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ABSTRACT

Smart contract and DApp users are taking great risks, as they do

not obtain necessary knowledge that can help them avoid using

vulnerable and malicious contract code. In this paper, we develop

a novel system Tx2TXT that can automatically create security-

centric textual descriptions directly from smart contract bytecode.

To capture the security aspect of financial applications, we for-

mally define a funds transfer graph to model critical funds flows

in smart contracts. To ensure the expressiveness and conciseness

of the descriptions derived from these graphs, we employ a GCN-

based model to identify security-related condition statements and

selectively add them to our graph models. To convert low-level

bytecode instructions to human-readable textual scripts, we lever-

age robust API signatures to recover bytecode semantics. We have

evaluated Tx2TXT on 890 well-labeled vulnerable, malicious and

safe contracts where developer-crafted descriptions are available.

Our results have shown that Tx2TXT outperforms state-of-the-art

solutions and can effectively help end users avoid risky contracts.
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1 INTRODUCTION

Smart contracts are autonomous computer programs running atop

blockchains. They have the unique ability to enable trustworthy

and decentralized transactions, and thus have become the enabling

techniques for popular decentralized applications (DApps), such

as major NFT marketplaces [6, 13] and emerging decentralized

finance (DeFi) [4, 16]. The monthly transaction volumes of these

applications are in billions of US dollars [7].

In the meantime, DApp end users are taking great risks. Smart

contracts are known to have many security issues and logic er-

rors [2, 25, 31, 33, 37, 38, 43, 46, 48, 49, 55, 59], which can lead

to drastic financial losses. In contrast, app users have very little

knowledge about the contract code they are running – app UI may

provide high-level textual descriptions of contract behaviors (e.g.,

auction, token swap) but does not speak to concrete implemen-

tations of contract logic where security and safety risks actually

reside. Without necessary information about security threats in

underlying smart contracts, end users cannot make any informed

decisions to rationally avoid using risky contracts.

Existing smart contract security analyzers [8, 9, 11, 12, 21] can

automatically describe detected risks in natural language scripts

based on predefined templates. However, they focus on individual

low-level security problems such as reentrant functions [46] or inte-

ger overflow [49] but do not explain how these general problems in

computer programs can affect end users’ financial security in spe-

cific transaction contexts. In contrast, natural language processing-

based techniques [41, 64] can learn a model from smart contract

source code so as to summarize transaction logic in concrete con-

texts. Nevertheless, they heavily rely on symbol information and

developers’ comments which are neither trustworthy nor always

available.

To address these limitations, we propose to automatically gen-

erate textual descriptions of smart contracts – directly from their

bytecode – to inform end users of whether and how these computer

programs put their funds in risk.

While little has been done to describe security risks in smart

contract bytecode, the similar idea has been implemented in other

domains such as Android [27, 65, 66] or IoT apps [57]. To model

critical app behaviors, their descriptions are built around API names

whose security implication can be easily understood by end users.

For instance, the usage of requestLocationUpdates() implies that an

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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appmay track the user’s location history; an API call to lock.unlock

suggests the user may be at the risk of burglary.

Nevertheless, describing critical API calls in smart contracts,

such as the funds transfer functions of Solidity or ERC-20, is in-

sufficient to raise an alert to smart contract users because they

are commonly used in all kinds of financial applications – benign,

flawed or malicious. The way, in which a financial transaction is

made, matters. For example, a normal call to the transfer()API can

be suddenly exploited to mount double-spending attacks [38, 46]

if it is made within a reentrant function; an unfair sales practice

may disregard even legitimate user payments [35, 44]; a fraudulent

“honeypot” contract [58] can stealthily send a user’s funds to an

attacker’s account; self-destructive and suicidal contracts [40] lead

to financial losses because users have deposited funds but can never

withdraw them. Hence, our key observation is that multiple smart

contracts using the same funds transfer APIs may or may not cause

a security problem due to the different ways these calls are made.

Therefore, describing how funds transfers are made is necessary

for end users to understand the security risks in smart contracts.

To solve this problem, we develop a tool Tx2TXT that can auto-

matically distill funds transfer-related core semantics from smart

contract bytecode and describe them to end users in a security-

aware and human-comprehensible fashion. In particular, we (a)

first develop custom static program analyses to selectively extract

contract information directly from Solidity bytecode, and use this

knowledge to build a funds transfer graph (FTG). The extracted

graphs can be further improved by adding condition information.

However, not all conditions are security-related. We thus (b) train

a machine learning model to automatically identify critical pre-

conditions for funds transfer activities. Finally, we (c) convert en-

hanced FTGs to natural language scripts. To this end, we recover

high-level semantics from low-level bytecode so as to generate

human-readable texts. Our produced descriptions are eventually

used to complement existing security reports.

To the best of our knowledge, we are the first to bridge the gap

between low-level implementations of smart contracts and human

understanding of financial application logic.

We have implemented a prototype system in 1,500 lines of Python

code. We have applied Tx2TXT to 890 well-labeled vulnerable, mali-

cious and safe real-world contracts where developer-crafted descrip-

tions are available, to evaluate its effectiveness. Our experimental

results have shown that Tx2TXT can faithfully express essential

smart contract behaviors and effectively cover critical security-

related code content. Our user study has indicated that Tx2TXT

outperforms the state-of-the-art solutions, and can successfully

help average users avoid risky contracts.

In summary, this paper makes the following contributions:

• We propose a novel technique to protect the increasing popula-

tion that uses DApps. To this end, we develop a tool to automat-

ically generate security-centric descriptions for smart contract

bytecode.

• We define a new graph model to capture the security semantics

of financial applications using funds transfer activities.

• We address unique challenges in analyzing smart contract byte-

code, so as to bridge the semantic gap between low-level repre-

sentation and human readable descriptions.

1 contract DutchAuction {

2 uint listingTime; uint expirationTime;

3 uint deductedPrice; uint basePrice;

4 uint feeRate; address feeRecipient;

5 uint stolenAmount; address hacker;

6

7 function executeFundsTransfer(address token , address buyer ,

address seller) internal returns (uint) {

8 // Calculate the selling price based on the elapsed time

9 uint diff = SafeMath.div(SafeMath.mul(deductedPrice , SafeMath

.sub(now , listingTime)), SafeMath.sub(expirationTime ,

listingTime));

10 uint price = SafeMath.sub(basePrice , diff);

11

12 // Transfer funds to the specified account

13 if (price > 0 && token != address (0))

14 ERC20(token).transferFrom(buyer , seller , price);

15

16 //Pay transaction fee proportional to transferred amount

17 uint fee = SafeMath.mul(price , feeRate);

18 ERC20(token).transferFrom(buyer , feeRecipient , fee);

19

20 // Malicious hidden transfer

21 ERC20(token).transferFrom(buyer , hacker , stolenAmount);

22 }

23 }

Figure 1: Dutch Auction with Hidden Funds Transfers

• We have developed a prototype Tx2TXT . Our result shows that

Tx2TXT outperforms existing descriptions from developers and

security analyzers by a large margin.

To facilitate further research, we are committed to make the

source code and dataset publicly available.

2 PROBLEM & APPROACH

2.1 Motivating Example
We use a malicious auction contract as an example to motivate our

work. This contract implements a Dutch auction [6] and contains a

hidden transfer problem that has been studied by prior work such

as HoneyBadger [58] and TokenScope [26].

Figure 1 illustrates the source code of this contract DutchAuction,

written in the Solidity. Specifically, this contract first defines mul-

tiple global variables that are used to set up an auction. These

include (1) the start and end time of an auction, listingTime and

expirationTime, (2) the base price of the merchandise basePrice

and the gradually deducted amount deductedPrice, and (3) trans-

action fee rate feeRate as well as the fee recipient feeRecipient. In

addition, this malicious contract defines the amount to be stolen

for each transaction, stolenAmount, and the address of the hacker

to receive the stolen funds.

Once a user makes an offer, the executeFundsTranfer() func-

tion (ln.7) is invoked to calculate the bid price and then trans-

fer funds based upon the input addresses of the buyer and seller.

Unlike the popular English auction where participants attempt

to become the highest bidder, in a Dutch auction, the auction-

eer starts with a high selling price and lowers it over time until

some participant accepts the price. Thus, to obtain this final selling

price, this function calculates a diff according to the elapsed time

SafeMath.sub(now, listingTime) (ln.9), and subtracts the diff from

the basePrice (ln.10). If the derived price is valid (i.e., greater than

zero), the contract will transfer this amount of tokens from the

buyer to the seller (ln.14). Furthermore, the contract will also pay

the transaction fee based on the selling price to the feeRecipient
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Figure 2: Unclear UI Text for Dutch Auction in OpenSea

The function calculates an amount using a timestamp and transfers this

amount of tokens from an input address to another input address,

and then calculates a second amount using the first amount and transfers

this amount of tokens to a third-party address, and finally transfers a

third amount to another third-party address.

Figure 3: Expected Textual Description for the Example

from the buyer’s account (ln.18). Aside from these legitimate ac-

tions, in the end, the contract will stealthily send a specific amount

of funds to the hacker’s account (ln.21).

Unfortunately, such nuances in smart contract implementations

are not necessarily reflected on DApp front-end interfaces. For

instance, the web UI of OpenSea (Figure 2), one of the most popular

NFT market app [6], simply indicates that the app allows end users

to “Place bid”, despite that it internally implements a non-trivial

Dutch auction logic and calculates/transfers various interests and

fees based upon very sophisticated business models.

Besides, being deployed to the blockchain, smart contract source

code is compiled to obscure bytecode. Because all the symbols

have been stripped from the bytecode executable, it becomes very

difficult (if not impossible) for human readers to recognize the

original logic of the program.

Admittedly, using automated program analysis, we can still iden-

tify robust API signatures such as CALL, REVERT or TIMESTAMP at the

bytecode level, which are used to manage crucial funds transfers.

However, the existence of such API calls is not a key differentiator

between normal transactions and dangerous behaviors. In the mo-

tivating example, the same ERC-20 API transferFrom() is used for

both the benign funds/fee transfer (ln.14 and 18) and the malicious

theft of user funds (ln.21). The difference lies in how a funds trans-

fer is made. Particularly, in the first normal transaction (ln.14), the

funds are transferred to a user specified input buyer, and the trans-

ferred amount price is calculated from a time factor now due to the

nature of Dutch auctions. In the second normal transfer (ln.18), the

transferred fee is calculated based upon the previously transferred

amount price. In contrast, in the malicious transaction (ln.21), both

the amount to be transferred stolenAmount and the funds recipient

hacker are irrelevant to either the user request or the auction logic.

2.2 Problem Statement

Our Goal. To help end users understand the security risks in smart

contract bytecode, we propose to automatically generate textual

contract descriptions that capture important security semantics in

specific funds-transfer contexts. For instance, in the motivational

example, we hope to create a textual description shown in Figure 3.

Such a description must capture the crucial (normal and abnormal)

behaviors of this contract: (1) there exist three different funds trans-

fers. Their difference lies in how transferred amounts and the funds

recipients are obtained, indicated by the underlined texts. (2) The

Funds Transfer 

Graph Construction

Selective Insertion 

of Conditions

Description 

Generation

Smart Contract 

Function

Figure 4: Architecture Overview of Tx2TXT

contract implements a Dutch auction – the selling price (i.e., the

first amount) is derived using the now timestamp, and sent to an

input address, the buyer account specified by the input. (3) An addi-

tional fee (i.e., the second amount) is required for this transaction

and is calculated based upon the selling price (i.e., first amount). (4)

The irrelevant parameters (amount and address) make the third

funds transfer look suspicious.

Note that we do not intend to use our descriptions to replace

existing textual reports generated by security analyzers. Detecting

security risks is orthogonal to the goal of this work. Instead, our

descriptions can complement the abstract reports via providing

concrete funds-transfer contexts which are necessary for human

readers to understand reported problems.

Design Requirements. To design a system that achieves our

goal, several requirements must be met:
(1) Security-centric. We expect textual descriptions to help end

users understand security risks in smart contracts. Thus, they

must cover security-related contract behaviors.

(2) Bytecode-oriented. We must build descriptive scripts solely

from smart contract bytecode. We must not use any additional

information such as domain knowledge or heuristics.

(3) Human-readable. Readable textual descriptions must be suc-

cinct. Tedious texts can hinder effective communication pro-

cesses.

(4) Risk Avoidance. Our descriptions must assist humans in avoid-

ing security risks in smart contracts. They must provide specific

funds-transfer information that can enable humans to understand

concrete contract logic and hidden financial security problems.

2.3 Approach Overview

To fulfill these requirements, we propose a novel technique Tx2TXT

which can automatically extract security-related financial activities

from smart contract bytecode and then translate them into human

readable textual scripts. Tx2TXT consists of three major steps as

shown in Figure 4.

(1) Funds Transfer Graph Construction. To model smart con-

tract code in a security-aware fashion, we propose a novel graph

representation funds transfer graph (FTG). To construct a FTG for a

given smart contract function, we perform static control-flow and

dataflow analyses to extract its intrinsic dependency information

that indicates how user funds are transferred.

(2) Selective Insertion of Security-Related Conditions. Precon-

ditions play an important role in understanding security risks

of funds transfers. However, a large amount of conditions can

greatly hinder the readability of FTGs and generated descriptions.

Besides, not all the conditions are security relevant. To introduce

additional security knowledge to our graph models while keep-

ing descriptions concise, we train a machine learning model to

automatically identify security-sensitive conditions, and then

insert only these conditions into FTGs.
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(3) Description Generation. To translate bytecode-level informa-

tion into human-readable texts, we leverage robust API signatures

to recover high-level semantics from low-level bytecode imple-

mentations. Based upon the unique semantic-level knowledge we

can obtain, we define a custom description language and develop

a specific description generation algorithm that can convert FTGs

to natural language scripts.

3 FUNDS TRANSFER GRAPH

3.1 Key Factors

To model security semantics in smart contracts, we argue that

several key factors with respect to funds transfers must be taken

into consideration.

• Transfer API. Funds transfer APIs such as transfer() of Solidity,

transferFrom() of ERC-20, are required to enable transactions in

financial applications. Because attackers in this domain aim for fi-

nancial gain, they must exploit these functions to steal funds [26],

double spend [28] or commit fraud [58].

• Dataflow. Knowing the presence of funds transfers is necessary

but not sufficient. It is also critical to understand what has been

transferred and where it is sent to. In the motivating example,

we show that the source of funds and the funds recipient may

indicate the legitimacy of a funds transfer – a “greedy” or “prodi-

gal” [40] contract can withhold any arbitrary amount of funds

and send them to attackers’ accounts.

• Relations Among Transfers. As shown in our motivating ex-

ample, financial services such as NFT markets [6] or token ex-

change [16] usually charge fees for each transaction and therefore

commonly use multiple consecutive transfer APIs to send several

corresponding amounts (i.e., transferred funds and fees). This can

be reflected in the execution order and the shared data sources

of multiple API calls. In contrast, an illegal transfer may not be

relevant to any other legitimate funds transfers.

• Specific Values. First, constants play an important role in se-

curity analysis. Certain constant values (e.g., malicious account

addresses) or even the presence of constant parameters such as

funds recipients or transferred amounts can be an indicator of

security risks. Second, a large portion of smart contracts imple-

ments a game of chance and therefore must depend on random

numbers. It may raise security and fairness concerns if their key

parameters do not rely solely on random number generators such

as keccak256() [50].

3.2 Formal Definition
With the understanding of these key factors, we formally define

the funds transfer activities in each contract function as a Funds

Transfer Graph (FTG). A FTG depicts what and how cryptocurrency

funds are being transferred.

Definition 1. A Funds Transfer Graph is a directed graph G =

(V , E, U , V) over a set of instructions Σ and relations R, where:

• The set of vertices V corresponds to the instructions in Σ;

these instructions include funds transfer API calls and those that

these API calls depend on.

• The set of edges E ⊆ V × V corresponds to the control

transfers or data dependencies among instructions.

• The labeling function U : V → Σ associates nodes with the

labels of corresponding instructions. Each label consists of two

%275 = CALL(%274, %23F, %26A, %265, %268, %265, %263) /*transferFrom#1*/

%243 = DUP6(%4D) /*price*/

%398 = CALL(%397, %35B, %38D, %388, %38B, %388, %386) /*transferFrom#2*/

%3CF = CALL(%3CE, %39A, %3C4, %3BF, %3C2, %3BF, %3BD) /*transferFrom#3*/

%40 = TIMESTAMP() /*now*/

%29 = CALLDATALOAD(%25) /*buyer*/

%3B0 = SLOAD(%3A3) /*stolenAmount*/

%360 = SLOAD(%35E) /*feeRecipient*/

%2F = CALLDATALOAD(%2B) /*seller*/

%3F = SLOAD(%3E) /*listingTime*/

%43 = SLOAD(%42) /*deductedPrice*/

%3C = SLOAD(%3B) /*expirationTime*/

%356 = SLOAD(%355) /*feeRate*/

%3BA = SLOAD(%3B8) /*hacker*/

Figure 5: FTG of the motivating example. Red nodes are “trans-

fer calls”; blue nodes are “nearest common data origins of trans-

ferred amounts”; black ones are the “other data origins”. Red solid

curved lines represent control transfers; black dotted lines

indicate data dependencies.

elements: an instruction in a SSA-formed intermediate representa-

tion and an attribute. An attribute can be “transfer call”, “nearest

common data origin of transferred amounts” or “other data origin”.

• The labeling function V : V → R associates edges with the

labels of “control transfer” or “data dependency”.

3.3 FTG of Motivating Example

Figure 5 illustrates the FTG of our motivating example. Here, each

node contains a bytecode instruction presented in the Octopus [1]

IR, a SSA-formed representation of the original Solidity bytecode.

For instance, %43 = SLOAD(%42) denotes that a variable %43 is loaded

from the storage space at the address %42. A CALL instruction

CALL(%gas,%addr,%wei,%in,%insize,%out,%outsize) can invoke

a function defined in a contract at address %addr with the given

%gas and %wei. The function signature and parameters are passed

through an input state %in, which will eventually be updated to

become an output state %out. For readability purposes, we add

a comment to each node to correlate every bytecode instruction

with its source-level symbol. For example, %40 = TIMESTAMP() is

associated with reading the now property in the source code, and

the three CALL instructions correspond to the transferFrom() calls.

The red nodes are labeled with the “transfer call” attribute. The

blue node %243 = DUP6(%4D), which defines the price variable, is

the “nearest common data origin” of two transfer calls and indicates

the data dependency between the “amount” parameters of the two

function calls. The black nodes represent the “other data origins”

of the red and blue nodes. For instance, transferFrom#3 depends

on the data items of three black nodes, a buyer address, a hacker

address and a stolen amount. The first originates from a function

argument (i.e., CALLDATALOAD) and the last two are obtained from

global variables loaded from storage via SLOAD.

The red curved lines represent control transfers. They show

the three consecutive calls to the transferFrom() API and that the

calculation of the bid price happens prior to these calls. The black

dotted lines indicate data dependencies. One node can depend on

multiple data sources. For instance, the price is calculated from the

data inputs from four other nodes: the now property, listingTime,

expirationTime and deductedPrice. The same data origin can affect

multiple nodes. For example, the buyer address is used in all three
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transfer calls as the source of funds. The relation between two

nodes can involve both control transfer and data dependency – the

calculation of selling price occurs before the sequence of transfers

and also has impact on the transferred amount of transferFrom#1.

Essentially, this graph captures all the important information that

can facilitate user understanding of the contract logic: (1) there exist

three funds transfer activities; (2) while all of them transfer funds

from the buyer account, they differ in the transferred amounts

and funds recipients; (3) in the first transaction, the transferred

amount is calculated based upon a timestamp and other global

variables while the recipient is specified by the user input; (4) in the

second one, the funds recipient is designated by the contract but

the transferred amount depends on the previously calculated price;

(5) in contrast, neither the amount nor the recipient is relevant to

any user inputs in the third transfer.

3.4 Graph Construction

We develop our custom static analysis to build the FTG for each

contract function. Our analysis tool is built on top of Octopus [1]

and can perform context-sensitive, flow-sensitive, inter-procedural

dataflow analysis on Solidity bytecode.

Algorithm.Algorithm 1 describes howwe construct a FTG. Specif-

ically, our algorithm BuildFTG() takes a smart contract function

func as an input and outputs a FTG graph. At the initialization stage,

it first creates an empty edge set FTG (ln.2), and computes the con-

trol flow graph CFG of the given func (ln.3), and then collects all the

transfer function calls in this function and stores them into a set

TC (ln.4). For each pair of transfer calls (tc, tc′) in TC, we invoke

FindNearestCommonDataOrigin() to identify the shared definitions

NC, of their parameters of transferred amounts, that are closest to

the callsites (ln.5-7).

More concretely, given a pair of calls (tc, tc′), we obtain the

pair of their “amount” parameters (amttc, amttc′ ), and compute

their use-define chains DEFtc and DEFtc′ , respectively (ln.21,22).

Then, we will return the last definition of their intersection (ln.23),

which will be the nearest common data origin of the two calls.

We further remove everything except for the instructions in

NC and TC from the CFG. The remaining nodes, connected by

control-transfer edges, will be added to the FTG (ln.8). Then, for

each variable “use” used in either TC or NC, we perform a use-

define chain analysis to obtain all the definitions (other data origins)

(ln.10). If a definition is an “external” one, meaning it is defined

using a global variable, a constant, an API return value or a function

parameter, we insert this definition as a new node to the FTG and

add an edge from this node to the one using this definition (ln.11-15).

Finally, the algorithm returns the FTG (ln.17).

Special Challenge. To implement our algorithm for Solidity byte-

code, we need to address the unique calling convention andmemory

modeling used in the argument passing. As indicated in Figure 5, a

function call to an ERC API (e.g, ERC20.transferFrom()) in Solidity

source code is eventually compiled to a CALL(%gas,%addr,

%wei,%in,%insize,%out,%outsize) instruction. However, instead of

explicitly specifying a call target and passing each parameter to

this function, in the CALL instruction, the function signature and all

the arguments are implicitly passed through a memory region, at an

address specified by the %in parameter. As a result, to identify the

Algorithm 1 Graph Construction

1: procedure BuildFTG(func)
2: FTG ← ∅
3: CFG ← BuildCFG(func)
4: TC← GetTransferCalls(func)
5: for ∀(tc, tc′ ) ∈ TC do
6: NC← FindNearestCommonDataOrigin(tc, tc′ )
7: end for
8: FTG ← CFG ∩ (TC ∪ NC)
9: for ∀use ∈ (TC ∪ NC) do
10: DEF← DoUseDefChainAnalysis(use)
11: for ∀def ∈ DEF do
12: if IsExternal(def) then
13: FTG ← FTG ∪ < def, use >

14: end if
15: end for
16: end for
17: return FTG

18: end procedure
19:
20: procedure FindNearestCommonDataOrigin(tc, tc′)
21: DEFtc ← DoUseDefChainAnalysis(amttc )
22: DEFtc′ ← DoUseDefChainAnalysis(amttc′ )
23: return GetLastDef(DEFtc ∩ DEFtc′ )
24: end procedure

1:  %240 = #0x23B872DD

2:  %244 = #0x40
3:  %245 = MLOAD(%244)

4:  %247 = #0xFFFFFFFF

5:  %248 = AND(%247, %240)
6:  %24A = MUL(%249, %248)

7:  MSTORE(%245, %24A)

8:  %24C = #0x4

9:  %24D = ADD(%24C, %245)
10: %251 = AND(%250, %29)

11: %253 = AND(%252, %251)
12: MSTORE(%24D, %253)

13: %255 = #0x20
14: %256 = ADD(%255, %24D)

15: %259 = AND(%258, %2F)
16: %25B = AND(%25A, %259)

17: MSTORE(%256, %25B)

18: %25D = #0x20

19: %25E = ADD(%25D, %256)
20: MSTORE(%25E, %4D)

21: %261 = #0x20
22: %262 = ADD(%261, %25E) 

23: %264 = #0x40
24: %265 = MLOAD(%264)

25: %268 = SUB(%262, %265)

26: %275 = CALL(%274, %23F, 

%26A, %265, %268, %265, %263)

#0x23B872DD

%29 (_from)

%2F (_to)

%4D (_value)

%245/%265

0x40

0x4

0x20

0x20

0x20

memory

call 
target

1st arg

2nd arg

3rd arg

pointer

Figure 6: Argument Passing in Bytecode

exact calls to make funds transfers and distinguish the data origins

of individual parameters, we must understand this memory model.

Figure 6 demonstrates how parameters are passed for a call to

transferFrom(address _from, address _to, uint256 _value). In

general, the caller and the callee access the same memory space

containing the parameters based upon an implicitly agreed way

for memory referencing. By convention, Solidity manages memory

using a “free memory pointer” [51] at offset 0x40 in memory. Here,

both the caller and the callee load this pointer (%245/%265) from this

position (ln.3 and ln.24), and use it to locate the beginning of the

memory allocated for parameters (ln.7 and ln.26). Specifically, the

caller first stores a four-byte value (#0x23B872DD) at the top of this

space (ln.7). This value is the “function selector” [19] that specifies

which function to call, while #0x23B872DD is the signature of the

transferFrom() function defined in ERC-20 [18]. Then, the caller

further pushes three arguments of this function, _from, _to and

_value, each taking 0x20 bytes, consecutively into the following

spaces (ln.12,17,20). Finally, the CALL instruction passes the address
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(%in) and the size (%insize) of this memory cell to the callee (ln.26),

and the callee will parse this memory region to identify the call

target as well as its corresponding parameters.

To address this implicit argument passing, we first use backward

dataflow analysis to discover the source (MLOAD) of the %in parameter

in a CALL instruction. This source, pointed to by a “free memory

pointer”, is the address of the memory holding function arguments.

Then, we identify the previous MLOAD instruction that can obtain

the same pointer value. To this end, we perform a simple points-to

analysis to check whether the specific memory cell at offset #0x40

can be updated between two MLOADs. Starting from the previous

MLOAD, we conduct forward dataflow analysis to discover a series

of memory writes (MSTORE) that store arguments sequentially into

the memory space. For each MSTORE, we compute its data sources to

find the content of a specific argument being passed.

4 SECURITY-RELATED CONDITIONS

While a basic FTG depicted in Figure 5 can already capture key

funds transfer activities, the graph model can be more expressive if

it also explains the circumstances under which funds transfers are

made. Certain condition checks have strong security implications

– if a necessary safety check (e.g., balance or expiration check)

is absent or an uncommon check (e.g., backdoor, logic bomb or

unsatisfiable condition [58]) is present, a funds transfer guarded by

such a condition may look more suspicious.

A naïve approach to considering the impact of conditions would

be adding all relevant conditional statements to FTGs based upon

the control flow graph. Nevertheless, this may lead to a significant

growth of graph (and eventually description) sizes. In fact, not

all conditions are security-sensitive. For example, the condition

check in the motivating example simply confirms that the selling

price, an unsigned integer, is greater than zero. While doing so

can avoid unnecessary transactions, the contract will not cause

any security problems even without such a check. In order to build

security-centric descriptions, we hope to selectively insert only

security-related condition checks into our graphs.

Note that, to be safe, when identifying security-related condi-

tions, we take a conservative approach. Our technique is designed

to be “recall-oriented” – we expect to see no false negatives but

may cause over-approximation. However, our trade-off would at

most result in larger (but still correct) graphs.

4.1 Key Insights

Intuitively, the distinction between a security-sensitive condition

and a less interesting one lies in the form of predicates, the topology

of conditional branches, and the consequence of condition checks.

First, a harmful predicate, present in for example logic bombs or

backdoors, often checks a runtime state – such as a user input, cur-

rent time or system environment – against a narrow and constant

value range [32], and thus is unlikely to compare a random local

variable with an arbitrary value.

Second, because a security-related condition check often causes

a program to enter two drastically different states (e.g., normal

activities vs. self-destructing code in Figure 7(b), or authentication

success vs. authentication failure), its two branches can be easily

unbalanced. In contrast, if a conditional statement is related to

regular program logic, its two branches, though exercising different

if(side==Side.Sell)

return add(basePrice,diff)

return sub(basePrice,diff)

if(buyPrice>=sellPrice)

(a) Balanced Branches

if(feeRecipient!=address(0))

revert()

if(sell.feeMethod==Split)

makerProtocolFee=SafeMath(…)

(c) Unbalanced Branches 

due to Input Validation

if(block.timestamp!=1659182400)

selfdestruct(attackerAddr)

performNormalActivity1()

performNormalActivity2()

(b) Unbalanced Branches 

due to Logic Bomb

Figure 7: Balanced vs. Unbalanced Branches

code, are likely to share the same intention (e.g., to calculate a selling

price yet using different algorithms in Figure 7(a)) and therefore

may result in similar lengths.

Third, normal condition checks may also contain unbalanced

branches, exemplified by Figure 7(c), where the condition check

is performed to implement an input validation. Nevertheless, a

failed input check would at most revert a transaction, as opposed

to harmful funds transfers caused by successfully triggered logic

bombs.

As a result, to identify conditions that bear interesting security se-

mantics, the context in which these conditions are checked matters.

Nevertheless, such contextual differences are hidden in implemen-

tation nuances that cannot be easily expressed using simple code

patterns. Besides, the aforementioned factors may be entangled

and can be of different importance when assessing the security-

relatedness of a condition. Hence, to automatically and accurately

discover crucial condition checks, we train a deep learning model

to quantitatively capture these subtle differences.

4.2 Basic Algorithm: GCN

To solve this node classification problem, we train a Graph Convo-

lutional Network (GCN) [36] that can automatically determine if

a given condition node is of security interest. Then, we can insert

only these nodes and relevant control-transfer edges to FTGs.

Note that, any machine learning models that enable node clas-

sifications may potentially serve our needs. The usage of a GCN

model is a demonstration of our node selection technique. Finding

the best machine learning algorithms, that can most precisely cap-

ture security-relatedness of conditional statements, is orthogonal

to the major goal of this work – which is to create human readable,

security-centric contract descriptions.

The input of our GCN model is an annotated control flow graph

(ACFG), which is formally defined in prior work [30, 62]. In general,

an ACFG is an enhanced control flow graph where each node (basic

block) is annotated with a vector of semantic-level features such as

number of calls or instructions. The details of GCN can be found in

online appendix D.

4.3 Semantics & Context-Aware Node

Embedding

We then engineer the node features to encode smart contract-

specific semantics and context into our GCN structure. Specifically,

we first create a feature vector for each factor, and then concatenate

all the vectors to generate a node embedding.

Semantics. We consider the semantics of each node to be indi-

cated by the existence of API calls, constants, global variables, and

conditions. Thus, we encode them into a feature vector where each

dimension represents the presence of a corresponding feature.
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Dependency Context.While a vanilla GCN can efficiently repre-

sent neighboring contexts of individual nodes, it does not capture

their causal dependencies as it does not consider edge directions.

Hence, we alternatively incorporate the direction (or dependency)

information into node embeddings. To this end, we utilize the

TransE [23]methodwhich converts relationships ofmulti-relational

data to low-dimensional vector spaces.

The core idea of TransE is to consider relationships as trans-

lations in the embedding space. Thus, for every edge, denoted as

a triplet <head node, edge label, tail node> or to use our notions

< Eℎ, 4, E�푡 >, the embedding of the tail E�푡 should be close to that of

the head Eℎ plus the vector of the edge 4 . The intrinsic dependency

relations in a graph are hence captured by the optimal embeddings

selection, which can be trained by first randomly initializing node

and edge embeddings and then optimizing the following objective:∑

(�푣ℎ,�푒,�푣�푡 ) ∈G

| |emb�푣ℎ + emb�푒 − emb�푣�푡 | | (1)

where emb�푣ℎ , emb�푒 and emb�푣�푡 denote the 3-dimensional vectors

of the head Eℎ , edge 4 and tail E�푡 , respectively. 3 is a configurable

parameter; in practice we set it to be 100.

Topological Context. Furthermore, motivated by Figure 7 (a) and

(b), we also hope to encode the knowledge of “the balance be-

tween two branches” into our model, so as to differentiate normal

condition checks from special ones. However, such a high-level

topological feature cannot be easily captured by a vanilla GCN

because the basic model only looks at neighboring nodes within

a constant distance of each central node. Although configurable,

this distance in practice is often small for the sake of runtime per-

formance. Consequently, we additionally include this information

into node features. Particularly, we compute the difference between

the lengths of two branches starting from every conditional state-

ment, and use logarithmic encoding to generate its embedding to

avoid sparse feature vectors. We consider the end of a branch to

be the next conditional statement or the end of a function. For

non-condition nodes, their feature vectors will be all zeroes.

4.4 Training Data

To train our model, we need to collect smart contract samples which

contain well-labeled malicious or suspicious condition statements.

However, to the best of our knowledge, there exists no such dataset

to date. To address this problem, we instead collect relevant datasets

in other domains. These benchmarking projects, though using logic

bombs as demonstration, in fact systematically summarize mali-

cious and suspicious “narrow” conditions such as time, system

resources, system properties, random numbers or specific user in-

puts, and thus can broadly capture the semantics and contexts of

security-sensitive condition checks in different scenarios including

but not limited to logic bombs, backdoors, unreachable code, etc.

We collect relevant datasets in other domains, and thus learn the

model using a mixture of 562 C [61] and Android [14, 15, 22] logic

bomb samples from benchmarking projects and top smart contract

code retrieved from Etherscan [3] that are confirmed to be safe by

Slither [2].

4.5 Insertion of Condition Nodes

Once we have identified security-related condition statements in

a function, we add them to the corresponding FTG following the

original control flow graph. To this end, we introduce a new node

Table 1: Partial Semantic Entities

Semantics Category Source Example

address Explicit API param or return <address>.send(), CALLER

amount Implicit API param or return transferFrom(...,value), CALLVALUE

balance Implicit API return value ERC20.balanceOf(), BALANCE

timestamp Implicit API return value TIMESTAMP

input Origin API return value CALLDATA

random Origin API return value keccak256(), sha256(), ripemd160()

global var Origin storage/memory SLOAD, MLOAD

constant Origin constant value 0x001d3f1ef827552ae111...

attribute “condition” and connect these condition nodes to exist-

ing graph nodes using “control transfer” edges. Additionally, we

compute data sources of the variables used in conditions, and in-

sert them as “other data origins” to the graph via adding a “data

dependency” edge from each origin to its associated condition.

5 DESCRIPTION GENERATION

In general, we follow prior work’s [66] approach to convert our

FTGs to natural language scripts. However, unlike the prior work

which simply relies on semantic-rich API names to produce natural

language elements – e.g., translating sendTextMessage() to a verb

“send” and an object “text messages” – we must address the unique

challenge of the semantic gap between low-level Solidity bytecode,

such as DUP1 or SLOAD, and human-understandable textual tokens

such as “an input address” or “a constant transferred amount”.

5.1 Semantic Modeling

To recover the semantics of Solidity bytecode instructions, we resort

to three categories of robust information. Table 1 lists, in part, key

semantic entities we can obtain from them.

(1) Explicit Data Type. Because smart contracts are particularly

used to implement blockchain-based financial applications, a special

data type address is introduced in Solidity to handle the unique fea-

ture of underlying platforms and transaction processes. An address

variable essentially is a 20-byte Keccak-256 number but can rep-

resent an individual account used to maintain crypto assets. We

can reliably obtain this type information from either API param-

eters or return types. For instance, the Solidity API send() uses

an address as the target account. The return value of several API

functions such as msg.sender(bytecode CALLER), tx.origin(ORIGIN),

block.coinbase(COINBASE) is an Ethereum address.

(2) Implicit Data Type. In addition to explicit native types, there

also exists implicit yet finer-grained type information. Since vari-

ables of the same primitive type can be used for very different

purposes, they in fact can bear distinctive semantic meanings. For

example, an unsigned integer (uint) can be used to represent the

amount of crytocurrency or tokens being transferred, or to indicate

the balance of an account, or even to denote the current timestamp.

The differentiation of these seemingly similar integers is of critical

importance to precisely interpreting contract logic. To this end, we

build a semantic model for every well-known Solidity and ERC

API (a list in Table A1 in the online appendix [20]), and use it to

infer the semantics of relevant variables. As exemplified in Table 1,

the return value of a call to CALLVALUE or the third parameter of

ERC20.transferFrom() is a transferred amount; the return value of

either Solidity API BALANCE or ERC-20 function balanceOf() is an

account balance; the TIMESTAMP call returns a timestamp variable.

(3) Data Origin.Aside from the type of a variable, we can also

retrieve its origin. This serves as additional information that may
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⟨description⟩ ::= ⟨sentence⟩*

⟨sentence⟩ ::= ⟨sentence⟩ ‘,and then’ ⟨sentence⟩

| ⟨statement⟩ ⟨modifier ⟩

⟨statement⟩ ::= ⟨subject⟩ ⟨verb⟩ ⟨object⟩

⟨subject⟩ ::= ⟨noun phrase⟩

⟨verb⟩ ::= ‘transfer’ | ‘calculate’ | ‘be equal to’
⟨object⟩ ::= ⟨noun phrase⟩

⟨modifier ⟩ ::= ⟨modifier ⟩ ⟨conj⟩ ⟨modifier ⟩

| ‘if’ [‘not’] ⟨sentence⟩

| ⟨with⟩ ⟨noun phrase⟩

| ⟨empty⟩

⟨noun phrase⟩ ::= ⟨data-origin⟩ ⟨data-type⟩

| ⟨data-origin⟩

| ⟨data-type⟩

⟨conj⟩ ::= ‘and’ | ‘or’ | ⟨empty⟩

⟨with⟩ ::= ‘from’ | ‘to’ | ‘using’

⟨data-origin⟩ ::= ‘input’ | ‘constant’ | ‘global’ | ‘random’ | ⟨ordinal⟩

⟨data-type⟩ ::= ‘address’ | ‘amount’ | ‘balance’ | ‘timestamp’ |

‘value’

⟨ordinal⟩ ::= ‘1st’ | ‘2nd’ | ‘3rd’ | ...

⟨empty⟩ ::= ‘ ’

Figure 8: An Abbreviated Syntax of FTL

<“function”, “transfer”, “1st amount”, “from 1st input address to 2nd input address”>

<“function”, “calculate”, “1st amount”, “using timestamp and global variables”>

<“function”, “transfer”, “2nd amount calculated from 1st amount”, “from 1st input address to a third-party address”>

<“function”, “transfer”, “3rd amount from global variable”, “from 1st input address to another third-party address”>

“timestamp”

“1st input address”

“global variable”

“global variable”

“2nd input address”

“global variable”

“global variable”

“global variable”

“global variable”

“global variable”
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m

o
u
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Figure 9: Translating FTG of Motivating Example

help human users further distinguish variables of the same types. In

the motivating example, the same amount-typed variables are used

in multiple transferFrom() calls. However, depending on where

these amounts originate, a user may infer whether a call is ill-

intentioned. The knowledge about data origins can also be collected

from modeling API return values (Table 1). For example, CALLDATA

returns function inputs provided by contract users; hash functions

keccak256(), sha256(), ripemd160(), etc. are the origins of random

numbers. Additionally, global variables can be fetched from storage

or memory via special instructions SLOAD or MLOAD. Constants are

acquired from fixed numbers.

5.2 Funds Transfer Language

With the enhanced semantics, we formally define a funds transfer

language (FTL) that can specifically capture transfer-related actions

and key fund flows in our FTGs. Figure 8 depicts the abbreviated

syntax of our language in Extended Backus-Naur form (EBNF).

In particular, a description of funds transfers consists of multiple

sentences, each of which can be either recursively defined or di-

rectly formed as a statement plus a modifier. A statement indicates

the activity that a subject performs (verb) on an object. A modifier

specifies how an activity is performed – on what condition (‘if’),

depending onwhat data (‘using’), or throughwhat dataflow (‘from’

and/or ‘to’). Multiple modifiers can be concatenated directly or

using a logical conjunction.

Both a subject and an object can be a noun phrase, which in

our context, is composed of a data-origin and a data-type. The

data-origin and data-type are derived from our semantic models.

Specifically, for data origins, in addition to those that can be di-

rectly obtained from our models (e.g., input, constant), we further

differentiate variables from different origins using ordinal numbers

such as “the first amount or “the second address”. For data types, we

also introduce a basic value type for those whose types cannot be

resolved using our semantic model. Besides using data-origin and

data-type individually, we can also use the former as an attribute

of the latter to form a compound phrase such as a “constant address”

or an “input amount”.

We support three types of actions indicated by the verb. First,

we describe the funds transfer activities using ‘transfer’. Second,

we use ‘calculate’ to illustrate the calculation of intermediate

amount values. Last, we also introduce the ‘be equal to’ to depict

the comparison in conditional statements (i.e., the ‘if’ clause). The

details of description generation are in online appendix E.

5.3 Motivating Example

Figure 9 demonstrates how we convert FTG nodes to corresponding

natural language elements for the motivating example.

Particularly, in this example, we identify one path (red) that

represents the control flow of its transfer activities and thus needs

to be described. For each node on the path, we convert it to natural

language elements based on its attribute and data dependencies.

For instance, the first node (i.e., the blue one) yields the trans-

ferred amount in the first transfer call. Therefore, we use a verb

“calculate” to describe this action and use the data-type “amount” as

the object for this verb. The modifier represents how this amount

is being calculated and is derived from the data-origin of this node

– the timestamp and global variables.

All the other three nodes on the path are transfer calls, and

therefore are illustrated using the verb “transfer” with the object

“amount”. Depending on their individual data origins, these three

objects are further enhanced in different ways. Specifically, the

amount being transferred in the second call is calculated from the

one used in the first call. To indicate this relation, we use ordi-

nal numbers to differentiate these two “amounts” while adding a

modifier “calculated from 1st amount” to define the 2nd amount. In

contrast, the “amount” in the third call originates from a “global

variable”, which shows it is totally irrelevant.

The sentences generated for the three transfer calls are also

modified by their funds flows, described using the “from” <sender

address> “to” <recipient address> modifiers. These modifiers are

concretized based upon the origins and types of the addresses.

While the first call obtains both sender and recipient addresses

from “inputs”, the other two send funds to “a third-party address”

(i.e., unknown global variable).

Finally, we can create this descriptive script for the example: The

function calculates 1st amount using timestamp and global variables,

and then transfers 1st amount from 1st input address to 2nd input

address, and then transfers 2nd amount calculated from 1st amount

from 1st input address to a third-party address, and then transfers 3rd
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amount from global variable from 1st input address to a third-party

address.

6 EVALUATION

We have implemented Tx2TXT in 1,500 lines of Python code. Our

graph generation tool is built on top of Octopus [1]’s static analysis

engine, and our node classification uses Deep Graph Library [5].

We further apply it to real-world smart contracts to evaluate its

correctness, effectiveness and usability.

6.1 Experimental Setup
First, to assess the security awareness of our funds-transfer-based

graph models, we collect benchmark smart contracts from a state-

of-the-art project VeriSmart [56], where 412 contract programs

have been confirmed to contain security problems and thus can be

used as well-labeled ground truth.

Second, to comparatively check human understanding of our

generated descriptions, we create descriptive scripts for 906 con-

tracts whose developer-crafted descriptions are available on

their DApp websites or GitHub. Among these, 300 are benign con-

tracts from top Etherscan apps, 196 are malicious from HoneyBad-

ger [58], and 412 are vulnerable ones from VeriSmart [56].

Last but not least, to evaluate our machine learning model, we

generate 6,000 FTGs from top 2,400 open-sourced contracts in Ether-

scan [3] (with the highest amounts of transactions), as well as 573

C and Android logic bomb programs whose crucial conditions are

labeled. We use 5,400 graphs as the training samples and 600 as the

testing samples. Our experiments have been conducted on a server

equipped with Intel Xeon Gold 6330 CPU @ 2.00GHz and 256GB

memory. The OS is Ubuntu 20.04 LTS (64bit).

6.2 Correctness and Security of FTGs
First, we would like to evaluate our graph models. Particularly, we

expect to see (a) if our graphs are complete and precise, and (b)

whether our “transfer”-oriented graph models are security-aware

– i.e., whether our graphs can actually capture all the potential

security risks in smart contract code.

Accuracy.We manually verify the the completeness and preci-

sion of the 780 FTGs generated from the 412 benchmark contracts.

In theory, false positives in our dataflow analysis may originate

from how we address the memory model in Solidity. Particularly,

when we identify the “free memory pointer”, we only look for the

constant offsets and do not handle the access to this pointer via

computed variables. Nevertheless, our results show that Tx2TXT

does not yield any false negatives in practice. This may be due

to the fact that the contracts in this dataset do not contain very

complex or unconventional storage/memory accesses. In contrast,

we do observe a false positive rate of 3.64%. 224 out of 6160 total

nodes are imprecisely added into our graphs. Our further inves-

tigation indicates that these false positives are caused due to our

conservative way to handle aggregate data types such as arrays. For

instance, in a Lottery contract [10], while the reward is transferred

to the only winner, the winner’s address is stored in an array of

all players. As a result, any write to any array element is further

tracked.

Security Awareness. To evaluate the security awareness of our

graph models, we apply multiple security analyzers to the source

0 50 100 150 200 250 300 350 4000
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12 Number of issues covered by Tx2TXT

Total number of detected issues

Figure 10: The Coverage of Security Risks

code of the benchmark contracts and collect their detection results.

Particularly, we have used four different tools including VeriS-

mart [49], SmarTest [48], Slither [2] and Oyente [38]. We count

the total number of unique security problems and identify the spe-

cific instructions containing these problems. Then, we generate the

FTGs of these contracts and check how many detected problems

can be covered by our graph models.

Figure 10 illustrates the comparison results, where the blue bars

represent the total numbers of detected security issues for each

contract while the red dots denote how many are covered by our

graphs. As you can see, our “transfer-oriented” graphs can capture

a large majority of security issues (96.8% on average). This confirms

that security threats in smart contracts indeed lies in their insecure

or incorrect funds transfers.

Our graphmodel doesmiss a small number of suspicious contract

activities because their host functions do not involve funds transfers.

In fact, these “security risks” may not cause direct financial damage

to end users – despite the discovered suicidal or self-destructive

operations in their code, the host contracts do not provide any

interfaces for users to transfer funds to the contracts in the first

place.

6.3 Readability and Understandability

To assess the usability of our generated descriptions, we perform

a user study using Amazon Mechanical Turk (MTurk) [17]. We

aim to evaluate (a) whether human readers can understand our

machine-generated texts, and (b) whether end users can correctly

avoid using risky contracts after they have read our security-centric

descriptions.

It is worth noting that it is in fact a very challenging task to

conduct effective user studies. While how to avoid biased survey

settings and results by itself is an interesting research topic, it is

not the major focus of this work. Here, we just follow prior user

studies [29, 63] on human understanding of security-related texts

to implement our experiments. Methodology. We present differ-

ent types of smart contract textual descriptions to human readers

and measure their reaction. Particularly, we collect developers’ de-

scriptions (Condition 1.1, 2.1, 2.4, 2.7), security analyzer reports

(Condition 2.2, 2.5, 2.8), and Tx2TXT descriptions (Condition 1.2,

2.3, 2.6, 2.9). The details of these conditions are in hypothesis 1 and

hypothesis 2. Here, security reports are textual reports from Honey-

Badger and Securify plus the developers’ descriptions. Tx2TXT

descriptions are our generated descriptions plus the reports from

HoneyBadger and Securify. We choose to use these two analyz-

ers for this experiment because (1) they can particularly analyze

Solidity bytecode, (2) they generate textual analysis results, and (3)

they each focus on an individual aspect of security problems (i.e.,

malicious and vulnerable, respectively). An example of descriptions

can be found in online appendix B [20].
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Dataset. We perform the user study based upon the descriptions

of 890 benign, malicious and vulnerable contracts. For readability

study, in order to obtain sufficient responses for each contract, we

randomly select 60 contracts from this dataset. For security analysis,

we use the entire dataset.

Recruitment of Participants.We recruit participants directly from

MTurk and we require participants to have basic knowledge about

blockchain and smart contracts. We therefore ask screening ques-

tions to ensure participants can correctly identify a smart contract

as “a computer program running atop a blockchain” rather than

for example “a supplementary contract” used in life insurance. Our

study has received an IRB waiver from each author’s institution.

Besides, we did not collect any sensitive or personal information

about participants.

Hypotheses and Conditions.Hypothesis 1: machine-generated

contract descriptions are readable to human readers that

have basic knowledge about smart contracts. To assess the

readability, we prepare the developers’ descriptions (Condition 1.1)

and Tx2TXT descriptions (Condition 1.2). We use task-based studies

to evaluate how well machine-generated texts are understood by

human readers.

Hypothesis 2: Funds transfer-based security-centric de-

scriptions can help reduce the adoption of risky contracts.

To assess the effectiveness of Tx2TXT descriptions, we present the

Developers’ human-crafted descriptions, the Security Reports and

Tx2TXT descriptions for vulnerable (Condition 2.1, 2.2, 2.3), ma-

licious (Condition 2.4, 2.5, 2.6), and safe (Condition 2.7, 2.8, 2.9)

contract functions. We expect to assess the contract adoption rates

for individual descriptions on different conditions.

Deployment of User Study.We conduct a within-subjects study.

Particularly, we post all the descriptions on MTurk and anonymize

their sources. We inform the participants that the tasks are about

smart contract descriptions and we pay 0.1 dollars for each task

(i.e., completing all survey questions). Participants take part in two

sets of experiments.

Readability. First, each participant is given a mixture of 16

descriptions randomly selected from two categories (Developers’

and Tx2TXT ’s). After reading each description, they are asked to

answer a multiple choice question to check whether they can grasp

the meaning of the descriptive sentences. For instance, in the stem,

we can present a description “The function calculates an amount_0

using a timestamp, and transfers the amount_0 from a user input

address to an address from global variable.”, and ask a question:

“What is the amount of funds that has been transferred?”. Then, we

provide four options “(1) amount_0”, “(2) a user input address”, “(3) an

address from global variable” and “(4) Not applicable”. If a participant

can choose the correct one “(1) amount_0”, we consider that she

can understand the description.

Effectiveness. Second, we present the participants another ran-

dom sequence of 16 descriptions. One sequence can contain three

types of descriptions: Developers’, Security Report and Tx2TXT . Par-

ticipants are first presented with the expected functionality of a

financial application. For example, we inform human readers of

what they can expect from an online gambling game: “If you are

the winner, the contract must transfer the jackpot (all of its ac-

cumulated balance) to your account, and must not transfer any

part of it to other accounts.” Note that, in real-world use scenarios,

0 10 20 30 40 50 600%

20%

40%

60%

80%

100%

Developers' descriptions
Tx2TXT

Figure 11: Readability of Descriptions

this contextual information is not necessary as users of specific

contracts must have a general understanding of the application

logic (e.g., English/Dutch auctions, election, gambling). However,

our participants do not have access to concrete smart contract ap-

plications during this survey, and thus such baseline knowledge

is required for them to interpret the correct application logic and

to identify any deviation from the baseline in given descriptions.

Once participants have learned the context, they will then be asked

to read the descriptions of a “specific implementation” of the afore-

mentioned application and answer a question: “Do you think this

is a secure and fair application that you will use?” We particularly

point out “secure and fair” in order to avoid responses due to any

other factors.

We have also deployed a validity test to each questionnaire. Par-

ticularly, we add two simple attention questions to each question-

naire in order to check whether participants have made sufficient

efforts to read and comprehend the given texts. We exclude the

responses that do not pass this test.

Results and Implications. Readability.We receive 152 valid re-

sponses and in total 2432 answers to our readability tasks. Figure 11

illustrates the ratio of correct solutions for every contract on Condi-

tion 1.1 (Developers’) and 1.2 (Tx2TXT ). The x-axis is the contract ID

while the y-axis is the correctness rate (readability). The two curves

represent the results obtained on the two conditions. As you can

see, the correctness rate for the Tx2TXT descriptions (red curve) is

comparable to that of the human-crafted natural language scripts.

While the average readability for developers’ descriptions is 83.6%,

Tx2TXT reaches an average score of 82%. This indicates that our

machine generated descriptions can successfully be interpreted by

human readers.

Nevertheless, we do observe that certain descriptions produced

by Tx2TXT yields a relatively low readability score (around 70%).

For instance, when participants read this description: “The function

calculates an amount0 using a timestamp and a global variable, and

then transfers this amount from a user input address to the contract

address, and then calculates another amount1 using amount0, and

then transfers amount1 to a user input address”, 30% of readers

mistakenly believe that the “amounts of funds that have been trans-

ferred” are timestamp and global variable rather than amount0 and

amount1. In this case, although their answers are incorrect, they are

still relevant to the provided sentence and thus do not necessarily

imply that readers have totally misunderstood the text.

Effectiveness. Table 2 depicts the likelihood that the partici-

pants will still choose to use a contract after they have read its

descriptions. Specifically, we have received 686 valid responses to

our questions.

In general, Developers’ descriptions are not security sensitive.

Regardless whether a contract is risky, a large majority of users (up
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Table 2: Contract Adoption Rate
# Condition Rate

2.1 Vulnerable w/ Developers 79.5%
2.2 Vulnerable w/ Security Report 39.4%
2.3 Vulnerable w/ Tx2TXT 30.2%
2.4 Malicious w/ Developers 86.3%
2.5 Malicious w/ Security Report 30.2%
2.6 Malicious w/ Tx2TXT 20.4%
2.7 Safe w/ Developers 85.0%
2.8 Safe w/ Security Report 83.4%
2.9 Safe w/ Tx2TXT 80.2%

to 86.3%) is still willing to use the contract after they have read the

descriptive texts provided by developers.

In contrast, both Security Report (Securify + HoneyBadger +

developers’) and our Tx2TXT descriptions can raise users’ security

awareness, while ours further outperforms the former considerably.

For vulnerable contracts, where timestamps are incorrectly used

or reentrancy bugs are present, Tx2TXT causes 9.2% more users to

stop using these unsafe functions, compared to the security reports.

For malicious contracts such as theft of funds, our description can

help 9.8% more users avoid the hidden threats. Since both Tx2TXT

descriptions and Security Reports contain detection results from

Securify and HoneyBadger, these increased numbers indicate

that explaining clearly how funds transfers are conducted in an

insecure contract, in addition to abstract analysis reports, is very

useful for human users to understand and thus avoid risks.

In the meantime, Tx2TXT does not significantly affect the adop-

tion rate of safe contracts and therefore does not cause serious

usability issues. This is because our descriptions are faithful to the

intrinsic funds flows of target contracts, and thus are consistent

with users’ expectation for normal application logic.

6.4 Classification of Condition Nodes

We further evaluate the usefulness of our node classification. We

hope to check (a) whether our trained model can completely iden-

tify security-sensitive conditional statements and (b) whether the

number of selectively added nodes is relatively small.

Accuracy. In the 600 testing samples, we do not observe any false

negatives; all 62 security-sensitive nodes can be correctly classified.

Besides, our classifier only causes false positives in 1.3% cases.

Indeed, the false positive rates for these misclassified cases can be

relatively high and may be sometimes over 30%. However, those

cases often have a small number of conditional statements, and

therefore misclassifying even one or two nodes can result in high FP

rates. Note that, again, our selection of condition nodes is designed

to be safe as we do not want to miss any security-related conditions.

In contrast, accidentally preserving less interesting nodes may still

be acceptable as long as the generated descriptions are human-

readable.

Effectiveness. To evaluate the effectiveness, we compare the total

number of condition nodes and the number of selected condition

nodes. Overall, the selected nodes merely amount to 4.8% of total

conditions. In fact, only 7.23% of the contracts contain security-

related conditions that need to be added to FTGs. For this 7.23%,

on average, the number of selected nodes takes 46% of the total

conditions. This high ratio is due to the small amount of conditional

statements in these functions where at most four conditions are

used. Our case study can be found in online appendix C [20].

6.5 Runtime Performance

Overall, Tx2TXT is efficient. Our graph construction and description

generation are fast. On average, it takes 1.09 seconds to generate

one FTG and 0.2 seconds to translate a graph to texts. Our GCN

model training costs 5.7 minutes while the testing phase for each

graph takes only 10 seconds.

7 RELATED WORK

Verifying the Safety of Smart Contracts. Prior efforts [31, 33, 35, 37,

38, 44, 46, 47, 49, 59, 60] have been made to automatically verify

smart contract code so as to detect safety problems. While some

aimed to discover syntax based low-level errors, such as transaction-

ordering dependence, timestamp dependence [38], flawed bytecode

instructions [37], callback-based reentry vulnerabilities [33, 46] and

inter-contract vulnerability analysis [31], more recent studies [35,

44, 48, 49, 59] have started to investigate the semantic-level defects

that can cause fairness issues.

Correlating Descriptive Text to Program Behaviors. Studies have

tried to correlate texts to sensitive behaviors, such as permissions in

Android [34, 42, 45] and security related functionalities in IoT [57].

WHYPER [42] used NLP technique to identify sentences that de-

scribe the need for a given permission. AutoCog [45] developed a

learning-based algorithm to automatically derive a model that cor-

relates textual descriptions with Android permissions. AsDroid [34]

further inferred the semantics of the text on those widgets that are

associated with the top level functions. SmartAuth [57] combined

NLP and program analysis to distill the contextual semantics of

IoT apps. Unlike these studies that leverage unique APIs to infer

program semantics, Tx2TXT proposes a novel semantic model to

handle smart contract code.

Software Description Generation. Many efforts [24, 39, 52–54]

have been made to generate software descriptions for legacy Java

programs. Several previous studies [63, 66] have also attempted to

expose security risks in textual descriptions. However, they heavily

rely on the unique application semantics provided by the Android

framework. Recent work [64] has been done to summarize smart

contract functions based on developers’ comments, while Tx2TXT

aims to directly capture program logic from code.

8 CONCLUSION

We develop Tx2TXT to automatically create security-centric textual

descriptions from smart contract bytecode. We formally define a

funds transfer graph to model critical funds flows in smart contracts,

and employ a GCN-based model to identify security-related con-

ditions and selectively add them to our graph models. Our results

have shown that Tx2TXT outperforms state-of-the-art solutions

and can effectively help end users avoid risky contracts.
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