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Fiber-reinforced materials offer high stiffness- and strength-to-mass ratios to lightweight composite structures.
To design stiff, strong, and lightweight fiber-reinforced composite structures, we propose a multimaterial
anisotropic stress-constrained topology optimization framework that simultaneously optimizes geometry,
distribution of anisotropic (i.e., orthotropic) and isotropic material phases, and local orientations of fiber
reinforcements in the anisotropic phase. To achieve high performance in both stiffness and strength, we
discover that both isotropic and anisotropic materials are needed: anisotropic materials are preferred in
uniaxial members to increase stiffness, while isotropic materials are crucial at multi-axially stressed joints
to enhance strength. We introduce multimaterial interpolation schemes to characterize both the stiffness
and strength of composites made up of anisotropic and isotropic materials. The characterization of strength
is enabled by a novel load factor-based yield function interpolation that consistently integrates anisotropic
Tsai-Wu and isotropic von Mises yield criteria. We optimize stress-sensitive domains considering materials
with various levels of stiffness and strength anisotropy as well as multiple load cases. The anisotropic stress
constraints in the proposed framework effectively inform geometries to reduce stress concentration in fiber
composites. The proposed framework provides a rational design paradigm for composite structures, capitalizing
on dissimilar stiffness and strength properties of anisotropic and isotropic materials, to potentially benefit
various engineering applications.

1. Introduction

Composites structures with anisotropic fiber reinforcements are
widely used in aircraft design [1], construction [2], energy harvesting
devices [3,4], soft robotics [5], soft actuation [6,7], and biomedical
appliances [8]. Fiber-reinforced materials often have higher stiffness-
and strength-to-mass [9] ratios along the fiber directions, enabling
lightweight designs with significantly reduced material and cost. Such
unique anisotropic properties can be further exploited using topology
optimization [10-12] through improved material and fiber orienta-
tion distribution. Generally, topology optimization formulations for
fiber-reinforced composites [13-23] are categorized into two fiber
orientation approaches. The first approach varies the fiber orientations
continuously within a permissible range [2,13,14,24-32] (e.g., from
0ppin = —7/2 to 0, = x/2), and the second approach chooses the best
possible fiber distribution from a predefined set of discrete candidate
orientations [19,33-36]. While the first approach with continuously

varying fiber orientations has more design freedom, the second ap-
proach with discrete fiber orientations offers easier fabrication for
many practical applications. Moreover, the second approach is suitable
for multimaterial topology optimization that allows simultaneous con-
sideration of multiple dissimilar materials. This study adopts the second
approach to optimize composite structures considering both anisotropic
fiber-reinforced and isotropic materials. For fiber-reinforced materials,
we consider the orthotropic subclass of anisotropic materials to present
the optimization framework and design examples in this work.

Design optimization of fiber-reinforced composites requires the in-
corporation of the anisotropic material strength information in some
form, e.g., stress constraints, to prevent local material failure during
operation. Yet, topology optimization considering strength anisotropy
is rarely investigated. Anisotropic yield criteria, such as Tsai-Hill and
Tsai-Wu, are mostly incorporated in laminate stacking optimization
problems [37-40] which ignore in-plane variation of fiber orientation.
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A few laminate ply optimization studies [41-43] that optimize in-
plane fiber orientation considering anisotropic failure criteria do not
optimize the in-plane structural geometry, i.e., the spatial material
occupancy. A similar limitation is observed in studies involving optimal
fiber-reinforcement design for civil structures [2,44] (e.g., masonry and
reinforced concrete), where the structural geometry is not concurrently
optimized. A topology optimization work [45] incorporates anisotropic
Tsai-Wu criteria focusing on manufacturing anisotropy in Fused De-
position Modelling (FDM) based 3D printing along and perpendicular
to the build direction, which may not be suitable for fiber-reinforced
composite topology optimization with multiple fiber orientations. Some
recent studies optimize both geometry and in-plane fiber orientation
with a single fiber-reinforced material considering anisotropic mate-
rial strength, such as Tsai-Wu yield criteria [46] and Puck’s failure
criteria [47]. However, the overall strengths of such single-material
fiber-reinforced composite structures are often limited by their weak
anisotropic joints formed at the intersection of two or more uniaxial
members. Using strongly anisotropic fiber-reinforced materials at the
joints is inefficient because the joints usually have multi-axial load
paths, and strong anisotropy arising from fiber reinforcement in any
one direction is not always an optimal state [24,32].

Deviation of fiber alignment from any of the load paths dispropor-
tionately reduces the local material strength and stiffness along those
load paths, both contributing to a significant boost in local stress. As a
result, joints become considerably weak and prone to material failure
compared to the uniaxial members, and the overall load-carrying capac-
ity of the single-material fiber-reinforced composite structure decreases
significantly. A feasible solution to address this weak joint problem is
the utilization of material heterogeneity through multimaterial design.
Nevertheless, most existing studies of multimaterial stress-constrained
topology optimization consider a single isotropic yield criterion, such as
von Mises [48-53], for all candidate materials, and hence, are unable to
optimize fiber-reinforced composite structures governed by anisotropic
yield criteria.

In this study, we propose a multimaterial stress-constrained topol-
ogy optimization framework for composites incorporating dissimilar
stiffness, yield strength, and yield criteria of both anisotropic (i.e., or-
thotropic) fiber-reinforced and isotropic candidate materials (Fig. 1).
The framework simultaneously optimizes (1) geometry, (2) distribution
of isotropic and anisotropic materials phases, and (3) local orientations
of fiber reinforcements in anisotropic phases to design stiff, strong, and
lightweight fiber-reinforced composite structures. To effectively im-
pose local stress constraints in both anisotropic and isotropic material
phases, we formulate a novel anisotropic yield function interpolation
scheme to consistently integrate anisotropic (i.e., orthotropic) Tsai-
Wu yield criterion for fiber-reinforced material and von Mises yield
criterion for isotropic material using the load factor [37] approach,
which facilitates consistent stress-violation penalization for different
material types. To ensure material failure prevention at all points in the
optimized structure, we use an Augmented Lagrangian (AL) based for-
mulation to efficiently handle many local stress constraints. Using this
framework, we design optimized fiber-reinforced composites with sev-
eral stress-sensitive domains and various anisotropic fiber-reinforced
materials with different stiffness and strength anisotropy. Further,
we extend the proposed stress-constrained formulation to optimize
fiber-reinforced composites simultaneously for multiple load cases.
The optimized structures are verified to satisfy anisotropic Tsai-Wu
and isotropic von Mises yield criteria in fiber-reinforced and isotropic
candidate material phases, respectively. In addition, the introduction of
isotropic materials at multi-axial joints is shown to not only increase the
load-carrying efficiency of the optimized structures but also improve
the stability and convergence performance of the optimization proce-
dure. The proposed framework provides a rational design paradigm
for stiff, strong, and lightweight fiber-reinforced composite structures
made of both anisotropic and isotropic material phases.
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The remainder of this paper is organized as follows. Section 2
introduces the design parameterization of composite structures, mul-
timaterial stiffness interpolation scheme, and the proposed multima-
terial anisotropic yield function interpolation scheme, after which the
multimaterial anisotropic stress-constrained topology optimization for-
mulation is presented. Section 3 discusses the material properties,
stress constraint satisfaction (or violation) visualization schemes, and
optimization parameters used in the numerical implementation of this
study. Section 4 presents several design examples, including both single
and multiple load cases, to demonstrate the advantages enabled by
the proposed framework. Section 5 provides a few concluding remarks.
Two appendices complement the paper with an elaboration on the uni-
form treatment of anisotropic (i.e., orthotropic) Tsai-Wu and isotropic
von Mises yield criteria using load factor approach Appendix A, and
a brief description of sensitivity analysis required for gradient-based
optimization Appendix B.

2. Methods

This section presents a multimaterial anisotropic stress-constrained
topology optimization framework used to design fiber-reinforced com-
posite structures considering distinct stiffness, yield strength, and yield
criteria of candidate anisotropic (i.e., orthotropic) fiber-reinforced and
isotropic materials. We first introduce the design parameterization
of fiber-reinforced composite structures and then elaborate on the
multimaterial interpolation schemes for anisotropic and isotropic stift-
ness and yield functions, after which we present the optimization
formulation and algorithm.

In the following, we present the design framework considering fiber-
reinforced material with multiple pre-selected fiber orientations and
isotropic material. As the anisotropic fiber-reinforced material shows
distinct material properties (i.e., stiffness and strength) according to
intrinsic fiber orientation, the design problem becomes similar to a mul-
timaterial or multiphase topology optimization problem [33-35,54-60]
with N,, candidate material phases, where N,, = N, + 1 with N, being
the number of candidate fiber orientations. Although presented for a
single fiber-reinforced and a single isotropic material, the proposed
framework can seamlessly incorporate multiple fiber-reinforced materi-
als with respective pre-selected fiber orientations and multiple isotropic
materials by treating them as distinct candidate material phases.

2.1. Design parameterization of fiber-reinforced composites

To parameterize fiber-reinforced composite structures, we adopt
the two-field multimaterial design parameterization scheme [61,62]
that simultaneously characterizes material spatial occupancy and ma-
terial phase distribution. In this study, a material phase is defined
as anisotropic material with a specific fiber orientation or isotropic
material. In Finite Element (FE) implementation, material occupancy
is characterized by design density variable p, and material phase is
determined using design material variables £X, k = 1,..., N;, with p,
and éik) being the values associated with element e. The design density
variable p determines the physical density variable p that represents the
solid or void in the composite with values 1 and 0, respectively. The
design material variables £%, k = 1,..., N,, determine the physical
material variables m®, i = 1,...,N,, that represent the presence
and absence of each i candidate material phase with values 1 and
0, respectively. The density and material physical variables together
represent the physical multimaterial composite structure [52,63,64]
(see Fig. 2). The mappings from design variables to physical variables,
i.e., from p to p, and from X, k=1, ... ,Ng, to m?, i=1,..,N,, are
discussed as follows.
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(a) Optimization problem

(b) Multimaterial interpolations
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Fig. 1. Illustration of the overall goal of this study. (a) fiber-reinforced composite design problem with candidate anisotropic (i.e., orthotropic) fiber-reinforced and isotropic
materials. (b) Proposed multimaterial anisotropic yield function interpolation and stiffness interpolation schemes. (c) Unique advantages of topology optimization with anisotropic
stress constraints: optimized use of anisotropic and isotropic material properties, optimized geometry to prevent material yield failure by reducing local stress concentration.
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Fig. 2. Design parameterization of fiber-reinforced composites. (a) Physical density
variable p characterizes material occupancy. (b) Physical material variables m®”, i =
1,...,N,, determines material phase type. (c) Physical density and material variables
together represent composite structures with anisotropic fiber-reinforced and isotropic
materials.

2.1.1. Mapping from p to p

The design density variable p is mapped to physical density vari-
able p through filter [65] and Heaviside projection [63], two popular
schemes in topology optimization to achieve discrete and regularized,
mesh-independent designs [10,65]. The physical density variable is

obtained using the smoothed Heaviside projection [52,63] as
~ tanh(B,7,) + tanh(,(5, - 7,))
Pe = anh(p,y,) + tanh(B,(1 - 7,))
where the projection discreteness is regulated by the Heaviside pa-

rameter f,, and the projection threshold y,. The intermediate filtered
variable vector [66] p is obtained by

(€3]

Y jene(r,) W (%)) vj0;
Zjene(R,,) w (xj) vj ’

where x; is the centroid of element j, v; is the corresponding ele-

ment volume, R, is the filter radius for density variables, n, is the
neighborhood of element e defined by filter radius R, i.e., n.(R,) =

{j : ”xj = x|, < R, }, and w (x;) is the cubic weight function [67,68]

3
defined as w(xj) =max<0, 1- ”ﬂ;%) .

pe= @

2.1.2. Mapping from £® to m®

Design material variables £, k =1, ..., N, are mapped to physical
material variables m®, i = 1,...,N,, through two steps. First, the
same filter (2) and Heaviside projection (1) operations are applied
to design material variables with material variable filter radius R,
Heaviside parameter f;, and projection threshold y, to obtain mate-
rial Heaviside projected variables E(k), k = 1,..., N;. Then, material
physical variables @), i = 1,...,N,, are obtained from E(k>, k =
L,..., N¢, through a tailored version of the Hypercube-to-simplex pro-
jection (HSP) scheme [13] as described below.

The HSP scheme [13] projects variables from n-dimensional hyper-
cube to n-dimensional simplex, and satisfies the constraint z;’=1<m§">) <
1 implicitly. In this study, each physical material variable ;1'12” repre-
sents the portion of i candidate material phase in an element e, and
they need to satisfy the condition Zfi’;‘ () = 1 for a physical structure.
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To satisfy the equality condition, we use HSP to obtain the first (N,,—1)
physical material variables and make the last physical material variable
dependent. With this tailored HSP scheme, we use N; = (N, — 1)
material Heaviside projected variables to obtain N,, physical material
variables as

(i 2(Nm=D —tazpmt ) (N -z, (k
A0 = 32 40 <(_1)< B O IED 1 ),

i=1,...N, -1,
_ (N, N, -1, _(@
and, "™ =1- ¥ (Al)
3

where, c/(.i) = {0,1} is the jth
hypercube for the i candidate material, and b;.” is the mapped vertex
of (N,, — 1)-dimensional standard simplex domain calculated as

vertex of (N,, — 1)-dimensional unit

e i s
—~ T 1 Z 3 >1
Zomtel) Q)

0, otherwise.

o
J

2.2. Stiffness interpolation scheme

This subsection discusses the multimaterial stiffness interpolation
scheme for the mechanical behavior characterization of fiber-reinforced
composites. For N,, candidate material phases, the general interpolated
stiffness tensor Cf) for an element e is obtained by the Solid Isotropic
Material with Penalization (SIMP) [61,69] through 5, combined with
a SIMP-like interpolation through m(') i=1,...,N,, [19,52,55,62,64],
ie.,

Nm
COGe ), ™) = [+ (1= )| 3Py, (5)
i=1
where C© is the stiffness tensor of the i candidate material phase,
, and p; are the penalization parameters associated with density and
material variables, respectively, and ¢ is a small number to avoid the
numerical singularity. The interpolated stiffness tensor Cff) becomes
identical to C®) when j, = 1 and A\ = 1. We note that C%’ is physically
well-defined only when p,,m (l), ,rhiN'") € {0,1}, which is enforced
by the Heaviside projection technique [52,63] at the later stage of
the optimization. Therefore, interpolation (5) represents a numerical
scheme commonly used to facilitate design optimization rather than
computing the homogenized properties.

In this study, the set of N,, candidate material phases in interpo-
lation (5) includes N, different fiber orientations of the anisotropic
fiber-reinforced material that require stiffness tensor transformations
from respective fiber (local) coordinates to design-domain (global)
coordinates. The transformed anisotropic (i.e., orthotropic) stiffness
tensor C in global coordinates is obtained as

CO =T-l(M)c@msOT-T(gD)  j=1,..., N, (6)

where 6 is the i™h fiber orientation with respect to the global coor-
dinates, C(@"is0) js the anisotropic (i.e., orthotropic) stiffness tensor in
the fiber coordinates, and T(0) is the transformation tensor correspond-
ing to a fiber orientation 0. Using interpolation (5) and anisotropic
stiffness tensor transformation (6), we derive the stiffness interpola-
tion scheme for composite structure with anisotropic (i.e., orthotropic)
fiber-reinforced and isotropic materials as

. _ (N,

CO e, o iy ™) =
[2 +(1 - E)ﬁ?] (Z,]igl (rhf,'))"i (T"(g(f))c(aniSO)T—T(e(i))) 100
+(n—,,(eN9+l))ﬂ§C(iso)) ,

where CU9 s the stiffness tensor of the candidate isotropic material.

Composite Structures 320 (2023) 117041

For 2D plane stress problems used in this study, the matrix forms of
the stiffness tensors C@nis0) and C5°) are given by

Ey viz Ep 0
) 1-viovyg l—VEjz"ZI
Claniso) _ | vipEy) 2 0 |, and,
1=vipvy 1=vipvy
0 0 Gy
) E. 1 Viso 0
Cliso) L"z Viso 1 0 |1, 8
1- Viso | 0 0 l_%

and the matrix form of the transformation tensor T(6) is given by

cos2(6) sin%(9) 2sin(#)cos(6)
T@)=| sin%() cos2(0) —2sin(f)cos(8) |, 9
—sin(@)cos(d) sin(@)cos(d) cos2() — sin2(9)

where E|;, Ey, vy, and G, are elastic modulus along the fiber
direction, elastic modulus perpendicular to the fiber direction, Poisson’s
ratio with respect to the fiber direction, and shear modulus, respec-
tively, for the anisotropic (i.e., orthotropic) fiber-reinforced material,
and E;,, and v, are elastic modulus and Poisson’s ratio, respectively,
for the isotropic material.

2.3. Anisotropic yield function interpolation scheme

This subsection presents the proposed anisotropic yield function
interpolation scheme that simultaneously incorporates both anisotropic
(i.e., orthotropic) and isotropic materials in stress-constrained topology
optimization. For N,, candidate material phases, the general interpo-
lated yield function f, F9 is obtained by a SIMP-like 1nterpolat10n of yield

functions through physical material variables ‘(’), i=1,...,N,, [70],

ie.,

FOED, M oD, ey Z(m“)"fef(”(o“h (10)
i=1

where ai,i) := C¢, is the stress state corresponding to i candidate

material phase for element e computed from element strain €,, and p I
is a penalization parameter. The yield function (o) associated with
h candidate material phase is given as

[P <1, i=1,...N,, (an

where the equality condition represents the corresponding yield sur-
faces. This study considers von Mises yield criterion [71] for the
isotropic material, which is expressed as

ovm(0)

fOme) = 22— <1, 12)

Oiso

02, +02 — 0,0y, +302, is the plane-stress von
Mises stress, with o,,,0,,, and o,, being in- plane stress components in
global coordinates, and ;g is the strength of the isotropic material. For
the anisotropic (i.e., orthotropic) material, this study adopts the Tsai—
Wu yield criterion [72] to represent fiber-reinforced material failure,

which is expressed (for a 2D plane stress problem) as

where o,,(6) =

F(6,0) = Fy 0}, + Fy02, + F07y + F1y01 160+ Fioy + Fyop < 1. (13)

where 6,05, and ¢, are the in-plane stress components with respect
to the fiber orientation (i.e., in local fiber coordinates) obtained by
transforming the global coordinates in-plane stress components as

11 Oxx
op |=T®)| 0, | a4
o2 O—xy

where T(#) is the transformation matrix (9). Given the Tsai-Wu ma-
terial strength parameters X,, X,, Y, Y,, and .S for a plane stress
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orthotropic material, the coefficients in the Tsai-Wu yield criterion (13)
are obtained as

1 1 1
=——— F=—— —
X XUy v

Fyy =ﬁ,Fzz=ﬁ’Fsa=S—;’ as)
Fip = =0.5y/Fj; Fp,

where X denotes the strength along the fiber orientation, Y denotes

the strength perpendicular to the fiber orientation, .S denotes the shear

strength, and subscripts ¢ and ¢ represent cases for compression and

tension, respectively.

Directly using the actual form of Tsai-Wu yield criterion (13) to-
gether with the von Mises yield criterion (12) in the interpolation (10)
leads to inconsistent stress-violation penalization (see Appendix A). To
address this problem of inconsistent penalization, we present an equiv-
alent Tsai-Wu yield criterion based on the concept of load factor [37]
as

24(c, 0) -
\VB(c,0) + 4A(c, 0) — B(c,0)

where, A(6,0) = Fy0}, + Fyo2, + Feol, + F201162, and B(c,6) =
F0, + F,0,,. To avoid division by zero, the minimum value of A(c, 6)
is set to 1x107!2. Notice that, for a special case with X, = X, =Y, =Y, =
\/gS = Gy, the load factor-based Tsai-Wu criterion (16) and von Mises
criterion (12) become identical. This property of load factor facilitates
consistent penalization from both anisotropic (i.e., orthotropic) Tsai—
Wu and the isotropic von Mises yield criteria for the same extent of
stress violation. Moreover, the load factor represents a proportional
measure of stress violation with respect to the origin in the principal
stress plane, enabling uniform penalization for tension and compression
stress violation in the case of anisotropic Tsai-Wu strength. A detailed
discussion of the justification for using this load factor-based Tsai-Wu
yield criterion is provided in Appendix A.

Using the interpolation (10) and load factor-based Tsai-Wu criterion
(16), we propose the interpolated yield function fg(g)(~) for composite
structures with anisotropic (i.e., orthotropic) Tsai-Wu and isotropic von
Mises candidate materials as,

1™"(s,0) = 1, 16)

© (=D =(Nw) (1 N\ — $No (= ()\P h gl
FO (70, a0 G o m)) = N0 (Y g0 (o0, )
+(m(eNa+'>)Pf5 O (g650)) < 1,
an

where 6 is the stress state of ih fiber orientation of the anisotropic
material in the global coordinates, and ¢ is the stress state of the
isotropic material. Fig. 3 illustrates the yield function interpolation
(17) with three candidate material phases consisting of two candidate
fiber orientations of an anisotropic material and a candidate isotropic
material. The interpolated yield surface undergoes a gradual transition
from the actual yield surface of one material to another according to
the change in physical material variable values.

We remark that the proposed anisotropic yield function interpo-
lation scheme (17) incorporates the material strength information,
i.e., distinct yield strength and criteria of both anisotropic (i.e., or-
thotropic) and isotropic candidate materials in the design framework.
The material strength information is realized as appropriate anisotropic
and isotropic stress constraints in the optimization formulation pre-
sented below. The goal is to ensure that the optimized design performs
entirely in the elastic deformation range, i.e., without any local material
failure or plasticity under the prescribed loading.

2.4. Optimization formulation

Based on the proposed multimaterial anisotropic yield function
interpolation scheme (17), we formulate the topology optimization
problem as weighted compliance-volume minimization with stress con-
straints and multiple load cases to design stiff and lightweight fiber-
reinforced composite structures while preventing local material failure.
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Here, we assume all candidate material phases have the same mass
densities, and thus reducing total structural volume is equivalent to
reducing total structural weight. We use the polynomial stress con-
straint [67,68] to increase the penalty for severe constraint violation
and accelerate optimization convergence. The topology optimization
formulation is stated as

Ny
min J(, M “Vs“)):ﬁ C+(—wV
i p.& 3 M;, (- w)
s.t. 2 (p,§<1>, ,§(N5),U,) = [e+ (1 - 0)5,(p)"] (Ajl
+4,,) <0,
e=1,...,N,, I=1,...N,
b, €10,1], e=1,..,N,,
e eo,1], e=1,....,N,, k=1,..,Ng
with: K(p,.f(l), ,gw«f)) U =F*  I=1,..N, (18)
where ¢, = FHTU(p,ED,....&N9)/Cr is the normalized end-

compliance corresponding to load case / with C; being the end-
compliance of uniform initial guess, V' = (Z:\;el ﬁe(p)ue) / Z:\;el v, is the
total structural volume fraction with v, being the volume of element e,
w € [0,1] is a weight factor for the compliance terms in the objective,
Ay = (fﬁ(g“), o END U (p, D, .. EMNDY) 1) is obtained from
the interpoléted yield function value (17) associated with element e
corresponding to load case I, K ( p, &1, ..., £N9)) is the global stiffness
matrix obtained from the interpolated stiffness (7), U, and FleXt are
the global displacement vector and the global external force vector
corresponding to load case /, respectively, N, is the total number of
elements in the FE mesh, and N, is the number of load cases. For the
uniform initial guess, the initial values of design density variables are
set to p, = 0.5, and the initial values of the design material variables
are set to 52” = - = éiNg') = 0.25, so that all physical material
variables, rhgl), ,rth”’) , have equal values after the HSP projection.
Notably, volume fractions of different materials are not restricted in
the formulation, and their appearance in the final design is determined
solely by the optimizer to facilitate the optimized use of different
anisotropic and isotropic material properties.

Solving the optimization problem (18) is highly challenging due
to the N, x N, nonlinear local stress constraints. Most multimate-
rial stress-constrained topology optimization studies use approximate
aggregation methods, such as the p-norm approach [73], to cluster
the N, X N, constraints into a single or a handful of constraints.
However, using such global aggregation approach to constrain an
intrinsically local quantity like stress may cause numerical issues in
the optimized designs [68]. To solve the optimization problem (18)
while preserving the local nature of stress constraints, this study adopts
the Augmented Lagrangian (AL) method [74,75], which is successfully
employed in the literature to solve single-material stress-constrained
topology optimization problems [67,68,76-82].

The AL method transforms the original constrained optimization
problem into a series of (augmented) unconstrained optimization sub-
problems. The local stress constraints are augmented to the original
objective function using Lagrangian parameter estimators associated
with each local constraint and a penalty term. The unconstrained
optimization sub-problems are solved sequentially, i.e., the Lagrangian
parameter estimators and the penalty term are updated after solving
the current sub-problem and then used to solve the next sub-problem.
Specifically, the unconstrained optimization sub-problem at the ath
optimization step is given by [80]

min Q) (p’,g’(l), ,5/(N5)) -7 (p/’gl(l), 75/(N5)> i
g g
/N=11 [NLP Zfe\l:el (A(enz)hinz) (,,/’51(1)’_”’5/(%)) 19)

_,,_ﬂh(n[) (p’ o ér(N5)>2>]
> he, (PLE ,
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m : Anisotropic (9 = 0°)

m® : Anisotropic (@ = 90°)

Composite Structures 320 (2023) 117041

n® Isotropic : Interpolated yield surface
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Fig. 3. Transformation of interpolated yield function for different m",m®,m® values considering three candidate material phases that include two fiber orientations of the

anisotropic material and the isotropic material.

where y® (p’,f’“),.“,g’("]ﬁ)) is the n™ step (augmented) objective
function with p’ and &0, ... &™) denoting dummy design variables
corresponding to p and &0, ...,E™2, and &, (p’,g’('), ,é’(Nf)) is the

equality constraint for ™ element and load case / given by

h(nl) (p/,g,(]), ",;;/(Ng))
e,

(n)

el

= max| g, (960, ... EN0, U (0 &'V, £ —

>

(20)

where A" is an estimate of the Lagrange multiplier estimator for et
element and load case I, and u™ is a penalty coefficient. The updated
design variables for the next sub-problem are the solution of the
current sub-problem (19), i.e., p@tD = p/* and {£'D, ..., gNy0+D) =
(&0, ... &WNJy* The Lagrange multiplier estimators and the penalty
coefficient for the next sub-problem are obtained from the updated
design variables as

(n)
el

1D = max (aﬂ("), u(max)) and

A = 20+ W) (P (0, g N ) @D

where a > 1 is a constant, and 4™ is an upper bound for the penalty
coefficient to avoid numerical instability. This study uses the gradient-
based optimizer Method of Moving Asymptotes (MMA) [83] to solve
the unconstrained sub-problems. The gradient expressions with respect
to the design variables are provided in Appendix B.

We note that composite laminate structures (one example of fiber-
reinforced structures) usually include different ply arrangements for
several advantages. However, the capability of topology optimization
to design composites for improved stiffness and strength simultaneously
considering both anisotropic and isotropic material phases has not been
established, even for uniaxial fiber-reinforced materials and one-ply
laminates. Thus, the main objective and contribution of this work are to
propose optimization formulation and solution schemes to enable this
capability.

In the presented design examples, the anisotropic candidate mate-
rial phases consist of uniaxial fiber orientations to provide maximum
stiffness and strength per unit volume to the structure, assuming a given
fiber-matrix ratio. However, laminate candidate material phases with
different ply arrangements may be included in the optimization for
different objective and constraint functions, which benefit from having
fibers in multiple directions throughout the cross-section.

In terms of applications, the proposed methodology is not restricted
to laminates and can be readily applied to other anisotropic com-
posite structures that have uniaxially oriented fibers throughout or
parts of their cross-sections, as long as the stiffness tensor and yield

function representing stiffness and strength of the entire cross-section
can be characterized. Furthermore, the presented framework can also
be extended to include laminates containing multiple plies arrange-
ments, which may be preferable in practice as candidate material
phases, if their overall stiffness tensors and yield/failure surfaces can
be characterized. For example, the isotropic candidate material may be
replaced by a laminate phase with multiple ply directions throughout
its cross-section, with a characterized stiffness tensor and yield/failure
surface.

3. Numerical implementation

This section describes the numerical implementation of the pro-
posed framework. The optimization formulation, including finite ele-
ment analysis and iterative optimization updates using MMA, is imple-
mented using a Matlab code developed in-house. In the following, we
briefly discuss the candidate material properties, visualization schemes
to verify material yield criteria satisfaction or violation, and optimiza-
tion parameter values used for the fiber-reinforced composite design
examples in Section 4.

3.1. Material properties used in the numerical examples

This study uses four different fiber-reinforced materials throughout
the design examples presented in Section 4, namely TM800s/M21,
Kevlar/epoxy, Graphite/epoxy, and laminated bamboo lumber (LBL).
We remark that the proposed formulation can also be applied to
account for other anisotropic (i.e., orthotropic) materials laminates.
Thus, we also consider LBL as a demonstration. Among these materials,
TM800s/M21 has the Tsai-Hill yield criterion, which is a special case
of the Tsai-Wu criterion when X, = X, and Y; = Y,. The other three
fiber-reinforced materials have the Tsai-Wu yield criteria with different
strength parameters. Each design case from the numerical examples
uses any one of these four anisotropic fiber-reinforced materials and
a suitable isotropic material with the von Mises yield criterion. The
material properties, i.e., stiffness and strength parameters of the fiber-
reinforced materials and corresponding isotropic materials, adopted in
the design examples are listed in Table 1.

This study assumes the yield strength parameters are obtained
corresponding to the stress states till which the material behavior is
linear elastic. For brittle materials such as Graphite/epoxy, we use
strength parameters corresponding to their failure criteria. For ductile
materials, we assume strength parameters (e.g., von Mises strength)
corresponding to material yielding due to the onset of plasticity.
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Table 1

Composite Structures 320 (2023) 117041

Material properties of candidate anisotropic (i.e., orthotropic) fiber-reinforced and corresponding isotropic materials (units: MPa).

Fiber-reinforced Anisotropic stiffness

Anisotropic Tsai-Wu

Corresponding isotropic

material parameters strength parameters material properties
Ey Ey, Via G, X, X, Y, Y. S Eiso Viso Giso
TM800s/M21 135 x 10° 7.64 % 103 0.35 5.61x 10 165 165 45 45 50 85.6x 10° 0.3 165
Kevlar/epoxy 100 x 10° 6.9x 10 0.33 2.1x10° 1380 280 35 105 40 64 x 103 0.3 280
Graphite/epoxy 181 x 10 10.3 x 10° 0.28 7.17x 103 1500 1500 40 246 68 114.8 x 103 0.3 1500
LBL 9913.5 1853.9 0.31 1164.8 90 77 2 22 16 7060.4 0.3 55
(a) TM800s/M21 (b) Kevlar/epoxy
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Fig. 4. Tsai-Wu yield surface transformations with different fiber orientations §, with respect to principal stress o, for different fiber-reinforced materials: (a) TM800s/M21, (b)

Kevlar/epoxy, (c) Graphite/epoxy, (d) Laminated bamboo lumber (LBL).
3.2. Stress-constraint satisfaction visualization schemes

This study adopts two approaches, (1) yield function measure
(YFM), and (2) principal stress plot with appropriate yield surface,
to visualize and verify the satisfaction or violation of anisotropic
and isotropic stress constraints. These approaches are extended from
the two common practices in stress-constrained topology optimization
studies, including normalized von Mises stress plot [68], and principal
stress plot together with von Mises yield surface [68], for the optimized
structure.

In the first approach, the yield function measure is defined as
YFM = [e + (1 — e)ﬁg" ] fc@, with fe(é) being the interpolated yield
function (17). For a solid element with a single material phase, the YFM
value becomes the same as the yield function value for that occupying
material for a certain stress state. Naturally, this YFM is equivalent to
von Mises stress normalized with the von Mises strength in the case of
isotropic material. The second approach uses principal stresses together
with actual yield surface for the isotropic material, and a yield surface
contour for the anisotropic material, which is described as follows.

First, we illustrate the anisotropic Tsai-Wu yield function trans-
formations with different fiber orientations for each fiber-reinforced
material from Table 1. We plot the transformed Tsai-Wu yield surfaces
corresponding to 6, = 0°,£30°,+£45°, +60°, and 90° in principal stress
o) — 0, plane (see Fig. 4), where 6, is the angle between the fiber
direction and the direction of principal stress ¢,, assuming o; > o,.
Physically, this transformation of the Tsai-Wu yield function with fiber
orientation signifies the gradual reduction in effective material strength
as the fiber orientation is rotated from the principal stress or load
path direction. In an optimized design, different elements may have
different principal stress directions, leading to a wide range of 6, for
a limited pre-selected fiber orientation 6 defined with respect to the
global axes. Therefore, we construct a Tsai-Wu yield surface contour
by taking the union of the transformed Tsai-Wu yield surfaces for all
possible orientations 6, € [-90°,90°), and plot it together with the
principal stresses of all solid anisotropic elements in the optimized
design. Principal stress points for all candidate fiber orientations of the
anisotropic material staying inside the Tsai-Wu yield surface contour
denote a necessary but not sufficient condition for anisotropic stress-
constraint satisfaction. Fig. 5 shows the Tsai-Wu yield surface contour
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(a) TM800s/M21 (b) Kevlar/epoxy
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(c) Graphite/epoxy (d) LBL
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Fig. 5. Tsai-Wu yield surface contours obtained from the transformed yield surfaces of 180 equally-spaced fiber orientations (6, € [-90°,90°]) for different fiber-reinforced materials:
(a) TM800s/M21, (b) Kevlar/epoxy, (c) Graphite/epoxy, (d) Laminated bamboo lumber (LBL).

Table 2

AL parameters used in all the examples.

Parameter Value
Initial Lagrange multiplier estimators, A 0
Initial penalty coefficient, u©® 10
Maximum penalty coefficient, . 10000
Penalty update factor, a 1.05

Number of MMA iterations per AL step 5

Maximum number of AL steps 1300
Convergence tolerance on density design variables 0.0015
Convergence tolerance on stress constraints 0.003

estimated by taking the union of Tsai-Wu yield surfaces corresponding
to 180 equally-spaced fiber orientations between —90° and 90° for each
fiber-reinforced material from Table 1.

3.3. Optimization parameters used in the numerical examples

Regarding topology optimization of the numerical examples, we
use the following setup for penalization parameters and Heaviside
projections. For all design cases, p, is assigned 3 from the start, and
pg increases from 1 to 3 with an increment of 0.5 at every 50 steps,
starting from step 80. The penalty parameter py, Is also increased
together with p. from 1 to 3. After p; and p 7 reach the value 3, the
Heaviside projections for both density and material variable start with
B, = B; = 1, which are doubled every 30 steps till they reach respec-
tive maximum values ﬁ;max) = 30, and ™™ = 128. The Heaviside
threshold parameters for both density and material variables are taken
as y, = y; = 0.5 throughout the optimization. After both the Heaviside
projection is completed, the p,, decreases from 3 to 1 with a decrement
of 0.2 at every 80 steps. Finally, the optimization is terminated when
a prescribed maximum number of AL steps is reached or a prescribed
tolerance for the stress constraints is achieved after the p /e is decreased
to 1. The values of the AL parameters and convergence tolerances for
all numerical examples are provided in Table 2.

Generally, the weight factor w controls the trade-off of compliance
and volume of the optimized design. A smaller w will lead to optimized
structures with smaller volumes and larger compliance, while a larger
w will lead to structures with larger volumes and smaller compliance. In
this study, two values are considered for the compliance weight factor
w in the numerical examples. We use w = 0.25 for Examples 1 and
2, and set w = 0.3 for Example 3. Suitable weight factor values may
vary depending on the candidate material properties, design domain,
number of available candidate material phases, and desired stiffness
and strength performance from the optimized structure. It will be
valuable to investigate the influence of the weight factor and suitable
optimization parameter update scheme on the optimized design, which
is an interesting direction for future study.

4. Results and discussions

This section presents three numerical examples of optimized fiber-
reinforced composite designs obtained using the proposed framework.

The first example shows the effective prevention of local failure em-
powered by the anisotropic stress constraints. It also demonstrates the
unique advantage of using isotropic material in the multi-axial load
paths at fiber composite joints. The second example investigates the
influence of various Tsai-Wu strength anisotropy on the optimized
designs using different fiber-reinforced materials. Both the first and
second examples consider N, = 1, i.e., single load cases. The third
example applies the proposed formulation to a multiple load case
problem and demonstrates simultaneous stress constraint satisfaction
for all load cases. A summary of the highlights and features of these
examples is given in Table 3.

4.1. Example 1: Merits of anisotropic stress constraints and isotropic mate-
rial in fiber-reinforced composites

The first example compares the proposed framework with two
different fiber-reinforced composite topology optimization approaches
to demonstrate the unique advantages of (1) anisotropic stress con-
straints in local failure prevention with suitable topology, and (2)
isotropic materials in strengthening multi-axially loaded joints in fiber-
reinforced composite design optimization. Fig. 6(a) shows the portal
design domain with prescribed boundary conditions (BCs), the can-
didate fiber orientations of the anisotropic fiber-reinforced material
TM800s/M21 and the corresponding candidate isotropic material with
elastic and strength properties from Table 1, and the features of three
design cases to be compared. Among the three design cases, Dsg. 1 is
optimized using only TM800s/M21 without stress constraints, Dsg. 2
is optimized using only TM800s/M21 while considering corresponding
anisotropic Tsai-Hill stress constraints, and Dsg. 3 is optimized using
both the anisotropic TM800s/M21 and corresponding isotropic can-
didate material while considering respective Tsai-Hill and von Mises
stress constraints. We use compliance weight factor w = 0.25 for all
three design cases.

Fig. 6(b) compares Dsg. 1 and Dsg. 3 to demonstrate the significance
of anisotropic stress constraints in the fiber-reinforced composite design
optimization. Without any stress constraints, the optimized design of
Dsg. 1 shows a sharp corner with high localized stress, where the cor-
responding YFM fringe plot reveals material failure with a YFM value
of 5.07. The yield criteria violation is also indicated in the principal
stress plot through several stress states residing outside the yield surface
contour for candidate material TM800s/M21. In contrast, the inclusion
of appropriate stress constraints in the optimization formulation for
Dsg. 3 eliminates the high-stress sharp corner in the optimized de-
sign. The corresponding YFM plot with a maximum YFM value of 1
indicates effective prevention of failure. The corresponding principal
stress plots show that stress states satisfy the anisotropic Tsai-Hill and
isotropic von Mises yield criteria for fiber-reinforced TM800s/M21 and
corresponding isotropic candidate materials, respectively. Results imply
that anisotropic stress constraints prevent high-stress localization in
fiber-reinforced composites by incorporating fiber-reinforced material
strength information in the optimization formulation. Effectively, the
proposed framework with anisotropic stress constraints can design a
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Table 3
Overview of numerical examples.
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Example Design cases Highlights
Ex. 1 Design comparison between proposed formulation Merits of anisotropic stress constraints and
and conventional optimization approaches. isotropic material in fiber-reinforced composite
optimization.
Ex. 2 Design comparison with different fiber-reinforced Influence of various Tsai-Wu strength anisotropy
materials on optimized designs.
Ex. 3 Design with domain containing crack and two load Crack removal and simultaneous stress

cases.

constraining for both load cases.
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Fig. 6. Advantages of the proposed framework over other optimization approaches. (a) Design domain and boundary conditions (BCs), L = 12.00 m, H = 6.00 m, A = 2.50 m,
d =1.00 m, b=0.55 m, g =4.00x 10* kN/m, color indicators for the candidate fiber orientations of the anisotropic fiber-reinforced material TM800s/M21 and the corresponding
isotropic material, and features of the three design cases to be compared. (b) Comparison of designs without stress constraints (Dsg. 1) and proposed framework (Dsg. 3), (c)
Comparison of designs without candidate isotropic material (Dsg. 2) and proposed framework (Dsg. 3).

strong structure that shows higher load-carrying capacity without any
local material failure.

Fig. 6(c) compares the design evolution history of Dsg. 2 and Dsg. 3
to illustrate the importance of an isotropic candidate material in stress-
constrained fiber-reinforced composite design optimization. Without
the isotropic candidate material, the design optimization for Dsg. 2
diverges at a later stage mainly due to (a) the disproportionately high
stiffness and strength of anisotropic fiber-reinforced material along its
fiber orientation compared to any other directions; (b) the lack of
isotropic material as a candidate; and (c) the effect of continuation of
penalization parameters. To maximize structural stiffness and strength
while minimizing total volume with fiber composites, the optimized
designs tend to align the fibers with the principal stress path or the
load path. From this optimization perspective, the joints, where two
or more load paths intersect, favor a mixing of fiber orientations
(i.e., multiple orientations selected in the same element with mi"’ S
0,1), i = 1,...,Ny) over fiber orientation in any one direction to
provide sufficient stiffness and strength along multiple load paths. In

early iterations, the penalization effect is relatively mild because of the
relaxed interpolated yield surface with p 7. > 1[70], and the optimiza-
tion is more tolerant to the mixing of orientations. By contrast, the
penalization of orientation mixing becomes harsher in later iterations,
especially when p 7 gradually reduces to 1. This harsher penalization of
mixed orientation causes the violation of stress constraints and forces
the optimizer to choose any one of the mixed fiber orientations aligned
with one of the intersecting load paths. However, the overall stress
also increases when mixed orientations are separated at the multi-
axially loaded joints, as no isotropic material phase is available in the
candidate material set to provide sufficient stiffness and strength along
multiple load paths. This further amplifies stress constraint violation
for Dsg. 2, and the optimizer responds by aggressively adding more
material to the design, especially at the joints. As a result, the objective
function for Dsg. 2 increases due to the increasing volume term, thereby
causing the divergence. The diverged design of Dsg. 2 indicates that
the bi- or tri-axial joints occupied with a highly anisotropic material
are not suitable for design optimization with the prescribed load. In
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contrast, Dsg. 3 in Fig. 6(c) shows that the inclusion of isotropic
material stabilizes the design evolution. The isotropic material occupies
the bi- and tri-axial joints in the optimized design, as it provides
sufficient stiffness and strength along multiple directions, unlike the
fiber-reinforced material. We remark that, the appearance of isotropic
material at the joints is driven by the utilization of isotropic stiffness
and strength at multi-axial load paths and not by volume constraint.
Despite having an elastic modulus lower than the anisotropic material,
the appearance of isotropic material is favored by the optimizer and is
necessary to form an integrated optimized fiber-reinforced composite
structure. A similar observation is found in [32], where compliance-
minimization with smoothly varying fiber without dissimilar strength
information also generated optimized designs with orthotropic slender
members and isotropic joints.

4.2. Example 2: Effect of anisotropic strength in michell structure-like
designs

The second example investigates the influence of different strength
anisotropy corresponding to various fiber-reinforced materials on
Michell structure-like design formations. In this example, we consider
four design cases, each with one of the four different fiber-reinforced
materials and corresponding different isotropic materials from Table 1.
We use same compliance weight factor value w = 0.25 for all four
design cases. Fig. 7(a) shows the design domain and BC, and color
indicators for the candidate fiber orientations of the anisotropic fiber-
reinforced material and the candidate isotropic material. Each of the
four design cases with different candidate fiber-reinforced materials has
different magnitudes of the prescribed load ¢ because of large devia-
tions in the four fiber-reinforced material strengths. Fig. 7(b) presents
the Tsai-Wu strength parameters for the fiber-reinforced materials used
in the four different design cases. Fig. 7(c) shows the optimized designs
with respective YFM fringe plots and corresponding principal stress
plots with anisotropic and isotropic candidate material yield surfaces
for the four design cases.

The four optimized designs with different yield strength anisotropy
of constituting fiber-reinforced materials show distinct topology. Al-
though the optimized designs have similar volumes, the prescribed load
carried per unit volume is maximum for Graphite/epoxy, followed by
Kevlar/epoxy, TM800s/M21, and LBL, respectively, which reflects the
fiber-direction strength hierarchy in those materials. The optimized
design with TM800s/M21 and corresponding isotropic material has
symmetric tension and compression members, as the material has a
symmetric Tsai-Hill yield surface with equal tension and compres-
sion strengths both along and perpendicular to the fiber directions.
The optimized design with Kevlar/epoxy and corresponding isotropic
material has a longer outer-most tension member compared to its outer-
most compression member, implying the structure prefers to carry the
prescribed load through tension. In this case, the optimizer utilizes
the higher tensile strength of the Kevlar/epoxy material to minimize
the objective. The optimized design with Graphite/epoxy and corre-
sponding isotropic material has a longer compression member despite
having equal uniaxial tension and compression strengths along the
fiber direction. Such asymmetric topology results from the very small
tension strength of Graphite/epoxy in the direction perpendicular to the
fiber, and is also reflected in the corresponding Tsai-Wu yield surface
contour. The shape of the Graphite/epoxy yield surface indicates a
rapid decrease in tension strength for even a small deviation of the load
path from the fiber direction, which restricts the formation of tension
members during the intermediate stage of the optimization when mem-
bers may have mixed orientations or the anisotropic members are not
completely aligned with the load path. For a similar reason, the design
with laminated bamboo lumber (LBL) and corresponding isotropic
material shows a longer compression path, i.e., prefers to carry the
prescribed load through compression, despite having a higher uniaxial
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tension strength, as the tension strength of LBL reduces drastically for
fiber orientations not aligned with uniaxial load paths.

Further, four optimized designs all form isotropic joints. The sym-
metric design with TM800s/M21 eliminates both sharp corners to
prevent material failure. Asymmetric designs all eliminate the sharp
corners opposite to the dominant load-carrying side. The retained
corners are occupied with isotropic materials as they have higher
biaxial strength compared to the respective anisotropic candidates. For
each design case, the YFM fringe plots and the principal stress plots
corresponding to the anisotropic and isotropic materials show respec-
tive yield criteria satisfactions, and demonstrate the capability of the
proposed formulation to handle distinct fiber-reinforced and isotropic
materials with respective appropriate yield strength and criteria.

4.3. Example 3: Multiple load case design

The third example extends the proposed framework to a multiple
load case problem. Most real-life structures are subjected to multiple
loading conditions that may act simultaneously, which entails the
satisfaction of appropriate anisotropic and isotropic material strength
requirements for all possible load cases. In this example, we optimize
the structure simultaneously for two load cases by performing two finite
element analyses and thereby including element-wise stress constraints
for both load cases in each optimization iteration. Fig. 8(a) shows the
design domain with a crack, boundary conditions, and the two load
cases ¢, and ¢,. The crack is modeled as disconnected nodes in half
of the design domain by taking advantage of the symmetry, as shown
in Fig. 8(a). For the candidate materials, we use the candidate fiber
orientations of anisotropic fiber-reinforced material laminated bamboo
lumber (LBL) and corresponding isotropic material shown in Fig. 8(a),
with material properties from Table 1. We use a weight factor value
w = 0.3 for this example.

Fig. 8(c) shows the optimized design and the YFM fringe plots
corresponding to the two load cases. The optimized structure eliminates
the crack tip by forming a rounded geometry to reduce stress concen-
tration. The YFM plots show maximum YFM values as 1, indicating
no stress violation for both load cases. Furthermore, the isotropic
material occupies the crack tip and other joints because of multi-
axial stress states in these locations, as the significantly low bi-axial
strength of fiber-reinforced LBL material (see Fig. 5) is not sufficient
to prevent joint failure for the prescribed loads. The fiber-reinforced
material LBL occupies the slender members with nearly uniaxial stress
states and fibers aligned with principal stress directions to improve
the objective function by providing higher stiffness per unit volume
compared to the candidate isotropic material. The example illustrates
that the proposed formulation with anisotropic stress constraints can
address strong geometrical singularities such as crack tips and utilize
material isotropy—anisotropy for fiber-reinforced composites even with
multiple load cases.

5. Conclusions

This study presents a stress-constrained multimaterial topology op-
timization framework to design fiber-reinforced composites composed
of both anisotropic (i.e., orthotropic) and isotropic materials. We dis-
cover and demonstrate that both anisotropic and isotropic materials
are needed to achieve high performance in stiffness and strength for
fiber composites. The proposed method enables the full exploitation
of anisotropic and isotropic material properties, i.e., stiffness and yield
criteria, to design composites with optimized compliance and volume
while simultaneously preventing local material failure. Such capabil-
ity is realized through adopting a novel yield function interpolation
scheme, which simultaneously and consistently integrates both a load
factor-based Tsai-Wu yield criterion for anisotropic (i.e., orthotropic)
fiber-reinforced material and a von Mises yield criterion for isotropic
material, in the optimization formulation as stress constraints. The
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Fig. 7. Influence of different strength anisotropy extents on Michell structure-like optimized designs. (a) Design domain and BCs, L, =0.30 m, L, =030 m, L; =145 m, H =1.20
m, h =045 m, d = 0.50 m, g varies as 2.50x 10> kN/m, 2.50x 10> kN/m, 5.00x 10* kN/m, and 0.60x 10°> kN/m for TM800s/M21, Kevlar/epoxy, Graphite/epoxy, and LBL, respectively,
and color indicators for the candidate fiber orientations of the anisotropic fiber-reinforced materials and the corresponding isotropic materials. (b) Radar charts showing the Tsai-Wu
strength parameters of the different fiber-reinforced materials. (c) Features of anisotropic strength, corresponding optimized designs, and dissimilar yield criteria satisfaction for

the four design cases with different fiber-reinforced materials.

resulting optimization formulation with many local stress constraints
is effectively solved by the AL algorithm.

Using the proposed formulation, we investigate several stress-
sensitive design problems to demonstrate the unique advantages of
our framework in fiber-reinforced composite design. The proposed
anisotropic yield function interpolation scheme enables optimized de-
signs containing both anisotropic fiber-reinforced and isotropic materi-
als. The results demonstrate:

« the benefit of introducing isotropic material in fiber-reinforced
composites to strengthen multi-axial load paths,

+ the proposed formulation effectively prevents excessive stress
localization and material failure in both anisotropic and isotropic
parts of the structure, thereby enhancing overall structural
strength for a set of prescribed load cases,

11

+ the capability of the proposed framework to handle fiber-
reinforced materials spanning a wide range of strength anisotropy,
and

+ the seamless and simultaneous incorporation of multiple load
cases in the optimization process.

While this study demonstrates composite designs that simultane-
ously contain dissimilar materials governed by anisotropic Tsai-Wu
and isotropic von Mises yield criteria, we remark that candidate ma-
terial phases with multiple fiber directions may be included for dif-
ferent objective and constraint functions that could potentially benefit
from having fibers in multiple directions throughout the cross-section.
In addition, the proposed methodology can be readily extended to
candidate material phases with uniaxially- or multiaxially oriented
fibers throughout or parts of the cross-sections. Moreover, the proposed
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Fig. 8. Fiber-reinforced composite topology optimization with simultaneous incorporation of two load cases using the proposed framework. (a) Design domain and BCs, L = 2.00
m,d=010m, b=010 m, =050 m, q = 1.40 x 10> kN/m, ¢, = 1.68 x 10> kN/m, and color indicators for the candidate fiber orientations of the anisotropic fiber-reinforced
material LBL and the corresponding isotropic material. (b) Optimized design and corresponding yield function measure (YFM) distributions for the two load cases.

design framework with the yield function interpolation scheme is suf-
ficiently general and can be extended to include various anisotropic
and isotropic yield criteria beyond Tsai-Wu and von Mises, to enhance
the stiffness and strength of a diverse range of lightweight composite
structures.
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Appendix A. Advantage of using load factor-based Tsai-Wu yield
criteria

As the optimization problem involves two types of candidate mate-
rials, i.e., anisotropic (i.e., orthotropic) fiber-reinforced material with
Tsai-Wu failure criterion and isotropic material with von Mises failure
criterion, it is important to impose similar penalization severity on both
failure criteria violation to facilitate unbiased distribution of candidate
materials during optimization. However, the original form of the Tsai—
Wu failure criterion (13) imposes more severe penalty compared to
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the von Mises criterion (12) for same extent of stress violation when
used as stress constraint. To address this problem, we use the load
factor, a concept introduced in [37] to optimize fiber orientations in
a composite laminate, to incorporate the Tsai-Wu yield criterion in the
stress constraints. The load factor-based Tsai-Wu yield criterion has
two advantages. First, the load factor-based Tsai-wu criterion becomes
identical to the von Mises criterion when isotropic strength parameters
are used, ie., X, = X, =Y, =7, = \/ES, which enables consistent
interpolation of the two dissimilar yield criteria. Second, the load
factor represents a uniform measure of stress violation in tension and
compression with respect to the origin in the principal stress plane
for Tsai-Wu strength asymmetry in tension-compression. These two
advantages are demonstrated using Fig. A.9 in the following.

Fig. A.9(a) compares the stress penalization of actual Tsai-Wu and
load factor-based Tsai-Wu criteria with von Mises yield criterion using
an isotropic material with von Mises strength 6;,, = 1. As the von Mises
criterion may be considered a special case of more general Tsai-Wu
criterion, we express the Tsai-Wu strength parameters of this isotropic
material as X, = X, = Y, = Y, V3s = Giso = 1. Notice that, for
the material at yield strength limit, the yield surfaces fO™ (o) = 1,
f®™(5) =1 and n™)(6) = 1 are identical. Then we consider an element
in uniaxial tension with tensile stress magnitude o,. For this element,
the principal stress components are {s¢,,0,} = {0,,0}, and for this
uniaxial tension state, the von Mises yield function takes the value 2,
i.e., (fV™ (o) = 2), for 5, = 5, = 2. Now we evaluate the actual and load
factor-based Tsai-Wu yield criteria on this element. The actual Tsai-Wu
yield function value becomes 2, i.e., (f™(e¢) = 2) for 6, = 6, = 1.4,
whereas, the load factor-based Tsai-Wu yield function value becomes 2,
i.e., (1™ () = 2) for 6, = 5, = 2. We observe that, the actual Tsai-Wu
criterion imposes equal penalty for a lower stress violation, implying
more severe penalization for same stress violation, compared to the von
Mises criterion. In contrast, the load factor-based Tsai-Wu criterion is
identical to the von Mises criterion for isotropic strength parameters,
and imposes equal penalization as the von Mises criterion.

Fig. A.9(b) compares the penalization obtained from actual Tsai-Wu
and load factor-based Tsai-Wu criteria for a fiber-reinforced material
with asymmetric tension-compression Tsai-Wu strength parameters,
given by X, =3,X,=1Y,=1Y,=1,and S = 1/\/5. For the material
at yield strength limit, the yield surfaces f™)(¢) = 1 and 4™ (o) = 1
are identical. We consider an element of this material assuming fiber
direction is always aligned with the direction of principal stress ;. To
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Fig. A.9. Merits of using load factor-based Tsai-Wu yield criterion over actual Tsai-Wu criterion: (a) load factor-based Tsai-Wu criterion is equivalent to traditional von Mises
stress-constraint in terms of penalization severity, and (b) load factor-based Tsai-Wu uniformly penalizes tension and compression with respect to the origin.

evaluate penalization from both types of Tsai-Wu criteria in tension-
dominated regions, we consider an uniaxial tension stress of magnitude
o, for the element acting along the fiber direction. For this uniaxial ten-
sion case, the principal stress components are {¢|,0,} = {o;,0}. Further,
we consider a separate case of uniaxial compression stress of magnitude
o, for the element acting perpendicular to the fiber direction. For
this uniaxial compression case, the principal stress components are
{6y,0,} = {0,—0,}. For the two uniaxial stress states, the effective
uniaxial strengths of the element in tension and compression become
X, =3 and Y, = 1, respectively. For the uniaxial tension case, the actual
Tsai-Wu yield function value becomes 2 when o, = ¢, = 3.645, i.e., the
tension stress is 1.215 times the tension strength X,, whereas, for the
uniaxial compression case, the actual Tsai-Wu yield function value
becomes 2 when ¢, = —o, = —1.414, i.e., the compression stress is 1.414
times the compression strength Y,. Clearly, we observe a disparity in
tension—compression stress violation and corresponding penalization
when the actual Tsai-Wu yield criterion is used in the stress constraints.
However, the load factor-based Tsai-Wu yield function value becomes
2 for 6y = 6, = 6 in the uniaxial tension case, and for ¢, = —0. =
—2 in the uniaxial compression case. In both cases, the load factor-
based Tsai-Wu yield function gives same penalization for same extent
of relative stress violation in tension and compression. Furthermore,
we observe that the actual Tsai-Wu yield function creates concentric
surfaces f™) (o) = k,k > 1, with respect to the center of the elliptical
Tsai-Wu yield surface f(™)(6) = 1, whereas, the load factor-based Tsai—
Wau yield function creates concentric surfaces 5™ (o) = k,k > 1, with
respect to the origin in the principal stress plane. Hence, the load factor
serves as a proportional measure of stress violation uniform in tension
and compression.

Appendix B. Sensitivity analysis
Gradient-based design updates require the sensitivity of the AL

function in Eq. (19). Here, we present the detailed expression of the
sensitivity for the proposed multimaterial formulation for single load

The second and third terms of the R.H.S. of the Egs. (B.1) and (B.2)

can be computed based on (1) and (2), respectively. Thus, the main

complication lies in the first terms. dy " /65;1‘) is computed as

aw(n) (n) aﬁl;i)
z(k)

&

_ oy

——, N,
o gE® ‘
J J

j=1,.. (B.3)

where the sensitivity of material physical variables with respect to
material Heaviside projected variables are obtained as

gm®  2Wm=D o W)(Nm—l) "
J (i) + Cp £(n) n) _

5 = Z o[ =D et [T &+ -nl.

B’g’j =1 n=1
n#k

i=1,...,N, -1,
o Nat o
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We obtain the sensitivities of the AL function with respect to the
physical variables as

aw(n) w ) U
— == |V . )T —w)——
Pe k=1 Yk
0
+ = ([,1(") + (n)h(n)] + AT a;nt) (B.5)
(n)
aw(f') =2 —UTii"_t + — 1 [,1('0 + (n)h(n)] oh' +AT aFigt
amg) C* am(e/) N o (L) amg)
(B.6)

where the gradients of internal force F;,, with respect to the physical

variables can be expressed for a linear material model using solid

material stiffness matrices kf)')e and the displacement vector u, for the
th element as

case, and extending this to multiple load cases is straight-forward. The OFin 1 Nin e ®
sensitivities of the AL function with respect to p and £9,i =1, ... ,Ne o5 5. =[d-ep,p." ] Z(’”e ) “‘o,g u, (B.7)
e j—=
are obtained through the chain rule: IF. =l
Y% int 1y (D)
1= (p(n0 Ve K], ) s B.8
LA % oy 9p; 95, ®1n o = le+(1=e)p"1{pe(m,D) (B-8)
9pe =1 9p; 0b; 9p. and A is the adjoint vector obtained by solving the adjoint system
N, z(k) 5 z(k)
oy § gy 08 0 il on™
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The gradients of equality constraints 2" vanish when g < —(A® /™),
otherwise, they are computed through (superscript » is omitted here-
after because all the operations are carried out in the same nt? AL step):

oh ag, -1

5 = = = appd 1UE = DU -1+ D (B.10)
e e

oh, g, _pp © 2 9 4_55)
= =let -5 16(fE - )+ H—= (B.11)

om,’ O, om,

oh og o7

S5 = 50 = e+ 1 =ap 16U - )P + D= (8.12)

The gradients of £ with respect to the physical material variables m("
and state variable U are obtained for element e as

af(f) » 1,
ﬁfm%Wnﬁ (B.13)
e
& Nm i
of. NONZ on®
- = & B.14
P §m>w (B.14)
on® _( on® do)” gy 903’ gyl doy’ L (B.15)
oU ao.(i) b0 ao.(i) o) ao.(i) b0 oU ’
1 2 6

where 7 is the load factor-based Tsai-Wu yield function of i candi-
date material phase, and ¢ is the Cauchy stress tensor corresponding
to i candidate material. Note that, the von Mises yield function is
identical to the load factor-based Tsai-Wu yield function when isotropic
strength parameters, ie, X, = X, = Y, = Y, = \/§S

c Ciso
are considered for the isotropic candidate material, and hence, the
gradients can be derived from same expression. The gradient of the
Cauchy stress tensor with respect to displacement vector is obtained

LA CHOB®, where C¥ is the solid material constitutive matrix
and B® is the strain-displacement matrix of Material i (i = 1, ... ,N,).
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