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Figure 1. Illustration of the proposed egocentric prediction task. The predicted and ground truth target locations of an action (grasping)
sequence are visualized by red and green dots. In the early stage, only scarce information is available, thus it is more challenging to achieve
reliable prediction. Over time, more visual and motion cues are accumulated, making it easier to predict the action target. Note that the
prediction is updated in each frame and the 3D action target in each frame is expressed in the coordinate system of that frame.

Abstract

We are interested in anticipating as early as possible the
target location of a person’s object manipulation action in
a 3D workspace from egocentric vision. It is important in
fields like human-robot collaboration, but has not yet re-
ceived enough attention from vision and learning communi-
ties. To stimulate more research on this challenging egocen-
tric vision task, we propose a large multimodality dataset of
more than 1 million frames of RGB-D and IMU streams,
and provide evaluation metrics based on our high-quality
2D and 3D labels from semi-automatic annotation. Mean-
while, we design baseline methods using recurrent neural
networks and conduct various ablation studies to validate
their effectiveness. Our results demonstrate that this new
task is worthy of further study by researchers in robotics,
vision, and learning communities.

1. Introduction

Egocentric vision, which parses images from a wearable
camera capturing a person’s visual field, has been an im-
portant area in robotics and computer vision due to its wide
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applications, e.g., virtual reality [23], human-robot interac-
tion [10], and social robotics [39]. In recent years, a va-
riety of egocentric datasets and benchmarks have been es-
tablished [8, 11, 19, 46, 52], and researchers have proposed
various methods around the egocentric scene understand-
ing, such as action recognition which summarizes an ego-
centric video clip into a certain action category [25, 51], and
action anticipation which infers future action types (with-
out location information) based on the historical informa-
tion [16, 36]. However, a fundamental egocentric vision
problem remains underexplored: how fo anticipate the fu-
ture target location of someone’s object manipulation ac-
tion in 3D space? This is crucial for more safe and effective
planning and control of robots to collaborate with human.

Basically, cognitive robots that need to interact with hu-
mans should be able to expect target locations of human
actions at an early stage, allowing robots to compute appro-
priate reactions. For example, when a person with upper-
limb neuromuscular diseases is trying to grasp an object, a
wearable exoskeleton should comprehend the human’s in-
tended target location before the grasping is completed, so
the robot can plan its motion smoothly to help achieve the
goal. Additionally, any computational latency in the predic-
tion algorithm implementation could also be compensated



if the robot is able to predict the action target ahead of time.

Thus, we establish a new dataset, EgQoPAT3D, for ego-
centric prediction of action target in 3D. Our motivation
lies in three aspects: (1) understanding the target locations
of human actions is of significance to human-robot interac-
tion [27], (2) prediction in 3D instead of 2D space facilitates
the robot planning and control, and (3) there are no public
datasets for egocentric action target prediction in 3D. To this
end, we initiate the first study of egocentric 3D action tar-
get prediction, which processes an egocentric sensor stream
as an online signal and formulates action understanding as
a continuous update for the target location. In summary, the
main purpose of this study is to anticipate the 3D target lo-
cations of human actions as early as possible, to compensate
for any latency and support timely reactions of robots.

Technically, it might seem too difficult if not impossible
to ask the machine to accurately anticipate human intention
locations especially at an early stage when there is very lim-
ited information. However human behaviors while attaining
goal locations have certain distinct properties such as eyes
are faster than hands [27]: when we try to grasp an object,
we firstly search for the object in our visual field before
reaching out for it. This phenomenon indicates that human
intention locations could be anticipated based on the infor-
mation of both visual perception and head motion. There-
fore, our dataset is multimodality, including RGB and depth
images, and inertial measurement unit (IMU) data, which
are all recorded by a helmet-mounted Azure Kinect RGB-D
camera. In each recording, the camera wearer reaches for,
grabs, and moves objects randomly placed in a household
scene. Each recording features a different configuration of
household objects within the scene. To annotate action tar-
gets less laboriously, we employ an off-the-shelf hand pose
estimation model] to localize the hand center which is used
to denote the target location.

In order to solve this novel task of egocentric 3D action
target prediction, we propose a simple baseline approach
on top of recurrent neural networks (RNNs) in conjunction
with both visual and motion features. To summarize, our
main contributions are as follows:

* We initiate the first study of the egocentric action target

prediction in 3D space.
* We build a novel EgoPAT3D dataset and propose new
evaluation metrics for this new egocentric vision task.

¢ We design a simple baseline method to achieve contin-
uous prediction of action target, and comprehensively
benchmark the performance.

* We open source all the code and dataset for repro-

ducibility and future improvements.

2. Related Work

Egocentric datasets and benchmarks. Egocentric
videos provide a wealth of knowledge on how humans see

and interact with their surroundings, which is vital to un-
derstanding human behavior. The research in egocentric
vision has been rapidly advanced owing to the develop-
ment of wearable devices as well as egocentric datasets.
In recent years, the scale of datasets has been gradually
increased, and both scenes and annotations in egocentric
scenarios have been enriched. For example, 2D object
bounding boxes are provided to facilitate a variety of 2D
computer vision tasks [7, 9, 11, 46, 50]. Gaze measure-
ments are supplemented to help understand the human in-
tention in the image space [14, 24, 33, 60]. Hand anno-
tations are provided as a useful information to understand
human-object interaction [2, 19]. Thanks to these well-built
datasets, various egocentric vision tasks have been proposed
and studied such as action recognition [25, 34, 51], action
anticipation [16, 20, 36], video summarization [30, 38, 55],
hand-object interaction parsing [3, 6, 41], social interac-
tion analysis [13, 42, 56], and egocentric object detection
and tracking [2, 11, 32]. Despite numerous efforts to pro-
mote the development of egocentric vision, most datasets
and tasks focus solely on 2D computer vision without 3D
data. Ego4D [21], a large-scale egocentric video dataset
partially containing audio, mesh, stereo, and eye gaze in-
formation, was recently presented, and it also proposed five
benchmarks centered on episodic memory, hands and ob-
jects, audio-visual diarization, social interactions, and ac-
tivity forecasting. Despite its unprecedented scale and di-
versity, online 3D target location prediction in egocentric
views remains insufficiently investigated.

Egocentric future prediction. In literature, there are
substantial works in egocentric action recognition [ 1], video
summarization [40], hand analysis [3], and future predic-
tion [49]. Here we only review the most relevant work, ego-
centric future prediction, which is a relatively new research
area. Egocentric prediction of human activities, targets, and
trajectories has wide applications such as assistive technolo-
gies [43], trajectory planning [44], multimedia [35], and
robotics [27]. There are mainly three streams in egocen-
tric future prediction: (1) action anticipation, (2) region pre-
diction, and (3) trajectory forecasting. The first two prob-
lems are intensively studied yet there are scarce works re-
garding the third one. Action anticipation aims to gener-
ate an action label given a historical video clip, and vari-
ous datasets such as EPIC-KITCHENS [7, 8] and EGTEA
Gaze+ [33] which can support action anticipation have pro-
moted the research in this topic [17, 18, 26, 59]. Region
prediction is to predict a 2D region on the image which will
cover the human intended location in the future, and the tar-
get regions are denoted by object bounding boxes [5, 12],
human-object interaction hotspots [36], or future gaze lo-
cations [57, 58]. Trajectory prediction attempts to forecast
the future foot trajectories of humans [4, 44]. For example,
Park et al. proposed to generate plausible future trajecto-
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Table 1. Comparison of datasets which can support research in egocentric future prediction. Prediction tasks are divided into three kinds:
(1) action anticipation, (2) region prediction, and (3) trajectory/target prediction. The datasets listed in the upper section provide 2D cues,
and the datasets in the lower section include 3D information such as depth and inertial measurement unit. N/P denotes Not Provided.

Dataset | Prediction Task  Scenarios Device Modality Annotation  #of Frame #of Env. Year Public
ADL [40] Region Manipulation GoPro RGB Action/Object 1.0M 20 2012 v
GTEA Gaze+ [14] Region Manipulation SMI RGB/Audio Hand/Gaze 0.4M 1 2012 v
Daily Intentions Dataset [53] Action Manipulation  Fisheye Len RGB/IMU Action N/P N/P 2017 v
EPIC-KITCHENS-50 [7] Action/Region  Manipulation GoPro RGB/Audio  Action/Object 11.5M 32 2018 v
MAD [15] Action Manipulation N/P RGB/Force Action N/P N/P 2018 X
ATT [60] Region Manipulation N/P RGB Gaze 217.0K N/P 2018 X
EPIC-Tent [24] Region Manipulation ~ GoPro/SMI RGB/Audio Gaze 1.2M 1 2019 4
100DoH [50] Region Manipulation YouTube RGB Hand 27.3K N/P 2020 v
EPIC-KITCHENS-100 [8] Action/Region  Manipulation GoPro RGB/Audio  Action/Object 20.0M 45 2020 v
EGTEA Gaze+- [33] Region Manipulation SMI RGB/Audio Hand/Gaze 2.4M 1 2021 v
MECCANO [47] Region Manipulation SR300 RGB Object 0.3M N/P 2021 v
Ego4D [21] Action/Region  Manipulation GoPro RGB Action/Object N/P N/P 2021 v
KrishnaCam [28] Trajectory Walking Cellphone IMU/GPS Trajectory 7.6M N/P 2016 v
EgoMotion [44] Trajectory Walking GoPro Stereo RGB-D Trajectory 65.5k 26 2016 v
Ego4D [21] Trajectory Walking Stereo RGB-D Trajectory N/P N/P 2021 v
EgoPAT3D (ours) Target Manipulation ~ Azure Kinect RGB-D/IMU Target IM 15 2021 v

ries of human ego-motion in egocentric stereo images [44].
Rhinehart et al. used online inverse reinforcement learning
to forecast a person’s walking destination and action in a 3D
map [48]. The recently-proposed Ego4D [21] developed a
unified benchmark to evaluate the progress in egocentric fu-
ture prediction including all the three prediction tasks (ac-
tion/region/trajectory). However, the online prediction of
action target in the 3D space still remains to be studied.

Remark. Existing datasets related to egocentric future
prediction are summarized in Table 1. In summary, most
research in egocentric prediction have concentrated on the
action category or 2D image region, and a few works have
studied the egocentric 3D trajectory prediction in the walk-
ing scenarios. However, 3D action target prediction in the
manipulation scenarios with rich hand-object interactions is
still underexplored. Actually, target prediction is a special
case of trajectory forecasting: the former only computes the
end points of the trajectories. Yet in the manipulation sce-
narios, it is often infeasible to obtain complete hand tra-
jectories because human hands often locate outside of the
egocentric view. Therefore, we focus on predicting the 3D
target location of an object manipulation action, which is
desirable in robot planning and control.

3. Egocentric Action Target Prediction in 3D

In this section, we define the problem of egocentric 3D
action target prediction, discuss the challenges of the task,
introduce the evaluation metrics for the proposed task, and
present our simple baseline method.

3.1. Problem Formulation

Many prior works in egocentric future prediction con-
sider an offline mode, i.e., they require a fixed-length his-
torical sequence to predict the future action or target region.
Differently, we consider a more realistic online mode, i.e.,
our task requires online prediction based on variable-length
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historical information. Meanwhile, the difficulty level of
our task varies in different temporal stages, e.g., in the early
stage, the task is very challenging because (1) there is scarce
information, and (2) the hands which can serve as crucial
cues are often outside of the view. In contrast, the temporal
information becomes rich and the hands are often clearly
visible in the late stage, thus the task becomes easier over
time. An example sequence is shown in Fig. 1.

Notation. The colored point cloud at frame ¢ denoted by
X; € RMtX6 is represented as a set of 3D points {x}'|n =
1,2, ..., N}, where the n-th point of frame ¢ written as x}* €
RS is a vector of its Euclidean coordinate as well as RGB
value (z,y, z,7,g,b), and N; denotes the number of points
at frame ¢. The IMU data at frame ¢ denoted by 8; € RS
is composed of the body-frame angular velocity w; € R3
and linear acceleration c¢; € R3. The 3D target location
at frame ¢ represented in the corresponding coordinate is
denoted by y; € R3.

For a clip with length 7', the prediction will be executed
T times to achieve continuous update for the action target
in this clip. Note that the action target {y;|t = 1,2,...,T}
within a clip is the same point in the world coordinate , yet
has different values because they are represented in different
local coordinates which depend on the head poses.

Definition. Given historical colored point cloud streams
Xyt = {X1,Xs,..,X;} and IMU streams 6,; =
{61,0,,...,0,}, we aim to predict the 3D target location
y; at each frame. From the machine learning perspective,
f denotes a model which takes visual and motion sensor
streams as input, and can output an estimation of future tar-
get locations: 0; = f(Xy.¢,01.+). We seek an optimal f to
predict o, as close to y; as possible. Meanwhile, we prefer
to generate accurate predictions as early as possible.

Challenges. There are three major challenges in
EgoPAT3D. (1) Multi-modal information fusion: the cam-
era motion and visual information in a data stream have dif-
ferent importance for action target prediction at different ac-



tion stages. Intuitively, the head motion appears to be more
beneficial in the early action stage, while the visual appear-
ance seems more useful in the late stage when the hand posi-
tion start to be observed and can be exploited. It is nontrivial
to effectively fuse these two types of information to achieve
reliable prediction. (2) Early prediction: achieving early
stage prediction with high precision is usually more valu-
able for downstream applications such as robot control. But
this is also difficult since information from the initial stage
of an action is insufficient. (3) 3D workspace: predicting in
3D space further increases the task difficulty compared to
predicting on a 2D image.

Evaluation metrics. (1) Temporal-aware evaluation:
we divide each temporal window (an action clip) into ten
stages, and calculate average center location error (CLE)
for the predictions in each stage, so that we can observe the
tendency of the prediction precision over time. (2) Early
prediction evaluation: we employ the prediction precision
(CLE) when observing only the beginning 10%, 20%, 30%,
40%, and 50% of the action sequence, to assess the early
prediction capability. (3) Overall evaluation: we linearly
weight the prediction errors based on the temporal stages:
the prediction errors at the early stages are strongly penal-
ized, and we can compute an overall score using temporal-
aware weighted sum of the errors at different stages.

3.2. Baseline Method

As mentioned in Section 3.1, egocentric 3D action target
prediction is a very challenging task. We propose a simple
baseline method which uses two backbone networks sepa-
rately for multimodality representation learning, followed
by utilizing concatenation to achieve multimodality feature
fusion, and we employ a recurrent neural network (RNN)
to achieve continuous update for the 3D action target. The
main workflow is presented in Fig. 2.

Visual and motion features encoding. We use a visual
feature extractor denoted by v which is based on a classic
point cloud backbone PointConv [54], to encode the visual
features v; = (X;). Besides, we use a motion feature
extractor denoted by ¢ which is based on multilayer per-
ceptron (MLP) to encode the motion cues m; = ¢(6;). Af-
ter the feature encoding, the features of two modalities are
concatenated and fed into another MLP to obtain the fused
features u; = MLP(Cat(v;, my)).

Online 3D action target prediction. We divide the 3D
space into grids and predict confidence value for each grid.
We use a RNN to encode the sequential information and
achieve online prediction, for example, at frame ¢, the score
vector s; € RY for N-dimensional x-grids is computed by
st = RNN(u¢, hi—1) (y and z directions are the same, so
they are bypassed for simplicity), where h;_; is the learned
hidden representation. RNN is able to learn both long- and
short-term dependency in historical sensory streams which
is desirable in our task.

Visual feature
sequences

RNN&MLP  — # Result
¥

RNN&MLP —| # Result
3

RNN&MLP —> #3 Result

Motion data
sequences

RNN&MLP  — #n Result
9994 |

Figure 2. Workflow of our baseline method. The visual and mo-
tion features are separately extracted by two backbone networks,
and then fused and fed into the RNN-based prediction module for
the future action target localization.

Training objective and loss function. Since the ad-
joined grids are highly correlated compared to the general
classification task, adopting the classic classification loss
function (cross entropy loss) is not a promising choice, as
demonstrated later in Section 5.2. Therefore, we redesign
the loss function to utilize the dependencies between ad-
joined grids: we select the grid with a higher confidence
score, and use the score to weight its importance. The com-
prehensive experiments prove that our loss, named as trun-
cated weighted regression loss (TWRLoss), is more robust
than the general one in this task which solely considers the
single point with the highest confidence value. Mathemati-
cally, g € R" denotes x-grids (we normalize the grid coor-
dinate from -1 to 1), and the prediction score in the n-th x-
grid is denoted by s4[n](n = 0,1,..., N —1). Letm; € RV
represent the binary mask for x-grids at frame ¢ to filter out
grids with lower scores, and m;[n] denote the binary value
for the n-th x-grid, then the masked score in x-grids is cal-
culated by: R

St =m; O 8¢,
mi ={  n Sy
0, ne{jlslil<n}

where ©® denotes the element-wise dot product, and v is a
threshold to filter out the grids with low prediction scores.
It is set to 0.5 in this method. Then the estimated target
location’s x-coordinate is calculated by: p; € R = & g.
Since the prediction difficulty is different as time goes on,
the prediction error at different stages should be penalized
differently, that is, we assign different weights to losses at
different stages: £ = Zthl wy(y; — pr)?, where y; is the
x-coordinate of the ground truth target point, and wy is a

linear weight from 2 to 1, i.e., wy = 2 — %.

4. EgoPAT3D Dataset
4.1. Raw Data Acquisition

The raw EgoPAT3D data was recorded by 2 participants
in 15 commonplace yet diverse household scenes. The
recordings feature environments such as various kitchen,
bedroom, and bathroom spaces. The participants continu-
ously re-arranged the objects within the scene. Note that
object rearrangement is a well-known task in the robotics
community [22, 29, 31]. We purposefully chose scenes in
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2: Bathroom counter

9: Microwave

Figure 3. Visualizations of scenes. Left to right in three columns: RGB images, depth, depth transformed into RGB camera.

100 object rearrangements

Randomly choose
Record scene| | prepared objects | | Start recording Reachfora Mfg’; 'r:ig:::“
point cloud and randomly RGBD/IMU Bivcudid Grip the object o
using KinFu position them in video ) position
the scene scene

10 multimodal recordings

Figure 4. Illustration of the data collection pipeline. In each
scene, we randomly choose and place objects in the scene and then
conduct object rearrangement for one hundred times.

which hand-object manipulations, specifically grabbing and
moving, often occur in everyday life (e.g. shelves, cabinets,
counter tops, and other surfaces and fixtures where objects
are stored or placed). All scenes are visualized in Fig. 3.
The data collection procedure is demonstrated in Fig. 4.

The raw data is captured in 15 scenes, and consists of
10 RGB-D/IMU recordings per scene. Meanwhile, a point
cloud of the default state of 15 scenes (objects removed
from the environment) is included. Each recording fea-
tures approximately 100 hand-object actions and 4 min-
utes of footage at 30 frames per second (FPS) for both
color and depth streams. The total collection contains 150
recordings, 15 household scene point clouds, 15,000 hand-
object actions, 600 minutes of raw RGB-D/IMU data, 0.9
million hand-object action frames, and 1 million RGB-D
frames for the entire dataset. All RGB-D/IMU data was
collected using Microsoft’s Azure Kinect DK and Azure
Kinect Recorder software. The recordings were created
with the following settings: 3840x2160 (4K) color cam-
era resolution, 512x512 depth camera resolution, 30 fps
for both color and depth streams, and Wide field-of-view
depth mode (WFOV) 2x2 binned depth recording mode to
more closely simulate the large field-of-view (FOV) of hu-
man vision. Depth delay was set to 0, and IMU recording
was turned on. Scene point clouds were generated using
OpenCV KinectFusion (KinFu) for Azure Kinect.

Data was acquired in sessions, during which a participant
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would be asked to record all the raw data corresponding
to a selected scene in our dataset. No monetary compen-
sation was offered to the participants; all recordings were
performed on a purely voluntary basis, and no personally
identifiable information was present in the process. Partic-
ipants wore a helmet with an attached front-facing Azure
Kinect camera, angled downward to capture an egocentric
field-of-view and reliably record the participant’s head and
hand movements in all recordings during the session. The
scene would be cleared before each session by removing
nearby visible objects that could be manipulated by hand.
A large collection of random items that can be grasped by
hand, including but not limited to those that might realis-
tically appear in the scene in daily situations (i.e. cooking
utensils, dried foods, and spices for kitchen scenes), were
prepared as objects that could later be placed in random
configurations in the scene prior to each recording during
the session. At the start of the session, the participant would
be directed to follow a set of instructions:

1. Record a point cloud of the scene using KinFu installed
on a nearby laptop.

2. Adjust and wear helmet with mounted Azure Kinect so
that the camera has a sufficient egocentric view of arm
movements and hand-object interactions.

3. Arbitrarily pick and arrange several of the prepared
items in the scene.

4. Stand or sit at designated location dependant on the
scene, where any placed objects would easily be within
field of view and arm’s reach.

5. Start RGB-D/IMU recording using Azure Kinect
Recorder installed on a nearby laptop.

6. Use a hand to re-arrange object in the scene 100 times.

Stop recording and remove objects from the scene.

8. Repeat steps 4-7 ten times for the scene, concluding
the recording session.

~



4.2. Ground Truth Generation

Given a recording, we manually divide it into multiple
action clips. To localize the 3D target in each clip, we use
the following procedures. Firstly, we take the last frame of
each clip based on the index provided by the manual divi-
sion. Secondly, we use an off-the-shelf hand pose estima-
tion model to localize the hand center in the last frame of
each clip. Thirdly, we use colored point cloud registration
to calculate the transformation matrices between the adja-
cent frames. Finally, for each clip, we transform the hand
location in the last frame to historical frames according to
the results of the third step, and the transformed locations
can describe the 3D action target location in each frame’s
coordinate. Detailed procedures are presented as follows.

Manual clip division. We target short-term action tar-
get prediction, so we need to divide a long recording into
multiple action clips such as reaching out for an object or
placing an object. Specifically, we save the indexes of the
first and the last frame for each clip, and such manual divi-
sion is quite efficient: it takes around half an hour to man-
ually annotate each recording. As shown in Fig. 5, most
action clips have 10-40 frames. After obtaining the index
of the last frame for each clip, we use an off-the-shelf hand
pose estimation model to localize the hand center, which is
considered as the ground truth target.

Hand pose estimation. For the last frame in each clip,
3D hand pose estimation is performed using Google’s Me-
diaPipe Hands python solution API, which first performs a
single-shot palm detection task [37] before localization of
21 hand keypoints according to the MediaPipe hand land-
mark model. X and Y pixel coordinates of the keypoints
were inferred this way, and the depth information (Z co-
ordinate) of the hand is extracted from the corresponding
depth frame transformed into color frame dimensions using
the Azure Kinect SDK. Some hand pose estimation visual-
izations can be found in the supplementary.

Visual odometry. Since the camera (head) keeps mov-
ing when humans perform actions, the 3D target’s coordi-
nate is always changing although it is the same point in the
world coordinate. We use colored Iterative Closest Point
(ICP) [45] to compute the transformation matrices between
two adjacent frames, which is usually called visual odome-
try. For each action clip, we can extract the hand location
in the last frame to denote the target location for this ac-
tion. Then we transform it into previous frames’ coordinate
system according to ICP. Therefore, the ground-truth action
target in each frame could be generated. The distribution of
the ground-truth target position is shown in Fig. 5.
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Figure 5. Statistical properties of EgoPAT3D. The distribution
of 3D target locations and head motion (accelerometer and gyro-
scope) are visualized in xyz coordinate. The bottom figure shows
the distribution of the number of frames in each action clip.

5. Experiments
5.1. Experimental Setup

Dataset preparation. We use 11 scenes in our exper-
iments, i.e., 5 seen scenes: bathroom cabinet, bathroom
counter, drawer, kitchenCounter, nightstand, and 6 unseen
scenes: bin, kitchen cupboard, microwave, stovetop, win-
dowsill+air conditioner, and wooden table. Our training,
validation, and test sets are composed of 1990, 358, 314
action clips respectively, and the unseen test set which is
employed to test generalization ability contains 772 action
clips from 10 scenes. The length of each action clip ranges
from 6 frames to 133 frames (23 frames on average).

Implementation details. During the training of 30
epoches, the SGD optimizer is employed with an initial
learning rate of 0.01 and a decay factor of 0.9 for every
5 epochs. Besides, the momentum, weight decay of SGD,
and batch size are set to 0.9, 104, and 8 respectively. In
our baseline method, we adopt two RNN layers (LSTM or
GRU) to exploit the temporal information. Our action target
predictor is trained on NVIDIA GeForce RTX 3090 GPUs.
We report the results on the test set.

5.2. Quantitative Results

The temporal-aware quantitative results are presented in
Table 2. In the seen scenes, the error can be decreased from
~ 25cm to ~ 15cm, which is around the average length
of an adult male’s hand. Therefore, our baseline approach
achieves a satisfactory performance in the task of egocen-
tric prediction for action target. Meanwhile, there is still
a remarkable gap to fill, so the proposed task is worthy of
further investigation. The experimental results on unseen
scenes validate the generalization ability of our baseline
method, as shown in Table 3.

Discussions on features. To test the effect of different
features on the performance, ablation studies on input fea-



Table 2. Quantitative results of different predictors on seen scenes. Note that the lower score represents better performance. VF denotes
visual features, TF denotes transformation matrices, IMU includes angular velocities as well as linear accelerations, r denotes the reverse of

linear loss weight function (from linearly decreasing to linearly increasing). Red,

, and blue fonts denote the top three performance.

Components

Overall (cm)|

Early prediction (cm)

Late prediction (cm)

10%.. 20%.. 30%] 40%. 50%]. 60%.. 70%., 80%.. 90%., 100%..
VF-r 19.21 23.67 22.02 20.58 19.27 18.16 17.29 16.69 16.50 16.42 16.63
VF 19.15 23.22 21.80 20.98 19.79 18.32 17.29 16.59 16.03 16.24
TF+IMU-r 22.84 19.94 16.08 16.24
TF+IMU 19.81 23.97 22.16 20.90 19.76 18.79 18.09 17.69 17.55 17.45 17.54
VF+IMU-r 20.87 24.70 23.40 22.37 21.08 19.83 19.12 18.67 18.39 18.31 18.41
VE+IMU 21.81 25.36 24.33 23.28 22.39 21.34 20.36 19.49 19.06 18.85 18.90
VF+TF-r 20.41 23.50 23.51 22.81 21.53 20.06 18.86 17.77 17.09 16.74 16.69
VE+TF 19.48 23.47 22.31 21.25 20.09 18.87 17.92 16.95 16.32 16.11
VF+TF+IMU-r 18.97 21.11 19.03 18.13 17.40 16.85 16.65 16.58 16.81
VE+TF+IMU 18.61 23.73 21.78 20.20 18.65 17.37 16.43 15.77 15.47 15.43 15.67
NLLLoss-r 26.12 29.69 28.04 27.30 26.30 25.37 24.83 24.27 23.94 23.77 23.76
NLLLoss 21.63 26.45 23.90 22.46 21.36 20.44 19.88 19.46 19.30 19.25 19.41
TWRLoss-r 23.02 21.11 20.01
TWRLoss 18.61 18.65 17.37 16.43 15.77 15.47 15.43 15.67
GRU-based-r 22.79
GRU-based 20.07 23.73 22.10 21.03 20.04 19.10 18.59 18.19 17.97 18.01 18.27
LSTM-based-r 18.97 21.11 20.01 19.03 18.13 17.40 16.85 16.65 16.58 16.81
LSTM-based 18.61 23.73 21.78 20.20 18.65 17.37 16.43 15.77 15.47 1543 15.67

Table 3. Quantitative comparison of different predictors on
unseen scenes. The meanings of VF, TF, and IMU are the same
as Table 2.

Early prediction (cm) Late prediction (cm)
Comp.  |Over. ““‘”f‘ 10%.,20%., 30%., 40%., 50% |60% . 70%.| 80%., 90% . 100%.,
VF 19.61  |24.19 22.56 20.76 19.22 18.34|17.80 17.31 17.02 16.98 17.25
TE+IMU 1992 |23.37 21.94 20.85 19.86 19.11|18.61 18.16 17.87 17.80 17.97
VE+IMU 1954 |23.67 22.07 20.83 19.75 18.70|17.98 17.37 16.96 16.68 16.72
VE+TE 2082 |24.38 23.22 21.93 20.82 19.92(19.28 18.85 18.62 18.59 18.68

VE+TF+IMU|  18.82  |22.75 20.38 19.26 18.55 18.07|17.64 17.25 16.97 16.92 17.04
NLLLoss ‘ 21.71 ‘25.74 23.63 22.46 21.58 2()‘89‘20.40 19.90 19.60 19.48 19.62

TWRLoss 18.82  |22.75 20.38 19.26 18.55 18.07|17.64 17.25 16.97 16.92 17.04
GRU-based 19.77  |23.32 21.81 20.77 19.75 18.96|18.44 17.94 17.67 17.55 17.74
LSTM-based 18.82  |22.75 20.38 19.26 18.55 18.07|17.64 17.25 16.97 16.92 17.04

tures are performed, and the quantitative results are shown
in Table 2. We see that: (1) the method equipped with
all the features achieves the best performance, validating
the significance of multimodality features; (2) combining
visual features, translation, rotation, velocity and accelera-
tion together (VF+TF+IMU) can achieve excellent perfor-
mance, while missing first-order (VF+IMU) or higher-order
(VF+TF) motion features leads to worse performance than
the method using visual features only, proving that the first-
order and higher-order motion features are both crucial.

Discussions on loss weight. We also compared the per-
formance of the models trained with two different linear
loss weight functions: (1) linearly reduced from 2 to 1
(stronger penalty at the start), and (2) linearly grew from 1
to 2 (stronger penalty at the end). We find that implement-
ing a harsher penalty early on could improve performance.

Discussions on loss function. Compared to Neg-
ative Log Likelihood Loss (NLLLoss), our truncated
weighted regression loss (TWRLoss) incorporate the grids
with higher scores into our training objective, thereby
achieving better overall performance in both seen scenes
(21.63—18.61) and unseen scenes (21.71—18.82). Mean-
while, the late prediction capability is also improved, for
example, in seen scenes, the error could be decreased from

Table 4. Ablation studies on the granularity of the grid.

Late prediction
60%4 70%. 80%. 90%.. 100%.,

Early prediction
10%J. 20%.. 30%.. 40%. 50%..

24.03 22.08 20.69 19.70 18.86
23.36 21.46 20.23 19.15 18.14
23.73 21.78 20.20 18.65 17.37

Granularity‘ Over.|

18.30 17.91 17.71 17.66 17.86
17.31 16.64 16.41 1643 16.73
16.43 1577 15.47 1543 15.67

10243 /m?
3072% /m?
5120% /m?
19.41 to 15.67 when observing 100% data.

Discussions on RNN. LSTM can promote the overall
performance a little bit compared to GRU (20.07—18.61
in seen scenes and 19.77—18.82 in novel scenes). This is
maybe because LSTM has more learnable parameters than
GRU: GRU’s bag has two gates (reset and update) while
LSTM has three (input, output, forget). A more appropriate
architecture design may further improve the prediction.

Ablation study on the grid granularity.  The per-
formance gradually improves when the granularity is in-
creased, as shown in Table 4.

19.88
19.04
18.61

5.3. Qualitative Results

We visualize some prediction results in seen scenes and
unseen scenes respectively in Fig. 6. We can find that when
more temporal information is accumulated, the predictors
can generate more precise results. Meanwhile, our baseline
approaches demonstrate satisfactory generalization ability.
However, there is still a notable gap to be discussed next.

5.4. Limitations and Future works

Dataset. As the initial phase of this academic research,
due to limited resources and time, we do not have diverse
demographics of skin color, age, weight, height, etc., for
our dataset collection participants, nor comprehensive ac-
tion types. This could limit the generalization ability of
models learned on this dataset for any real-world products.
However, we believe the significance of this research is to
initiate a useful dataset for relevant academic communities
to more easily start to work together on this novel task that
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Figure 6. Qualitative evaluation of different predictors in seen and unseen scenes. The blue point represents the ground-truth target.

will eventually improve life quality of people with disabili-
ties. Therefore the initial version of the dataset should not
need to be ready for industry usage. Moreover, as a com-
mon practice in datasets of this community, this paper is
not the end of this study and we are committed to continue
growing the dataset to improve the diversity.

Baseline. Our simple RNN baseline achieves a reason-
able performance, although not accurate enough: a 20 cm
prediction error could still lead to an unintended grasp of a
wrong object on the table for a wearable robot user. This
could be due to that the multimodality data is only fused
with a naive concatenation, which may not be enough to
distinguish the importance of different modality at different
timestamps. To overcome this limitation, temporal-aware
multimodality learning could be a future direction. More-
over, the exploitation of temporal information can also be
improved: transformer structure might be more effective
than RNN to deal with long sequences. We hope the rel-
evant communities could address these limitations together
and improve this task further so as to enable better human-
robot collaboration.

Potential negative social impacts. Although our inten-
tion of proposing this new task and dataset is to improve
human-machine interaction by predicting human intentions,

21010

which could help people with disabilities, it is not difficult
for cyberpunk Sci-Fi writers to plot evil usages of this to-
be-developed technology for building robotic soldiers that
are unbeatable by humans. In addition, developing deep
learning models has been criticized for its high power con-
sumption and negative impact on climate change.

6. Conclusion

In this work, we propose the first 3D dataset and bench-
mark for egocentric prediction of action target, which could
play a crucial role in wearable devices, human-robot inter-
action, and augmented reality. Our annotation can be semi-
automatic with several off-the-shelf machine learning algo-
rithms, thus is quite efficient. Meanwhile, we design a sim-
ple baseline approach based on RNNs to solve the novel
task, which is the first method to localize the future action
target in 3D. We believe our dataset and benchmark are use-
ful for vision, robotics, and learning communities.

Acknowledgement. The research is supported by NSF
FW-HTF program under DUE-2026479. The authors grate-
fully acknowledge the constructive comments and sugges-
tions from the anonymous reviewers.
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