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Abstract—The current lack of labeled large-scale flooding
video datasets hinders work in semantic video segmentation of
flooding images. Flooding image segmentation is needed in many
critical application areas, including recurrent flooding analysis
due to sea-level rise and climate change. To address the lack of
labeled flooding videos, this work proposes a novel generative
adversarial network (GAN)-based Synthetic Urban Recurrent
Flooding (SURF) Generator (SURFGenerator) for generating
synthetic videos of flooding at different water depth levels.
We first generate large-scale training samples of synthetically
rendered videos of flooding information using physics-based
water simulation tools within Blender and Mantaflow for our
model. A two-part model is then developed, inspired by previous
work, composed of a masker network using LinkNet followed by
an off-the-shelf vid2vid painter network. The masker inference
network is trained with rendered images and corresponding
binary segmentation masks to identify potential flooding areas for
a specific depth level in the video. Finally, the painter network
is trained separately using segmented render videos as input.
The painter network takes the masks and initial video and
generates synthetic water in the masked areas to create an output
flooding video. To the best of our knowledge, for the first time
in literature, this work generates synthetic flooding videos with
physically relevant features such as moving ripples and small
waves when cars move on the flooded streets. These synthetically
generated realistic flooding videos may be used to generate large-
scale labeled images for semantic segmentation and water depth
estimation on flooded streets and other urban settings using deep
network models.

Index Terms—Synthetic Video Generation, Flooding, Dataset,
Generative Adversarial Networks

I. INTRODUCTION

Among all-natural disasters, flooding frequently occurs
around the world, causing significant damage. Flash floods
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have caused 1075 fatalities recorded from 1996 to 2014
in the United States [1]. The prevalence of weather-related
disasters is increasing rapidly, and flood risk management
has become an important challenge for many nations [2].
Image data from various sources (e.g., satellite, cell phones,
drones, surveillance cameras) has become a valuable source
for flood risk and damage assessment [2]. Researchers have
been developing computer vision and deep learning methods
to detect floodwater on roadways [3], [4] and estimate water
depth [5]. Compared to common pressure or ultrasonic sensor-
based systems, camera-based methods using computer vision
are considerably less expensive [6]. Although many works
have studied the problem on a larger scale by using satellite
imagery and digital elevation models (DEM) [6], [7], there
are a few studies using local street view flood images. Most
of these methods use a region of interest (ROI) over a time
interval and detect changes using a form of a differencing
technique [8]. For example, Yu and Hahn [9] have developed
a remote detection and monitoring system using narrow band
channel to detect changes in the water level of a river indicated
on a bridge pole. However, their model might not be robust
with variations in the scene as it was trained only for one
location.

The frequency of nuisance flooding is increasing around
the world and along the eastern coast of the United States of
America. Nuisance flooding brings significant inconvenience
for motorists, especially if there is no information available
about their route during such occurrences. A key challenge
with image-based methods for flood monitoring methods is
the lack of large-scale labeled datasets representing complex
scenes including variations in lighting, shadows, ripples in
floodwater, etc. The framework presented in this work is



expected to aid a comprehensive real-time flood monitoring
system that can identify floods from traffic surveillance videos,
predict the extent of the flood (flood depth/level), alert mo-
torists with this information, and reroute motorists based on
this information to safer routes.

In a flood detection and warning system, detection of
floodwater depth is naturally required. For example, a motorist
may decide it is safe to drive through 2 cm of floodwater but
not 20 cm. However, there is a distinct lack of diversity in
preexisting flood datasets [5] that are composed of different
flood levels. In our experience, training a model on these
datasets does not translate well into the real world. In addition,
these datasets are composed of independent images that have
no temporal relationship to each other as opposed to our
rendered video data where the frames are related to each
other. In a real-time flood detection system, the input would
realistically be a live video feed from traffic cameras.

Computationally differentiating a water body in an image
can be a very challenging task, and many filtering methods
have been used to determine its segmentation [6]. Edge
detectors and comparing histograms of images in grayscale
or color have been studied when dealing with more stable
sceneries [6]. Data-driven methods based on Machine learning
(ML) have been used to overcome these shortcomings and
improve performance [10]. The use of ML for flood prediction
and water detection has increased immensely in recent years,
and models with multiple research strategies (hybrid models)
are the most used. However, most of these methods still need
heavy preprocessing of the data which can vary from one
location to another [10]. Deep learning methods can help by
transforming the data at one level from the raw input and
have the potential to work more robustly in a diverse scenery
[11]. However, in most cases very large datasets are needed
to avoid overfitting, which is not the case in many realistic
settings [12]. To address these challenges, we propose a GAN-
based Synthetic Urban Recurrent Flooding (SURF) Generator
(SURFGenerator) to create synthetic video images of flooding
on streets to support research on a real-time flood management
system which can warn motorists about floods and the extent
of floods. The proposed SURFGenerator is novel since it can
generate flood scenes for a video (as opposed to still images),
captures complex fluid dynamics (e.g., ripples and waves) due
to moving vehicles on partially inundated roads, and generate
varying depths of floodwater.

The remainder of this paper is as follows. Section II
discusses the appropriate background for understanding the
tools used to generate the synthetic flooding data. Recent
advances and the history of this field are also discussed as well
as the architecture of the models used in this pipeline. Section
III describes SURFGenerator for synthetic video generation
and the training and testing process for the models. Section
IV discusses the results from SURFGenerator, and Section V
concludes and discusses our future work in this field.

II. BACKGROUND

A. Related Work

Previous related work, namely [13], [14], [15], and [16],
focused mainly on synthetic flooding image generation and
experimented with various networks and pipelines to achieve
this. The latest work in this series [13] utilizes a masker
network composed of subnetworks to generate a singular mask
where flooding is likely to be in an input image. The painter
network then takes the mask and input image and paints in
flooding where the mask indicates flooding is likely. However,
as stated previously, the goal of this paper is to create synthetic
flooding videos that could potentially be used in other domains
such as semantic segmentation and depth estimation. Ideally,
the semantic segmentation and depth estimation would be
performed in real-time on live video streams from traffic
cameras. Therefore, the methods used in the literature will
not be ideal for our use case. Since these models are trained
on still images, they would not generate realistic synthetic
videos. This issue exacerbates if cars or other objects were
moving through the water.

In addition, the method used to generate synthetic flooding
images in these works is inherently flawed. The Unity3D game
engine used in some of these works inherently limits the
realism of potential rendered flooding images as all frames
must be rendered in real-time. Other software can be utilized
to generate more realistic images at the expense of rendering
time. In addition, the water body simulation in Unity3D
consists of just a flat plane superimposed on top of a scene.
This is not true to life or physically correct.

B. Blender and Mantaflow

Blender [17] is a very powerful and open-source 3D creation
suite capable of rendering videos and simulating physically
correct water through its inclusion of Mantaflow [18] - a fluid
simulation framework developed by the Technical University
of Munich. This fluid simulation framework can be used in
the presence of other 3D models to create realistic scenes of
flooding. In our case, we use this fluid simulation framework
with a 3D model of a city as this generates pertinent training
data for a semantic segmentation model that needs to detect
flooding within cities. We re-utilized the masks that were
generated for segmentation and instead use them to train the
masker and painter.

C. Masker

LinkNet[19] is a fully convolutional neural network that, in
our experience, works well with performing semantic segmen-
tation of images of flooding. Given an input image x ∈ Rmxnx3,
LinkNet, with a sigmoid activation function and only one
output channel, outputs a segmentation mask y ∈ {0, 1}mxnx1

with 1 representing flooding and 0 representing everything
else. We describe in the methods section how we used LinkNet
as a component in our masker network to generate flooding
segmentation masks for large-scale input videos. We found that
LinkNet performs better over different model architectures to
perform semantic segmentation of potential inundation.



Fig. 1. Overall Pipeline

D. Painter

The painter consequently takes the masks from the masker
and the raw video frames to generate the output video. We
utilized vid2vid [20] for our painter portion. While vid2vid
was initially created to regenerate videos from their output
semantic segmentation video masks, we found that it worked
well for our intended purpose of generating synthetic flooding
in a masked area.

III. METHODS

A. Synthetic Image Generation

The first step in creating realistic videos of flooding is to
obtain a lifelike environment. We used a 3D model based
loosely around New York City [21]. After obtaining the

Fig. 2. Example picture rendered in Blender with no water present.

model, several important details were changed to make the
environment look more realistic.

The first step in creating a realistic model was to add
lighting effects to the city street lights and cars as they were
originally nonfunctional. Both of these are key for accurate
reflections in night-time images of flooding. In addition, we
had to tune shaders to create accurate reflections as the car
paint was originally matte. This is obviously not realistic, so
we added reflections and glossiness to both.

Once these problems were fixed, car movement was then
added using key frames. The car 3D models were also a
singular mesh, so the car wheels did not rotate when the car
did. This resulted in inaccurate water simulations when the
car moved through the water. So, we separated the car wheel
meshes from the car models and tied the car wheel rotation
to the car’s linear movement.

The next step in creating realistic images of flooding was
to add the water to the scene. We created a water simulation
domain that included the city street. The water is then added to
the domain and allowed to settle before the cars move through.
The amount of water can be varied to create training data for
depth estimation. A compromise was struck between the water
quality and simulation performance. Accurate but fast foam
generation was a big problem. The default parameters for foam
generation were set too high and resulted in overwhelming
amounts of foam. Final parameters for water simulation are
shown in Table I. Using these parameters results in a water
simulation that takes about 3-4 days to run using an Intel(R)
Xeon(R) Gold 6130 @ 2.1GHz.

After establishing the framework for the water simulation,
we rendered data for both the masker and painter. All renders
were done using the Cycles rendering engine on four NVIDIA
V100 16GB GPUS. The NVIDIA OptiX denoiser was used,
and the noise threshold was set to .01. Six light bounces were
used. These settings result in a rendering time of about two
minutes per frame.

1) Painter Training Data: After setting up the scene, we
focused on rendering the synthetic data to train the painter. We
rendered both dry and flooded videos. We rendered the three
flooded conditions in Table II from eight different perspec-
tives. These eight different perspectives include differences in
camera angle, camera height, and lens type. We rendered 300
sequential video frames for each condition and perspective



TABLE I
SETTINGS USED IN BLENDER TO SIMULATE WATER

Setting Value
Resolution Divisions 512

Time Scale 0.5
CFL Number 4

Use Adaptive Time Steps True
Time Steps Maximum 4
Time Steps Minimum 2

Simulation Method APIC[22]
System Maximum 0

Particle Radius 1
Sampling 2

Randomness 0.1
Particles Maximum 16
Particles Minimum 8

Narrow Band Width 3
Fractional Obstacles False

Viscosity False
Diffusion True

Foam True
Spray False

Bubbles False
Combined Export False

Upres Factor 1
Wave Crest Potential Maximum 160
Wave Crest Potential Minimum 40
Trapped Air Potential Maximum 400
Trapped Air Potential Minimum 100

Kinetic Energy Potential Maximum 100
Kinetic Energy Potential Minimum 20

Potential Radius 2
Potential Update Radius 2

Wave Crest Particle Sampling 200
Trapped Air Particle Sampling 40

Particle Life Maximum 25
Particle Life Minimum 10
Particle in Boundary Delete

Mesh True
Upres Factor 2

Particle Radius 2
Use Speed Vectors False

Mesh Generator Final
Smoothing Positive 1
Smoothing Negative 1

Concavity Upper 3.5
Concavity Lower 0.4

combination. This results in 7,200 flooded images or 24
flooded videos.

The next step is to create masks using Blender. This is trivial
to do automatically. Each mesh must be given a render layer
pass index corresponding to its semantic segmentation label.
In this case, the labels are 1 for flooded and 0 for not flooded.

After generating the masks, we then use them to mask off
the frames to create our training data for the painter. This
dataset will be referred to as XP, YP for the images and
segmentation masks respectively. The painter training data is
suited to training the painter to paint any initially masked off
video, real or synthetic, as it represents many combinations of
perspective, and lighting.

2) Masker Training Data: The dry images are rendered
based off the three dry conditions in Table II and from eight
different perspectives as in the generation of the training data

TABLE II
SIX CONDITIONS RENDERED

Dry Dirty Water

Dark

Dim

Bright

for the painter module. For the generation of the masker
masks, we generated 10 different flooding masks for different
depth levels outlined by [5] in Table III. This is accomplished
by setting the water level within Blender according to the
10 different depth levels and then generating the mask for
the image as stated above. This means that for each dry
image, there are ten different potential masks for flooding
that are used in training, so there are 7,200 input images
and 72,000 output masks. To improve temporal consistency
between frames, instead of a one-to-one mapping between
frames and the mask, we also input the initial frame at t =
0 and the initial mask at t = 0 into the network for training. It
is important to note that this means the masker is not entirely
unsupervised, as an initial mask is still needed to initialize
the video generation. Furthermore, this was made under the
assumption that the camera will remain stationary throughout
the duration of the video as this was the case with our data.
However, the masker can automatically perform alterations
to the first mask in case cars or other objects pass through
the water. Similarly to the painter, all images and masks are
256x512 resolution. This dataset will be referred to as XM, YM

for the images and segmentation masks respectively.

TABLE III
TEN DIFFERENT FLOODING MASK DEPTH LEVELS GENERATED [5]

Level Depth Level (cm)
Level 1 1
Level 2 10
Level 3 21
Level 4 43
Level 5 64
Level 6 85
Level 7 106
Level 8 128
Level 9 149
Level 10 170



B. Masker

Consider a masker network with a LinkNet [19] decoder
with an EfficientNetB0 [23] encoder M. We utilized Efficient-
NetB0 instead of the original LinkNet encoder. The goal for
the masker is to take a series of dry input images X = [x0,
x1, ..., xT] and a reference mask y0 for frame 0 and generate
a series of masks Y = [y1, ..., yT] that indicate where flooding
is likely to be for each frame in this video. Moreover, since
there are ten different depth levels of flooding L = {l1, l2, ...,
l10}, the masker must learn to generate Y each of these at any
specific different depth level li ∈ L given a reference mask
y0 that represents a mask of potential inundation at the given
level li. This reference mask y0 along with the corresponding
initial frame x0 are used at each timestep to give the model
information about the desired flood level and to maintain
improved temporal stability over the video.

The masker M, is trained using the mask training dataset
XM, YM. For each initially unflooded video X∈XM, X = [x0,
x1, ..., xT] where each frame xi ∈ R256x512x3. For each mask
representing the potential flooded pixels over a video Y ∈ YM,
Y = [y0, y1, ..., yT] where each frame of the mask video yi ∈
{0,1}256x512x1. Given input X and Y0, the output Y is calculated
as follows. Each frame xi in X, is fed to a instance of M so
that each output segmentation mask yi = M(x0, y0, xi). Again,
we mention that the reference values of y0 and x0 are fed to M
for each time step to give information about the target depth
level of the flood.

We then train the masker network on the sequences of
training data while withholding a 15% validation split. This
means that 1,080 frames of the original 7,200 are used for
validation. During training and testing we randomly shuffle the
data within these splits. Limited by 16GB of video memory,
we train the network with a batch size of 4 utilizing Adam [24]
optimizer and Dice loss [25] on yt. We found that Dice loss
performed better over different loss functions such as binary
focal loss and binary cross-entropy. The dice coefficient is
given as the following formula and is a quantity we want to
maximize. For the binary segmentation case we are utilizing
here, TP represents true positives, FP represents false positives,
and FN represents false negatives:

DiceScore =
2TP

2TP + FP + FN

C. Painter

After training the masker, we train the vid2vid[20] network
P to perform the new task of filling in water in the image
where the masker believes water should be for a specific
depth level. We use the ground truth from XP, YP instead of
the masker’s predictions for the training. During inference,
ideally the masker’s predictions can be inputted, but these can
also be overridden with manually created masks. We create
the training data for the masker as follows. Given a series
of frames X ∈ XP, X = [x0, x1, ..., xT] where each frame
is again xi∈ R256x512x3 a series of binary masks Y = [y0,
y1, ..., yT] is generated by the masker M. The painter input

W can be formulated as W = [x0 ⊙ ȳ0, x1 ⊙ ȳ1, ..., xT ⊙ ȳT]
where ⊙ represents the Hadamard Product. The painter P
then calculates the painter output Z as P(W) = Z where Z
is an output RGB video. This means that both W and Z are
RT+1x256x512x3

During training, we utilize the default training parameters
for the vid2vid network and firstly train the model on 128x256
resolution frames and then 256x512 resolution frames. We also
partition our inputs and outputs to be 30 frames long. We keep
the rest of the model parameters the same.

IV. RESULTS AND DISCUSSION

For the inference step, a series of frames is first fed through
the masker. We use the masker output masks in the painter
network to obtain the final synthetic flooding videos. Our
masker converged to .113 validation loss with 90 % accuracy.
Detailed final statistics are shown in Table IV. Dice loss
curves, indicating mismatch in the overlap of the labeled
and computer masks, are shown in Figure 3. Figure 4 shows
training and validation accuracy for the masker over time. Due
to a lack of a benchmark dataset, it is difficult to quantitatively
compare our results with those of other works. Figure 5 shows
sample qualitative results compared with results from [13].
Visual inspection of images generated using SURFGenerator
suggests the results are noticeably better. The models proposed
in the literature [13] appear to struggle to find the appropriate
flooded areas. While our work does obscure the cars close
to the camera with the mask, it still adjusts the mask in the
background based on cars driving through the street. This
is most obvious in the top right corner of the frames. We
also provide x0 and y0 for our model under the reference
row in 5 indicated by Ref. Since no reference is required for
ClimateGAN, it is not shown and is N/A.

Fig. 3. Training and Validation Dice Loss Curves



Fig. 4. Training and Validation Accuracy Over Time

TABLE IV
FINAL QUANTITATIVE RESULTS FROM MASKER

Statistic Train Validation
Dice Loss .05 .113

Binary Accuracy .97 .90
mIOU .93 .83

Precision .94 .90
Recall .98 .90

F1 Score .95 .89
F2 Score .96 .89

We further attach with this paper four separate video file
examples that show the proposed novelty of this work in
rendering fine details such as water ripples and small waves
as a car moves on the flooded streets in comparison to other
works.

• Painter Results
– SURFGenerator: https://youtu.be/lirlI7IbI1E
– ClimateGAN: https://youtu.be/kUoELXDZOzg

• Painter Results
– SURFGenerator: https://youtu.be/k6DQPmUaJKA
– ClimateGAN: https://youtu.be/hPjOmadLet8

These four videos utilize the same hand-labeled masks to
ensure a fair comparison of the painter modules. It is evident
that there is some interaction between the synthetic water
and the cars driving through the water in our results. This
is completely lacking in previous works [13] as they only
generate synthetic still images. The painter module still has
the same problem as the masker where there is no established
benchmark dataset to quantitatively compare the results.

V. CONCLUSION AND FUTURE WORK

This work implements a novel GAN-based SURFGenerator
for generating synthetic videos of flooding at different water
depth levels. We utilized LinkNet as our masker network and
train the masker to output a mask using flooding example
images. We trained the vid2vid network to utilize the masks
from LinkNet to generate synthetic water on an image using
the mask as a reference. The results show that SURFGenerator
is an effective method of generating synthetic flooding videos

t Input SURFGenerator ClimateGAN

Ref. N/A

1

10

20

30

40

Fig. 5. Masks Compared With [13]. Reference mask is not given for
ClimateGAN as their work does not need one.

in contrast to previous work that only generated synthetic
images. We are also currently generating a hand-labeled real
flooded video dataset that can be used as a benchmark for fu-
ture work. One limitation of SURFGenerator is low-resolution
output due to video memory limitations. In the future, we
plan to improve SURFGenerator to generate higher quality
output. SURFGenerator may also be used to generate synthetic
videos of flooding at different depths to train a water depth
level estimation network. In addition, we plan to improve our
current semantic segmentation model that detects floodwaters
and the depth of flooding in images.
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