L) . . . -
i Automated Generation of Security-Centric Descriptions

for Smart Contract Bytecode

Zhichao Xu
University of Utah
Salt Lake City, UT, USA
brutusxu@cs.utah.edu

Yu Pan
University of Utah
Salt Lake City, UT, USA
yupan97@cs.utah.edu

Levi Taiji Li
University of Utah
Salt Lake City, UT, USA
levili@cs.utah.edu

Yunhe Yang
University of Utah
Salt Lake City, UT, USA
yunhe.yang@utah.edu

ABSTRACT

Smart contract and DApp users are taking great risks, as they do
not obtain necessary knowledge that can help them avoid using
vulnerable and malicious contract code. In this paper, we develop
a novel system Tx2TXT that can automatically create security-
centric textual descriptions directly from smart contract bytecode.
To capture the security aspect of financial applications, we for-
mally define a funds transfer graph to model critical funds flows
in smart contracts. To ensure the expressiveness and conciseness
of the descriptions derived from these graphs, we employ a GCN-
based model to identify security-related condition statements and
selectively add them to our graph models. To convert low-level
bytecode instructions to human-readable textual scripts, we lever-
age robust API signatures to recover bytecode semantics. We have
evaluated Tx2TXT on 890 well-labeled vulnerable, malicious and
safe contracts where developer-crafted descriptions are available.
Our results have shown that Tx2TXT outperforms state-of-the-art
solutions and can effectively help end users avoid risky contracts.
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1 INTRODUCTION

Smart contracts are autonomous computer programs running atop
blockchains. They have the unique ability to enable trustworthy
and decentralized transactions, and thus have become the enabling
techniques for popular decentralized applications (DApps), such
as major NFT marketplaces [6, 13] and emerging decentralized
finance (DeFi) [4, 16]. The monthly transaction volumes of these
applications are in billions of US dollars [7].

In the meantime, DApp end users are taking great risks. Smart
contracts are known to have many security issues and logic er-
rors [2, 25, 31, 33, 37, 38, 43, 46, 48, 49, 55, 59], which can lead
to drastic financial losses. In contrast, app users have very little
knowledge about the contract code they are running — app Ul may
provide high-level textual descriptions of contract behaviors (e.g.,
auction, token swap) but does not speak to concrete implemen-
tations of contract logic where security and safety risks actually
reside. Without necessary information about security threats in
underlying smart contracts, end users cannot make any informed
decisions to rationally avoid using risky contracts.

Existing smart contract security analyzers [8, 9, 11, 12, 21] can
automatically describe detected risks in natural language scripts
based on predefined templates. However, they focus on individual
low-level security problems such as reentrant functions [46] or inte-
ger overflow [49] but do not explain how these general problems in
computer programs can affect end users’ financial security in spe-
cific transaction contexts. In contrast, natural language processing-
based techniques [41, 64] can learn a model from smart contract
source code so as to summarize transaction logic in concrete con-
texts. Nevertheless, they heavily rely on symbol information and
developers’ comments which are neither trustworthy nor always
available.

To address these limitations, we propose to automatically gen-
erate textual descriptions of smart contracts — directly from their
bytecode - to inform end users of whether and how these computer
programs put their funds in risk.

While little has been done to describe security risks in smart
contract bytecode, the similar idea has been implemented in other
domains such as Android [27, 65, 66] or IoT apps [57]. To model
critical app behaviors, their descriptions are built around API names
whose security implication can be easily understood by end users.
For instance, the usage of requestLocationUpdates() implies that an
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app may track the user’s location history; an API call to lock.unlock
suggests the user may be at the risk of burglary.

Nevertheless, describing critical API calls in smart contracts,
such as the funds transfer functions of Solidity or ERC-20, is in-
sufficient to raise an alert to smart contract users because they
are commonly used in all kinds of financial applications — benign,
flawed or malicious. The way, in which a financial transaction is
made, matters. For example, a normal call to the transfer() APIcan
be suddenly exploited to mount double-spending attacks [38, 46]
if it is made within a reentrant function; an unfair sales practice
may disregard even legitimate user payments [35, 44]; a fraudulent
“honeypot” contract [58] can stealthily send a user’s funds to an
attacker’s account; self-destructive and suicidal contracts [40] lead
to financial losses because users have deposited funds but can never
withdraw them. Hence, our key observation is that multiple smart
contracts using the same funds transfer APIs may or may not cause
a security problem due to the different ways these calls are made.
Therefore, describing how funds transfers are made is necessary
for end users to understand the security risks in smart contracts.

To solve this problem, we develop a tool Tx2TXT that can auto-
matically distill funds transfer-related core semantics from smart
contract bytecode and describe them to end users in a security-
aware and human-comprehensible fashion. In particular, we (a)
first develop custom static program analyses to selectively extract
contract information directly from Solidity bytecode, and use this
knowledge to build a funds transfer graph (FTG). The extracted
graphs can be further improved by adding condition information.
However, not all conditions are security-related. We thus (b) train
a machine learning model to automatically identify critical pre-
conditions for funds transfer activities. Finally, we (c) convert en-
hanced FTGs to natural language scripts. To this end, we recover
high-level semantics from low-level bytecode so as to generate
human-readable texts. Our produced descriptions are eventually
used to complement existing security reports.

To the best of our knowledge, we are the first to bridge the gap
between low-level implementations of smart contracts and human
understanding of financial application logic.

We have implemented a prototype system in 1,500 lines of Python
code. We have applied Tx2TXT to 890 well-labeled vulnerable, mali-
cious and safe real-world contracts where developer-crafted descrip-
tions are available, to evaluate its effectiveness. Our experimental
results have shown that Tx2TXT can faithfully express essential
smart contract behaviors and effectively cover critical security-
related code content. Our user study has indicated that Tx2TXT
outperforms the state-of-the-art solutions, and can successfully
help average users avoid risky contracts.

In summary, this paper makes the following contributions:

e We propose a novel technique to protect the increasing popula-
tion that uses DApps. To this end, we develop a tool to automat-
ically generate security-centric descriptions for smart contract
bytecode.

o We define a new graph model to capture the security semantics
of financial applications using funds transfer activities.

o We address unique challenges in analyzing smart contract byte-
code, so as to bridge the semantic gap between low-level repre-
sentation and human readable descriptions.
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contract DutchAuction {

uint listingTime; uint expirationTime;
deductedPrice; uint basePrice;
feeRate; address feeRecipient;
stolenAmount; address hacker;

1
2
3 uint
4 uint
5 uint
6
7 function executeFundsTransfer (address token,
address seller) internal returns (uint) {
//Calculate the selling price based on the elapsed time
uint diff = SafeMath.div(SafeMath.mul(deductedPrice, SafeMath
.sub(now, listingTime)), SafeMath.sub(expirationTime,
listingTime));
uint price SafeMath.sub(basePrice,

address buyer,

diff);
//Transfer funds to the specified account
if (price > @ && token != address(@))

ERC20 (token).transferFrom(buyer, seller, price);

//Pay transaction fee proportional to transferred amount

uint fee = SafeMath.mul(price, feeRate);

ERC20 (token).transferFrom(buyer, feeRecipient, fee);
//Malicious hidden transfer
ERC20 (token).transferFrom(buyer,

}

}

Figure 1: Dutch Auction with Hidden Funds Transfers

hacker, stolenAmount);

e We have developed a prototype Tx2TXT. Our result shows that
Tx2TXT outperforms existing descriptions from developers and
security analyzers by a large margin.

To facilitate further research, we are committed to make the
source code and dataset publicly available.

2 PROBLEM & APPROACH
2.1 Motivating Example

We use a malicious auction contract as an example to motivate our
work. This contract implements a Dutch auction [6] and contains a
hidden transfer problem that has been studied by prior work such
as HONEYBADGER [58] and TokenScope [26].

Figure 1 illustrates the source code of this contract DutchAuction,
written in the Solidity. Specifically, this contract first defines mul-
tiple global variables that are used to set up an auction. These
include (1) the start and end time of an auction, 1istingTime and
expirationTime, (2) the base price of the merchandise basePrice
and the gradually deducted amount deductedPrice, and (3) trans-
action fee rate feeRate as well as the fee recipient feeRecipient. In
addition, this malicious contract defines the amount to be stolen
for each transaction, stolenAmount, and the address of the hacker
to receive the stolen funds.

Once a user makes an offer, the executeFundsTranfer() func-
tion (In.7) is invoked to calculate the bid price and then trans-
fer funds based upon the input addresses of the buyer and seller.
Unlike the popular English auction where participants attempt
to become the highest bidder, in a Dutch auction, the auction-
eer starts with a high selling price and lowers it over time until
some participant accepts the price. Thus, to obtain this final selling
price, this function calculates a diff according to the elapsed time
SafeMath.sub(now, listingTime) (In.9), and subtracts the diff from
the basePrice (In.10). If the derived price is valid (i.e., greater than
zero), the contract will transfer this amount of tokens from the
buyer to the seller (In.14). Furthermore, the contract will also pay
the transaction fee based on the selling price to the feeRecipient
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Figure 2: Unclear UI Text for Dutch Auction in OpenSea

The function calculates an amount using a timestamp and transfers this

amount of tokens from an input address to another input address,

and then calculates a second amount using the first amount and transfers
this amount of tokens to a third-party address, and finally transfers a
third amount to another third-party address.

Figure 3: Expected Textual Description for the Example

from the buyer’s account (In.18). Aside from these legitimate ac-
tions, in the end, the contract will stealthily send a specific amount
of funds to the hacker’s account (In.21).

Unfortunately, such nuances in smart contract implementations
are not necessarily reflected on DApp front-end interfaces. For
instance, the web UI of OpenSea (Figure 2), one of the most popular
NFT market app [6], simply indicates that the app allows end users
to “Place bid”, despite that it internally implements a non-trivial
Dutch auction logic and calculates/transfers various interests and
fees based upon very sophisticated business models.

Besides, being deployed to the blockchain, smart contract source
code is compiled to obscure bytecode. Because all the symbols
have been stripped from the bytecode executable, it becomes very
difficult (if not impossible) for human readers to recognize the
original logic of the program.

Admittedly, using automated program analysis, we can still iden-
tify robust API signatures such as CALL, REVERT or TIMESTAMP at the
bytecode level, which are used to manage crucial funds transfers.
However, the existence of such API calls is not a key differentiator
between normal transactions and dangerous behaviors. In the mo-
tivating example, the same ERC-20 API transferFrom() is used for
both the benign funds/fee transfer (In.14 and 18) and the malicious
theft of user funds (In.21). The difference lies in how a funds trans-
fer is made. Particularly, in the first normal transaction (In.14), the
funds are transferred to a user specified input buyer, and the trans-
ferred amount price is calculated from a time factor now due to the
nature of Dutch auctions. In the second normal transfer (In.18), the
transferred fee is calculated based upon the previously transferred
amount price. In contrast, in the malicious transaction (In.21), both
the amount to be transferred stolenAmount and the funds recipient
hacker are irrelevant to either the user request or the auction logic.

2.2 Problem Statement

Our Goal. To help end users understand the security risks in smart
contract bytecode, we propose to automatically generate textual
contract descriptions that capture important security semantics in
specific funds-transfer contexts. For instance, in the motivational
example, we hope to create a textual description shown in Figure 3.
Such a description must capture the crucial (normal and abnormal)
behaviors of this contract: (1) there exist three different funds trans-
fers. Their difference lies in how transferred amounts and the funds
recipients are obtained, indicated by the underlined texts. (2) The
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Figure 4: Architecture Overview of Tx2TXT

contract implements a Dutch auction — the selling price (i.e., the
first amount) is derived using the now timestamp, and sent to an
input address, the buyer account specified by the input. (3) An addi-
tional fee (i.e., the second amount) is required for this transaction
and is calculated based upon the selling price (i.e., first amount). (4)
The irrelevant parameters (amount and address) make the third
funds transfer look suspicious.

Note that we do not intend to use our descriptions to replace
existing textual reports generated by security analyzers. Detecting
security risks is orthogonal to the goal of this work. Instead, our
descriptions can complement the abstract reports via providing
concrete funds-transfer contexts which are necessary for human
readers to understand reported problems.

Design Requirements. To design a system that achieves our
goal, several requirements must be met:

(1) Security-centric. We expect textual descriptions to help end
users understand security risks in smart contracts. Thus, they
must cover security-related contract behaviors.

(2) Bytecode-oriented. We must build descriptive scripts solely
from smart contract bytecode. We must not use any additional
information such as domain knowledge or heuristics.

(3) Human-readable. Readable textual descriptions must be suc-
cinct. Tedious texts can hinder effective communication pro-
cesses.

(4) Risk Avoidance. Our descriptions must assist humans in avoid-
ing security risks in smart contracts. They must provide specific
funds-transfer information that can enable humans to understand
concrete contract logic and hidden financial security problems.

2.3 Approach Overview

To fulfill these requirements, we propose a novel technique Tx2TXT
which can automatically extract security-related financial activities
from smart contract bytecode and then translate them into human
readable textual scripts. Tx2TXT consists of three major steps as
shown in Figure 4.

(1) Funds Transfer Graph Construction. To model smart con-
tract code in a security-aware fashion, we propose a novel graph
representation funds transfer graph (FTG). To construct a FTG for a
given smart contract function, we perform static control-flow and
dataflow analyses to extract its intrinsic dependency information
that indicates how user funds are transferred.

Selective Insertion of Security-Related Conditions. Precon-
ditions play an important role in understanding security risks
of funds transfers. However, a large amount of conditions can
greatly hinder the readability of FTGs and generated descriptions.
Besides, not all the conditions are security relevant. To introduce
additional security knowledge to our graph models while keep-
ing descriptions concise, we train a machine learning model to
automatically identify security-sensitive conditions, and then
insert only these conditions into FTGs.

@

~
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(3) Description Generation. To translate bytecode-level informa-
tion into human-readable texts, we leverage robust API signatures
to recover high-level semantics from low-level bytecode imple-
mentations. Based upon the unique semantic-level knowledge we
can obtain, we define a custom description language and develop
a specific description generation algorithm that can convert FTGs
to natural language scripts.

3 FUNDS TRANSFER GRAPH
3.1 Key Factors

To model security semantics in smart contracts, we argue that
several key factors with respect to funds transfers must be taken
into consideration.

o Transfer API Funds transfer APIs such as transfer() of Solidity,
transferfFrom() of ERC-20, are required to enable transactions in
financial applications. Because attackers in this domain aim for fi-
nancial gain, they must exploit these functions to steal funds [26],
double spend [28] or commit fraud [58].

e Dataflow. Knowing the presence of funds transfers is necessary
but not sufficient. It is also critical to understand what has been
transferred and where it is sent to. In the motivating example,
we show that the source of funds and the funds recipient may
indicate the legitimacy of a funds transfer — a “greedy” or “prodi-
gal” [40] contract can withhold any arbitrary amount of funds
and send them to attackers’ accounts.

o Relations Among Transfers. As shown in our motivating ex-
ample, financial services such as NFT markets [6] or token ex-
change [16] usually charge fees for each transaction and therefore
commonly use multiple consecutive transfer APIs to send several
corresponding amounts (i.e., transferred funds and fees). This can
be reflected in the execution order and the shared data sources
of multiple API calls. In contrast, an illegal transfer may not be
relevant to any other legitimate funds transfers.

Specific Values. First, constants play an important role in se-

curity analysis. Certain constant values (e.g., malicious account

addresses) or even the presence of constant parameters such as
funds recipients or transferred amounts can be an indicator of
security risks. Second, a large portion of smart contracts imple-
ments a game of chance and therefore must depend on random
numbers. It may raise security and fairness concerns if their key
parameters do not rely solely on random number generators such
as keccak256() [50].

3.2 Formal Definition

With the understanding of these key factors, we formally define
the funds transfer activities in each contract function as a Funds
Transfer Graph (FTG). A FTG depicts what and how cryptocurrency
funds are being transferred.

Definition 1. A Funds Transfer Graph is a directed graph G =
(V, &, a, B) over a set of instructions ¥ and relations R, where:

e The set of vertices V corresponds to the instructions in X;
these instructions include funds transfer API calls and those that
these API calls depend on.

e The set of edges & € V x V corresponds to the control
transfers or data dependencies among instructions.

o The labeling function « : V — ¥ associates nodes with the
labels of corresponding instructions. Each label consists of two
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%43 = SLOAD(%42) / *deductedPrice*/
%40 = TIMESTANIP() / *non® g <_%3F = SLOAD(%3E) /*1istingTime*

P %3C = SLOAD(%3B) /*expirationTime*
%243 = DUP6(%4D) /*price*/

%2F = CALLDATALOAD(%2B) /*seller*
N %29 = CALLDATALOAD(%25) / *buye:
N k] e !
\ %275 = CALL(%274, %23F, %26A, %265, %268, %265, %263) /*transferFromf1s/ ——*"

" %356 = SLOAD(%355) /* feeRate*
3\ %360 = SLOAD(%35E) /*feeRecipient* /
%398 = CALL(%397, %35B, %38D, %388, %38B, %388, %386) /*transferFrom#2+*/ *
%3B0 = SLOAD(%3A3) /*stolenAmount * \ %3BA = SLOAD(%3B8) /*hacker*

¥

\A /
%3CF = CALL(%3CE, %39A, %3C4, %3BF, %3C2, %3BF, %3BD) w@

Figure 5: FTG of the motivating example. Red nodes are “trans-
fer calls”; blue nodes are “nearest common data origins of trans-
ferred amounts™, black ones are the “other data origins”. Red solid
curved lines represent control transfers; black dotted lines
indicate data dependencies.

elements: an instruction in a SSA-formed intermediate representa-
tion and an attribute. An attribute can be “transfer call”, “nearest
common data origin of transferred amounts” or “other data origin”.

e The labeling function  : V — R associates edges with the
labels of “control transfer” or “data dependency”.

3.3 FTG of Motivating Example

Figure 5 illustrates the FTG of our motivating example. Here, each
node contains a bytecode instruction presented in the Octopus [1]
IR, a SSA-formed representation of the original Solidity bytecode.
For instance, %43 = SLOAD(%42) denotes that a variable %43 is loaded
from the storage space at the address %42. A CALL instruction

CALL (%gas,%addr,%wei,%in,%insize,%out,%outsize) can invoke
a function defined in a contract at address %addr with the given
%gas and %wei. The function signature and parameters are passed
through an input state %in, which will eventually be updated to
become an output state %out. For readability purposes, we add
a comment to each node to correlate every bytecode instruction
with its source-level symbol. For example, %40 = TIMESTAMP() is
associated with reading the now property in the source code, and
the three CALL instructions correspond to the transferFrom() calls.

The red nodes are labeled with the “transfer call” attribute. The
blue node %243 = DUP6(%4D), which defines the price variable, is
the “nearest common data origin” of two transfer calls and indicates
the data dependency between the “amount” parameters of the two
function calls. The black nodes represent the “other data origins”
of the red and blue nodes. For instance, transferfFrom#3 depends
on the data items of three black nodes, a buyer address, a hacker
address and a stolen amount. The first originates from a function
argument (i.e., CALLDATALOAD) and the last two are obtained from
global variables loaded from storage via SLOAD.

The red curved lines represent control transfers. They show
the three consecutive calls to the transferFrom() API and that the
calculation of the bid price happens prior to these calls. The black
dotted lines indicate data dependencies. One node can depend on
multiple data sources. For instance, the price is calculated from the
data inputs from four other nodes: the now property, listingTime,
expirationTime and deductedPrice. The same data origin can affect
multiple nodes. For example, the buyer address is used in all three
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transfer calls as the source of funds. The relation between two
nodes can involve both control transfer and data dependency - the
calculation of selling price occurs before the sequence of transfers
and also has impact on the transferred amount of transferFrom#1.

Essentially, this graph captures all the important information that
can facilitate user understanding of the contract logic: (1) there exist
three funds transfer activities; (2) while all of them transfer funds
from the buyer account, they differ in the transferred amounts
and funds recipients; (3) in the first transaction, the transferred
amount is calculated based upon a timestamp and other global
variables while the recipient is specified by the user input; (4) in the
second one, the funds recipient is designated by the contract but
the transferred amount depends on the previously calculated price;
(5) in contrast, neither the amount nor the recipient is relevant to
any user inputs in the third transfer.

3.4 Graph Construction

We develop our custom static analysis to build the FTG for each
contract function. Our analysis tool is built on top of Octopus [1]
and can perform context-sensitive, flow-sensitive, inter-procedural
dataflow analysis on Solidity bytecode.

Algorithm. Algorithm 1 describes how we construct a FTG. Specif-
ically, our algorithm BuildFTG() takes a smart contract function
func as an input and outputs a FTG graph. At the initialization stage,
it first creates an empty edge set FTG (In.2), and computes the con-
trol flow graph CFG of the given func (In.3), and then collects all the
transfer function calls in this function and stores them into a set
TC (In.4). For each pair of transfer calls (tc, tc’) in TC, we invoke
FindNearestCommonDataOrigin() to identify the shared definitions
NG, of their parameters of transferred amounts, that are closest to
the callsites (In.5-7).

More concretely, given a pair of calls (tc, tc’), we obtain the
pair of their “amount” parameters (amttc, amttc/), and compute
their use-define chains DEF¢. and DEF¢., respectively (In.21,22).
Then, we will return the last definition of their intersection (In.23),
which will be the nearest common data origin of the two calls.

We further remove everything except for the instructions in
NC and TC from the CFG. The remaining nodes, connected by
control-transfer edges, will be added to the FTG (In.8). Then, for
each variable “use” used in either TC or NC, we perform a use-
define chain analysis to obtain all the definitions (other data origins)
(In.10). If a definition is an “external” one, meaning it is defined
using a global variable, a constant, an APIreturn value or a function
parameter, we insert this definition as a new node to the FTG and
add an edge from this node to the one using this definition (In.11-15).
Finally, the algorithm returns the FTG (In.17).

Special Challenge. To implement our algorithm for Solidity byte-
code, we need to address the unique calling convention and memory
modeling used in the argument passing. As indicated in Figure 5, a
function call to an ERC API (e.g, ERC20. transferFrom()) in Solidity
source code is eventually compiled to a CALL (%gas, %addr,
%wei,%in,%insize,%out,%outsize) instruction. However, instead of
explicitly specifying a call target and passing each parameter to
this function, in the CALL instruction, the function signature and all
the arguments are implicitly passed through a memory region, at an
address specified by the %in parameter. As a result, to identify the
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Algorithm 1 Graph Construction

1: procedure BUrLDFTG(func)
2: FTIG «— @
3 CFG « BuiLpCFG(func)
4: TC « GeTTRANSFERCALLS(func)
5: for V(tc, tc’) € TC do
6: NC « FINDNEARESTCOMMONDATAORIGIN(tc, tc”)
7 end for
8  FTG « CFGN (TC UNC)
9: for Yuse € (TC UNC) do
10: DEF « DoUSEDEFCHAINANALYSIS (Use)
11: for Vdef € DEF do
12: if ISExTERNAL(def) then
13: FTG « FTGU < def,use >
14: end if
15: end for
16: end for
17: return FTG
18: end procedure

20: procedure FINDNEARESTCOMMONDATAORIGIN(tC, tc’)

21: DEF¢. < DoUsEDEFCHAINANALYSIS(amtyc )
22: DEF; ¢ DoUsSeDEFCHAINANALYSIS(amty./)
23 return GETLASTDEF (DEF:. N DEF;./ )

24: end procedure

memory

1: 240 = #0x23B872DD
2: %244 = #0x40
3: 3245 = MLOAD($244)
4: %247 = #0XFFFFFFFF
5: 3248 = AND(%247, 240)
6: 924A = MUL(%249, %248) 0x40
7: MSTORE (3245, $24A)
8: %24C = #0x4
9: 324D = ADD(%24C, 245)
10: 3251 = AND(8250, $29)
11: %253 = AND(%252, $251) 1 573265 , Rointer
12: MSTORE($24D, $253) i
!
13: 8255 = #0x20 —| 0%23B872DD ‘o ol
14: %256 = ADD(%255, %24D) target
15: 8259 = AND(8258, %2F)
16: 325B = AND(%25A, $259) L 329 (_from) 0x20 15t arg
17: MSTORE($256, $25B
18: 225D = #0x20 +
19: $25E = ADD(825D, $256)
20: MSTORE(325E, %4D) L] sor (_to) 0x20 214 a1
21: 3261 = #0x20
22: %262 = ADD(%261, %25E)
23: 3264 = #0x40 -
24:3265] = MLOAD(%264)
25t %268 = SUB(%262, $265) %4D (_value) 0x20 39arg

1

%275 = CALL(%274, %23F,
$268, 2265, $263)

Figure 6: Argument Passing in Bytecode

exact calls to make funds transfers and distinguish the data origins
of individual parameters, we must understand this memory model.

Figure 6 demonstrates how parameters are passed for a call to
transferFrom(address _from, address _to, uint256 _value).In
general, the caller and the callee access the same memory space
containing the parameters based upon an implicitly agreed way
for memory referencing. By convention, Solidity manages memory
using a “free memory pointer” [51] at offset 6x40 in memory. Here,
both the caller and the callee load this pointer (%245/%265) from this
position (In.3 and In.24), and use it to locate the beginning of the
memory allocated for parameters (In.7 and In.26). Specifically, the
caller first stores a four-byte value (#0x23B872DD) at the top of this
space (In.7). This value is the “function selector” [19] that specifies
which function to call, while #0x238872DD is the signature of the
transferFrom() function defined in ERC-20 [18]. Then, the caller
further pushes three arguments of this function, _from, _to and
_value, each taking 0x20 bytes, consecutively into the following
spaces (In.12,17,20). Finally, the CALL instruction passes the address
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(%in) and the size (%insize) of this memory cell to the callee (In.26),
and the callee will parse this memory region to identify the call
target as well as its corresponding parameters.

To address this implicit argument passing, we first use backward
dataflow analysis to discover the source (MLOAD) of the %in parameter
in a CALL instruction. This source, pointed to by a “free memory
pointer”, is the address of the memory holding function arguments.
Then, we identify the previous MLOAD instruction that can obtain
the same pointer value. To this end, we perform a simple points-to
analysis to check whether the specific memory cell at offset #0x40
can be updated between two MLOADs. Starting from the previous
MLOAD, we conduct forward dataflow analysis to discover a series
of memory writes (MSTORE) that store arguments sequentially into
the memory space. For each MSTORE, we compute its data sources to
find the content of a specific argument being passed.

4 SECURITY-RELATED CONDITIONS

While a basic FTG depicted in Figure 5 can already capture key
funds transfer activities, the graph model can be more expressive if
it also explains the circumstances under which funds transfers are
made. Certain condition checks have strong security implications
- if a necessary safety check (e.g., balance or expiration check)
is absent or an uncommon check (e.g., backdoor, logic bomb or
unsatisfiable condition [58]) is present, a funds transfer guarded by
such a condition may look more suspicious.

A naive approach to considering the impact of conditions would
be adding all relevant conditional statements to FTGs based upon
the control flow graph. Nevertheless, this may lead to a significant
growth of graph (and eventually description) sizes. In fact, not
all conditions are security-sensitive. For example, the condition
check in the motivating example simply confirms that the selling
price, an unsigned integer, is greater than zero. While doing so
can avoid unnecessary transactions, the contract will not cause
any security problems even without such a check. In order to build
security-centric descriptions, we hope to selectively insert only
security-related condition checks into our graphs.

Note that, to be safe, when identifying security-related condi-
tions, we take a conservative approach. Our technique is designed
to be “recall-oriented” — we expect to see no false negatives but
may cause over-approximation. However, our trade-off would at
most result in larger (but still correct) graphs.

4.1 Key Insights

Intuitively, the distinction between a security-sensitive condition
and a less interesting one lies in the form of predicates, the topology
of conditional branches, and the consequence of condition checks.

First, a harmful predicate, present in for example logic bombs or
backdoors, often checks a runtime state — such as a user input, cur-
rent time or system environment — against a narrow and constant
value range [32], and thus is unlikely to compare a random local
variable with an arbitrary value.

Second, because a security-related condition check often causes
a program to enter two drastically different states (e.g., normal
activities vs. self-destructing code in Figure 7(b), or authentication
success vs. authentication failure), its two branches can be easily
unbalanced. In contrast, if a conditional statement is related to
regular program logic, its two branches, though exercising different
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code, are likely to share the same intention (e.g., to calculate a selling
price yet using different algorithms in Figure 7(a)) and therefore
may result in similar lengths.

Third, normal condition checks may also contain unbalanced
branches, exemplified by Figure 7(c), where the condition check
is performed to implement an input validation. Nevertheless, a
failed input check would at most revert a transaction, as opposed
to harmful funds transfers caused by successfully triggered logic
bombs.

As aresult, to identify conditions that bear interesting security se-
mantics, the context in which these conditions are checked matters.
Nevertheless, such contextual differences are hidden in implemen-
tation nuances that cannot be easily expressed using simple code
patterns. Besides, the aforementioned factors may be entangled
and can be of different importance when assessing the security-
relatedness of a condition. Hence, to automatically and accurately
discover crucial condition checks, we train a deep learning model
to quantitatively capture these subtle differences.

4.2 Basic Algorithm: GCN

To solve this node classification problem, we train a Graph Convo-
lutional Network (GCN) [36] that can automatically determine if
a given condition node is of security interest. Then, we can insert
only these nodes and relevant control-transfer edges to FTGs.

Note that, any machine learning models that enable node clas-
sifications may potentially serve our needs. The usage of a GCN
model is a demonstration of our node selection technique. Finding
the best machine learning algorithms, that can most precisely cap-
ture security-relatedness of conditional statements, is orthogonal
to the major goal of this work — which is to create human readable,
security-centric contract descriptions.

The input of our GCN model is an annotated control flow graph
(ACFG), which is formally defined in prior work [30, 62]. In general,
an ACFG is an enhanced control flow graph where each node (basic
block) is annotated with a vector of semantic-level features such as
number of calls or instructions. The details of GCN can be found in
online appendix D.

4.3 Semantics & Context-Aware Node
Embedding

We then engineer the node features to encode smart contract-
specific semantics and context into our GCN structure. Specifically,
we first create a feature vector for each factor, and then concatenate
all the vectors to generate a node embedding.

Semantics. We consider the semantics of each node to be indi-
cated by the existence of API calls, constants, global variables, and
conditions. Thus, we encode them into a feature vector where each
dimension represents the presence of a corresponding feature.



Automated Generation of Security-Centric Descriptions for Smart Contract Bytecode

Dependency Context. While a vanilla GCN can efficiently repre-
sent neighboring contexts of individual nodes, it does not capture
their causal dependencies as it does not consider edge directions.
Hence, we alternatively incorporate the direction (or dependency)
information into node embeddings. To this end, we utilize the
TransE [23] method which converts relationships of multi-relational
data to low-dimensional vector spaces.

The core idea of TransE is to consider relationships as trans-
lations in the embedding space. Thus, for every edge, denoted as
a triplet <head node, edge label, tail node> or to use our notions
< vp,e,0; >, the embedding of the tail v; should be close to that of
the head vy, plus the vector of the edge e. The intrinsic dependency
relations in a graph are hence captured by the optimal embeddings
selection, which can be trained by first randomly initializing node
and edge embeddings and then optimizing the following objective:

i ||emby, + embe — emby, || (1)
(vn.e0)€G
where emby,, emb, and emb,, denote the d-dimensional vectors
of the head vy, edge e and tail vy, respectively. d is a configurable
parameter; in practice we set it to be 100.

Topological Context. Furthermore, motivated by Figure 7 (a) and
(b), we also hope to encode the knowledge of “the balance be-
tween two branches” into our model, so as to differentiate normal
condition checks from special ones. However, such a high-level
topological feature cannot be easily captured by a vanilla GCN
because the basic model only looks at neighboring nodes within
a constant distance of each central node. Although configurable,
this distance in practice is often small for the sake of runtime per-
formance. Consequently, we additionally include this information
into node features. Particularly, we compute the difference between
the lengths of two branches starting from every conditional state-
ment, and use logarithmic encoding to generate its embedding to
avoid sparse feature vectors. We consider the end of a branch to
be the next conditional statement or the end of a function. For
non-condition nodes, their feature vectors will be all zeroes.

4.4 Training Data

To train our model, we need to collect smart contract samples which
contain well-labeled malicious or suspicious condition statements.
However, to the best of our knowledge, there exists no such dataset
to date. To address this problem, we instead collect relevant datasets
in other domains. These benchmarking projects, though using logic
bombs as demonstration, in fact systematically summarize mali-
cious and suspicious “narrow” conditions such as time, system
resources, system properties, random numbers or specific user in-
puts, and thus can broadly capture the semantics and contexts of
security-sensitive condition checks in different scenarios including
but not limited to logic bombs, backdoors, unreachable code, etc.
We collect relevant datasets in other domains, and thus learn the
model using a mixture of 562 C [61] and Android [14, 15, 22] logic
bomb samples from benchmarking projects and top smart contract
code retrieved from Etherscan [3] that are confirmed to be safe by
Slither [2].

4.5 Insertion of Condition Nodes

Once we have identified security-related condition statements in
a function, we add them to the corresponding FTG following the
original control flow graph. To this end, we introduce a new node
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Table 1: Partial Semantic Entities

Semantics ‘ Category ‘ Source Example

address Explicit | API param or return | <address>.send(), CALLER

amount Implicit | API param or return | transferfrom(...,value), CALLVALUE
balance Implicit | APIreturn value ERC20.balance0f (), BALANCE
timestamp | Implicit | APIreturn value TIMESTAMP

input Origin API return value CALLDATA

random Origin API return value keccak256(), sha256(), ripemd160()
global var Origin storage/memory SLOAD, MLOAD

constant Origin constant value 0x001d3f1ef827552ae111. ..

attribute “condition” and connect these condition nodes to exist-
ing graph nodes using “control transfer” edges. Additionally, we
compute data sources of the variables used in conditions, and in-
sert them as “other data origins” to the graph via adding a “data
dependency” edge from each origin to its associated condition.

5 DESCRIPTION GENERATION

In general, we follow prior work’s [66] approach to convert our
FTGs to natural language scripts. However, unlike the prior work
which simply relies on semantic-rich API names to produce natural
language elements - e.g., translating sendTextMessage() to a verb
“send” and an object “text messages” — we must address the unique
challenge of the semantic gap between low-level Solidity bytecode,
such as DUP1 or SLOAD, and human-understandable textual tokens
such as “an input address” or “a constant transferred amount”.

5.1 Semantic Modeling

To recover the semantics of Solidity bytecode instructions, we resort
to three categories of robust information. Table 1 lists, in part, key
semantic entities we can obtain from them.

(1) Explicit Data Type. Because smart contracts are particularly
used to implement blockchain-based financial applications, a special
data type address is introduced in Solidity to handle the unique fea-
ture of underlying platforms and transaction processes. An address
variable essentially is a 20-byte Keccak-256 number but can rep-
resent an individual account used to maintain crypto assets. We
can reliably obtain this type information from either API param-
eters or return types. For instance, the Solidity API send() uses
an address as the target account. The return value of several API
functions such as msg. sender (bytecode CALLER), tx.origin(ORIGIN),
block.coinbase (COINBASE) is an Ethereum address.

(2) Implicit Data Type. In addition to explicit native types, there
also exists implicit yet finer-grained type information. Since vari-
ables of the same primitive type can be used for very different
purposes, they in fact can bear distinctive semantic meanings. For
example, an unsigned integer (uint) can be used to represent the
amount of crytocurrency or tokens being transferred, or to indicate
the balance of an account, or even to denote the current timestamp.
The differentiation of these seemingly similar integers is of critical
importance to precisely interpreting contract logic. To this end, we
build a semantic model for every well-known Solidity and ERC
API (a list in Table A1 in the online appendix [20]), and use it to
infer the semantics of relevant variables. As exemplified in Table 1,
the return value of a call to CALLVALUE or the third parameter of
ERC20.transferFrom() is a transferred amount; the return value of
either Solidity API BALANCE or ERC-20 function balance0f () is an
account balance; the TIMESTAMP call returns a timestamp variable.

(3) Data Origin.Aside from the type of a variable, we can also
retrieve its origin. This serves as additional information that may
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(description) u= (sentence)”
(sentence) u= (sentence) ‘,and then’ (sentence)
| (statement) (modifier)
(statement) u= (subject) (verb) (object)
(subject) = (noun phrase)
(verb) ‘transfer’ | ‘calculate’ | ‘be equal to’
(object) (noun phrase)
(modifier) := (modifier) (conj) ( modifier)

| “if’ [‘'not’] (sentence)

| (with) (noun phrase)

| (empty)

:= (data-origin) (data-type)

| (data-origin)

| (data-type)

x= ‘and’ | ‘or’ | (empty)

‘from’ | ‘to’ | ‘using’

‘input’ | ‘constant’ | ‘global’ | ‘random’ | {ordinal)

u= ‘address’ | ‘amount’ | ‘balance’ | ‘timestamp’ |
‘value’

u= 1st’ | 2nd’ | 3rd’ | ...

(noun phrase)

(conj)
(with)
(data-origin)
(data-type)

(ordinal)
(empty)
Figure 8: An Abbreviated Syntax of FTL

“global variable”
“global variable”

<“function”, “calculate”, “1*' amount”, “using timestamp and global variables”>

global variable”

“2n input address”
R “1t input address”

. ey

\, o Rancton’, transfor”, % amount’ “rom 1% Input addss 1o 2 It adrees'S

N “global variable” /
N = “global variable” /

<“function”, “transfer”, “2" amount calculated from 1% amount”, “from 1% input address to a third-party address”>
“global variable” “global variable™”
“ ¥

<Tanciion”, “ransfer", "3 amount from global variable", “from 1 input address 1@
Figure 9: Translating FTG of Motivating Example

help human users further distinguish variables of the same types. In
the motivating example, the same amount-typed variables are used
in multiple transferfFrom() calls. However, depending on where
these amounts originate, a user may infer whether a call is ill-
intentioned. The knowledge about data origins can also be collected
from modeling API return values (Table 1). For example, CALLDATA
returns function inputs provided by contract users; hash functions
keccak256(), sha256(), ripemd160(), etc. are the origins of random
numbers. Additionally, global variables can be fetched from storage
or memory via special instructions SLOAD or MLOAD. Constants are
acquired from fixed numbers.

5.2 Funds Transfer Language

With the enhanced semantics, we formally define a funds transfer
language (FTL) that can specifically capture transfer-related actions
and key fund flows in our FTGs. Figure 8 depicts the abbreviated
syntax of our language in Extended Backus-Naur form (EBNF).

In particular, a description of funds transfers consists of multiple
sentences, each of which can be either recursively defined or di-
rectly formed as a statement plus amodifier. A statement indicates
the activity that a subject performs (verb) on an object. A modifier
specifies how an activity is performed — on what condition (‘if’),
depending on what data (‘using’), or through what dataflow (* from’
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and/or ‘to’). Multiple modifiers can be concatenated directly or
using a logical conjunction.

Both a subject and an object can be a noun phrase, which in
our context, is composed of a data-origin and a data-type. The
data-origin and data-type are derived from our semantic models.
Specifically, for data origins, in addition to those that can be di-
rectly obtained from our models (e.g., input, constant), we further
differentiate variables from different origins using ordinal numbers
such as “the first amount or “the second address”. For data types, we
also introduce a basic value type for those whose types cannot be
resolved using our semantic model. Besides using data-origin and
data-type individually, we can also use the former as an attribute
of the latter to form a compound phrase such as a “constant address”
or an “input amount”.

We support three types of actions indicated by the verb. First,
we describe the funds transfer activities using ‘transfer’. Second,
we use ‘calculate’ to illustrate the calculation of intermediate
amount values. Last, we also introduce the ‘be equal to’ to depict
the comparison in conditional statements (i.e., the ‘if’ clause). The
details of description generation are in online appendix E.

5.3 Motivating Example

Figure 9 demonstrates how we convert FTG nodes to corresponding
natural language elements for the motivating example.

Particularly, in this example, we identify one path (red) that
represents the control flow of its transfer activities and thus needs
to be described. For each node on the path, we convert it to natural
language elements based on its attribute and data dependencies.

For instance, the first node (i.e., the blue one) yields the trans-
ferred amount in the first transfer call. Therefore, we use a verb
“calculate” to describe this action and use the data-type “amount”as
the object for this verb. The modifier represents how this amount
is being calculated and is derived from the data-origin of this node
— the timestamp and global variables.

All the other three nodes on the path are transfer calls, and
therefore are illustrated using the verb “transfer” with the object
“amount”. Depending on their individual data origins, these three
objects are further enhanced in different ways. Specifically, the
amount being transferred in the second call is calculated from the
one used in the first call. To indicate this relation, we use ordi-
nal numbers to differentiate these two “amounts” while adding a
modifier “calculated from 1 amount”to define the 2" amount. In
contrast, the “amount” in the third call originates from a “global
variable”, which shows it is totally irrelevant.

The sentences generated for the three transfer calls are also
modified by their funds flows, described using the “from” <sender
address> “to” <recipient address> modifiers. These modifiers are
concretized based upon the origins and types of the addresses.
While the first call obtains both sender and recipient addresses
from “inputs”, the other two send funds to “a third-party address”
(i.e., unknown global variable).

Finally, we can create this descriptive script for the example: The
function calculates 1°* amount using timestamp and global variables,
and then transfers 1°t amount from 1° input address to 2" input
address, and then transfers 2% amount calculated from 1%t amount
from 1 input address to a third-party address, and then transfers 3"
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amount from global variable from 1 input address to a third-party
address.

6 EVALUATION

We have implemented Tx2TXT in 1,500 lines of Python code. Our
graph generation tool is built on top of Octopus [1]’s static analysis
engine, and our node classification uses Deep Graph Library [5].
We further apply it to real-world smart contracts to evaluate its
correctness, effectiveness and usability.

6.1 Experimental Setup
First, to assess the security awareness of our funds-transfer-based
graph models, we collect benchmark smart contracts from a state-
of-the-art project VERISMART [56], where 412 contract programs
have been confirmed to contain security problems and thus can be
used as well-labeled ground truth.

Second, to comparatively check human understanding of our
generated descriptions, we create descriptive scripts for 906 con-
tracts whose developer-crafted descriptions are available on
their DApp websites or GitHub. Among these, 300 are benign con-
tracts from top Etherscan apps, 196 are malicious from HONEYBAD-
GER [58], and 412 are vulnerable ones from VERISMART [56].

Last but not least, to evaluate our machine learning model, we
generate 6,000 FTGs from top 2,400 open-sourced contracts in Ether-
scan [3] (with the highest amounts of transactions), as well as 573
C and Android logic bomb programs whose crucial conditions are
labeled. We use 5,400 graphs as the training samples and 600 as the
testing samples. Our experiments have been conducted on a server
equipped with Intel Xeon Gold 6330 CPU @ 2.00GHz and 256GB
memory. The OS is Ubuntu 20.04 LTS (64bit).

6.2 Correctness and Security of FTGs

First, we would like to evaluate our graph models. Particularly, we
expect to see (a) if our graphs are complete and precise, and (b)
whether our “transfer”-oriented graph models are security-aware
- i.e., whether our graphs can actually capture all the potential
security risks in smart contract code.

Accuracy. We manually verify the the completeness and preci-
sion of the 780 FTGs generated from the 412 benchmark contracts.
In theory, false positives in our dataflow analysis may originate
from how we address the memory model in Solidity. Particularly,
when we identify the “free memory pointer”, we only look for the
constant offsets and do not handle the access to this pointer via
computed variables. Nevertheless, our results show that Tx2TXT
does not yield any false negatives in practice. This may be due
to the fact that the contracts in this dataset do not contain very
complex or unconventional storage/memory accesses. In contrast,
we do observe a false positive rate of 3.64%. 224 out of 6160 total
nodes are imprecisely added into our graphs. Our further inves-
tigation indicates that these false positives are caused due to our
conservative way to handle aggregate data types such as arrays. For
instance, in a Lottery contract [10], while the reward is transferred
to the only winner, the winner’s address is stored in an array of
all players. As a result, any write to any array element is further
tracked.

Security Awareness. To evaluate the security awareness of our
graph models, we apply multiple security analyzers to the source
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Figure 10: The Coverage of Security Risks

code of the benchmark contracts and collect their detection results.
Particularly, we have used four different tools including VERIS-
MART [49], SMARTEST [48], Slither [2] and OYENTE [38]. We count
the total number of unique security problems and identify the spe-
cific instructions containing these problems. Then, we generate the
FTGs of these contracts and check how many detected problems
can be covered by our graph models.

Figure 10 illustrates the comparison results, where the blue bars
represent the total numbers of detected security issues for each
contract while the red dots denote how many are covered by our
graphs. As you can see, our “transfer-oriented” graphs can capture
a large majority of security issues (96.8% on average). This confirms
that security threats in smart contracts indeed lies in their insecure
or incorrect funds transfers.

Our graph model does miss a small number of suspicious contract
activities because their host functions do not involve funds transfers.
In fact, these “security risks” may not cause direct financial damage
to end users — despite the discovered suicidal or self-destructive
operations in their code, the host contracts do not provide any
interfaces for users to transfer funds to the contracts in the first
place.

6.3 Readability and Understandability

To assess the usability of our generated descriptions, we perform
a user study using Amazon Mechanical Turk (MTurk) [17]. We
aim to evaluate (a) whether human readers can understand our
machine-generated texts, and (b) whether end users can correctly
avoid using risky contracts after they have read our security-centric
descriptions.

It is worth noting that it is in fact a very challenging task to
conduct effective user studies. While how to avoid biased survey
settings and results by itself is an interesting research topic, it is
not the major focus of this work. Here, we just follow prior user
studies [29, 63] on human understanding of security-related texts
to implement our experiments. Methodology. We present differ-
ent types of smart contract textual descriptions to human readers
and measure their reaction. Particularly, we collect developers’ de-
scriptions (Condition 1.1, 2.1, 2.4, 2.7), security analyzer reports
(Condition 2.2, 2.5, 2.8), and Tx2TXT descriptions (Condition 1.2,
2.3, 2.6, 2.9). The details of these conditions are in hypothesis 1 and
hypothesis 2. Here, security reports are textual reports from HONEY-
BADGER and SECURIFY plus the developers’ descriptions. Tx2TXT
descriptions are our generated descriptions plus the reports from
HoNEYBADGER and SECURIFY. We choose to use these two analyz-
ers for this experiment because (1) they can particularly analyze
Solidity bytecode, (2) they generate textual analysis results, and (3)
they each focus on an individual aspect of security problems (i.e.,
malicious and vulnerable, respectively). An example of descriptions
can be found in online appendix B [20].
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Dataset. We perform the user study based upon the descriptions
of 890 benign, malicious and vulnerable contracts. For readability
study, in order to obtain sufficient responses for each contract, we
randomly select 60 contracts from this dataset. For security analysis,
we use the entire dataset.

Recruitment of Participants. We recruit participants directly from
MTurk and we require participants to have basic knowledge about
blockchain and smart contracts. We therefore ask screening ques-
tions to ensure participants can correctly identify a smart contract
as “a computer program running atop a blockchain” rather than
for example “a supplementary contract” used in life insurance. Our
study has received an IRB waiver from each author’s institution.
Besides, we did not collect any sensitive or personal information
about participants.

Hypotheses and Conditions. Hypothesis 1: machine-generated
contract descriptions are readable to human readers that
have basic knowledge about smart contracts. To assess the
readability, we prepare the developers’ descriptions (Condition 1.1)
and Tx2TXT descriptions (Condition 1.2). We use task-based studies
to evaluate how well machine-generated texts are understood by
human readers.

Hypothesis 2: Funds transfer-based security-centric de-
scriptions can help reduce the adoption of risky contracts.
To assess the effectiveness of Tx2TXT descriptions, we present the
Developers’ human-crafted descriptions, the Security Reports and
Tx2TXT descriptions for vulnerable (Condition 2.1, 2.2, 2.3), ma-
licious (Condition 2.4, 2.5, 2.6), and safe (Condition 2.7, 2.8, 2.9)
contract functions. We expect to assess the contract adoption rates
for individual descriptions on different conditions.

Deployment of User Study. We conduct a within-subjects study.
Particularly, we post all the descriptions on MTurk and anonymize
their sources. We inform the participants that the tasks are about
smart contract descriptions and we pay 0.1 dollars for each task
(i.e., completing all survey questions). Participants take part in two
sets of experiments.

Readability. First, each participant is given a mixture of 16
descriptions randomly selected from two categories (Developers’
and Tx2TXT’s). After reading each description, they are asked to
answer a multiple choice question to check whether they can grasp
the meaning of the descriptive sentences. For instance, in the stem,
we can present a description “The function calculates an amount_0
using a timestamp, and transfers the amount_0 from a user input
address to an address from global variable.”, and ask a question:
“What is the amount of funds that has been transferred?’. Then, we
provide four options “(1) amount_0", “(2) a user input address”, “(3) an
address from global variable” and “(4) Not applicable’. If a participant
can choose the correct one “(1) amount_0”, we consider that she
can understand the description.

Effectiveness. Second, we present the participants another ran-
dom sequence of 16 descriptions. One sequence can contain three
types of descriptions: Developers’, Security Report and Tx2TXT. Par-
ticipants are first presented with the expected functionality of a
financial application. For example, we inform human readers of
what they can expect from an online gambling game: “If you are
the winner, the contract must transfer the jackpot (all of its ac-
cumulated balance) to your account, and must not transfer any
part of it to other accounts.” Note that, in real-world use scenarios,
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Figure 11: Readability of Descriptions

this contextual information is not necessary as users of specific
contracts must have a general understanding of the application
logic (e.g., English/Dutch auctions, election, gambling). However,
our participants do not have access to concrete smart contract ap-
plications during this survey, and thus such baseline knowledge
is required for them to interpret the correct application logic and
to identify any deviation from the baseline in given descriptions.
Once participants have learned the context, they will then be asked
to read the descriptions of a “specific implementation” of the afore-
mentioned application and answer a question: “Do you think this
is a secure and fair application that you will use?” We particularly
point out “secure and fair” in order to avoid responses due to any
other factors.

We have also deployed a validity test to each questionnaire. Par-
ticularly, we add two simple attention questions to each question-
naire in order to check whether participants have made sufficient
efforts to read and comprehend the given texts. We exclude the
responses that do not pass this test.

Results and Implications. Readability. We receive 152 valid re-
sponses and in total 2432 answers to our readability tasks. Figure 11
illustrates the ratio of correct solutions for every contract on Condi-
tion 1.1 (Developers’) and 1.2 (Tx2TXT). The x-axis is the contract ID
while the y-axis is the correctness rate (readability). The two curves
represent the results obtained on the two conditions. As you can
see, the correctness rate for the Tx2TXT descriptions (red curve) is
comparable to that of the human-crafted natural language scripts.
While the average readability for developers’ descriptions is 83.6%,
Tx2TXT reaches an average score of 82%. This indicates that our
machine generated descriptions can successfully be interpreted by
human readers.

Nevertheless, we do observe that certain descriptions produced
by Tx2TXT vyields a relatively low readability score (around 70%).
For instance, when participants read this description: “The function
calculates an amount0 using a timestamp and a global variable, and
then transfers this amount from a user input address to the contract
address, and then calculates another amount1 using amount0, and
then transfers amountl to a user input address”, 30% of readers
mistakenly believe that the “amounts of funds that have been trans-
ferred” are timestamp and global variable rather than amount0 and
amount1. In this case, although their answers are incorrect, they are
still relevant to the provided sentence and thus do not necessarily
imply that readers have totally misunderstood the text.

Effectiveness. Table 2 depicts the likelihood that the partici-
pants will still choose to use a contract after they have read its
descriptions. Specifically, we have received 686 valid responses to
our questions.

In general, Developers’ descriptions are not security sensitive.
Regardless whether a contract is risky, a large majority of users (up
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Table 2: Contract Adoption Rate

# Condition Rate
2.1 Vulnerable w/ Developers 79.5%
2.2 Vulnerable w/ Security Report ~ 39.4%
2.3 Vulnerable w/ Tx2TXT 30.2%
2.4 Malicious w/ Developers 86.3%
2.5  Malicious w/ Security Report 30.2%
2.6 Malicious w/ Tx2TXT 20.4%
2.7 Safe w/ Developers 85.0%
2.8 Safe w/ Security Report 83.4%
2.9  Safe w/ Tx2TXT 80.2%

to 86.3%) is still willing to use the contract after they have read the
descriptive texts provided by developers.

In contrast, both Security Report (SECURIFY + HONEYBADGER +
developers’) and our Tx2TXT descriptions can raise users’ security
awareness, while ours further outperforms the former considerably.

For vulnerable contracts, where timestamps are incorrectly used
or reentrancy bugs are present, Tx2TXT causes 9.2% more users to
stop using these unsafe functions, compared to the security reports.
For malicious contracts such as theft of funds, our description can
help 9.8% more users avoid the hidden threats. Since both Tx2TXT
descriptions and Security Reports contain detection results from
SECURIFY and HONEYBADGER, these increased numbers indicate
that explaining clearly how funds transfers are conducted in an
insecure contract, in addition to abstract analysis reports, is very
useful for human users to understand and thus avoid risks.

In the meantime, Tx2TXT does not significantly affect the adop-
tion rate of safe contracts and therefore does not cause serious
usability issues. This is because our descriptions are faithful to the
intrinsic funds flows of target contracts, and thus are consistent
with users’ expectation for normal application logic.

6.4 Classification of Condition Nodes

We further evaluate the usefulness of our node classification. We
hope to check (a) whether our trained model can completely iden-
tify security-sensitive conditional statements and (b) whether the
number of selectively added nodes is relatively small.

Accuracy. In the 600 testing samples, we do not observe any false
negatives; all 62 security-sensitive nodes can be correctly classified.
Besides, our classifier only causes false positives in 1.3% cases.
Indeed, the false positive rates for these misclassified cases can be
relatively high and may be sometimes over 30%. However, those
cases often have a small number of conditional statements, and
therefore misclassifying even one or two nodes can result in high FP
rates. Note that, again, our selection of condition nodes is designed
to be safe as we do not want to miss any security-related conditions.
In contrast, accidentally preserving less interesting nodes may still
be acceptable as long as the generated descriptions are human-
readable.

Effectiveness. To evaluate the effectiveness, we compare the total
number of condition nodes and the number of selected condition
nodes. Overall, the selected nodes merely amount to 4.8% of total
conditions. In fact, only 7.23% of the contracts contain security-
related conditions that need to be added to FTGs. For this 7.23%,
on average, the number of selected nodes takes 46% of the total
conditions. This high ratio is due to the small amount of conditional
statements in these functions where at most four conditions are
used. Our case study can be found in online appendix C [20].
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6.5 Runtime Performance

Overall, Tx2TXT is efficient. Our graph construction and description
generation are fast. On average, it takes 1.09 seconds to generate
one FTG and 0.2 seconds to translate a graph to texts. Our GCN
model training costs 5.7 minutes while the testing phase for each
graph takes only 10 seconds.

7 RELATED WORK

Verifying the Safety of Smart Contracts. Prior efforts [31, 33, 35, 37,
38, 44, 46, 47, 49, 59, 60] have been made to automatically verify
smart contract code so as to detect safety problems. While some
aimed to discover syntax based low-level errors, such as transaction-
ordering dependence, timestamp dependence [38], flawed bytecode
instructions [37], callback-based reentry vulnerabilities [33, 46] and
inter-contract vulnerability analysis [31], more recent studies [35,
44, 48, 49, 59] have started to investigate the semantic-level defects
that can cause fairness issues.

Correlating Descriptive Text to Program Behaviors. Studies have
tried to correlate texts to sensitive behaviors, such as permissions in
Android [34, 42, 45] and security related functionalities in IoT [57].
WHYPER [42] used NLP technique to identify sentences that de-
scribe the need for a given permission. AutoCog [45] developed a
learning-based algorithm to automatically derive a model that cor-
relates textual descriptions with Android permissions. AsDroid [34]
further inferred the semantics of the text on those widgets that are
associated with the top level functions. SmartAuth [57] combined
NLP and program analysis to distill the contextual semantics of
IoT apps. Unlike these studies that leverage unique APIs to infer
program semantics, Tx2TXT proposes a novel semantic model to
handle smart contract code.

Software Description Generation. Many efforts [24, 39, 52-54]
have been made to generate software descriptions for legacy Java
programs. Several previous studies [63, 66] have also attempted to
expose security risks in textual descriptions. However, they heavily
rely on the unique application semantics provided by the Android
framework. Recent work [64] has been done to summarize smart
contract functions based on developers’ comments, while Tx2TXT
aims to directly capture program logic from code.

8 CONCLUSION

We develop Tx2TXT to automatically create security-centric textual
descriptions from smart contract bytecode. We formally define a
funds transfer graph to model critical funds flows in smart contracts,
and employ a GCN-based model to identify security-related con-
ditions and selectively add them to our graph models. Our results
have shown that Tx2TXT outperforms state-of-the-art solutions
and can effectively help end users avoid risky contracts.
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