 together with assumption (4.59) on A, we obtain that

. Crlld JTk 1 + 211D 6j+8k
AR Ak ) < LCA )+ Aol

cub

NI
3j+ak+e
u((Nb+3j+4k+e+|A|) 2 ) 4.61)
As a consequence, we obtain that
ok Y CADllw,a)? (1 + AlID]|w,a)® T8
|U(AHZ»uquuart (s]+k))| S 2 i-‘,—k 2
N2
3j+4k+e
(V43 +4k+ e+ 1A) 7). @462)
This finishes the proof. O
Lemma4.7 Given a test function J € €2(A*) N £ (A*), we recall that
fll= / dp J(p)ajfap, (4.63)
A*
glJ] = / dp J(p)a_pay . (4.64)
A*
Then we have
| P fTI1Pull < Sl g (aym (4.65)
| PnglJ1Pp Nl < Snm+2llJ I2n00,d(m + 1+ [A]). (4.66)
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Proof Due to [N, f[J]] = 0, we have that

Py fII1Py = 8mn / dpy J (p0S(p1 — p2)ay,ap, Py . (4.67)
Then Lemma A.4 in Appendix A implies
| P fLT1PR NI < Smon 1 lloom (4.68)
For g[J], we have that
PuslINPs = Sumsa [ o2 J081 + p2)apas (469)
Then Lemma A.4 implies

| PuglI1Pall < Snmsay/ 113 m + 1) + AL [3/m £ 2
< Snme2(l I L2a%) + 1 lloc) (m + 1 4 |A]) (4.70)
This finishes the proof. q

Lemma 4.8 (Propagation of moments in HFB evolution) The HF B evolution Vg rp(t) satis-

fies
| NG + AN Vi rp ()N, + (A2 | < eKellwart 4.71)
for all £ € N and some positive constants K¢ > 0.
Proof Let y € F. We have that
i (Vs OV, W + ADVars ()
= (Virs W, LG + 1AD 1y Wi s )0
= i(n +IAD (Ve rs OV, [Pa, HEVHER (V). (4.72)

n=0
Employing (4.9) and recalling (1.34), we have that

[Py Hev ] = M(Pugl8]Pusa — Pu_ngli1Py — hoc). (4.73)

As a consequence, we have that

0 (Vi s 00, N + IAD Vi s )0 |

= ZA’ Z(ﬂ + AN IM (Vi g (O, (Pag[d] Py — Pn—2g[ﬁ]Pn)VHFB(t)w>‘
n=0

= 2x| D 1+ [AD" = (n+ 2+ |AD T (Vi pp (Y, Pugld]Pat2Virs(Y) \ :

n=0
(4.74)

Using the Mean-Value Theorem and Cauchy-Schwarz, the last inequality implies

00 (Virrs 0%, s + 14D Virs0)¥) |

< Kok Yy (424 A T PV EB O Pagld) PaaVars(OY ] . (475)
n=0
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Applying Lemma 4.7 followed by Young’s inequality, we find

00 (Vi s @0, N + IADVirs ()0 |

o0
< Kehbllwa Y (424 AN (0 + 1+ |A]

n=0
((VuEB(OY, PiVuFBOY) + VEFBOY, Pas2VEFBY))
< Kerllolhw.a (Vrs %, No + AD Vi rpv) (4.76)
Employing Gronwall’s Lemma concludes the proof. O

Remark 4.9 Using Corollary 3.3, we find that

Vi ONpVHFB(E) = f dp (Jus(t. p)Pafap + |valt, p)lPa_pa®,
+u (¢, p)Oit, pafat, + (¢, p)uilt, playa,
= fdp (Qua(t, PP + i e, pHafa, + Al v, p)I®
+urt, pvi(t, pafat, +u(t, pyoilt, papa—p, (4.77)
where we used the CCR together with the fact that v, is even in p. Lemma 4.7 then implies
Vi s NG + IAD Vi (VNG + [AD 2| < Clau - (4.78)

As an immediate consequence of Lemmata 4.8 and B.2, we obtain the following statement.

Corollary 4.10 (Propagation of moments) Let |A| > 1. There exist constants Cy ,,, K¢ > 0
such that for any £ € N, we have that

v (o + [ADZ) < CoppypgeXeImablAl 75 (4.79)

Proof Assume that % € N. Define

Un () := WY/ N|Algole T WI/N|Algol , (4.80)
and let
e (A) = vo (U (1) Al (1)) . (4.81)
There exist Ax > 0, Y 22 Ay = 1, and ¥y € F such that
o0
pe(A) = ) i (Wi, AWy) (4.82)
k=1

Then we have that
£ £
v (Vs + D) = s (Vi O + DI Vi)

= 3 ha (W Virpa OWs + D2V ()
k=1

IA

oo
eKelllare 3 5, <1yk, N + 1)%\pk>
k=1
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= Keliloaht (N +1)F) (4.83)
using Lemma 4.8. Similarly, we write
o0
vo(A) = ) (D, ADy) (4.84)
k=1

for some ay > 0, Z,fil ar = 1, &, € F, and we obtain that

(N + DF) = e (@, T3y (O + 1 3 (1))
k=1

oo
- CegKlHﬁ”w‘dMAlt Z'uk <q)k(Nb + 1)% <1 =+ Nb ) q>k>

k=1 N|A|
o Np
=C K@H“”w,dMAU N 1 % 1
“ RGN * NIA|
0 4
< Co eI A2 (4.85)

where we used Lemma B.2 followed by Lemma 4.1. Collecting (4.83) and (4.85) and using
|A] > 1, we obtain that

£ 1D £
v (N + D2) < CopfopgeceIPlmat Al A 7 (4.86)

The half-integer case follows analogously to (4.18). This concludes the proof. O

5 Control of Error Terms in the Expansion

Again, we write [ = [ A+ for brevity, to account for lattice sums over A* in the sense of
(1.51).

Proposition 5.1 (Tail estimates) Let T > 0 and t < A2 % € ©O,1), |[A] = 1, and
J € L1(A*) N ELX(A*). Then the following holds true.

(1)
O, = —i fot ds VO([a°’|7Z‘|'”b(S)]) + Rems(z; @) (5.1)
with
| Remy(; @)| < C|,3wyd’”f()”deecﬁ"“’*‘llA/)‘TK/\)le + '2—') (5.2)
(2)
[ v s - foon = =i /0 s I ]’S"I““”(m)

/ VO([[f[J], Heun (511, chb(SZ)])

— dS2

Alt,2] [A|

+Rema (¢; f[J]) 5.3)
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with
| Rema (75 fLJD)]
4 eCHﬁ”w,d'A‘/)\T|A|6 |A| 2
= Chiollua.lfolla (T ”JHZOO(A*)M—NZ(l + W) . (54
(3)
t
/@nmmmzﬁfdﬁﬂﬂﬂmwﬁm
0 [A|
/ v (18171, Heup (s1)], Heun (52)1)
- ds,
Alr,2] [A|
+Rem; (t; g[J]) (5.5)
with

| Rema (z; g[J])|
ecuﬁ|\w<d|A\/AT|A|6< |A|)2

4
= Chitwalfolla ST 1 2000,d SaN2 N (5.6)
Proof Recall that vy being number conserving implies
vo(ap) = volapay) = 0. 5.7
Let A € Pla, a™], be a monomial with data such that
¢
| PrAPy—signayll < y(n+ A2 (5.8)
with £, | sign(A)| < 2. Lemma 3.1 implies
t
MMZWM%J/dWMAHmm
0
—/ dsyvs, ([[A, Hi(s1)], Hi(s2)]) (5.9)
Al1,2]

t
= vo(A) —i/O ds vo([A, H1(s)])
—/ dsyvo([[A, H(s1)], H(s2)])
Alr,2]
—I—i/ ds3vo([ILA. Hr(s)]. Hi(s2)]. Hi(s3)])
Alt3]

+/A[ i dsqvs, (ILLA, Hr(sD1, Hi(s2)], Hi(s3)], Hi(sa)]) . (5.10)
t,

where

Hi(s) = chb(s)+Hquart(S)» (5.11)

see (3.6). In order to simplify notation, we shall abbreviate by AHiu hqucuart(sj-l-k) all terms

that contain one factor A, j factors Hcyp(se), k factors Hyyars (sm), all at possibly different
times. Lets;x € Alt, j +k], t < TA 2,1 e (0, 1). Proposition 4.6 then implies
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j k
| Vsj-+k (Aququuart (Sj+k)) |

Anjtks i ~ i
_ Gyl g A+ B, )

3j+4k+t

usj+k((N,,+|A|) 2 ) (5.12)

N%+k
for all N > 0 large enough. By Corollary 4.10, we obtain

J k
| Vst (Achquuart (Sj+k )) |

. 3j+4k+e
. MTEA|T 2
K i l19llw.al Al/AT
< Clfal ol kv €Il i (5.13)
Similarly to (5.12), we have that Lemma 4.1 implies
}\,j+k |A| 3j+421k+l7,
ik
190 (AM Hauart Si+0)| = Clilua.l follars k¥ i (5.14)
Due to vg being number conserving, see (4.10), we have that
|UO(AHiubH§L¢art(Sj+k))| =0, (5.15)

whenever the total number of creation and annihilation operators in AHiu ng wart (Sj+k) 18
odd.
In the case A = ag, due to Corollary 3.3 and using 9(0) = 0, we have that

ap = ap(s) (5.16)
for all s € R. With that, an easy computation yields
(a0, Heup ()] = Lao, Hip, 1(s)
= %/ dp (p)(ay ()ap(s) + ap(s)a—p(s)) . (5.17)
Using Corollary 3.3, we obtain
[a0, Heup ()] = fII1()] + gl L2()] + g*[J3()] + Ja(s) (5.18)

where, with the notation of Corollary 3.3,

A5
Ji(s, p) = %) (lur(s, p)I* + lva(s, p)I* +205(s, pliz(s, p)) . (5.19)
_ M) _ _

Ja(s, p) = N (vals, p) +1x(s, p))n(s, p), (5.20)
A5

J3(s, p) = j/%) (un(s, p) + Vi (s, p))Vals, p) . (5.21)
A

Ja(s) == ﬁf dp 0(p)(lvals, p)I* + (s, p)Ui(s, p)). (5.22)

Note, that in (5.18), we used the notation

g1 = /dp J(pata®,. (5.23)
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Using Corollary 3.3 again, we find that

A
i) lla < Cuanu,{,,f fori € {1,2,3}, (5.24)

[Ja(s)] = (5.25)

Cuvnwdf

foralls < TA™2.
Similarly, we compute

[ao, Hquart(s)] = [ap, Hquart](s)

A n
" / dp D(p2) (@}, 1 pyaprip)(5)

1
_ THE“Z’( 5). (5.26)

Here, we used the notation

Hon®) = - / dp D(p2) (@ @t apysp)(S) + @ 4 )(5))

(s) +H2 (5). (5.27)

cub

— D

cub

Notice that bounds of the form (5.12)—(5.14) hold with H,,; replaced by Hézu)b, due to the
proof of Proposition 4.6.
Using (5.9) and (5.26), we have that

: t
®, = —“’\—' ds vo([a0. Heup(5)]) + Rema(r; @) , (5.28)
0
where
i GO
R i P) = — cu
ema(ti ®) Nﬁ/o Al
B / ds v, (LF 11 D] + gLJ2(s)] + g*[J3(s)], Hi(s2)])
[1,2] [Al
1 v, (M2, (51), Hi (52)1)
+—= d . 5.29
27N Jap 2 % [A] 629
Recall that, by definition (5.23),
[, ([87[3(s1)]. Hi(s2) DI = [vs, ([g[J3(s1)], Hi(s2)])] - (5.30)
Then Lemma 4.7 together with the bounds (5.13) and (5.24) imply
[, (AL DL Hi)])| - [vs, ([8LJ2(s D], Hi(s2)])]
[A] ' [Al '
v, ([g*[J3(s D], Hi (52)])]
[A]
~ 3
Clafya. ol AVATA2 A2 Al
< < (1 n W) . (5.31)
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(5.15) with A = 1 implies

oM _

cub

AN (5.32)

(5.13) with A = 1 implies
v, (-G, (1) Hi (52)]) |
|AIVN

Cis .
0 Lo
< 101w, a 10]lw,a

ecuﬁ”uud|A‘/)VT)\’2|A|2

(1 + H) : (5.33)

N3 N

Collecting (5.29), (5.31), (5.32), and (5.33), yields the bound
| Remy (z; @)|

3
Cllolmalalar A7 IAL2 (1 |A|)2
4 —— (5

= Clilualfolla® N

3
2 Cliolwalalar 1AL [A]
= Clityand ollg T2 I HAT 2 (l +W) (5.34)
forallr < TA~2, A € (0, 1).
In the cases A = f[J] and A = g[J], we have that
vi(A)  w(fIJ]D) " vo(lA, Hauart ()])

= ]lA:f[J] —1 ds

[A] [A] [A
/ s o (LLA, Heub (511, Heun (52)])
- 2
Alt,2]

[A]
+Remy(z; A), (5.35)

where, using (5.7) and (5.10),

! A cu
Remj(f; A) = —i/ ds M
0 [A
/ U()([[A, Heun(s1)], Hquart (52)])
— dsy
Alr,2] [A]
/ VO([[A7 Hquart (sD], Hi (52)])
— d52
Al,2] |A|
+i/ ds; vo([LLA, Hy(sD)], Hi(s2)], Hi(s3)])
Al1,3] [A]
/ v, ([ILLA, R ()], Hi(s2)], Hi(s3)], Hi(s4)])
+ dsy .
Alr,4] [Al

(5.36)

Employing (5.14), Lemma 4.7 yields

oA uar )| _ 1142214
IA| = “ollw.d.llfolla N2 ’

[vo(AHG Hauare ()| _ 1714231AF
IA| = “|0llw.all folla N2 )

(5.37)

(5.38)
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[v0(AHuare(53)) | 111423 (AL
Al = Cllafole = N3 (539)
where we abbreviated
1714 == I lleecanyLa=rray + 1T l2n00,aLa=g[s7 - (5.40)
Using (5.15), we have that
|V0([A7 chb(s)])| _ |V0(Achquuart(52))|
[A] [A]
_ ‘VO(AHSMb(S3))| _ |UO(AHCMhH5uart(S3))| -0 (5.41)
[A] [A]
(5.12) together with Lemma 4.7 implies
|VS2 (AH‘} (54) ’
[A]
Clotwalayar 111424 [A]° [A]\4
< Cypt oMM I (1 ) (5:42)
Collecting (5.37)-(5.42), we arrive at
|Rema(z; A)|
Cis eClolwal AAT || 71 42222 | A *
19llwd. 1l fola A [A
< - [1 n kt|A|(1 + W)
Al\4
+Azz2|A|2(1 + %) ]
. A eClolwal A/AT | A |6 |A] 2 22
= Ciilal folla T I 1A N2 +W) + |A|2)
Clollw,al AI/AT | A 16 2
4 e [A] [Al
= Cpitwat folla TV W=7 (1 + W) (5.43)
forallt < TA 2, A e (0, 1), |A| > 1. This finishes the proof. O

Up until now, all calculations did not further distinguish the cases of fixed |A| and |A|
growing with N. In the latter situation, we will approximate lattice sums over A* with integrals
over R3. It is crucial to note that oscillatory and dispersive properties differ fundamentally
in these two cases.

5.1 Fixed, N-Independent Lattice A* = 73
5.1.1 Notation

For the next result, we define

AcupH(py) := H(p1) + H(p2) — H(p1 + p2), (5.44)
W=1+h, (5.45)
P12 ‘= p1+p2. (5.46)
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Recall from Corollary 3.3 that

Vi(p)? = i (5.47)
QP (Q(p) + E(p) + 15(p))
v(p)
\% = . 5.48
20 = 50 (5.48)

In order to describe the dynamics of ®, we introduce the condensate operator

T
Cong (h)(T; &) = —i/ ds / dp f)(p)h%(p). (5.49)
0 A* x
For the dynamics of f, we define the generalized Boltzmann operators

Boly (W[J1(T; %)
1 AcuhQ(p2)(Sl - SZ)
= — dS / dp, cos

)\.2 A[T,Z] 2 (A*)2 p2 ( )\2 )

(O(p1) + ﬁ(Pz))zActh(Pz)(rls% (pl)ﬁs% (p2)hsy (p1+ p2)

A A A
~hs, (pDhs, ()5, (p1 + p2)) s (5.50)
2 2 2

bol D (h)[J1(S2/2%)

= %Im](.m)z dp, (0(p1) + 0(p2))(D(p1) + (p12))
Va(p)e~ (Qp)=R(p1)($1-52)/32
(= J=p0) + T (p2) = T (pr2)) PPV sin(@(p1)S1/22)
(s, (—pDhs, (p)h's, (p12) = hs, (=pDhs, (P2, (p12))
22 22 22 32 2 2
+ Acupd (P EPISX Gin(Q(p1)S2/32)
(h%m)h%(pz)ﬁ% (P12) — E% (pl)ﬁ% (pz)h%(mz))) : (5.51)
Boly (M[J1(T; 1)
= /A - dS, bolV (m)[J1(S2/22), (5.52)
bol D () [J1(S2; A)
= %Im /( oy P2 @D+ D(p2))? Acup ] (py)el @ PS1=52/2%
(Vi(pD2(sin(R(p1) 1 /A2)e TIPS sin(@(p1) $,/22)e 2%/
+V1(p2)? (5in(Q(p2) S1 /A2)e RPN _in(Q(p2) $5/22)e! 2 P54
—Vi(p1)? (5@ (p12)$1 /WD FPDNE — sin(@(pra)Sa/33)e 2P )

(hsy (p0hs, (pz)%s% (p12) — ;;7 (p1)7ls% (P2)hs; (p12)). (5.53)
bol®? (h)[J1(S2/22)
2
= aRe [ dps (600 + 3(p)
)\_ (A*)2
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[ sin(@(p1)$1/32) sin(R(p12)$1/22)

£ R (P2)(S1=52) /22 +i(Q(p1)~Q(p12)) S2/A?

Va(p)Va(p12)(0(p2) + 0(p12))

(=J(=p) + J(p2) + J(—p12))

(hs, (—pDhs, (p2)hs, (—p12) — hs, (—pD)hs, (p2) f(—p12))
2 2 2 2 2

1 sin(Q(p1)S1 /A2)el AP SI=80/12=iQP1) S22y, (1 )
(=J(=pD) + J(p2) = J(p12))
(@) + D)) Va(p1) sin(Q(p1) S, /22)e W52/

+(D(p2) + D(P12) Va(p12) Sin(Q(p12) Sa /3D 2P/
(hs, (—pDhs, (p)hs, (p12) = hs, (=phs, (P, (p12))
22 22 22 22 2 2
1 .
(e @V TREIR Gin(@(p12) 2/ AN Va(pr) B(p1) + D(p2)

+ T @RI Gin(Q (p2)S2/ADVa(p2) (D(p1) + D(p12)))

(s (T sy ()T sy (—p12) = sy (P, (P2, (= 1) | (5.54)
2 32 2 2 2 2
bol @ (W[ J1(S2/2%)
= bol® D (W)[J1(S2: &) + bol®2 (W)[T1(S2/42) , (5.55)
Boly (W)[J1(T; 1)
= / dS> bol® (h)[J1(S2/22) . (5.56)
A[T,2]

5.1.2 Results

Proposition5.2 Let T > 0, » € (0,1), [A| > 1, and J € L®(R3; R). Then the following
holds.

1.
A2 Y (
, 0([ao, chb(s)]) 1 (Bog) T
- d = C T; O =),
1/0 § Al i ong (fo)(T5 4) + erry g™ | 53
(5.57)
where
T Cis T
|err(lf3dog)(ﬁ;q>)| < ”U”w,dv!foud ’ (5.58)
N2
2.
VO([f[J]quuart(s)]) =0, (5.59)
3.
_/ dszvo([[f[fl,chb(ﬁ)],chb(Sz)])
A[TA2,2] [A]
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1 (1) 2 (2)
= N(Bold(fo)[J](T;A) + ABoly (f)[J1(T; 2) + A2 Boly” (f)[JI(T; 1))

+IO)D 1 | + ey B°1)(A2,f[l]) + J(0) erry M ( ka) (5.60)
s
where
(Bog.Bol) 2 A
erry ;5 (Az,f[f) = Chotwaslfolla 1M leecan T (5.61)

(Bog,Con) . o LCldllw.alAl/AT
‘ef Dd f)‘ = Clilwalfola® "

3 3
7(T)4|A|7(1+@)2(1+ 'Alj) (5.62)
MN3 N AN/

)2 T
" fo a5 28 ]’Klq““”(”) _ % /0 dS absguare.a (FOLI1(S/32) . (5.63)

The absorption operator absqum,,d(fo)[]](S/)»z) consists of terms of the form
(=i)x! / dp dk ¢~ 1 MEPEmRIISLE (| 4 £ (p) 4 f(—p)) T (p)

Vi(p)* ' Va(p)®2d(p — k) Vi (k)*** Va(k)*™ (fo k) + 1) , (5.64)

with€ € No, £ <3, j e Ng, j <7,my,my € {0, £2}, aj € {0,1,2} and . € {0, 1}. The

integrand contains a factor fo(k) or a factor V, (k).
5.

_ / ds VO([[g[JL chb(sl)]a chb(SZ)])
A[TA2,2] g [A]
1

=z f dSs (coly(fo)lJ1(82/A%) + abscup.a(fo)[J1(S2/3%))
A[T,2]

2 T
+ J(0)(q>n4) + J(0) err{Pos: C"“)(ﬁ; 9. (5.65)

Here, the collision operator coly(fo)[J]1(s2) consists of terms of the form

(0 [ dps et Tt T B0y 4y — )
(A*)3

3
T(pj)d(p)d(pjy) [ | Vi(ow) s Va(pr)Pie
k=1
2 s — Tk,2
<1£[1 fo(Tklpk)+ ]l:[l fo(— Tklpk)+ 3 )) (5.66)

where £y € No, Lo < 3, jo € No,jo < 12, ox¢, ke € {£1}, j1. j2 € {1,2,3} and
aes B € {0, 1,2}, Any term contains a product of at least two of the functions ¥, fo,
V1, and V, depending on at least two of the momenta {p1, p2, p3}, which implies that the
integrand in (5.66) exhibits the necessary regularity properties used in Propositions 5.7
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and 5.9 below. The absorption operator abscyp q4(fo)[J1(s2) consists of terms of the
form

(=)' f dp dk e= st P)=ism®) 75y (1 4 fo(p) + fo(—p))
(A*)2

B(P)VI(P)* M Va(p)20(k) Vi (k)3 Vo (k)™ (fo (k) + 1), (5.67)

where £ € No, £ <3, j € No, j <12, my, my € {0, £2}, aj € {0, 1,2} and € {0, 1}.

| err(zBog’Con) (%2; g)| satisfies the same bound as | err(zBog’Con) (%2; DI

Proof Sett = T172. Since here all integrals range over A* in the sense of (1.51), we will
omit the domain of integration in this proof. Using that vo(Q) = 0 for [Q, N}] # 0, (5.13),
and recalling J; from (5.19) and (5.22), we start by observing that

t t
i s ollen o) _ [ as([ ap o + 22 so8)
0 Al A Al

Here, we also used the fact that translation-invariance implies

aal™ = 8(p = ) So(p) +80,-1) (5.69)
Recall that, by Corollary 3.3,
Ji(s, p) = k%) (lus(s. 2 + [va(s. PP + 20565, s, p)
- kj)/(;)(l + 207 Re(e P sin(Q(p)s) Vi(p))
+24s5in%(Q(p)H)Vi(p)* + |vits, p)I
+ 2055, PGS, ) (5.70)
Ja(s) = j—ﬁ / dp 5(p) (1035, P + (5. YTR(s. ). (5.71)

Thus, again by Corollary 3.3, we obtain

AD Aol
1916) + “lleo = €222 (R IVil + 24VilG + a5, )1

VN VN
106 ool 1, )l )
Cﬂuﬁni,d(l + M0 lw.a)?

= ) 5.72
: N 6-72)
AIDlh ’
Ja(s)] < C——(|lvs(s, - + ||vs(s, - uy (¢, -
[Ja(s)] JN (Ilva.(s, DIz + NvaCs, oo lluan(, Hloo)
AN012 (1 4+ A|D 3
<c 10113, 4¢ 1ollw.a) 5.73)
VN

for all s > 0. Then (5.68), Lemma 4.7, and the definition (5.57) of err{" (1 ®) yield

A2t||{;||120’d(1 + M0l ) UAIT + 1 foll)
N2

lerr%® ;&) < €
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- Cuﬁnw,d,ll|.fo||dT .
N2
Collecting (5.68), (5.72), (5.73), and (5.74), we have proved (5.57).
Next, we compute the dynamics of f. We use the fact that vg is quasifree to obtain that

(5.74)

. F s
VO([ap ap, Hquart(s)]) = [apapv Hquart(s)] + [apapv Hquart(s)]

« fo(p) fo(p) — fo(p) fo(p) +0 = 0, (5.75)

since, due to Corollary (3.3), Hguar: (s) is a quartic polynomial.
We observe that for self-adjoint operators A, B, C and any state v we have that

v([[A, B], C]) = v(([[A, B], CD*) = Re(v([[A, B], C]). (5.76)

Similarly to the previous case, we have

— ] ! \
(LA, Heun DT, Heun(52)] = [LFII], Heun (511, Heun (52)]

[LF L1, Heup D] Heun(52)]
= 0. (5.77)

This leaves us with exactly two types of possibles contractions. These are

——1 |
(=)L, Heun (511, Heub (52)] (5.78)

and, using translation invariance and employing Lemma A.1,
—
(=[S TI], Heun (5D, Heun(52)]
| M— | | M—
2J(0)
[A]
(5.78) corresponds to a scattering or Boltzmann term, while (5.79) describes corrections to

the evolution of the condensate.
We start by analyzing the condensate term. We have that

r +
Re([ao. Heus(s1)llag s Heup(s2)1) (5.79)

—2J(0) — L
7 Re dsz [ao, Heun (sD]lag , Heup(52)]
|A| A[1.2] [ —
—J( —
= O sy (a0, Hewps0lla . Moy 6]
|A| A[1,2] — —_
+
a0, Heup(s2Na s Heun(s1)])
—_ | IS
J(0) — .
= TAP dsy ([ao, Heun (s)lag s Heun(s2)]

f +
+ Lo, Heup(s2)llag . Heup(s1)])

L ds —— 2
=10 i / 2 lao, Hown (@)1 (5.80)
o |A] —

Here, we used the fact that

[a0, Heun ()] = —lag, Heun(s)]. (5.81)
—_ —_

@ Springer



Quantum Fluctuations Around BEC... Page510f123 85

Next, we apply quasifreeness of vy, followed by Proposition 5.1, to get that

» / o 20 He®1 / s Yotlao. Heup(5)))
0 Al 0 IA]
= &, — Remy(t; D). (5.82)

In particular, we have that the condensate term is given by

JO) % + J () errs V1 ), (5.83)
where
t
err;BdOg,Con)(t; f) = —2Re((—i)/ ds vo([ao, chb(s)])m)
’ 0 [A]
— |Rema(t; D)% (5.84)

Using (5.68), (5.72), and (5.73), we have that

! . He Ar(1 Cys T
’/ s vo(lao chb(S)])‘ < Clopus (I + 1 folla) < an,,,,d,lufolu (5.85)
0 |A ’ VN N2
for all A € (0, 1). Thus, Proposition 5.1 and (5.85) yield
Bog,C
|errs S0, f)]
3
T 5 |A]2 [A]
<Cys . [ T2eC10llw,al Al/AT (1 T 7)
—_ HU”w,dq‘lf()Hd N%)\ e N)\Z N
3 2
4 Cllilw.alalar 1A 1Al
4 T4eCllua N2A4<l 5
4 3 3
Cllotwalalar (TYTIAL2 [A[\2 [A]2
< Clify il follg I == (HW) (1+=5). 630
AIN2 AN?2

Next, we compute the Boltzmann term for f. Observe that with the decomposition (5.27),
we have that

) + HD, ). (5.87)

cub

chb(l) = H(l)

cub
(1) and 1)
Vo (ILFTI T, Heub (1)1 Heun (52)1)
= 2Revo ([ 1], HLL), (1)1, Hpy (52)])
+2Revo ([L£1J1, HL, (s, D, (52)1) (5.88)

With that, we sort the Boltzmann contractions of vy ([[ ST Heun (s1)], Heun (Sz)]) by powers
of A, i.e.,

Notice that "

cub (#) are formal adjoints. In particular, we have that

| ——1T 1 ] A2 ©

— m[[f[J],chb(ﬁ)], Heun(s2)] = ﬁ(bd (fOJ]1(s1, 52)
+ A bol D (f)[I]1(s1, 52)
+ 22 bol@ (f)[J1(s1, 52)

+ 22 bol® (f)[1(s1, 52)) , (5.89)
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Notice that the CCR imply

LFLI1. a5y, alal 53] = Zm DY (P)ag s - (5:90)

a1P1 02P2 U?Pl2
j=1

We have that

bOl(O)(f())[J](Sz) — —2Re/ dp,dk; e Beub 2 (P2)$1—1 Acup Q2 (K2)s2
0(p2)0(k2) Acup J (P)

l r T T T T 1
+ + + T r T
N ([aplapzamz,aklzakzakl] + [ap]apzamz,akuakzakl]

_ _2Re/dpzefAcubQ(Pz)(Sl—Sz)ﬁ(pz)

@(p1) + 0(p2)) AcupJ (P2)
(folp1) fo(p2) fo(p12) — fo(p1) fo(p2) fo(p12))

~ Re / dpye! 2t P17 (b 1) + §(p2))? Acun T (P2)

(Fo(p») Fo(p2) fo(p12) — fo(p1) fo(p2) Fo(p12)) - (5.91)

Here, we used (5.69) followed by symmetry p; <> p>.
Recalling Corollary 3.3, bolD( Jo)[J1(s1, s2) is given by the Boltzmann contractions of

_ iRe i dp,dk; H(p2) f)(kz)eiA“‘bQ(pz)s' +i Acup2(k2)s2
[A]

(e*’“("”“ sin(Q(p)s)Va2(pOW(ILF 1Y), azpyay,app, ). af 4 aw, 1)
+ e 1P 5in(Q (p2)s1) Va(p2)vo ([LF 11, ama_mam] i al ay,))
+ e 102 6in(Q (k1 )52) Va k) vo ([LF L], ay ay,appls a—ga L ar,1)

+ T2 5in(@ (k)52 Va ko (ILF 11, 45, o], 67 a-igan 1)) (5:92)
Using (5.90), obtain, similarly to above,

2Im/ dp, 13(1!72)[( —J(=p1) + J(p2) — J(p12))
(D(p1) + D(p12))e' @ PD=RPR)EI=)HLPUS2 6in(Q (p1)s1) Va(p1)

(fo(=pD) fo(p2) fo(p12) — fo(—p1) fo(p2) fo(p12))
+ (J(p1) = J(=p2) — J(p12))(D(p2) + D(p12))
QP =Q(p12))(s1=52)+iR(p2)s2 sin(Q(p2)s1) Va(p2)

(fopD) Fo(=p2) o(p12) — fo(p1) fo(—p2) fo(p12))
+ (@RI TR §in (@ (p2)s2) Va (p2) (0(p2) + D(p12)

4 @)= QP 1= HPVSI 51 (Q (p1)52) Va(p1) D(p1) + ﬁ(plz)))

Aeund B2 (Jop1) fo(p2) Jo(p12) = Fo(pn) Jotp2) fo(p12) ] (5.93)
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Here, we used the fact that 0, and thus €2, are even functions. Using symmetry in p; <> p2,
we can further simplify this expression to

bol ™V (fo)[J1(s2)
= 2Im / dp, (D(p1) + D(p2)) (D (p1) + D(p12))
Vz(pl)ei(Q(pz)—Q(plz))(Sl—Sz)
(=P + 7 (2) = T (pr2) 2P0 sin(@ (p1)s1)

(fo(—=p1) fo(p2) fo(p12) — fo(—=p1) fo(p2) fo(p12))
+ AcupJ (P2)e' PV sin(Q (p1)s2)
(fopn) fop2) Fop12) = Fo(p1) To(p2) fop12)) (5.94)

Recalling (5.52), we have that

/ dsy bolV (f)[J1(s2) = Bol (f)[JI(T; 1) (5.95)
A[TA—Z,ZJ

. . . 4 . .
Next, we compute the corrections with coefficient )LW These come either from a correction
to the same momentum, a;; — A2y, (p)2 sin(Q(p)t)a;f, or from two momentum flips,

a;r — iAV2(p) sin(R(p)t)a_ . In the first case, computations analogous to (5.91) yield

—2Rei / dp; D(p2)(D(p1) + D(p2)) Acup ] (py)e! Sert 2P (1 752)
(Vip2(sin(@(pse 2P0 —sin(@(p1)s)e ")

+Vi(p2) (sin(Q(p2)s)e L —sin(Q(pa)sa)e’P%2)
— V(P12 (sin(R(p12)s DT — sin(R (pr2)s2)e’ 2 72)7)

(fop1) fop2) fo(p12) = folp1) fo(p2) fo(p12)) - (5.96)
Using symmetry in p; <> p» again, we obtain
bol{” (f)[/1(52)

= Im [ dpy (B(p1) + 9(12))? Aeup J (py)el Seut AP (5152

(VipD2(sin(@(pse 2P0 —sin(@(p1)s2)e @ )")

+ Vi(p2)* (sin(Q(p2)s))e 2Pt — sin(Q(pa)sy)e! HP)%2)

— Vi) (sin(@(pi2)se P2 — sin(@(pr)se 2r) )

(folp) fo(p2) fo(p12) — fo(p1) fo(p2) fo(p12)) - (5.97)

In the case of two momentum flips, the correction terms are given by the Boltzmann contrac-
tions of

—%Re/ dp,dk; {)(pz)ﬁ(kz)eiAcuhQ(pz)Sl—iAcuhQ(kz)Sz

(e @0=RPD%; sin(Q(p1)si) (=) sin(@(Pr2)s) Va(p) Va(pi2)
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(=J(=p) + J(p2) + J (=pr)Ivolla—pafat, ., af anan])

+ eI @) =RP)51 in(Q (pa)s1)(—i) sin(R(p12)s1) Va (p2) Va(pi2)
(J(p1) = J(=p2) + J(=pr2)vollay a—pa, af aran])

+ e TIPSR KD Gin (Q (p1)s1) (—i) sin(R2 (k2)s52) Va (p1) Va (k2)
(—=J(=pD) + J(p2) = J(pr)volla—p ay,ap,,, 4 a’y,ax 1)

+ e 2PN HIR KIS 6in (Q (pr)s1) (—i) sin(Q (k2)s52) Va(p2) Va (k2)
(J(pD) = J(=p2) = J(pr))vo(lay, a—papy,, 4, a™y, ar 1)

+ e POSIHIREDS2 60 (Q (p1)s1) (—i) sin(Q (k1)s2) Va(p1) Va (ki)
(—=J(=pD) + J(p2) = J(pr)volla—p,ay,ap,, & ara’y, 1

+ e 2P HIR KIS 60 (Q (pa)s1) (—i) sin( (k1)s2) Va(p2) Va (ki)
(J(p1) —J(=p2) — J(Plz))vo([a;r, aA—p,Qpy,,s a,fnakzafkl])

+ /2 Pn =ik () sin(Q(p12)s1)i sin(2 (k12)52) Va(p12) Va (k12)
J(p0) +J(p2) + I (= pvollagafat . a-kpaian D). (5.98)

This expression equals

—2Re/ dp, ﬁ(pz)[sin(sz(pl)sl) Sin(Q (p12)sy ) e’ L PD 1=+ (Q(pD=Q(pi2))s2

Va(p)Va(p12) (0(p2) + 0(p12))(—J (—p1) + J(p2) + J(—p12))
(%(_Pl)fO(P2)f(_Pl2) - fo(—Pl)fo(Pz)fo(—Plz))

+ sin(Q(p2)s1) sin(Q(pr2) sy e PV E1752)+ (Q(p2)=Q(p12))s2

Va(p2)Va(p12) (D(p1) + 0(p12)) (T (p1) — J(—p2) + T (—p12))

(fop) fo(=p2) F(=p12) = Fo(p1) fo(—p2) fo(—p12))

+ sin(Q(py)s))e PICI=DHLPRIN Y, (b)) (=T (= p1) + T (p2) — T (p12))
(D(p1)Va(p1) sin(Q(p1)s2)e’ P12 1 §(p12) Va(pr2) sin(Q(pr2)sa)e ¢ P12)
(Fo(=p) fo(p2) fo(p12) — fo(=p1) fo(p2) fo(p12))

+ sin(Q(pa)sy e’ TPV =PRI, () (T (p1) = T (—p2) — T (p12))
(D(p2) Va(p2) sin(R(p2)s2)e' T P2 4 §(p12) Va(pi2) sin(Q(pr2)sa)e ¢ P2)2)
(fo(pv) fo(—p2) fo(p12) — Jo(p1) fo(—p2) fo(p12))

+ 8in(Q(p1)s))e FPIE=DTIRPRIY, (5§ (po) (=T (—p1) + T (p2) — T (p12))
(Va(p1) sin(Q(p1)s2)e P22 4+ Vs (p1p) sin(Q(p12)s2)e’ 1)
(fo(-m)fo(m)fo@n) - fo(—Pl)fo(Pz)fo(Plz))

+ sin(Q(pa)sy)e’ PV =PRI, (p0)d(p1) (I (p1) — T (=p2) — T (p12))
(Va(p2) sin(Q(p2)s2)e F P12 4V, (p1p) sin(Q (p1a)s2)e’ HP%2)
(fo(m)fb(-m)]%(pn) - fo(Pl)fo(—Pz)fo(plz))

+Va(p2)e! G POERWDIN 5in(Q(p12)s1) (J(p1) + I (p2) + T (—p12))

+ (f—’_i(mp‘HQ(m)m sin(R(p12)s2) Va(p12) (0(p1) + 0(p2))

+ e HQPDFRPRD%2 Gin (Q (p2)52) Va (p2) (D(p1) + D(p12))
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+ Sin(@(pr)s)e EEFREDIR Y (p1) (i(pa) + D(p12)) )

(fop1) fo(p2) fo=p12) = Jo(p0) Jo(p2) Jo(—p12)) (5:99)

Using symmetry in p; <> p2, this can be reduced to

_2Re / dp, (5(p1) + B(p2)

[sin(Q (p1)s1) sin(Q(pi2)sy )’ P17+ (Q(P)=Q(P12))s2

Va(p1) Va(p12) D(p2) + 0(p12))(—=J (=p1) + T (p2) + J(—p12))
(Jo(=p1) fo(p2) f (=p12) — fo(—p1) fo(p2) fo(—p12))

+ sin(Q(py)sy)e PPN Y, (b)) (=T (= p1) + T (p2) — T (P12))
(D(p1)Va(p1) sin(Q(p1)s2)e’ P12 1 §(p12) Va(pra) sin(Q(pr2)sa)e ¢ P1)2)
(Fo(=p1) fo(p2) fo(p12) — fo(—p1) fo(p2) fo(p12))

+ 8in(Q(py)sy)e FPIE=DTIRPRIY, (515 (po) (=T (—p1) + T (p2) — T (p12))
(Va(p1) sin(Q(p1)s2)e P22 4+ V5 (p1p) sin(Q(p12)s2)e A P12)

(Fo(=p) fo(p2) fo(p12) — fo(—p1) fo(p2) fo(p12))

1 . N N
(5e7@ED=RED2 Gin(@(p12)s2) Va(pi2) (0(p1) + B(p2)

2
+ TRV §in (@ (p2)s) Va(p2) (0(p1) + D(p12)))
(fop1) fop2) fo(=p12) = Fo(p0 Jop2) Fo(=p12)) ] (5.100)

This can be further be simplified to

boly” (fo)[/1(s2)
= 2Re f dp, ((p1) + 3(p))

[sin(Q (p1)s1) sin(£2 (pu)sl)eiQ(Pz)(Sl—Sz)+i(Q(P1)—Q(P12))52

Va(p1) Va(p12) (0(p2) + 0(p12)(=J (=p1) + J (p2) + J(—p12))
(fo(=p1) fo(p2) fo(=p12) = fo(=p1) fo(p2) f (= p12))

+ sin(2 (pl)sl)eiQ(PZ)(Sl*52)*i9(1712)51 Va(p1)

(—=J(=p1) + J(p2) — J(P12))

((ﬁ(pl) + 3(p2)) Va(p1) sin(Q(p1)s2)e P12

+(H(p2) + D(p12) Va(p12) sin(R(pr2)sa)e FP0)
(fo(=pD) Jo(p2) fo(p12) — fo(—p1) fo(p2) fo(p12))

1 .
(57 @R 5in(@(pr2)s2) Va(pr2) (B(p1) + 5(p2)

2
+ e EPOFEWRI 5in(Q(p2)s2) Va(p2) (D(p1) + ﬁ(mz)))
(Tt o) Fo=p12) = fo(p) fo(p2) fo(—p12) | (5.101)
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In addition, let

bol@ (fo)[J1(s2) = bol® (fp)[/1(s2) + bol® (fo)[J1(s2) - (5.102)
Recalling definitions (5.53), (5.54), and (5.56), we obtain that

/ ds bol® (fo)[J1(s2) = Bol® (fo)[J1(T; 1) . (5.103)
A[TA2,2]

In order to bound bol® (fo)[J1(s2), we need to, first, look at integrability of the terms. Notice
that, for Boltzmann contractions, the order of the creation/annihilation operators within a
single argument of a commutator do not matter. In particular, we are interested in evaluating
expressions involving the Boltzmann contractions of

[am) 2@ (=09 a(n)a<fz)a(—f3>] , (5.104)

o1p1702p2703p12° ik C ok takin

which contain a factor

2 2 2

1 —
<fo(01P1) + %) (fo(azpz) + —;UZ) <f0(03p12) + 203>

= o3 fo(o1p1) fo(o2p2) — o1 fo(02p2) fo(o3p12) — 02 folo1p1) fo(ospi2)
+ (03 — 02) folo1p1) + (03 — 01) fo(o2p2) — (01 +02) fo(ozp12) .  (5.105)

(f0(01p1) + 7G> (fo(azpz) + 7(7) <f0(03P12) + U3>

Observe that there is a global coefficient 0(p;). After evaluating all § coming from contrac-
tions between p and k momenta, we want to verify integrability w.r.t. dp; dp,. We are thus
left with verifying integrability for the terms involving (o3 — 1) fo(02 p2). This term occurs
only if 03 = —o7. Another global factor then is

1o 1-o; 1oy Ito;
Va(p1) T Va(pia) 20 = Valp1) T Valpia) 7, (5.106)

where we recall from (5.88) that we only need to consider H! cub (sl) in the first argument of
the commutator. In particular, there is an integrable factor w.r.t. dp;. With that, we have the
estimate

160l ® (O] < Chay gt folla I lecar - (5.107)

As a consequence, we have that

0, 0. AS
el bl = | [ dss ol ot is)
Alt,2]
5.2

= Gl folla 1 leeam =

A
= Gy IIJllzoom*)TZN- (5.108)

w,ds Il folla

This concludes the proof of (5.60).
Finally, we compute the dynamics of g. We write

2

i t d — A t
—1 / —[glJ], Hquarl(s)] = = / ds absquart.d(fO)[J](s) s (5.109)
o Al (" N Jo
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where absguarr,a (fo)[J]1(s) consists of terms of the form

(_,-)ek.f/ dp dk e=SMR+mR®) 1)

[+ fo(p)(1 + fo(=p)) — fo(p) fo(—p)]
Vi(p) 1 Va(p)20(p £ k) Vi (k) >3 Va (k)™ (fok) + 1), (5.110)

where £ € No, £ <3, j € No, j <7, m,mp € {0,£2}, a; € {0,1,2} and ¢ € {0, 1}.
Here, we already employed the fact that ©(0) = 0. Using symmetry of the integrand w.r.t.
p < —p, we can further simplify the expression (5.110) to

(=) / dp dk e Sm@PFmRE) (1 1 fo(p) + fo(—p))J (p)

Vi(p)** Va(p)20(p — k) V1 (k)** Va (k)™ (fo (k) + 1) . (5.111)

Observe that the only terms contributing to (5.109) are of the form [aa, (a™)3a] with any
permutation of (at)3a, which is why the terms contain at least one momentum flip a p —
iAVa(p) sin(2(p)s)a_p. This justifies the extra factor A on the RHS of (5.109). In the case
t = 1, we need to have at least one annihilation operator left of a creation operator in the
second argument of the commutator. This yields an additional factor V, (k). In particular, the
integrand in (5.110) contains 0(p % k) fo(k) or 0(p £ k) Vo (k).

Next, we compute

(—i)?
N

/ dsy vo([[glJ], Heun (s1)], Heun(52)])
Alt,2]

1 —
= ds ([[g(J), Heub(51)], Heup(s2)] (5.112)
|A| ALL,2] — —_

ﬁijf——‘}
+[[g[J], Heun (s D], Heun(s2)] (5.113)

—* [ [
+[[g[J], Heun(sD], Heun(52)] (5.114)
—_

Similarly to above, we will refer to (5.112) as condensate contraction and to (5.113) as
Boltzmann contraction. In addition, we call (5.114) pair absorption contractions.
We start again with the condensate term. We obtain that

1
PNINTR)

d
= —2J(0) / ) |SZ (10, Heun(s1)1ld0, Heus(52)1)
l‘

——1
ds; [[g(J), chb(sl)L M(SZ)]

= J(O)®? + J(0) erry ¥V (1; g). (5.115)

where, analogously to (5.84),

t
orr ;B;g Con)(t; Q) = _2( _ i[) ds Wl&:mz(ﬁ ¢‘))

— (Remy(1; ))*. (5.116)
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Using analogous estimates as for (5.86), we find that | err(B”g ,Con) (t; g)| satisfies the same

bounds as | err(Bog +Con) @ Ol

For the Boltzmann contraction, we write

d —
- / 2 11811, Heup S, Heup (52)]

Al,2] 1A]
52

== dsy colq(fo)lJ](s2) . (5.117)
N Jap.2

The expressions in coly ( fo)[J](s2) are of the form

(=i)fork0 / dpy ¢ Tie 5t e 20§ (py 4 py — ps)

3

T(pj)d(p)d(pjy) [ | Vi(pw) s Va(pr)Pie
k=1

— k2
2

3 3
(TT Gotee1p0 +-5%2) = [T (o-mapo + ~522)). Ga1g)
k=1 k=1

where £y € NOES, Jo € No, jo <12, ox ¢, ke € {£1}, j1, j2 € {1,2,3} and ay,, B¢, €
{0, 1,2}. We need to ensure integrability of each of these terms. More precisely, we will
show that any term contains a product of at least two of the functions v, fy, Vi, and V;
depending on at least two of the momenta pp, ps, or p3. We have that

/dpJ(p)a,,a,p = /dp J(pla_pa, = /dpJ(—p)apa,,,, (5.119)

where we used the CCR followed by substitution. In particular, we may assume without loss
of generality that J is even. Then the CCR imply
(g[J], a@D 4002) (= 03)] =851 (P1)a—p,a a'92) ;(=03)

a1p1 UZPZ (73[’3 02p2703P3

+ 802,11(172)“((7711% a—pzaé”?:)

+ 805,11 (p3)al) al7) . . (5.120)

We will discuss the expressions related to one these three terms in detail; the remaining follow
with analogous computations. Consider the Boltzmann contractions of
(02) ,(—03) (1) (12) (—73)
lJO([a—Pl al7'2§72a0'3]713 ’ alel a‘[zkzal'3k3 ]) ’ (.121)
which is why, again, the order of the operators a and a™ does not matter. Observe that it is

sufficient to have a factor v, fy, Vi, or V, with momentum p; or pi3, since, due to (5.118),
we always have a coefficient 0(p;). The Boltzmann contractions in (5.121) yield a factor

1
(fo(=p1) + )(f0(02p2)+7)(f0(03p12)+ —203)

— fo(—= Pl)(f0(02p2)++T)(f0(03l712)+ 203)

= 03 fo(=p1) fo(o2p2) + fo(o2p2) fo(o3p12) — o2 fo(—p1) folozpi2)
+ (03 — 02) fo(—=p1) + (1 +03) fo(o2p2) + (1 —02) folozp12).  (5.122)
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The only term in (5.122) that does not already involve a factor depending on a momentum
other than p,, see also (5.118), is (1 + 03) fo(02 p2). This term only appears if o3 = 1, which
we now want to consider.

Due to momentum flips in p;, the corresponding term associated with ’Hfu)b (s1) in the
first argument of the commutator has a coefficient V>(p;) Va(p3), yielding the remaining
integrability w.r.t. dpy.

Thus, let us consider the terms associated with Hf,i)b (s1). If we contract agi)z in with

a(:o(lrlp)l or a,(,;;g’), we obtain a factor v(pj) or 0(p12), yielding integrability w.r.t. dp;.

So, it remains to consider the case when agi)z is contracted with a((,gi,)z. The remaining

contractions yield either (zy, —t3) = (1, 1) or (—73, 71) = (1, 1). In those cases, we obtain
an additional factor V,(p12) or Va(p1). This concludes the argument.
We are left with evaluating the pair absorption terms

1

Al Jap,2
52

N

] ‘\
dsy [[817]. Heup(s1)]: Heup (52)]

dsp abscyp a (f0)[J1(s2) - (5.123)
abscyup, 4 (fo)[J1(s2) consists of terms of the form

(—)'A f dp dk e~ s1m 2P =isima®) 1 (py(1 4+ fo(p) + fo(—p))D(p)
Vi(p) 2 Va(p)2 0 (k) Vi (k)2 Va (k)™ (fo (k) + 1) (5.124)

where £ € No, £ <3,j €Ny, j <12,my,mp € {0,£2},; € {0, 1,2} and ¢ € {0, 1}. Here
again, we take into account that terms involving 9(0) = 0 vanish. This concludes the proof.
0

Lemma 5.3 We have the following expansions.

1. Identifying the RHS with its continuous extension, we have that

/ ds» ol @1s1+was2) _ i(sin2 ((a)l + a)z)t/2) _ sin” (wlt/z))
Alt,2] w?

B i (sin ((a)1 +w2)t) B sin(w]t))

w1 + w2 w1

- (5.125)
W) wl + w? w1
forall wy, wy € R.
2. The Bogoliubov dispersion Q2 in Lemma 3.2 satisfies
Q = E + Abpog
~2
N 2V 3
=E + A0 — A7 + Aerrpyg, (5.126)
2E
where oy = —22— and errp,, satisfies
T leng og Safisf
lerrBoglloo < CIDI3, 4 (5.127)

forall A > 0.
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Proof For the first part, let w1, @, w1 + wp # 0. Then

i t eiw]s .
/ d82 et(a)ls1+wzsz) =/ ds : (eths _ 1)
Alt,2] 0

iwy
1 ei(w1+w2)t —1 eiwlt -1

- —7( - ) . (5.128)
w2 w1 + w2 w1

Using 1 — cos(x) = 2sin(x/2), we have shown the first statement.
For the second part, we expand €2 using

Q> — E?
Q=F + ———
+ E+Q
200
=F + —————. (5.129)
L+ /14205
We Taylor expand
: LY R (5.130)
—_— = - - = X .
1+V/1+x 2 8
for some R(x). An easy computation yields
R
! (f)l <cC (5.131)
X
for all x > 0, and in the limit x Y\ 0. This concludes the proof. O

Remark 5.4 (Talbot effect) Lemma 5.3 shows that the leading term in Bol;(fo)[J] is a sum
of the form

Sinz T(AcunE+ )LAvuhﬁBag)
z d 27 A T (0>) H(p>) (5.132)
)"2 (A*)2 p2 (T(AcubE +)\AcuhﬁBog)>2 cub p2 p2 ’

222

for some H ~ 1 with 9, as defined in Lemma 5.3. Thus, as a function of T, the modulus
of this sum oscillates between 0 and O (2~2). The size of these oscillations is dependent on
the the interaction profile 0, the lattice A, and the chosen sequence A = A(N). A similar phe-
nomenon occurs for Bolfij ), which thereby also oscillate in modulus between 0 and O 0/ ’2),
depending on T, and we also observe it for coly, absg,ars,q, and abscyyp, 4. Therefore, Bolfij )
can dominate Bol;, depending on whether # Acub2(py) lies in a small vicinity of % +7Z
for some p, € (A*)2. This is reminiscent of the Talbot effect, see [128, 190]. As heuristically

explained above, Bolfjj ) are negligible in the case of large system length L ~ A =% Next,

we will present a proof of this fact.

5.2 Continuum Approximation A* — R3

In this section, we will write out the summation over the lattice A* explicitly. In contrast, all
integrals will be understood as integrals over R? in the respective dimension d.
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Lemma5.5 Let Fi(py), F2(py) € {£Q(p1) + Q2(p2) £ Q(p1 + p2), 0}, H € CX(RY),
X € CSO(JR3), and 11,70 € R. Let (x) := (1 + xz)%. Abbreviate

7272
1 .
1
el = AZ/ ds<|A|2 I Rl g )
0 PaE(An)?
1

_ )8 / dp, ei(flQ(P1)+T29(P2))SH(p2)) ’

1 . . ,

errflzl)u = )Lz/ ds» (72 Z o FI P H 20252 ()
A[TA2,2] |A| R
PrE(A¥)

1 ) o
- Gy / dp &/ TIPIIHREIR i (p)) (5.133)

Then we have for any r > 6 and A > 0 the following.

1.
1 VIl
— C,——, 5.134
‘|A|p§*x(p) G )3/ px(p)‘ < |A|% (5.134)
2.
Ty 2(L5]+D

(D
|errdisc| =

. M n 25 ]+D—n ”
W gy 2 |P2D" D H] 6139
n=,

3. ifF1=F, =0,

2
|errdtsc| CHU||2(|_ L +Daw.e” )\2| | —IVI"Hll1, (5.136)
4. if (F1, F2) # (0, 0),
2(L51+D
2 2
@ . (1) ” n 205 ] +h)=n H
il = Chita o e S2v21 TS ;) ()" DL H .
(5.137)
Proof Let
2
ri= (5.138)
[Al3
so that
dp H 5.139
/A* pHp) = (27,)3 Z ( )
PEA*
Denote
G, (py) = )?/ dsy e F1P)s1+iFa(p2)s2 (5.140)
A[TA—2,2]
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Poisson summation implies

Y Gip)H®P) =1° ) Gi(tP)H(Py)
1)26(1\")2 P2€Z6

- Z /6 dP, 2" P2X2 G (1 Py) H (< Py)
R
XzEZé

> / dp, PTG (p)H(py) . (5.141)
X,eZ6

As a consequence of (5.141), we obtain that

1
(2) 2 X
T %{0 / dp, 7P Xe/T G (p) H (p,) . (5.142)

Next, we have that

X" fR dp, PG (b Hpy)

.L.I"

T Qny

In particular, we have that

/R _dpy PN (G (po) H (D) (5.143)

2
el < Gt Y X |,||| "(GrH)Ih
X, eZ%\{0}
< "(GrH)Ih (5.144)

due to r > 6. With analogous steps, we obtain

r
2

T2 1 in. r
‘13 > x(p) — /R} dpx(p)‘ =—— Y — /R3 dp &P X171V |2 x (p)

peEN* (27’:)2 XGZS\{O} |)(|j

=

Cr r
%|||V|2X||l- (5.145)

Interpolation implies

I+ 5]-%
IVE (Gt < Cll-m) L1+ (G, m) ) L A 161y, B2 = ). (5.146)

where 79 > 0 will be fixed below. The Leibniz rule implies for k € Ny that

2k
(=AYGyH| = C ) _|D"G,|ID* " H]. (5.147)
n=0

We start with the case F; = F, = 0. Lemma 5.3 yields G, = C %2)»_2, which, employing
(5.144), implies

_ T2
lert ) | < T2 IV H 1 < Cr n |,||| "Hl . (5.148)
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Next,let F1 =0AF, #0, F1 #0A F, =0,0r F| = —F, # 0. Let F; # 0 for some
Jj € {1, 2, 3}. Then, by Lemma 5.3, we obtain that
T2 )
Gi(p) = FG(Fj(Pz)T/A ) (5.149)

for some continuous function G € C;°(R). Moreover, the Faa di Bruno formula, see [295],
implies

n
T re
ID"G(ET ) = € Y 1GSET ) ][50 R (5.150)
]Ie‘lé;f) =1
where
n
R(n) := (r, e NG | Y tre =n}, (5.151)
=1
n
Srn) =Y re. (5.152)
=1
Observe that due to Lemma 5.3, we have that
IVF;| < Cuﬁ“z(L%JH)‘W<|P2|) , (5.153)
tp. )
ID"Fj| < C”“”2<L5J+1>,w.c (5.154)

forall A € (0, 1), and all £ > 2. Then (5.150) together with (5.153), (5.154), and the fact
that 1 < S(r,) < n imply

n

n—1 |\
0" GE;T ) < € VI (57 G0 oy 2y

A2n
=1
T o) [ o ,
= Clilag e — (25 16T/

=1
(5.155)

for all A € (0, 1). Collecting (5.147), 5.155, we have that
I(=2)*(G2H) I

2k 53 n—1 n
< Cypy > (160 T 2yl 0%
= S0l nner 2o 7 |\ 2 j 2 1

(T)2k+2 2k . 2k "
< Cltty oy iz | (16N 2 Japa D a | s.156
£=0 n=0

forallk € {0,1,2,..., | 5|+ 1}. Then (5.146) and (5.156) yield
V1" (G H) I

a2 254D
> ey 2y o sas)

n=

< Cya L
— Hvllz(ng_'_l)‘w‘(wr A‘2r+2
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where we also used the fact that || H||; < [[(p,)2L2J+D H ||\ (5.144) and (5.157) yield

<T>r+2 Z(L%J-H)

@ |~
eMMdisel = CUola g simer S2rs2 015

[apaly D2 L0 | s.158)

Now, let F; # O forall j € {1, 2, 3}. In this case, Lemma 5.3 implies

T2 T
Gi(py) = ﬁG()Tz(Fl(p?)’ F(py))) (5.159)

for some smooth function G € C° (R?). The Faa di Bruno formula implies

T T
|D"G (5 (Fip), B2 (@)| < Ca 3 ID™ GI(5 (Fi1(By), Fa(p2)

r,e
R(n)
n 2
T re
[Tz Xw
=1 i=1

T(TY"= N (5 IVF;|)"
A2n

=Gy

" T
(X 10°61) (5 (Fipo). Bxpo)) . (5.160)
=1

Collecting (5.147), (5.153), (5.154), and 5.160, we have that

(=AY (G H) I

2k 3 n—1
T°(T)
= C||1A’||2(|_%J+1),w,cﬁr Z A2n+2

n=0
n 2

[(321061) (5 k1, )3 IVEs 0% |

=1 j=l1

2k 2k
< Clty v e | (Lol 3 [owarota], - saon
- =

forallk € {0,1,2,..., | 5| + 1}. As a consequence of (5.146), we thus obtain

(T)r+2 Z(L%JJFI)

IV (GBI = Coaty o Do | (2l DX ]
n=0
(5.162)
(5.144) and (5.162) imply

2(L51+D

@~
oM disel = Clbt g ) imer S2s2 5

Finally, let

A2
Gi(py) = A2 / ds /M PFR2(P))s (5.164)
0
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A simple computation shows
o o T
Gi(py) = TG((mQ(pn) + TZQ(’JZ)))TZ) (5.165)

for some smooth G € leo(]R). If 71 = o = 0, we have G=cC.If (r1, 1) # (0,0), a
computation analogous to (5.155) yields

ID"G((1Q(p1) + R (p2)T/A%)]

T(T)" " HIp )" [~ =
< Clioly 4 JH)_,,,_L,,,,%(Z GO (@RP) + R(pNT/2Y)

=1
(5.166)

foralln € {0,1,2,..., Z(L%J + 1)}. In particular, with analogous steps that led to (5.158),
we obtain

re1 2Lz]+D

) R (T) H n n2(| 5] +D—-n H
taisel = Cll|gjonweryaripys 2 | (P2 DHEETITH] L (5.167)
. n=0
This concludes the proof. O

Remark 5.6 Observe that Lemma 5.5 implies that

V12 foll
f dp fo(p) < 1 folls + ¢, W2 Jollt
A* A6

=< Cr||f0||2(|_%J+]),c (5.168)

for any r > 6 as in Theorem 2.2, where C, is independent of |A| > 1. In particular, we have
that

I folla < Crll follaq 5 e (5.169)

This is allows us to use the previous estimates to prove Theorem 2.2 as well. Analogously,
we have that

10lw.a < Crllollaq 5 +1)m.c - (5.170)

in the assumption of Theorem 2.1, where, again C, is independent of |A| > 1.
Likewise, we have that

V2000, = Crlld llaq 5 |+1).c - (5.171)

For the next statement, define the continuous analogues Con., Bol,, etc. of Cony, Boly,
etc. in (5.49)—(5.56), and (5.63), (5.65) by replacing the lattice sums fA* over A* in the sense

of (1.51) by Lebesgue integrals # fR3 over R3.

Proposition5.7 Let T > 0, J € L¥(R>*;R) and r > 6. Then the following holds for all
A > 0 small enough, dependent on ||ﬁ||2(L§J+1),w,c-

1.

™2, H | .
— i/ ds 0([“07 cuh(s)]) = —— Con.(fo)(T; ) + errEBcOg) <72; > ’
0 Al N 0 (

(5.172)
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where
Clidllyg | 1 141y el follacp £ {4pyer L 1
|err(Bog)( @) < 25 |+D.w, 2[5 |+D.e P ). (5.173)
A2 1 r
N2 [Al6
2.
/ ds U()([[f[.]], Heun (s1)], chb(SZ)])
- 2
Al1,2] [A|
1
= fBolc(fo)[J](T;k) + J(O)|<I>12|2
X
+ eS8 B"”(Az, FUD + J(0) errs228M ﬁ’ . (5.174)
where
CIIf)H I foll r(T)r+2||J|| 2| & [+2.00
(Bog.Bol) 25 J+nwe 0 5 |40 woL2 ™
lerr, AZ’ fUDI = N
(Gomoe T + i log1)
(Bog.Con) Crlldlly) £ (41w A/AT
|err og on ()LZ’ fLID] < C”m'ﬂL%J+1),w,f’”fb”2(|_§J+1).o”e 2 5]+
3 3
T)* A2 A2 Al2
%(1+u> <1+| '1), (5.175)
M3N2 N AN2
3.
-2
i /T)\ ds VO(g[J]» Hquart(s))
0 [A]
Lt > s
= N/ dS absguart,c (f)[J1(S/A7) + err (7,g[l]) (5.176)
0
with
N r+l1 .
|err(dlS‘) T . g[]])| < C”UHZ(L%J+l),1u,<"”~f0”2(|_%J+l).L"r<T> ||J||W2|_§J+2’30
22 = NAZ|A|5 ’
(5.177)
4.
/ s vo([L&LI T, Heun (511, Heu (52)1)
- 2
[TA—2,2] |A]
1
=7 / dSs (cole(fo)[J1(S2/2%) + abscup,c(fo)[J1(S2/12))
AlT,2]
+ err;dzs)(kz;g[J]) + J(0)(q>TH) + 1 emtPorcon L 518). (5.178)
where

. r+2
Clly g ol 5 e TIN5 200

SieldDl < I
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(5.179)
and err(Bog -Con) % 37 ; 8) satisfies the same bound as err(Bog -Con) (AZ’ ).
Proof Recall from Proposition 5.2 that
. /“2 g Y0(190, Heup (5)1)
0 [A
_ 1 C . (Bog)
= —— Cong (fo)(T; 1) + err; ( 55 P) (5.180)
N2) A
with
T Cisn T
err(leog) = o)| < ||U||u,.dq|l‘f0”d
B }\' NE
Cllly| 1 |1iyme M olla| 2 e L
el s L L (5.181)
Nz
due to Remark 5.6. Let
1
e (2 @) i= ——((Cong(o)(T: 1) — Cone()(T: ). (.182)
A N2x
Then Lemma 5.5 implies
i (T T |@2n)? . .
’erri?é” ( pBE ¢)‘ =[S Y waw - [ dpio )|
N2l 1AL R
T L,
= G———IVIZv follh
N2A|A[S
Cys T
< Mgl Ol g)ne’” (5.183)

NIA|Al6
Here, we used interpolation as in (5.146), together with the Leibniz rule. Applying (5.181),
(5.183) implies

Bog) (T (Bog) @is) (T
erry <)\2,<I>>‘<|err (ﬁ,cb)l—i—‘ lés <}LZ,CI>)‘

Cily « Mol 7 1nyer T
< e ] (»+ 1,). (5.184)
N2 |Af6
Next, Proposition 5.2 together with Remark 5.6 yield that
/ s vo(LLFLIY, Heun (511, Heun (52)])
- 2
A[TA-2.2] [A]

1
= N(BOId(fO)[J](T§ 2 + 2Bol (folJIT; 1) + A2 BolP (fo)lJ1(T; 1))
0, 0. T 0, on
+I O 1 [P 4 ey 75 5 [N + T ey 7 Az’f) (5.185)
where

(Boz, Bol) A 2 o A
| err ()\27 SfLUDI = CHU”Z(L%J+|).w.(."“f0H2(|_%J+l),¢"rT Ao N (5.186)
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|err(Bog Com 4 1| < C”ﬁ"zqgj+1>.w,v7\|ﬁ>“z(LgJm,c!r‘faHﬁHZ(L%J+1)'w"c|AV”
W(l +%)2(1 + L[z\vli) (5.187)

Let
e (o f191) = - (Bola (I NT:2) — Bol. (/T 1)), (5188)
errgé;'wfi; fL) = %(Bolg)(.fo)[ll(ﬂ %) = Bl ()T 1), (5.189)
erri0 (L 5 LD = %Z(Bolf)(fo)[J](T; ) — Bol® (fo)[J1(T: x)). (5.190)

Recalling (5.50), (5.52), (5.56), (5.53), and (5.54), Lemma 5.5 then implies

J
(dzs)
(i D = NEAT

N r42
_ W e ol e T 215200

- N}LZ’+2|A|%
for j € {0, 1, 2}. Lemma C.5 yields

A 0
ﬁl Bole (fo)[JI(T; M)

Allog(A)]
N

= Clily g e Mol 5 faer T A H 12T Nl

for j € {1, 2}, and all A > 0 small enough, dependent on ||ﬁ||2(L§J+1),w,c Let

l 0, 0.
~ BOle(fLIIT: 3) + R C iy 4

AZ’
1
= (Bola(f)JN(T: 2) + mol;‘><fo>m<r; 2)

(Bog, Bol)

+22Bol (f)lJ1(T: 1)) + erryy FLID)

x2 ’
Collecting (5.186), (5.191), and (5.192), we thus proved that

Bog,Bol
|exr{5sBoD kz,f[f])l
T2||J ||goo(amyh
= Cyg 1foll r<7” e
2 S ol g e N
(T 2|7

W2|_§J+z,oo
Nk2(’+1)|A|§
Alog(W)|T (1 + IOg(T))”J”WLOC)
+
N
~ r

3 Clblly g 1y 1ol 5 Jyeor (T
= N
+ Al log(k)|>

+2
/1] W2L%J+2,oo

<)L2(r+l)|A|
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Finally, we compute the discretization error in the dynamics of g. Let

1 T
=N fo dS (absguare,a(fo)[J1(S/A2) — abSguare.c (f)J1(S/32)) . (5.195)

Lemma 5.5 together with Proposition 5.2 implies

Cys (YT
(T IOlo) £ nyme 1ollag) £ [1y.eo” 2| 5 [+2.00
errgd“) T o)l < 215 ]+ 25 |+ i w=l2 . (5.196)
¢ \a? NAZ'|A|5
Moreover, let
i T
erry’t (72; gm)
1
=z [ 82 (colsTIS2/32) = cole(LIIS2/4%)
NA= JAIT,2)
+abscup.a (fO)LI1(S2/2)) — abscup.c (fo)I1(S2/4%))) (5.197)
Again, applying Lemma 5.5 together with Proposition 5.2, yields
Cio (TY P20 2
T 19051 2 [1ymer 1 0llac) £ [41y.eo 2[5 ]+200
err;dfs) T o)l < 205 ]+0 2| 5]+ i w2lz (5.198)
e A2 Nl2r+2|A|§
for all A > 0 small enough, dependent on || 13||2(L% ]+1).w.c- This concludes the proof. O
For the next result, observe that
AcupE = E(p1) + E(p2) — E(p1+p2) = —p1-p2. (5.199)
Let
Bol fec (fo)[JI(T)
nT W(p1) + 9(p2))*
=——s dH () AcupJ (py) ———————
@0° Sy ips 2o Ip2|
(fo(p1) fo(p2) fop1 + p2) — fo(p1) fo(p2) fo(p1 + p2)) (5.200)
be the Boltzmann operator with energy conserving collision kernel for the free energy dis-
2
persion E(p) = %

Proposition 5.8 We have that
Bol. (fo)[JI(T; 2)

T
= 2 | 2552 B2 BT 02 (1) + 8p2)?
(27‘[) T

(Fo(pD) fo(p2) fo(p1 + p2) — folp1) fo(p2) folp1 + p2)) (5.201)

o ssinz(x/s) . . ) g . .
where §.(x) = —nr Moreover, approximating Bol( fo)[J1(T A™<) with its continuum

counterpart, i.e., replacing IIITI > ax by the (Lebesgue-) integral ﬁ ng, we find that
1 1 (feor (T
NBOlc(fO)[J](T, A= NBOlfec(fO)[J](T) +emy (5 fI1) . (5.202)
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where
(fec) A
lerry’. (Az’ SUDI = C”””z(L £ e 1ol 5 e AT )||]||W2700N (5.203)
for all & > 0 small enough, dependent on ||U||2(L§J+1),w,c-

Proof Observe that A, E = 0 is equivalent to p; L ps, see (5.199), and that

VA E(p)| = ‘ (:Z?) ] = Ipy|. (5.204)
Moreover, notice that for any w € R \ {0}, we have
Re/ dsy e 1 @61792) — 1= cos(wn)
Al1,2] w?
sn2cwt
sin“ (%
=2 (22 ) (5.205)
1)

i02
Observe that §,(x) = %ﬁ/a) defines an approximate identity in the sense that we have

84(x) >0 Va >0, (5.206)

/ dx8,(x) =1 Va>0, (5.207)

/ dx 8,(x) < @ VYa,p > 0. (5.208)
|x|>p 1Y

With that, we obtain
Bol(fo)[JI(T; A)
T
= (217)6/ dp, 5%(AcubQ(pz))AcubJ(pz)(ﬁ(pl) + 9(p2))?
(fo(p1 + p2) + fo(py) fo(p1 + p2) + fo(p1 + p2) fo(p2)
—fo(p1) fo(p2)) (5.209)

This proves the first part of the statement.
For the second part, assume p, ranges over R®. Emphasizing the dependence of
E, Pa) = Acub2,(Py) on A > 0, we abbreviate (5.209) as

2 Bol(fo)[JI(TAT?) =: / dP25%(5(A,Pz))H(P2), (5.210)

where we emphasize. Observe that £(0, p,) = Acup E (P,). Using the Fundamental Theorem
of Calculus by the Coarea Formula, we obtain that

Nend (L FLI = / dp: (32 (€G- 22)) = 82 (E0.p2) |H(p)

A
= / dr 5%2 (€(7, P2))0:E(7, p2) H(P2)

/ dt/dwzsnz(a))

/ A5 9:E(T, p2) H (po)
E(1,py)=w

(5.211)
[Vp,E(T, o)l
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We prove in Lemma C.6 that

d A
et O SN S Chaty 4y ool o T w2y (52212)

for all A > 0 small enough, dependent on ||U||2(L§J+l),w,c-
Next, using (5.207) together with the Coarea Formula, we have that

T
Nerrs (=55 fIJ]) = / dp, %2 (Acup E(p2))H (p2)

H
- / ans —
Acup E=0 IVAcup E|

/ dws (a))( / ars 1
- - I
ZT AcpE=w |VAcubE|

+ / A+’ L) . (5.213)
Acup E=0 VA E|

We prove in Lemma C.7 that
T A
(ec) L . . /
| €11, ()\2 5 f[-]])| < CHU”Z(L%J+l),w.c’“f0”2(|_%J+l),c’r T||J|IW200 N (5214)

for all A > 0 small enough, dependent on || ﬁ||2(Lg ]+1).w,c- In particular, we have that

erréi“’(kz,fm)=err2f‘”< Lofun + el ray 5215

A2’
satisfies
(fec) ) A
CI'I'Z’C <)L2 5 f[]])‘ =< CH””z(L%J+1>,w,p”f0H2(L%JH),C“(T)”JHWZ'OC N . (5216)
This concludes the proof. O

5.3 Centered Expectations

In order to resolve the fluctuations around the HFB dynamics, we have to consider the
dynamics relative to the condensate term, i.e.,

PP = fi(p) — 12,%8(p). (5.217)

Proposition5.9 LetT > 0, » € (0, 1) and |A| > 1. Let J € L (R3; R). Then the following
holds.

(1)
—— Cong (fo)(T; 1) = COnd(f((b))(T;)L) + err(cen)( 51 ®), (5.218)
N2) N2 A
where
3 N
T |A|2 Cllolwal AT
(cen) . . 3
’e Trd (ﬁ@)’ = Cltlu,a1folla{T) N2
|A] 1
(1 ) 1+ ———). (5.219)
N NZAA|2
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(2) (a)
1 ) 2@
~ (Bola(f)LIN(T: 2) + ABoly  (o)lJUT: 4) + 2> Bl (fo)l /(T 1))
= %(BOld(f(q)))[J](T; 2 + ABol ) (FO)NINT; 1)
cen T
+22Bol (FONINT: 1) + errss” (ﬁ; f[J]) : (5.220)

with
‘err;czw <A2’ f[J])‘

= Cliotyalifolla 1 lleecax) (T')

(1 + |A|)<1 + ! )
N NIAA[Z
|A[2 eClolwalAl/AT Al X
’ 1 <1 + 7)(1 R
N7A

4 |A 3 Clolual AT

N33

[1+ ) )] 20
(b)
1
~ Bole (/)T 2)
1 (®) (cen) r
= Bole(fHINT: 2) + emys” (53 FLID. (5.222)

(cen)(

where err. fLJ)) satisfies the same bound as err(cen)(k2 s fLID),

pel

(3) (a)

l T
& /O dS absquars.a ()T 1(S/32)

= / dSabsquar,d<f<“’>>[J](S/A2>+err‘f‘“< 2’8[-]]) (5.223)

T
‘erri”fz”) (ﬁ; g[J])‘
3
= Cliolya, i folla 1 L as)(T')
(+5)0+ =)
N NIAALZ

|A|%eCHﬁ”w,d|A‘/)»T |A| 1
[1 +(T)? 1 (1 +7)(1 n 7>] (5.0
NiA N YOG

with

|A|3 eClIol.al Al/AT

N3x

(b)
1

TTH / dSy (cola(fo)[J1(S2/A%) + abscuv.a(fo)[J1(S2/37))
A[T,2]
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1

- (®) 2
=N /A[T,z] dS; (colg(f'")H[J1(S2/1)

. T
+abscup.a(fP)I1S2/2)) + err;f;m(ﬁ; glJ]) (5.225)

with

T
effgfz")(fz; g[J])‘

S|A13 ClolualAl/AT

= Chiolya, i folla 1 Lo as) (T')

(1+ |A|>(1 P )
N NIAAL?

L |A3 €Il alAI/AT A 1
(+ 50+

: 14— —— )] 5226)
N2A N NIA|A|2

N353

[1 +(T)

The analogous statements hold true for the continuum approximation if one replaces
(16 llw.a- Il folla) on the RHS of the inequalities by (Crl|lla(| 5 | +1),u.c- Crll foll 5 41).0)-

Proof In the notation of the proof, we will focus on the discrete case. The bounds for the
continuum approximation follow by replacing (||0lw.4, Il foll) by

(Cr ||17||2(L%J+1),w,w Crll folla| 5 | +1).0) - (5.227)

see Remark 5.6.
Let 1 = TA~2. Next, Lemma 3.1 and the definition (5.217) of £(® imply that

f dp J(P)(fop) — £V (p)) = / dp J(P)(fo(p) — fi(p)) + J(O)| @[

t
J
_ —i/ ds vs([fIJ], Hi(s)D) + 10D,
0 [A|
(5.228)
Using (5.13), we have the estimate
v (LfIJ], Hi ()]
[A]
Nk A2
C
< Clituanl g€ AT T oo px) o (1 + o ) (5.229)
We have that
t H
®, = —i/ gy 2o(la0 M ©)) (5.230)
0 [A|
Recall from (5.18) and (5.26) that
(a0, Heun ()] = FIJ1()] + glI2()] + ¥ [J3(8)] + Jals) . (5.231)
1
a0, Hauar ()] = EHS‘)”(S)' (5.232)
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Collecting (5.24), (5.25), and using Lemma 4.4, (5.13) yields

1
1 |A|2
C A|/AT
D11 < Cly foll TN 71(1 + 7) (5.233)

N2x N?

Then (5.228), (5.229), and (5.233) yield that

| [ av 3o - 70 w)

|A|3 eClIol.alAl/AT

< Cioll (TY21J [loo ax
1011w, Il folla (A%) N%)\
[A] 1
I+ —)(1 + ——). (5.234)

As a consequence of (5.234) and recalling definition (5.49) of Con(f), we find that

X T
errgce") <ﬁ’ <I>) ‘

= Chilya i fola{T)

|A|3 Cllolwal AIAT

N2
[Al 1
I+— )14+ —). (5.235)

After substitution and using the notation in the proof of Proposition 5.1, the terms in
bol) (f)[J1(t) — bolD (N[ J1(¢) and col® ( f)[J1(r) — col® (£ ®)[J1(r) are of the
form

f dp, Hi(p)Ha(p2) H3(p1 £ p2) £ (p0 (fo(p2) — 5P (p2)) . (5.236)
/ dpy Hy(p1) Ha(p2) H3(p1 % p2) fo(p)(fo(p2) — £ (p2)) . (5.237)

/ dp, Hi(p1) Ha(p2) H3(p12) (fo(p12) — £ (p12)) . (5.238)

where H; € L;’ZO (R?; L;O(]RS)) can differ in every line and in the last line, we require

Hy € L (R%; L) (R?)). We have that s, < T2~ with & € (0, 1).

Observe that
H

/dPIHl(p)Ifo(p) - W
< IH oo V3)
- [A]
< I follall H1lloo (5.239)

due to Lemma 4.7 and
N,
V°|(A|b) - / dp fop) = I folla - (5.240)

(5.234) and (5.239) imply that the terms of the form (5.237) satisfy

‘ / dpy Hy(p1) Ha(p2) H3(p1 £ p2) fo(p1) (fo(p2) — £ (p2))
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S/dpl

= Choflwasll folla 1HH1 oo 1 H2lloo | H3 oo {T")

H (p1)|fo<p1)] / dpy Hy(p2) H3(p1 & p2) (fo(p2) — £ (p2)

5 |A|3 eClIolu.alAl/AT

Nia
|A| 1
1 — (1 ). 5.241
( + N)( + N%A|A|%) ( )
For (5.236), (5.234) and (5.241) yield that
’ / dpy Hy(p1) Ha(p2) H3(p1 = p2) £57 (p1) (fo(p2) — (CD)(Pz))‘

< ‘ / dpy Hy(p1) Ha(p2) Hs(p1 % p2) fo(p1)(fo(p2) — Sg@(pz»‘

+ ‘ / dpy Hi(p) Ha(p2) H3(p1 £ p2) (£ (p1) — fo(p1)) (fo(p2) — fs(f’)(pz))‘

S 1A 2 ClolualAl/AT

= Clioly.an i folla H1 oo (T')

(e )+ N;l,\,)

[ a2 a1 £ p2 Gt = £

N2

(120l oo + sup
p1

|A|3 eClollw.alAl/AT

= C\|auw,d,||f0||g,||H1||oo||1‘12||oo||1’713||o<>(T)2

1+ + )
N NIAA2
3 a
AL eClolual Al/AT A 1
[1 4 rplAlZe (1 n u)(1 n ﬁ)] (5.242)
N2 N N2AA|Z

Employing (5.234) again, we estimate (5.238) by

N2x

‘/ dpy Hi(p1)Ha(p2) H3(p1 + p2) (fo(pi + p2) — £V (p1 + pz))‘

S |A]2 ClolualAl/AT
= Ciofwal folle 1HLIN T H2 loo 1 H3 [l 0o (T')

1
(- [(E—— o (5.243)
N NaAA '

Collecting (5.241)—(5.243), recalling definitions (5.50)—(5.56), and denoting Bol® := Bol,
we find the upper bound

% Bol Y (fo)[J1(T; 1) — BolW (f )[JI(T; 1)

5 |A|3 eCllolwal AIAT

W2 e a)
= Clla.l foll N (r i
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(1+ )0+ lew)

3 e

Al2 Cllollw,a|Al/AT A 1

[1 <T>2| |2e : (1 + u)(1 + ]7)] : (5-244)
N2A

In particular, we have that

|err(cen)(t FLIDI, |el’l'(cen)(t fLIDI

4 A3 ClolwdlAIAT

= Cliolyanlifolla 1 L an) (T

(00 )

3 ~
A 5 CHU”w,dlA‘/)‘T A 1
[1 4 Ake (1 +u)(1 + ﬁﬂ (5.245)
N2) N N2ZA|A|2

N33

Finally, it remains to estimate err(ce")( R

that lead to (5.245), Proposition 5.2 1mp11es

;8lJD), j € {1,2}. Following analogous steps

errleen (L 58l ])'

|A|3 Cllolwal AIAT

3
= Chiofy .l folla 1/ lleea) (T)

(1+ )1+ 1H1|A|)
3 D w,
[1+ <T>2|A|2€C]':£;'AW (1+ |II\\7—|)(1 + N%A1|A|3>]’ (5.246)

T
erré“") (ﬁ g[J])‘
3
= Chiofy .l folla 1/ lleea) (T)
|A| 1
(1+—)(1 b 3)
N NIAIA|2

3 N

A2 eCl0Nw.alAl/AT A 1

[1 4l (1 + 1Al ')(1 —_ )] (5.247)
NiA

3
N2ZA

3 A
A3 eClilualAl/AT

N33

This concludes the proof. O

6 Main Order Terms in the Evolution of (P, f, g)

In this section, we will prove Theorem 2.2. We will always assume that A € (0, 1) is small
enough to comply with the estimates proven in all preceding steps.
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6.1 Discrete Case

Fix L > 1. Recall that we refer to the case of fixed A as the ’discrete case’.

6.1.1 Main Order Term of ®

Using Propositions 5.1, and 5.2, we have that

dr = Cong(fo)(T: A) + Rema(—; ) + err <B"g’( ; @) 6.1)
2 N2 A2 A2
with
T IAI
|Rema (5 @) < Cyay, .o T2 NN 25 6.2)
Cs T
|err(Bag)( - ®)| < ||UHu,v,d,|l|f0||d ) (6.3)
22 N2
In particular, the main term is given by
1 iT .
—— Cong (fo)(T; 1) = —— dp v(p) fo(p), (6.4)
I N2 Jar

see (5.49), and thus it is of size N~ ZA_I In order to suppress Remz(
A =loglog N/log N.

37 ®), we choose

6.1.2 Main Order Term of f

For f, we apply Propositions 5.1, and 5.2 to obtain that

/A ap (17 = 7)1 p)

22

= %(Bold(fo)[f](T; 2 4 ABol ) (fOLIIT; ) + A2 Bolf,z)(fo)[J](T; x))

T
+ Remy (55 fLTD) + e ey BOD(AZ, FLID + 70 errsBoCom A2’ . 65
where
r eC“ﬁ”w.d|A|/)\T|A|6
Rem; (—z;f[J]) =< C\\ﬁ||w,ds\|.f0\|d(T>4||J||Z°°(A*)X4—]\72’ ©.6)
(Bog,Bol) , A
’ rry 8 (szf”) = Clitwael folla 1 leean T 6.7)

4 3 3
’err;B;g’Con) (: f)‘ < Clafyaut o€t o |As| - (1 w1 ) - (68)
’ ANz AN2
Due to Lemma 5.3, we can expand the oscillatory factors in Boli/ ) in powers of A. Then the
main order term depends on 9, A(N), and T. We are interested in terms up to O (N~ 1y which,
as we will see below, is the size of the main order term in the continuum approximation. For
the same reasons as above, we choose A = loglog N/log N.
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6.1.3 Main Order Term of g

Similar to the case of f, we need to subtract the dynamics of the condensate in order to
resolve the fluctuations defined by g. For that, we introduce

&P (p) = g(p) — D2(p). (6.9)

Propositions 5.1 and 5.2 then yield
/ dpg'y (I (p)
* A

1 T
= N/O dSabsquart,d(fO)[]](S/)\z)

1
+— / dSs (cola(fo)[J1(S2/2%) + abscup,a (f)[J1(S2/2%))
NA= JArr.2)
T . (Bog,Con) T .
+ Remz(p,g[ll) + J(0)err, (ﬁ’ g) (6.10)
with
T A eCllolual AAT| A |6
[Rema (=5 glIDI = Cyopyanfolla (T W l2n00,d ——5—— > (6.1D)
A AN
4 3 3
(Bog.Con) T . Clidtu.alal/ar STITIAL2 |A]2
lerr (5381 < Cidlual folla€ 1+ . (6.12)
2.d 2 19w.a. 1 folla N N

Asinthe case of f, we again observe a phenomenon similar to the Talbot effect on abs;,arr,a,
coly, and abs.,p, 4. We choose N —1 a5 reference order.

6.1.4 Conclusion forL ~ 1

As described above, we choose A = loglog(N)/log(N). Let

logl 1 logl  ClollwalAIT
Sq}d =mln[ g)\ - gA _ ”U”w,dl | } (613)
' logN 2 logN loglog N
logl 1 3logl ClDllwalAIT
BFdzmin[ g)h’i_ 3 _ ||U||w,d| | } (6.14)
: logN’2  logN loglog N
1 3logl  CltllwalAIT
Sog =~ — gy 10llw,al Al ) (6.15)
’ 2 log N loglog N
Then we obtain
1
1 — —— Cong(fo)(T: 3)|
22 N2
< Sl 1ol 1ALT (6.16)

N%‘Fs\y,d)\‘

[ ar (2o = 5 o)

2
1 . .
— < (BolaUL1(T: 2) + 3727 Bol (/)11 1) )|

j=1
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= SidlwatfolaiaL I lesan

< T : (6.17)
1 T
(@) b 2
[ are P = 5 [ s as a1/
A* 22 0
1
-— / dsz(cold<fo)[J]<sz/x2>+absmb,d(fo)u](sz/xz))\
N2 Jarr 2
Clidllwa.folla.aLT 1 12000, 6.18)

— N1+5(;,¢[

for all N larger than a universal constant. Notice that for all N large enough, we have that
8j.a=208j4(N,|A|,T)>0for j e {V¥, F,G}.

6.2 Continuum Approximation

We have that errors coming from the tail in the Duhamel expansion grow like
exp(C,||f)||2(L%J+1)’wycT|A|/A). As a consequence, we require
[Al_ log(N)
A loglog(N)

as N — oo. In order to use bounds established for general values of | A | to the limit |A| — oo,
for specific expressions of interest, we employ Remark 5.6.

) (6.19)

6.2.1 Main Order Term of ®

Using Propositions 5.1 and 5.7, we have that

oy = Cone(fo)(T; A) +Rem2(1- @) + err(Bog)(l' d) (6.20)
ﬁ N%)\‘ C £ A’27 Lc Az?
with
3
T 2 Crlldlly| £ [ 41yme AIAT [A]2
Remz (ﬁ, qD)‘ < C”f)HZ(L%JJrl),w,c’”ﬁJ”Z(l_%J+1).c’rT e L?J N)\'z
(1+5)
N )
Cis T
190y £ | tymer 10N £ y.eo”
‘errEBcog)([; q>)‘ < 215 ]+0, 1 2| 5]+ (}\ £) 6.21)
’ N2 |A|6
for some r > 6. The main order term is given by
1 iT .
— Conc((Tih) =~ [ apspiee). 6.22)
NZx Q2m)3N2x JR?

and it is of size N%)\_l.
6.2.2 Main Order Term of f

For f, we apply Propositions 5.1, 5.7, and 5.8 to obtain that

/ dp (L) = 1P () I (p)
A* 22
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1
=  Boljec()LI)(T)

Bol
+Rem2(kz,f[J]) + erry °)(Az,f[l])
+J(0) erry O ( Az’ £+ ey T L, (6.23)
where
) . 4
Rem <,\2’ fU])‘ = Ol g 1y e ol 5 Jnyeor (T 1 Moo
eC"”ﬁl|2(L%J+l),w,c|A|/)‘T|A|6 | |A| 2 624
A4N2 +W) ’ (6.24)
Cay I fol AT P2 2| 5 J+2.00
(Bog.Bol) [ T 2|5 J+Dawe 1002 5 410 w2lal+2
err, . (Az,f[ll)‘f N
4 Allog(h ) 6.25
(A2<f+1>|A| + Al log(3)| (625)
(Bog.Con ) Colldl| g [ 41w AIAT
erry . <)\2’ fU])‘ = Clilly g oyl g [ry.c7 L&)+
4 3 3
(T)"|Al2 [A]\2 [A]2
(1) (1 ) (6.26)
A3N2 N ANZ

(feo) A
e/ <k2, f[J])‘ = Clbll gy Vol 5 o T 2 3 (627)

for all A > 0 small enough, dependent on ||ﬁ||2(L§ J4+Dw.er Recalling definition (5.200) of
Bol f¢., the main term is given by

xT @(p1) + 0(p2))?
—— AH(Py) Acupd (py) 2 P2
0N |10, (P2) AcunJ (p2) ™
(folpD) Fo(p2) fo(pr + p2) — fo(p1) fo(p2) fo(p1 + p2)) (6.28)

and it is of size N~!. In order to have that the discretization error is negligible, we need to
r__ .
impose % = o(|A|%+D) as |A| — oo. In particular, we may choose

L =23 (6.29)

for any arbitrary ¢ > 0. Recall that we required

A log N
1A] -0 _oeN (6.30)
A loglog N

as N — oo to suppress the tail in the Duhamel expansion. We may thus choose

_ (10g10gN>m 631)
log N ’ '

_ (M) Foas 632
loglog N ' '
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6.2.3 Main Order Term of g
Propositions 5.1 and 5.7 imply
/ dp gy (1)J(p)
- /0 S abSguare LIS /17)

1
T / 081 (cole (fo) [ T1(S2/32) + abseup.c (fo) [ T1(52/22))
A[T.2]

(dls) T

T
+ Remz(fz; glJD + err) Az,g[J])
T
+ errg";“(—z, gD + IO ey (5 g) (6.33)

with

T 4
Remp (TZ; g[ﬂ)‘ < CM’”Z(L§J+1>,w.c’”f0”2(|_§J+1).<"V<T> T2 5 ] +1).c
AT

Cr“ﬁHZ(l_%JJrl)wr 6
" [Al [A]\2
AIN2 (1 + W) ’ (6.34)
Clilyg 1 o1yl ol £ (anyeer TV T 2 5 o200
err(d”) e < 2| 5 [+Dw.e 2] 5 J+De w2lz . (635)
Le NAX|A|S
Ci» ) TV 2T ’ -
erréd”) glJ1)| = HUHZ(L%Jwyuaﬂufo'lﬂL%JHW’( ,) ” ”WZLZHL , (6.36)
¢ NAZ(’+1)|A|§
(Bog,Con) . Crldlly| o | f1ywcAI/AT
err. 2:’8 ()?’ g[]]) < CHMZ(L%J“)v"”v”'llfﬂllZ(L%JJrl),c*"e 23]+
3 3
TY*| Al Al\2 A2
IR >|§| (1+U) <1+' '1) (6.37)
A3N2 N

ANZ
for all A > 0 small enough, dependent on |0 215 41, w,e: All the errors are suppressed for
the choices of |A| and X as in the case of f above.

6.2.4 Conclusion forL ~ 172~

Recall that we impose

_ (10g10gN)(7+{W , 6.38)
log N
1 N (2+Z):+2
I — A—Z—%—s _ ( 0og )<7+ )r+6 (6.39)
loglog N
Let
1 locl  CrllDlly = T logl
bu.ci=min{> —Cp. & Tdalrhwe” 1085 | (6.40)
’ 2 “log N loglog N log N
1 logi  Crlldlly ¢ T erlogl
(SF(; = mln{f_ r,e g)\' - ’ 2(L2J+1)’w’c ’ g)\s
’ 2 “log N loglog N log N
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log % — loglog % }

6.41
log N ( )
1 logi  CrllOllaq 2 |41y weT erlogt
8G.c = min{f—Cr.g g5z b we” g*} (6.42)
2 log N loglog N log N
Observe that we have
I Tw2eomay = WMo 5 |+1,c - (6.43)
Then we have proved that, for some Ny = N0(||ﬁ”2(|_%J+l).w,c)’
1
@1 = —— Conc(fo)(T; 1)
2 NIA
Cip .
< HU”z(L%J+1)_u;_¢»*”f0”2(|_'7J+1),<-’r’€*7 ’ (6.44)
3+8
N2Tove)
1
| f dp (157 () = 15" () I () = Bol pec f)IJN(T)
A* x
Cii . Tloal s Lo
< 190 g ool g )y e I ol g . (645
N1+5F,<‘
@) e 2
[ D) = < | dSabsguarFINS/2Y)
* 22 0
1 / 2
-— dS; (colc(fo)[J1(S2/27)
NA2 Jarr 2 (col.
abScus.e (fo) [ 7182/32)|
Cys J r
o hi g ool g JenereT Ml en.e ©46)

N 14+8G.¢

forall N > N0(||'3||2([5J+1),w,c)- Observe that for all N large enough, we have that §; .
=0 (N, T)>0for j e {¥, F,G}.
7 Effective Equations

After establishing the sizes of the leading order terms, we can derive the effective equations.
This will prove Theorem 2.1.

7.1 Discrete Case

Let L > 1 be fixed. Choose A = loglog(N)/log(N) as explained in section 6.1.4.

7.1.1 Evolution of P
‘We have that

P

T~

1
= —— Cong(f)(T; 1)
N2ZA
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T sog) (T T
+Remy (F; q>> + err(20®) (72 q>> + err(g” </\—2; c1>), (7.1)

see (6.1). Proposition 5.9 implies

T
(cen) )
|e "l (ﬁ’ “’)

JIA]3 ClolwalAl/AT

N2

1A 1
(+3)0+ =)
N2AA|2

Cllhoa 1ol g [y eI ALT

= Chifyalfolla (T)

< 7.2
- N%+6w,d)\ (7.2)
for all N large enough. Observe that
T
Cong (f )T 2) = - s | dpd(pfSp). (13
NZA A* 22
Then, analogously to (6.16) and employing (7.2), we obtain that
dr — < Clo .l folla.|ALT (7.4)
32 N2+5\p d)
7.1.2 Evolution of f
(6.5) and Proposition 5.9 imply
/ dp (1) = 157 () (p)
A* 32
1 z
= < (Bola(/HINUT: 2) + Y240 Boll (/D) 1))
j=1
T T
+ Rema (51 f1J1) + ey (- f17)
C T
+J(0) erryosCom AZ, )+ ey 5 LD (15)

Recall that, due to Proposition 5.9,

4 |A]3 ClolualA/AT

|err (Ce")( 720 SIDE= Cpapy i olla 1 e an(T)

(1+ %l)(l + N;;wg)

2|A|%ecuﬁnw,d|A\/AT IA| 1
[1+7) : 1+ (1 + ——)]
N2) N NIAA|Z
< Cistwadfoladanr I lexan
= N1+3F.a(N) ’

N33

(7.6)

where we possibly enlarge the constant in the definition of §f 4. In particular, similar to
(6.17) we obtain that

1
[ ar (P = 1) 1) = 5 (Bolat T8
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2
+ 33 Bol (FONINT: )|
j=1
- Cldtwadfola a7 e as
- N1+0rd :

(7.7)

7.1.3 Evolution of g
(6.10) yields

/A dp g (p)J (p)

2
T
- % /0 dS absguarta (F OIS /22)

1
+— / dS; (coly(f P)I1(S2/2%) + abscup,a(f P)I1(S2/2%))
NA= JaiT 21

T Con), T
+ Remz(ﬁ; gy + J(0) erréi?g' On)(p; g)

eny, T emy, T
+ e (1 gLTD) + eny ™ (51 81D, (7.8)
where, due to Proposition 5.9 and analogously to (7.6),

T T
|err§“">(72; glJDI, |err§“”)<p; glJD)|

< St folaanr I e can
- N1+dca

) (7.9)

where we possibly enlarge the constant in the definition of § 4. As a consequence of (6.18),
we thus obtain that

1 T
| f dpg? (PI(p) — f dS absguara (f IINS /1)
A* 22 0

1
N2

< St fola- a7 112000,

fm 452 (cola(FNINS:/32) + abseuna (1IN S2/47)|

N1+d6,a(N) (7.10)
7.1.4 Conclusion for L ~ 1
Recall that A = loglog(N)/log(N). We consider the effective quantities
Ur =d7 , (7.11)
22
Fr =3, (7.12)
22
Gr =g (7.13)
22

‘We have that

T
A2Re / dsy e 1= p(gy) = A2 / ds
[A[T}FZ,Z] 0
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. /T s sin (%(T - S))h( S
0 1))

ﬁ)' (7.14)
For a function H;(p) and j € {1, 2}, denote
sin (Q(P1)+Q(P2;*Q(ﬂl+ﬂz) (T — S))
A
o HYJ] = d
Qai7—s 1 (Hs)T] /W)z P2 + Q) — 21 + p2)
O(p1) + 0(p2))* (I (p1) + T (p2) — J(p1 + p2))
(Hs(p1)Hs(p2)Hs(p1 + p2)
— Hs(p1)Hs(p2) Hs(p1 + p2)) , (7.15)
4 .5, (Hs)[J1 = bol V) (H ,2)[T1(82/32) (7.16)
1
QiA1= — / dSs coly(H.;2)[J1(82/32), (7.17)
A[T,2]
T
Ag.r (] = /0 dS absguart,a (H;2)[J1(S/A%)
oz [ dSsbsana (NS5, (7.18)
A= JAIT.2]

where we used Proposition 5.2. Q4 ., denotes a generalized collision operator and Ay, 73
a generalized absorption operator. We have proved that

1

T
wr+ /0 dS/A*dpMp)Fs(p)]

N2A
C ~
< Slitua i plaialr (7.19)
N§+(S\p.{1)\‘
1 T
| / dp (Fr(p) = Fo(»)J(p) = ~( / dS Qu;r-5(Fs)IJ]
A* N 0
2 ) )
+/ ds, Z”q,(zf};sz,x(FSz)[”)‘
AIT 2] = '
Cliotal follas 1AL 1l e2o(ax)
< T , (7.20)
1
| / dp Gr(p)J (p) — +(Aar 2] + Q. ()]
A* N
Cis J
~ Ciitwalfolla a7 12000, (721

- N1+8G*d

for all N > 0 larger than a universal constant.

7.2 Continuum Approximation

Recall that
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— <71°li I;i N )m , (7.22)
1 N (2+§)£+2
L=a2i¢ - <710g°1‘°;gN>‘” s (7.23)
7.2.1 Evolution of ®
(6.20) and Proposition 5.9 imply that
1
@1 = —— Conc(f ®)(T; )
2 NzA
+Rem2( 3@ e ‘B"”(Az, ®) + errl“(; d). (7.24)
‘We have that
3 Colldlly| 5 [1y.0.c A/AT
(cen) . R 3|A|2€ 2 e
ety P = Chiy |yl 5 J e e
(1 + m)(1 PN )
N NIAAJ
Ciol 1.
- ||v||2(|_»ﬂ+1)Yw,I\Afol\zqﬂﬂ)_f,hT (725)

1
N 2 +5\IJ,C)L

by possibly enlarging the constant C in the definition (6.40) of §y .. Combining this inequality
with (6.44), we find that,

5 Clidlla| g Joipancl ol 5 | 1ycre:T

D — 1 (7.26)
2 N2A N2Towe)
7.2.2 Evolution of f
As a consequence of (6.23), and Proposition 5.8, 5.9, we have that
[ ar (P = 1))
A* 22
1
= - Bole(f PHIIIT; )
T T
+ Rema (1 f1J1) + ey m’ %))
C
+ IO err§Prcon L 200+ erre (- (3 /TID). (7.27)
Observe that
3 Crlldlly| 5 |y AVAT
(cen) . R 4 |A]Ze 2
lerr; . (Az’ fIIDI < CHv||2(L%JH)ywvr,llf()ll%L%JH)‘C,I‘”Jlloo(T)

N353
N 1

(1+—)(1 FR - 3)
N NZAA|Z
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SIA s Jrnan MR 1
T 0+ )
N2j N N2ZA|A|Z
. CUdlla| 5 e 10l 5 Jnyeor- T Moo s
- N1+dF.c ( )

by possibly enlarging the constants in the definition (6.41) of § 7 (N, A). Then, (6.45) yields

1
| fA LA (170 = 157 )T (p) = 5 Bole(fINT; 2)

) Cl\ﬁllz(L%J+1>,wyC,Hf0H2(L%JH)‘C,r,s,T”J”W2|_%J+z,oo

< e (7.29)

7.2.3 Evolution of g

(6.33) and Proposition 5.9 imply
/ dpg' 7 2 (p)J (p)

_ L / dS abguars (£ YIS /32)
N Jo

b / dsz(col(f@)) J1S2/33) + abSeup o (fPI1(S2/32))
NA T2]

(dis) : g[J]) + err(dts)

+ Remy( 2,g[J]) + err 2

;g[J])

+J(0) err? C”"’( L) + err(“’”( S glJD) + err(ce")( SiglJD.  (7.30)

A2

Analogously to (7.28), we have that

Jerr{"( kz,gwm ferre (L 278l

W05 e Mol g ey e 1 oo

< e , (7.31)

by again possibly enlarging the constants in the definition (6.42) of 6 .. Applying (6.46),
we obtain that

1 T
| / dpg? (DI (p) = f dS abSguars.e (f P)IN(S/27)
* 22 0

1
N2

Fabseun, o (f P 1(S2/2)|

_ Clblly g 1y Mol 5 sy come.T 12 5 41,
= N1+ :

/ dSs (cole (f)I1(S2/32)
A[T,2]

(7.32)
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7.2.4 Conclusion for L ~ A=2~

Recall that we impose

loglog N\ 7=55%
3 = < oglog )(7+,) 6 ’ (133)
log N
[ j2-2-e _ ( log N )E?iiiiié. 7.34)
loglog N
Again, we consider the effective quantities
Ur =07, (7.35)
22
Fr=f®, (7.36)
2
Gr =g . (1.37)
22

Let Qc.7—s.a, Qcc:1.n and Ac.r, be defined analogously to (2.18), (2.15) respec-
tively (2.17) with sums over A* replaced by integrals ﬁ fR3 over R3. Collecting
(7.26), (7.29), and (7.32), we have proved that, for some possibly larger constant Ny =
NO(||1A)||2(|_%J+1),w,c)7

. T
wr - [Cas [ apiorrs)
2m)3NzAr Jo R3

Clilly) g e 1ol 5 .creT

, 7.38
- N3+Swey (7.38)
1 T
| / dp (Fr(p) = Fo(p))J (p) = - /0 dS Qcir—s,:(Fs)|
A*
CH13H2<L%Jﬂ)vwvc,llfollz(L%JH),C,r,s,T||J||W2|_%J+2,oo
< e , (7.39)
1
[ ar 61w = {(Acr P + Quirat)|
A*
Cis J r .
- 10| £ Jnc ol g e T I2 5 1410 240,

- N1+SG,L'
forall N > Ny.

Acknowledgements T.C. gratefully acknowledges support by the NSF through grants DMS-1151414
(CAREER), DMS-1716198, DMS-2009800, and the RTG Grant DMS-1840314 Analysis of PDE. M.H. was
supported by a University of Texas at Austin Provost Graduate Excellence Fellowship, and by NSF grants
DMS-1716198 and DMS-2009800 through T.C. M.H. would like to thank Darren King and Daniel Weser for
helpful discussions and comments on the use of Geometric Measure Theory for some calculations. We also
thank Esteban Cardenas, Jacky Chong, Ryan Denlinger, Jiirg Frohlich, Irene Gamba, Laurent Lafleche, Natasa
Pavlovi¢, Israel Michael Sigal, and Avy Soffer for inspiring discussions, and some references. We thank the
anonymous referees for valuable comments.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

@ Springer



Quantum Fluctuations Around BEC... Page 89 of 123 85
Declarations
Conflict of interest No conflicts of interests are connected to this article.
Appendix A. Calculus for Creation and Annihilation Operators
Lemma A.1 Let v be a translation invariant state, i.e.,
v(A) = v(E*FAe™*P) (A.1)
for all x € R and all observables A. Then we have
m m m
, 8t 0ipi) 4
(@) | — =1"-itH (o1)
v<l ap([’ ) = TU ' apcl.’ . (A.2)
i=1 i=1
Proof By translation invariance, we have that
m m
v (H agl_"')) =v (e”"P nag")e—’x'P)
i=1 i=1
m
— oixiioip)y, <1_[ al(;:_'i)) (A.3)
i=1
for all x € R3. Integrating both sides f A dx, we obtain
m m m
[Alv (H agj”) =6 (Z U,'p,')> v (1_[111(,‘:")> , (A4)
i=1 i=1 i=1
which yields the statement. O
Lemma A.2 (Cumulant Formula) Recall from (4.13) that
kn = (=" / dplog (1 — e~ KP=1) (A5)
A*
Then there are constants ay i € R such that
n—1
— k n—k
o= Yoans [ dp oA+ R 48 [ s
k=1 A* A*
where fo(p) = (eX® —1)~1,
Proof We will show, in more generality that
Kn(18) = (—3,)" / dplog (1 — e~ KP=1) (A7)
A*
n—1
= Y au [ dp st a4 o0 b [ apf 4
for all u < 0, where f,(p) = (K- _ =l A straightforward calculation yields
a0 = [ ap . (A9)
A*
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Ko (pu) = /A dp fu(p)(A + fu(p)). (A.10)
Observe that

_8ufu = fu(l‘i‘fu)- (A.1D)

Now assume that (A.8) for some fixed n € N, n > 2. By definition, we have that

Kn+1 () = (—0u)Kn (1)

n—1

= [ dp Y anslkup 1+ £y
k=1

+ =) fu (P A+ fu(p)" ). (A.12)

After an index shift, we can further simplify this to

s =ant [ dp £up) A+ £

et [ dp 5P 0+ )

n—1

+ Y (kang+ (41— K)ag 1)
k=2

| ap s+ gy

n
=Y w1 / dp fu(p)* (1 + fu(p))" ™75, (A.13)
A*
k=1
for some ay,41,x € R. This finishes the proof. O

For the following standard result, we need to introduce some notation. For a proof of the
statement, we refer, e.g., to [34, 35]. Given a finite ordered subset J = {j; < jo < ... <
Jr} C Nand o, € {£1}, we define the ordered product

(o) (o)) (@)

ap;” = ap;...ap;’. (A.14)
jeJ
In addition, we abbreviate
P = (Pj)i=1- (A.15)
as well as
ap,) = []al- (A.16)
jeJ
Furthermore, we define the sets
Jr ={jeJ|o; ==%l1} (A.17)
and the Wick-ordered product
(o))
: na,,(;’ D= a+(p1+)a(p17) (A.18)
jeJ
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with all creation operators to the left, and all annihilation operators to the right.
Finally, in order to keep track of the correct scaling, it is useful to work with the rescaled
£2(A*)-norm
1

122000y = ==l Hllzca (A.19)
see (2.1). More generally, we also define
1
I1Hl oo 12 (axymtny == SUpP (/ dk,,|H(pm,k,,)|2>2, (A.20)
Pm “kn PmE(A*)m (A*)"
1
||H||L§ Lo ((Axyntny = (/ dk, sup |H(pm,kn)|2)2, (A.21)
n Pm (A*)" P E(AF)M

where in the case n = 0, this norm reduces to ||H||L;c ((A*ym), and in the case m = 0, to

|| H ”Li” ((A*)1)*

LemmaA.3 (Wick’s Theorem) Leto; € {£1}, p; € R3 forall j € {1,...,n}, n € N. Then
we have that

T = % (o T1 /)Tl o

j=1 JC jeJ

Lemma A4 (Wick-ordered operator bound) Let M € No,n € N, J := {1, ...,n},0; € {£1}
forallj e J. Let H: (A*)" — C,and gj : A* — C be given functions. Then the following
holds true

(1) If J+ # 9, we have that

n n n
@)
| /(A*)ndan(p,,)s > pio | [Teswn: [Tap « Pul
j=l1 j=1 j=1

1

2

< 11H17 T 208 Za]p, g 13,

jed-

n 1
IH1E TT &iops Zo,p, ligo 13, | M+2o05 | D Tz,
Jetx =t

where
m—1
(O 1= H(x —k) (A.23)

denotes the falling factorial.
(2) If J+ =W andn > 2, we find that

Hf o H(Pn)5(ZPJ) Hapj PM”
j=
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1
< (1512 (M —n+1)+ |A|||6<Z P)EHIL, VDI, . (A24)
Pn 2Lp” 1:Pn ./ 1
Similarly, in the case J— = {}, we have that

n
| [ v 10,5 | Y ps | a* 0P (A25)

(A" i

j=1

1

n 2

1 1
s(aniz Lz, (MDA dopi| Hlgg )M+,
n ]l n
(A.26)

(3) If n = 1, we obtain
laoPull = v MIA]. (A.27)

Proof Let ® € Fy, Y0 and ®_ € F) be two normalized test functions.
In the case J+ # ¢, we have that

’<¢+,/(A*)”dan(pn)5 ZPJGJ ng(pj) Ha(g’: ,)’

< /W dp,|H(p,)|8 Zp,o, H|g,(p,)|||a(p,+><1>+||||a(p, )|, (A28)

j=1 j=1

where we applied Cauchy-Schwarz w.r.t. the inner product on F. Let « € [0, 1] be arbitrary.
Then Cauchy-Schwarz w.r.t. dp, implies that we can estimate the last expression by

( /(A*)ndpn Zp,o, HE)! [T 18P ||a(pj+>d>+||2)

jed-
( /(A*)ndpn Zp,o, 101 [T 16 Pla, 0 F) . 129
jely

Observe that the Pull-Through Formula implies that

/dpma+(pm)a(pm) = /dpm—1a+(p;n—1)a(pm—1)(Nb —m+ 1)+
= WNpm » (A.30)

where we define (J\/'b)m|]_.. :=0forall j € {0,1,...,m — 1}, in accordance with (3.3). In

particular, we have that (N3),, > 0 as a quadratic form on F.
Then, integrating the first factor first w.r.t. the momenta p;_ and then p;, , and opposite
for the second factor, (A.29) has the upper bound

1

e I g5(p8 Za,p,

1

3
Ly L, N, P+
jeJ-
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1

1 - 1
I1H|2 1_[ gji(pj)é Zajpj ||Ll°,°J_L12,J+ H(Nb)fj,\cb—H . (A3

jelt j=1

Using the fact that & € F, +3" ®_ € F) and that both are normalized with norm 1,

we have that

=19;’

1 n 1
NN Pl < (M 4D o) s o210, (A32)
j=1

1 1
||(Nb)|2]7|q)7” = (M)|217‘]1M2|J,\ . (A.33)
Observe that Z;’z 10 = |J4+] —|J-|. Collecting (A.28)—-(A.33), we have proved that
n n n (O')
[ f(A*)n dp H®3 [ Y pjoj | [T [Tap; o)
Jj=1

j=l1 Jj=1
1 1

1 u ? 1 u 2
<lH:2 T] gj<p,->8(§ oipi | e 2 WHIZ T gips | Y oipi| U 12
LY Py_“Pyy

jed- j=1 jedt j=1
1
n 2 1
(M +) %’) D Lmzg)- (A.34)
=ty

In the case J_ = J, we have that

n

| anori@ns [ 3o |a*@oru (A35)
(A% —
j=l1

- H /(A*)n dp, HP,)5(Y_ p/)a®,) Put-n| - (A36)
j=1

which reduces to the case J; = .
In the case Jy = ) and n > 2, we find that

n
2
H /( e B (3 p; | awo-|
AF) -
j=1

n n
Z/(A*)zndpndqnﬁ(pn)H(qn)S Sl i |(@- at®ata,)o-)
j=1 =1

n

n
= [ e AR @ (Y3 o,

j=1 j=1

<q)—a a+(pn—1)a%a;_na(q"_l)q)i>

—/ dpy 1Ay, @12, (A.37)
(A*)
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where

n
Apn = /; ) 1 dpn—l H(pn)5 Z p] a(pn—l) . (A38)
A*)— n
j=1

Using Cauchy-Schwarz first on the inner product on F, and then w.r.t. dp,dq,,, we find the
upper bound

], H(pm(g ppae- |’

n n
=< /(A*)ZR dp,dq, [H@)IH@)IS | Y pi || 4
j=l1 j=1

lah a(p,—)®_Illa}; a(q,_ )|

n n
2
=(f, . apatas | X 0| Lo | 11 @) Plaaw, o 1)
j=I

Jj=1

n n 1
(/.. aputans | Xors 0| o | 1H @) Plajata, 0o 1)
j=1

j=l1

n
= [ sd98 | Yo | 1@ g a0,
j=1

" 1
+1A] dq, s [ Y q; | IH@)PIW)Z_ @17, (A.39)
(axn i
j=1

where we used that [ag, , a;;] = | A| together with (A.30). Using (A.30) again, we conclude

n
2
H /(‘A*)" 0, H(p,)d Z pi | a@n) - H
J=1

1
2

1 " 1
< ||H||i%n72%1,pn IR DI+ AL | Y pj H”i.%n N2 @
j=1

1
2

n
s(||H||ign72L;371_p”(M—n+1)+|A|||6 > pi H||2L%n)(M),H. (A40)
j=1

Finally, we have

lao Py > = sup (Py®, afaoPy®)
lol=1

= (Py®, apag Py ®) — |All| Py
= llag Pul* — |Al, (A.41)
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where we used that || Pys|| = 1. In addition, we have that
lag Pl = I Pus1ag || = llao Pyl - (A42)
(A.41) and (A.42) imply
laoPu 1> = MIA]. (A43)
This finishes the proof. O

Appendix B. Propagation of Approximate Restricted Quasifreeness

LemmaB.1 Let

Un() = VipgOW IV NIAlgole N WIY/N|Algol (B.1)

where for the definition of Vg rp, we refer to (3.7). Then fluctuation dynamics Uy obeys

{iafuN (1) = Meun(t) + Hyuars U (2), 52)
Uy©© =1,
where Heyp(t) is defined in (2.8), Hyuar: (t) in (2.9).
Proof We start by defining the auxiliary dynamics
Uy (1) = W*Iy/NIAlgole " WL/ NI Algol. (B.3)
We have that
i0Un (1) = WY/ NIAIgoTHNWIVNIAlgolln (1) (B.4)

Using ¢g = |A|~1/2, the explicit expressions for the terms on the right hand side are given
by

W[V N|Algol Hy WIy/ N|A|go]
= NlAM/ dxv(x) + l/ dxa;"(—Ax)aX
2 A 2 /A

+A\/N/ dxdyv(x — y)(a;' +ay) + k/ dxdyv(x — y)a;'ay
A2 i A2

1
+)»/2 dxdyv(x —y) (a;ray + E(a;ra;r + ayax))
A

A
+ﬁ /1\2 dxdyv(x — y)aj(ay +a;r)ay

A
+ﬁ X dxdyv(x — y)a;ra;rayax . (B.5)

Using the fact that 0(0) = 0, and recalling definitions (1.34)—(1.35), we thus obtain

idUn () = (Hurp + Heub + Hauar)Un (1), B6
Uy©O) =1. '
In particular, using
Un(t) = VipgOUN @), (B.7)
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a straight-forward calculation yields that Uy satisfies (B.2). This concludes the proof. O
Next, we adjust Proposition 3.1 in [74] to our present context.

LemmaB.2 Assume |A| > 1. Let HN be defined as in (B.6). Then there are Cy¢, Ky > 0 such
that

[N+ 18D Fh (N + 14D <1+ Mo ) < CoeKeliluatinle (g g)

NIA|

forall £ € N.

Proof We follow the steps of the proof in [74] and point out the differences. We show the
statement by induction. Let ¢ € F be arbitrary.
Step 1: (B.6) implies that

0 (Un (O, Ny + |ADUN ) = —i Un OV, [INp. Hirrs + Heub + Hauar Uy (D)
—i (Un OV, (No, HuFB + Hep U (DY) . (B.9)

Recalling (1.34) and (1.35), we have that

(No, HuFpl = l/dpz 0(p8(p1 — p2)layat, —apa_p,), (B.10)

NG o] = = = [ v 551+ p2 - e — afaman). B
Employing Lemma A 4, (B.9) thus yields
19; (U (W, Np + [ADUN (O Y) |
< Cllolua ([, Wo + DN 0V

1 [/~ 3
+ﬁ<UN(t)W,N;,2UN(t)1/f>)
< Cllollu.ar ( (En %, N + [ADEN (1))
1 ~ ~
+ v, Ny 0)) (B.12)
Using
WIYNIAlgola, WY/ NIAIgo] = a, — VN5(p), (B.13)

we derive that

[N, WIVNIAlgoll = —VNW* /N[ Algol(ao + a) + NIAIW*[/N|Alg]

= —(v'N(ao +ag) + NIA)W*[/N[Aldol, (B.14)
[Ny, WIYNIAlgoll = WIVNIAIgol(VN(ag +ag) + NIAJ). (B.15)

From these identities and using [N}, Hy ] = 0, we obtain that
N Bl (0] = [Ny WY/ NTATgolle ™ ™ WI/NTATgo |

+ WV N|A|gole N [N, WV N|Aldoll
= —v/N(ao + a )y (1) + ~'NUy(t)(ao +ag) . (B.16)

As a consequence, we have that
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{Un (). NGUN (V)
= (MU OV, Un (ONp) — VN (Nl (DY, (ao + ag Yy ()
+ VN (Nl (O, Un (1) (a0 + ad V) . (B.17)

Using Cauchy-Schwarz, we thus obtain

[ty (v, NEy ()
< [Ny ()]l (llﬁN ONpY | + VN (I (a0 + ag YUy (O || + Iy (1) (ao + a0+>1/f||))

= NGy OW I (ING¥ 1L+ VN (laofly W | + llag v
+llaowll + llag ). (B.18)
where we also applied that Iy (1) : F — F is a unitary transformation. Lemma A .4 implies

laoy 1> = ) Il Pmaoy|l?

M=0

=Y llaoPu—1v?
M=0

< Y (M = DIA[IPy-1y ]
M=0

= |AlIVNpY 1% (B.19)

Similarly, we have that
lag vl < VIAIIVNG + 1y | (B.20)

Employing (B.19) and (B.20), (B.18) implies

[l )y, NN (V)
< INGUN OV I (INGY |+ 29/ NIAIY N + 1y w1 + 1VA, +191)).-

(B.21)
Using Young’s inequality implies
(v (v, Nt (1))
< 5 (e, N W) + (1, (A7 + NIAI, + D))
NIA| Uy 0y, N + 1>ﬁN(t)1/f>) (B.22)

As a consequence, we find that

1 ~ ~
~ n @O¥. Nty )y

2

~ ~ N,
5CIAI((MN(t)I//,(Nb+1)L{N(t)1/f)+<¢,(Nb+1+ b )¢>). (B.23)

NIA|

Plugging this into (B.12) and using |A| > 1, we obtain that
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19; (Un (), (NG + [ADUN (V)|
5 - NP
< C||a||w,dx|A|((uN(r)w, Np + [ADUN (DY) + <w (N + 14 N|A|)w>)

(B.24)
Gronwall’s Lemma then implies
- - A N2
{Un Oy, N + |ADUN (1)) < eCllolwatlAle <¢ (Mo + 1A+ N|A|)w>. (B.25)
Step 2: Assume that
(Ev @w. N + 18D Ty )
< CjeKiltlvarlAl <1p, WNp + IADY (14 NA|%\|W> (B.26)

forall 1 < j < ¢ and some constants C;, K;, and any ¥ € F. We compute
id [{x v, N+ 1AD iy (1))

= (T v [V + 1A 18, + 100, i (1))

+1
= D (B . N+ IADT [N P +HEL I + 1IAD T 0y
j=1
(B.27)

Let
Acup[D] = /dpz 0(p2)8(p1 + p2 — p3)ay, ay,dp, . (B.28)
Applying (B.10) and (B.11), (B.27) yields

id ({ (w, N + [AD iy (1))
{+1 N )
=23 Im (T (0%, N + [ADT ™ (8181 = AcunlBDNG + AN Ty (1))
j=1
£+1 00
=2> Im Y (m+I|AD " (o + AP

j=1 m,n=0

~ N A
<UN(I)¢7 Py (Ag[v] — Wi Acuplv ])PnUN(f)lﬁ> (B.29)
Observe that we have
mg[ﬁ]P = mg[i}]Pm+28n m+2 (B.30)
PuAcub[01Py = PuAcup[0] P 18n,m—1- (B.31)

Lemma A.4 and (B.29) then imply

10, [ ()0, N + [ADF Ey ()9 |
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+1 oo
SCAY Y A AN T A AN T | Puldn ()Y 1 Puldn (1)
j=1m,n=0
. Acup[0] P
(1[0 P2l 8n.m42 + %an,mq)
+1 o0 ) ]
< Cldllwar Y D m+ AN " 4 |ADF
j=1m,n=0
~ 2 ~ 2 m?2
(I Pully O 1> + 1PN Y 1P) ((m + 2+ [ADSnmt2 + ——=8nm—1)
VN
{+1 oo ) )
< Clidllwar Y Y 4+ AN on+ 2+ AN Pty ()11
j=1m=0
3
(m+1)2
m+24+|Al+ . (B.32)

We can further estimate this by
13, {n W, N + 1ADEy () )|

< CCC+ DIplu.ar(([fv©w, Wy + 181 +2 Ty (v

U
Nici N(OY

< Cellpllu.ar ([T v, Wo + 1D T (1w )

- Al 423
+<uN<r>w, Np + Al +2) >)

1/~ ~
+ (uw)w, WNp + AN T2y (t)1/f> (B.33)
We claim that

e e
MRl (EEn ©w, N + 18D Ty 1w )

. N
< (eKjH llw,a Xl Alr <1/,, N + |A|)f(1 + N|i|)w>

+ Ty v, Wb + I8 Ty v )) (B.34)
forall1 < j <{¢+41andally € F.(B.34) for j = £ 4 1 together with (B.33) implies
0 { w, N+ 1AD T () )|
< Celldlluar Al (T 9, Wb+ 1AD* Ty 0))
A Np
KellOllw,ar|Alt £+1
+ efelvlwa <w, WNp + [ADTH (1 + N|A|)I/f>). (B.35)

Gronwall’s Lemma then implies
(En @w. N + 14D v )|
< KellblwahlAlr <1/,, N + |A|)z+1)1//>
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+Ce”i)”w,d)\.|A|[eK5H73”w.dMA|I <‘(/f, (Nb + |A|)f+l(1 + %)w>
< C[eKlllf)Hur,dMA\f <w’ (Nb + |A|)l+l(l + %)I//> . (B36)

Thus, proving (B.34) for j = £ + 1 concludes the proof. We have proved (B.34) for j = 1
in Step 1, (B.23). We have that (B.34) also holds for j = 0, observing that

WIVNIA|poINoW* [V N| Aol
= Np —v/N(ao + af) + N|A|
<2\, + 1+ NJAD, (B.37)

which then commutes with e ~//*¥
Suppose (B.34) holds up to some 1 < j < £ — 1. Applying (B.16), we have that

e .
a7 (v v, b+ 1D iy 0y

= NIA| <(Nb + AN U (), Uy () (NG + |A|)1ﬁ>
1

VNIA|

1 o -
+m<(/vb+ |A|)J+1I,{N(l)1/f,u}v(t)(a0+a3')1//> . (B.38)

We can bound the second term by
1

VNIA|

= a{fy Oy, Wb+ (A iy 1)y

(s + AN 8y 09, (@0 + a0

{4+ 1ADT 1y (09, @0 + )iy )|

+ (Ft v @0 + &N + 14D (@0 + )i OF) . (B39)

b
aN|A|2
Employing (B.19) and (B.20), we find that, for any Ve F,
(9. @0+ a0t Ny + 1A (@0 + @)

< (I + [AD Zao¥ | + (NG + [AD 2 ag ¥ )

= (lao(Np + A = DEFI| + lag Wj + A+ D)’

= CAI(J, N + 14D 1), (B.40)

(ao +ao)* (Np + [AD (@0 +ag) < CelAING + AN (B41)
Employing (B.41) and choosing « > 0 sufficiently large, (B.39) implies
1
VNIA|
= C; {Tn %, Wy + A iy (1))

(N + 18D 8 O, (@0 + )N 000 |
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. e
+ Ay (v @w, W + 1A 0w (B42)

We bound the third term in (B.38) by

1 1~ ~
T (A + 1Dy B @ + v |
4 |~ o~
< 17 (v a0 + a1, N + 1A B 0o +af )

o (v @w, s + 1A (1)) (B.43)

oL
4N|A|
The induction hypothesis (B.26) and (B.41) hence imply

1

{6+ 1A 8 v 8y (a0 + a) v |

VN|A|
<ﬂe“”l”’“%“‘“’((ao+a W N A (14 ) g +af )w>
N 0 N|A| 0
7 i+277
+ Ay (v Ov, Wb+ 1AD iy 0y

< CjeKililluariAl <w! Wh + AN (1 + NA|[5\|)¢>

o (T W, N+ 1AD 2 (v (B.44)

4N|A|

For the first term in (B.38), we apply (B.16) to the left and obtain

AT (b + 1A Ty @9 B O WG + 1ADY)

N|A| (F YN + MDY, N + [AD Ty (NG +1ADY)

_ﬁ|A| (N + 1AD (@0 + i (W Ay (YN, + [ADY)

1 . 5
+ Wil <(Nb + AN Uy (1) (a0 + ag ). Un () (N + |A|)1/f> . (B4S)

For the first term in (B.45), we use the induction hypothesis (B.34), and obtain

N|A| (F YN + 18D, N+ 1AD iy (N + 1A DY)

¢ ( K,||U||md)‘|A“<I/f W + 1A N/\I[AI)I/I>

+ (T W +1ADY, Wy + M)y W, + [ADY))

< CjeililarIl <1/,’ (Nb+|A|)j+l(l+%)1//>7 B46)
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where in the last step we employed (B.26). Using Cauchy-Schwarz, followed by Young’s
inequality, the second term in (B.45) can be bounded by

1
VNIA|

[ {6+ 18D @0 + @) 0w T (N +1ADY) |

NG + 1AD (o + ag)En OV 1IN + 1A D 2y (NG + [AD VI

=

1
VNIA|
1 ” 7 ~
< ﬁ<<UN(t)W, (a0 +a YNy + 1A (a0 + )l (1))

1 /1~ S~
+5 (En NG + 1809, N + 1AV N OWG + 1ADY) ). (B.47)
Employing (B.41) and then (B.46), we thus obtain
1
INIA|
= C; (v 9, o + (A ()9

[ (b + 1D (@0 + a0, T (YN, + [ADY )|

1 > o~
+ NAl <I/IN(I)(/\/}, + IADY, (N + [AD Uy ()N + |A|)W>

< C; (En @, Wy + 1A 1w )

Ny

C:eKillolw.arlAle LN AN/ = 222
+Cje ¥, Np + |AD (+NIAI

)w> ) (B.48)

Similarly, the third term in (B.45) can be estimated using
1

VNIA|

I/~ o~
< 17 s Ot +ad v, Wy + 1A Bx 0o +af) )

{6 + 1AD 8 (@0 + aw, T (N + 18D ) |

1 -~ s~
+ NIA| <Z/{N(I)(Nb + IADY, Nb + [AD TN (NG + |A|)1ﬁ>

Ny
NI|A|

C; N ,
< I KjllvlwarlAle <w7 (ag + a(T)(Nb + |A|)/(l +

~ A
+ C;eKillolwarl Al (o (Nb+|A|)j+1(1+&),/f
! ’ NIA|

< C:eKillollw,arlAlt v, (N, + |A|)j+1 1+ No V), (B.49)
! NI|A|

)(ao+a6”)1ﬁ>

where we used (B.26) and (B.46), followed by (B.41). Inserting (B.46), (B.48), and (B.49)
into (B.45), we obtain that

1 i ~ ~
m <(Nb + |A|)J+1L{N(l‘)1//,l/[N(t)(_/\/'b + |A|)1//>
No

< CjeKjHﬁHw,dM/\lf <W, Np + |A|)j+1(l + N|A|)w>

+C; (&N(z)w, N + |A|)f+1ﬁN<r)w> . (B.50)

@ Springer



Quantum Fluctuations Around BEC... Page 1030f123 85

Plugging (B.42), (B.44), and (B.50) into (B.38), we find that

! j+2
AT (v @w, W + 1A 0w
= Cjefsltlaril <w, (Vb + AN (1+ NA|/Z|)w>
+C Ty @0, N+ 1ADT T T (09 (B.51)
This concludes the proof. O

Appendix C. Proof of Convergence to Mean Field Equations

Lemma C.1 Let H, F € C(R") be such that

v (ol < e

Then the following holds true for all w € R and g € Cé R):
1" HVF
(1) fF:w I\VF| H = fF<w dp V- (|VF|2)
dH"! dH"! HVF
©2) [dwg(w)d, fF:w IVE[ “H = [dwg(®) [p_ —o VET V" (W)

Proof The first statement is a direct consequence of the Divergence Theorem together with
the fact that VF /|V F| is the outer normal for { F < w}. For the second statement, we have
that the divergence theorem implies that

dH"! dH"!
dw g(w)d / H=— /da)g’(a)) H, (C.2)
/ “ Jrzw IVF| F=w |VF|

where we used the assumptions g € Cé (R), (C.1), and the first statement. Employing the
Coarea Formula, we have that

dHn—l ,
dw g(w)0y H=—- |dpg(F)H. (C.3)
F=o |IVF]

Expanding with the factor ¥ v F|2 , the Divergence Theorem, together with g € C0 (R), (C.1),
then implies

/d (@), / an /d (F)V (HVF) (C4)

wg(w = pg . . .
“Jr=w IVF| |VF|?

Finally, the Coarea Formula implies
dH"! dH"! HVF
dw g(@) H= [ dog Ve(mm) €3
F=o |VF] F=w |VF] IVF]|
This finishes the proof. o

LemmaC.2 Let H, F), F» € CE(R®) be s.1.

L'(RY). (C.6)

T VR
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Then, for all t > 0, we have that

‘/ dp2 / dsy e~ i(F (Pz)S|+Fz(p2)sz)H(p2)‘
Alt,2]

< cr(tog+ 0| v 22T ) )
0 . . .
Proof Observe that
'/ dsy e~ i@sitesn)| < /t ds ’/Sl dsy e~ 125
Al1,2] ~Jo 0
! 2
.
0 lwa| + 57
2t
<— C3)
lwa| + £
for all wy, w> € R, t > 0, due to the fact that
*2 ; 2 2
/ dye | < min{x; —x;; —} < ——— (C.9)
X1 |a| |a| + Xo— Xl
forall x1,x2,a € R, xo > xj.
Then (C.8) followed by the Coarea Formula implies
‘ / dp, / ds e~1FI@DS+F02) [ ()
Alt,2]
H
< Ct/ dp, |H(py)l :
|F2(p)| + 7
1 H
< Ct/ dwil/ a5 (py) P2 (C.10)
ol + 1 JFh=w IVF(py)l
Lemma C.1 yields
H VF H
‘/ A1 (py) |H(py)l < / dpz‘v VE(p) (1272)|
Fh=w |VF2(P2)| h>w |VF2(P2)|
VE|H| H
< C.11
= H |V |2 1D

Then, after splitting the domain of integration w.r.t. dw into (—1, 1) U (-1, 1)¢, (C.10) can

be bounded by
1
1 H
/ dw 1 sup‘/ dHS(p2)7| ()|

+ /dp2 L7y py) =11 H (p)]

VF|H|
|VF,|?

< ¢1((logtt + 1|V - |+ 1), (C.12)

where, again, we used the Coarea Formula. O
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Lemma C.3 Let h € C} ([0, ||ﬁ||2(|_%J+l),w,c])’ n € N, n < 3. Then the following holds for
all . € (0, 1]. We have that

D
n Ann
W)V(Eﬂwmscmwmmwmﬂﬂﬂwﬁmwﬂﬁﬁme (C.13)

Moreover, Q satisfies
VQ(p) = (1 +rma(p))p (C.14)
Imalloo < ClIOllac 5 +1),w.c - (C.15)
I1D*Q = Illoo < CAIDIG 5 | 1) -

ID*Ql0e < CAIID

3
= CMIBI £ 41y e - (C.16)

Proof By the Faa di Bruno formula, we have that

|Dn[ ( )]| <c, Z ‘h(S(rn))<Av)‘kS(rn)1_[[|DJ E)|]r" . ©can

R

where, R(n) is defined as in (5.151) and

n
Sr) =Y i, (C.18)
kf
see (5.152). Notice that S(r,) satisfies
due to the summation condition
n
Y jrj=n. (C.20)
j=1

(C.19) allows us to extract a factor A in (C.17) since it appears within the sum with power
S(ry). Then (C.17) implies

AD R
WﬂpcgﬂwwsCMMmﬂmwMﬂﬂwﬂmwa&hﬂmf (c21)
With analogous steps, we have that
-y }i) < CuAln|l 5 19115 (C.22)
[pl E o= " C”[O*”””2(|_§J+1>,w,c}‘] 2(L5J4+D.w.e” ’

We have that Q = E,/1 + 2)‘” , see (3.19), is radial since ¥ is radial. Thus we have that

_ 20(p)  ply [, 220y
vem = p| 1+ 5 2( 1+ E)(p) . (C.23)
‘l )‘HUHZ(L J+1)wc

1+2)»U+1

Observe that
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< C)\”ﬁ”2(|_%J+l),w,c' (C24)

Then (C.22), and (C.24) imply that
VQ(p) = (1 +ama(p))p (C.25)
Imallse < Cllollagg | 41)me (C.26)

Next, using the multivariate Leibniz rule together with (C.24), we then find that
D*Q =,/1+ 2MA’1+2 v D1+ 210 +ED*[1+ 210
- E P E E
=14+ AA (C.27)
for some bounded matrix A. Using (C.21) with h(x) = +/1 + 2x, and (C.24), we have that
A2
1Al < CUBI3 5 )41y e (C.28)

forall A € (0, 1] Here, we used the fact that ||h||C2([O, ”f)HZ(l_r_]-H) ) < C.
5 e

Finally, the multivariate Leibniz rule implies

3 ~

200
3 k 2 3—k
1D < € Y- | DAapPD R 1+ =2
k=0
2 20
<cy H|p|2*k1)3*’<,/1 n —H . (C.29)
= E

2—k nyj v ~
HPPD7 () lloe = Clldllag s f41.me (C30)

for j € {1, 2, 3}, we find that

Using (C.17) and the fact that

I1D°Qlloc < CAIBIS | 5 |41y - (C.31)
This concludes the proof. O
Lemma C.4 Let
F(py) = 012(p1) +022(p2) + 0122 (p12) (C.32)
and
rae (Ot ). ©33)
F> satisfies
VF(0) =0, (C.34)
| det(D? F2) — 012(0120102 + 01 +02)lloo < CAIDIS 1 |1y - (C35)
ID?F2lleo < C (C.36)

For all py, ky € R®, and all » > O small enough, dependent on ||ﬁ||2(|_%J+l),w,C’ we have
that

T T
|Tp,| 3| le]' (C.37)

D’F (k ,
| 2(k2)p,| € [ > >
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In particular, in this case, we have

IP21/2, ifo1 = 02 = %012,
|D*Fa(ka)pa| = {1p1l/2. ifo1 = —02 = 012,
|p2l/2, if —o1 =02 =012.
Proof Thanks to Lemma C.3, we have that
VQ(p) = p(l + rmq(p)) (C.38)
with
Imalleo < Cllﬁllz(LﬂH),w,c. (C.39)

This immediately implies (C.34).
Next, again due to Lemma C.3, we have that

D>Q = [+ 1A (C.40)
for some matrix A € R3*3 with
lAlle = Cllﬁlliqﬂﬂ),w,c (C41)
forall A € (0, 1). Denoting A; := A(p;), we obtain that
D2F, — <01(1+)»A1)+012(1+?»A12) o121 +1A12) )
ol +ArAy) o2(I +AAz) +o12(1 +21A2)

_ (o +o)l ol 2 01A1 + 012412 oA
ol (02 +o12)] oA 0247 + 012412

=T +A\B. (C.42)

This identity together with (C.41) immediately implies (C.36). Notice that due to (C.41), we
have that

=~ A2
Now, observe that

0 —(o1p0102 +01 +02)1
det(T) = det
euT) = de (0121 (02 +o12)1 >

— gt (0121 (02 +012)1
0 —(onzo102 + 01 +02)1

= o12(0120102 + 01 + 02)° # 0. (C.44)
Thus we may rewrite T + 2B =: (I + AB)T with
)
due to (C.43) and (C.44). Then, we have that
[[det(l +AB) — 1]loc < CA|Blloo (C.46)

forall A € (0, 1).
Finally, Gershgorin’s Circle Theorem implies that

o (I +AB*) C [1 = 22| Blloo — A2 Bl|%, 1 + 221 Blloc + 23|I BIIA]
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1]

for all A € (0, 1) small enough, dependent on ”ﬁ||2(L%J+1),w,C' Then we have that

D> Fy(ko)p, > = (Tpy)T 11 + 1B(ko)|*Tp,, (C.48)

which together with (C.47) implies that

T 3|T
|D?Fy(k2)p,| € [' §2|, | 2p2|] . (C.49)
This finishes the proof. O
C.1. Error Bounds Due to HFB Evolution
Lemma C.5 We have that
Mo )
NlBOIC (SOlJIT; M)
<Cy; T(1 + log(T)||J |l w1 Alog(M)| (C.50)
= Hv”z(L5J+l).u;.a"|f0“2(|_%J+1),c” g whee N :
for j € {1,2}, and all » > 0 small enough, dependent on ”ﬁHZ(L%JH),w,C'
Proof %1 BolY(fo)[J1(T’; 1| are of the form
w2 —i(F\ () S1+F2(p)S2) /3
dp, dS; e F1@ISI+R®))/2 g (p,) (C.51)
RO A[T,2]
with
Fa(py) = 012(p1) +022(p2) +01222(p12) (C.52)

for some o; € {£1} and H : R® — R. Employing the bound on D?F5 given in Lemma C.4
and the diamagnetic inequality |V|k|| < |Vh|, we find the estimate

o |, = Il + 1], + el
V|2 V|2 IV Fy 4 IVE| 1
(C.53)
< (lmpel +lwrl):

Let Bf, := {|VF>| < 1} denote the unit ball induced by V F», and let Jyf, := | det(D?F>)|.
Notice that for any m € [0, 4) and test function %, we have that

12—m

R [t s
[VE it = I [V L= (Br) JVFZ% L1220 (Bpy)
H|VF2|’" LI(B;Z)
C (Al 23 + A1) (C54)

@ Springer



Quantum Fluctuations Around BEC... Page 1090f123 85

for all A > 0 small enough, dependent on ||ﬁ||2(LgJ+1),w,c~ Here, we used Lemma C.4 to
bound Jyvr, > C for A € (0, 1) small enough, substitution, and the fact that

d g
/%SC/$<W (C.55)
my=i mEm 5
Br |xg|" T2=m 0 |xg|" 12=m
since, due tom < 4,
24 -3 —-52%_-1
et L Y Ut it S R (C.56)
12—m 12 —m
In particular, (C.53) and (C.54) imply
VF)|H|
[V g |, = COH I+ 11y + 1V HI)
C(IH lyrr + IHI 1 9) (C57)
24—3m

where we employed the fact that m +— {5=5" is an increasing function, and interpolation.
With that, we apply Lemma C.2 to obtain

‘ / dp, / dsy o1 (FIBSI+Fa(po)s2) H(Pz)‘
Alt,2]

VFy | H]
< ¢1((tog(1 +0)[v - T |+ 1)

< Ct(1+log(+0)(1H lwi + IHI ,9)- (C.58)

As a consequence of (C.58) and using the chain rule, we obtain that

A .
5! BolY (fo)[J1(T; 1)

<Cpp . (1 + log(T)1 /i ~H2EDL ¢ 50,
= HUHZ(L%J+I).w.¢"||f0”2(|_%J+1),c’r g Wl.oo N .
for j € {1, 2}, and all A > 0 small enough, dependent on ||ﬁ||2(L§J+1),w,c- This finishes the

proof.

]
C.2. Mollified Energy Conservation
Lemma C.6 Let errs! ) (1; f1J1) be defined as in (5.211). Then
lerr/ D (¢ FLID < C T e 2 (C.60)
2 = IIUHQ(L |+ ||f0||2(|_ J+n.e” Waeeny :
forall x > 0 small enough, dependent on ||U||2(|_§J+l),w,c-
Proof We want to apply integration by parts to
(fa) L
e 0 f10) = [ dr [ dos @
N Jo e
0:E(r, pr)H
/ d?‘[s E(T, pr) H(py) ) (C.61)
E(tpy)=w [Vp,E(T, po)I
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For that, we need to establish a uniform bound on

H
/ ars TP H Py (C.62)
E(t.p)=w IVp, (7. po)

The divergence theorem implies that

0. (T, H Vo, E(1)0:E(T)H
Ep=0 Vp, (T, P) Vp, £(D)] i
We compute
2%
9,Q = —— (C.64)
—
Jre i
Then 0, 2; satisfies
19: Qe lloo = Cltony g 11> (C.65)
R R 270\~ %
1959:2clls0 < (I8l 41y + 10| D(1+ ) 7] )
< CHﬁ”Z(L%J+l),w,c’ (C.66)
2T0
2 2A ~
1030 Relloe = C(1D%l00 + 1Dl | D(1 4+ ) N
2T0
2 ~
+ ||U||OOHD (1 + > oo) =< CHUHZ(L%JH),w.c (C.67)

for all T € [0,A], A € (0, 1]. Here we applied the Leibniz Formula, Lemma C.3. Then
(C.65)-(C.67) imply

10:E(T, Po)llwzoe < CHIA}”Z(L%JH)J&U (C.68)

for all T € [0, A], A € (0, 1). Following the steps of (C.53) in Lemma C.5, we find that

Vp,E(1)0; 5( )H .
o (S| (|
[Tl ) e

due to Lemma C.4. Using the Mean-Value Theorem together with V¢ p £(7,0) = 0, see
Lemma C.4, we find that, for some ¢ p, € [0, p,],

Vp,£(T, p2) = Dy E(T, Lep,)Ps - (C.70)

Using C.4 again, we conclude that

Li(p2 P2
V€@ P2l = 5| (pl)\ =2z €71
for all A > 0 small enough, dependent on || ﬁ”2(L%J+1),w,C' Thus, we obtain that
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‘ D [((p1) + 0(p2))? fo(p12)] ‘
[Vp,E(z, p)I™
1
= CuauQ(L%JH),W,||fo||2(L5J+l,,c(Wlsl (P2)
+ D[ (p1) + D(p2)) fo(p12) L () €72)
forall £, m € Ny, £ < 2. Hence,

H D[(D(p1) + D(p2)* fo(p12)] H
[Vp,E(T)|™

for all £,m € No, £ < 2, m < 5, and all A > 0 small enough, dependent
on ||ﬁ||2([§]+1),w,c- With analogous arguments, we may replace fo(p12) in (C.73) by

(C.73)

< Cys
1= HU”Z(L%JJrl).w.c’HfOHZ(|_%J+l)<c

fo(p12) fo(p1), fo(p12) fo(p2), or fo(p1) fo(p2) and obtain an analogous inequality. Then,
(C.63), (C.68), (C.69), (C.73), and the definition (5.210) of H imply

’/ dHS 9:E(t, p) H(po)
E(1,pr)=w

<Cy; TN Jlwt.eo
Vo @ o)l | = s el ol e 1w

(C.74)

for all w € R, 7 € [0, A], A small enough, dependent on ”ﬁHZ(I_%JH),w.C'
Next, by integration by parts w.r.t. dw, §',,, (w) — 0 as |w| — o0, (C.74), and employing
a

Lemma C.1, (C.61) implies that

et/ D e; FLI]) = / dt / dw 8, () ar
__ 1! . _dn
2 2}% E(T,py)=w |VP25(T Pl
- _(szﬁ(r,pz)afc‘l(r, Pz)H(Pz)) (C75)
P2 |Vp,E(T, py) 2 '
Lemma C.1 implies
’f aH’ '(vng(ﬁPz)arg(T,Pz)H(Pz))’
etpy=o |Vp,E(T, )| P Vp,E(T, P22
[ Vp, (T, p2) v '(szg(f, P2)0:E(T, Pz)H(Pz))]H
— P L v, py? T |Vp,£(T. p2) 2
E()H 0:E(t)H
= (IO | 5eg |, + 105, 8@l o5
|Vp,E(T, Py |Vp, (T, Py
(3:£(0)H) ,(0:£(0)H)
Dy € pa( C.76
#1058l | 2 Vo, £ o)l I |+ H Ve b1 ) (76)
Lemma C.3 implies
1D, €@ oo < 14 ClIDIZ |5 1) 40T (C.77)
1D5,E@ oo < CIBI3 | 41y, 7 - (C.78)

Collecting (C.68), (C.73), (C.76), (C.77), and (C.78), we find that

‘/ dH> .(szg(f»Pz)arg(f,Pz)H(Pz)M
E@py=o |Vp,E(T. Pl P2 IVp,E(T, pp)I?
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= Clily g e Mol g e T I Iwzee - (C.79)

Employing (C.73), (C.75), and (C.79), we have proved that

TN J w2
e/ (e; FLID) < Clblly) g e 1ol 5 J+1)17W/‘ dv / dw 3y ()

T)\.” J ” W2,:>o

= Ul g rpwe ol g jone N (C.80)

where in the last step, we applied the normalization (5.207) of §,,2 . This finishes the proof.
a

[m]
Lemma C.7 Recall that, due to (5.213),
1 H
(ec) 5
err (t;f[J]):—/de z(a))</ L ——
? N T\ awwE=o  IVAaE|
5 H
+ A =) (C.81)
Acup E=0 VA E|
with H as defined in (5.210). Then we have that
A
(ec) ; -
ey @ SUDE S City |1yl 5 oY T w2 (C.82)
for all & > 0 small enough, dependent on ||ﬁ||2(L§J+1),w,c~
Proof We start by writing
1
et (1; fLI]) = / de 832 (@T(®). (C.83)
Analogously to (C.74), we have that
1
IZ(w)| < C”””zQ ¢ e 1ol £ 1y ||J||w1,o<>ﬁ- (C.84)

Notice that, due to Lemma C.1, we have that

@ dH’ VA ,EH
T(w) = / dt / V. ( cub 2), (C.85)
0 AcpE=T |VAcubE| |VAcuhE|

where the integral respects the orientation of [0, w] resp. [w, 0]. Using Lemma C.1, we thus
obtain

IZ(w)| < IwIHV . [ Vaark g (VACMbEH)]H

|VAcubE|2 |VAcuhE|2
|D3Acup EIH
< Clol(1D” Aan 1| | +| |
cup oo |VAcubE|4 |VAcubE|3 1
D 8e Bl | o]+ |omgal) (€30
b D —— .
TN VALER |VAcubE|2

forall A > 0 small enough, dependent on ||v ||2(L§ J+aw.er analogously to (C.76). Notice that

D3AcupE = 0 and | D?2AcupElloo < C. Analogously to (C.80), we thus obtain the upper
bound

IZ(w)] < ol T |l w200 - (C.87)

Uil g f 1y ol 11
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We split the integral in (C.83) into the regions (—wq, wp) U (—wg, wp)¢ with wg to be
determined below. Then (C.84) and (C.87) yield

lerr (5 F1ID))

1
< — dw 8 32 (w)|Z(w)| + / dw 8 32 (w)|Z(w)|
N (—wo,w0) T (—wo,w0)¢ T
Cldlly » Wfollagy £ snre L
( +D,w,c’ 2( +1),¢
< L5] L5] (||J||W2,wv/ dw 8,2 (w)|w]
N (—wo, o) T
+ ||J||W1,w/ do 5£(w)) . (C.88)
(—wo,w0)¢ T
Employing the normalization condition (5.207) and the decay condition (5.208) on 6,2, we
thus obtain '
Cllllygy 1 ony el follag) £ apye LI w20 52
el e; f1IN] < — kel Bl (w0 + ). C29)
N woT
By now choosing wp = % we have hence proved that
Clivly - Mol 2 any VT I 2ok
e e; fLID] < —— e S (€90)

N
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