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ABSTRACT
Wearable sensor-based Human Action Recognition (HAR) has
achieved remarkable success recently. However, the accuracy per-
formance of wearable sensor-based HAR is still far behind the ones
from the visual modalities-based system (i.e., RGB video, skeleton
and depth). Diverse input modalities can provide complementary
cues and thus improve the accuracy performance of HAR, but how
to take advantage of multi-modal data on wearable sensor-based
HAR has rarely been explored. Currently, wearable devices, i.e.,
smartwatches, can only capture limited kinds of non-visual modal-
ity data. This hinders the multi-modal HAR association as it is
unable to simultaneously use both visual and non-visual modality
data. Another major challenge lies in how to efficiently utilize multi-
modal data on wearable devices with their limited computation
resources. In this work, we propose a novel Progressive Skeleton-
to-sensorKnowledge Distillation (PSKD) model which utilizes only
time-series data, i.e., accelerometer data, from a smartwatch for
solving the wearable sensor-based HAR problem. Specifically, we
construct multiple teacher models using data from both teacher
(human skeleton sequence) and student (time-series accelerometer
data) modalities. In addition, we propose an effective progressive
learning scheme to eliminate the performance gap between teacher
and student models. We also designed a novel loss function called
Adaptive-Confidence Semantic (ACS), to allow the student model
to adaptively select either one of the teacher models or the ground-
truth label it needs to mimic. To demonstrate the effectiveness of
our proposed PSKD method, we conduct extensive experiments on
Berkeley-MHAD, UTD-MHAD and MMAct datasets. The results
confirm that the proposed PSKD method has competitive perfor-
mance compared to the previous mono sensor-based HAR methods.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.
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1 INTRODUCTION
Human Activity Recognition (HAR) is an active research area
due to its widespread applications, for example in human-robot
interaction and in smart health area [78]. There are currently two
mainstreams of HAR systems: namely, visual modalities-based (i.e.,
RGB, skeleton and depth) and non-visual modalities-based sys-
tems (i.e., audio, accelerometer data, WiFi, and RFID) [70]. Among
visual modalities-based systems, despite the significant achieve-
ments of video-based HAR methods had made, privacy concerns in
video/image data has drawn increasing attentions recently [11, 55,
69, 94]. For instance, one of the most influential datasets in the com-
puter vision area, ImageNet, has released an updated version that
blurs people’s faces for privacy protection [94]. Consequently, pure
video-based approach is infeasible to be used in privacy-sensitive
areas. Instead, skeletonmodality can eliminate the privacy concerns
while encoding the trajectories of human body joints to characterize
the geometric 3D bodymovement patterns in a continuous way [33].
Also, skeleton modality is not susceptible to background variations
and thus has attracted a lot of attentions recently [33, 93]. However,
such skeleton-based systems, as well as other visual modalities-
based systems, fail to be practical for real-time HAR, or anytime
and anywhere HAR monitoring applications.

On the other hand, thanks to the development of Internet of
Things (IoT) devices, time-series data from wearable devices has
provided new opportunities in solving sensor-based HAR problem
[45, 47–49, 56, 62, 80]. Currently, one of the most common sensors
used in HAR problem is the accelerometer data due to its small
footprint and being available on many low cost sensor devices[11].
However, the accuracy performance of sensor-based HAR system
is far behind when compared to the video-based HAR system as
RGB video contains richer information and can capture scene con-
text [70]. For example, previous work demonstrated that, by using
accelerometer data from a wrist-worn watch, the deep learning
method for fall detection only reach 86% accuracy performance
[45]. This is because the constraint of a single context from the ac-
celerometer data lack the 3D information and can not discriminate
various wrist movements when someone falls [20].
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(a) Conventional two-steps knowledge distillation method with pre-
trained teacher model [21, 61, 98]. (b) One-step self-distillation via augmentation [28, 92].

(c) Cross-model distillation with multi-teacher models using various
modality data [42].

(d) Proposed multi-teacher method. One teacher model took teacher
modality only as the input, while the other one use modality data
from both teacher and student domain.

Figure 1: Comparison of various distillation methods.

In real life, humans perceive the surrounding world in a multi-
modal cognition way. Similarly, multi-modal machine learning is a
modeling approach trying to learn complementary features from
diverse modalities of data. As a result, multi-modal approaches can
often lead to more robust algorithms and better HAR performances.
However, current wearable devices can only acquire certain kinds
of non-visual modality data, such as accelerometer and gyroscope
data [77]. This prevents the multi-modal HAR implementation on
the wearable devices as it fails to use both visual and non-visual
modality data simultaneously. Also, such multi-modal methods
usually have complex architectures and incur high computational
overheads which wearable devices can not afford. For example,
previous study indicated that a smartphone (LG Nexus 5X, 1.8 GHz,
Hexa-core processor with 2G of RAM) can only support a long
short-term memory (LSTM) model which contains an input layer,
two hidden layers, and an output layer [44].

How to leverage the advantages of advanced multi-modal meth-
ods for the wearable sensor-based HAR problem? The technique of
cross-modal transfer, i.e., knowledge distillation, can be one of the
potential solutions. Knowledge distillation (KD) was formally pop-
ularized by distilling knowledge from a larger model (i.e., teacher)
into a smaller model (i.e., student) as a two-steps process as shown

in Figure 1a. By mimicking the pre-trained teacher model, the stu-
dent model is able to retain similar accuracy as well as reducing the
computation resource demand [21]. After that, the data augmenta-
tion based self-knowledge distillation methods [28, 92, 97], which
adopted a consistent prediction of relevant data from the same
class, i.e., distorted versions of instances, has proposed to improve
the performance of the student model as shown in Figure 1b. For
example, Zhang et al. proposed a one-step self-distillation method,
in which knowledge from the deeper parts of the network is dis-
tilled into its shallow sections [101]. Currently, there are only a few
multi-modal KD approaches for the HAR problem [30, 42, 52, 72].
For example, Liu et al. [42] introduced a multi-modal KD method
which integrated various sensor information to improve the vision
modality as shown in Figure 1c. Instead, Ni et al. [52] proposed a
multi-modal KD approach where the complementary information
from the video domain was adaptively transferred to the sensor
domain. Although those studies provide promising results on multi-
modal HAR problem, there are two questions that those works have
not addressed: 1) they have used a pre-trained teacher model to
directly guide the student network, which is an inefficient learning
process and thus contributed to the student model’s performance
degradation; 2) they failed to consider the fact that the student
modality can also contribute to the whole KD process. We argued
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Figure 2: Schematic overview of the proposed PSKD method. Initially, multi-teacher models are constructed using both teacher
and student modalities. Next, we propose a progressive learning scheme to eliminate the performance gap between teacher
and student models. We also introduce a loss function to allow the student model adaptively decide either one of the teacher
models or the ground-truth label it needs to mimic.

that there are two key factors in the KD process: knowledge source
(i.e., teacher model) and the distillation process. In order to increase
the accuracy performance of a student model, a teacher model with
higher performance (i.e., stronger teacher) should be achieved at first.
In addition, how to reduce the performance gap between teacher
and student model via novel training strategy is another important
step to produce a strong student model.

Driven by the aforementioned two intuitions, we proposed an
end-to-end Progressive Skeleton-to-Sensor Knowledge Distillation
(PSKD) for HAR recognition in this study. The overview of the
proposed method is shown in Figure 2. First, we propose a new
multi-teacher approach to construct multiple teacher models us-
ing skeleton (teacher) and accelerometer (student) data modalities
as shown in Figure 1d. In this way, the teacher models can also
understand the characteristic of the student modality data so that
teacher models can generate models which are easier for student
model to mimic. Next, we design an effective progressive learning
(PL) scheme to eliminate the performance gap between teacher
and student models. Specially, the student model will be updated
after the multi-teacher models are updated every epoch to con-
verge to the ground-truth labels. During the PL training process,
a novel loss function called Adaptive-Confidence Semantic (ACS),
is introduced to allow the student model adaptively decide which
teacher models or the ground-truth label it needs to mimic. In sum-
mary, the contributions of this paper are summarized as follows:
1) To the best of our knowledge, this is the first study conduct-
ing the cross-modal KD model from the skeleton data domain to
the wearable sensor data domain. In this PSKD model, a student
model with input of accelerometer data, learns the compensatory

information from multi-teacher models with both input of skeleton
sequences and wearable sensor data. 2) We designed an effective PL
scheme coupled with a novel loss function (ACS), which is utilized
to alleviate the modality gap between the teacher and the student
model. 3) We demonstrated the competitiveness performance of the
proposed PSKD method on three public datasets over the previous
sensor-based HAR methods.

2 RELATED WORK
We briefly review the existing studies for the skeleton and wear-
able sensor-based HAR problem. Multi-modal HAR and knowledge
distillation work are also included in this section.

2.1 Skeleton-based HAR
Skeleton sequences encode the trajectories of human body joints,
which characterize temporal contextual informative human mo-
tions over time. There are several advantages of using skeleton
sequences for HAR problem, due to its informative representation
and its robustness against variations of backgrounds [70]. Early
skeleton-based HAR works mainly focused on extracting hand-
crafted spatial and temporal features, which can be divided into
joint-based [79] and body part-based [76] methods. Besides, due to
the strong feature learning capability, skeleton-based deep learn-
ing methods have become one of the mainstream research in this
field. Recurrent neural network (RNN) or their variants (e.g., long
short-termmemory (LSTM)) are capable of learning the dynamic de-
pendencies in sequential data [12, 38, 102, 103]. For example, Du et
al. introduced an end-to-end RNN, which divided skeleton data into
five body parts rather than taking the skeleton from each frame as a
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whole. These five body parts were then fed to several bidirectional
RNNs to generate high-level representations of the action [12]. Liu
et al. proposed the tree structure-based skeleton traversal method
to exploit the spatial information of the skeleton sequences [37].
Liu et al. presented an attention-based LSTM network to encode the
skeleton sequence and refine the global context on the informative
joints [39]. Similarly, a deep LSTM network consisted of the jointly
spatial and temporal attention subnetwork was proposed to model
the temporal dynamics and spatial configurations [67].

At the same time, due to the expressive power of graph structures,
Graph convolutional Networks (GCNs) has been introduced to the
skeleton-based HAR problem [51, 93, 104]. For example, Yan et al.
exploited GCNs for skeleton-based HAR by introducing Spatial-
Temporal GCNs (ST-GCNs) that can automatically learn both the
spatial and temporal patterns for skeleton-based HAR problem [93].
Wu et al. adopted the ST-GCNs to learn the global information
at first and then designed a residual layer to capture the spatio-
temporal information of skeleton sequences [87]. Li et al. proposed
a spatial and temporal graph router to produce new skeleton-joint-
connectivity graphs. After that, this skeleton-joint-connectivity
graphs was fed to the ST-GCNs for further classification [33]. More-
over, Shi et al. proposed a two-stream Adaptive GCN (2s-AGCN),
which coupled the first-order information (coordinates of joints)
with the second-order information (lengths and directions of hu-
man bones) on the skeleton-based HAR [63]. Li et al. proposed
the Symbiotic Graph Neural Networks (Sym-GCNs) to handle both
action recognition and motion prediction tasks simultaneously so
that these two tasks can enhance each other [35]. In order to reduce
computational costs of GCNs, Cheng et al. present a ShiftGCNs
which applied lightweight point-wise convolutions and shift graph
operations [7]. Similarly, Song et al. proposed a multi-stream GCNs
model which fuses joint positions, motion velocities as well as bone
features. Separable convolutional layers and compound scaling
strategy was applied in this study to reduce the redundant training
parameters [68]. In summary, the skeleton modality provides the
body structure information, which is effective for HAR problem.
Nevertheless, skeleton-based approaches, as well as other visual
modalities-based approaches, can only be applied in a static envi-
ronment where visual devices can be permanently installed. For
example, visual modalities-based approaches are not suitable for
outdoor HAR monitoring problem.

2.2 Wearable sensor-based HAR
Wearable sensor-based HAR methods has received huge attentions
due to their robustness against occlusion and viewpoint variations
[70].Wearable sensors only includes subtle intra-class variations for
the same action performance, regardless of the size of human body
which varies from person to person. Therefore, wearable devices
has been adopted for remote monitoring systems without worry
about the privacy-safety concerns [27, 46]. Numerous Convolu-
tional neural network (CNN) on wearable-based HAR [6, 32, 99] has
been proposed. For instance, a wrist worn tri-axial accelerometer
was used to perform arm movement prediction and results demon-
strated the robustness of such approach [56]. RNN type of model
was also suggested to deal with time-dependent input sequences
[44, 45, 54, 89]. Wang et al. [80] integrated a CNN and bidirectional

LSTM model to acquire spatial and temporal features from acceler-
ation data. Zhao et al. proposed the residual bi-directional LSTM
model to concatenate the forward and backward state i.e., positive
and negative time direction to avoids the gradient vanishing prob-
lem [106]. Wang and Liu [82] present a novel Hierarchical LSTM
method to improve the system’s performance. Meanwhile, some
approaches also suggested converting wearable sensor sequences
as images for HAR study. Zeng et al. [99] transformed the single-
axis sensor data into one-dimensional images and then fed them
to CNN for identification. Lu et al. [43] encoded the tri-axial accel-
eration data into color images, which were fed into a ResNet for
HAR. However, the accuracy performance of sensor-based HAR
is still far behind compared to the visual modalities-based HAR
results due to the constraint of a single contextual information
from accelerometer data [20]. In reality, we human, understand the
surrounding environment in a multi-modal way. Hence, by utilizing
the complementary information acquired from different modalities,
it is possible to enrich the gained knowledge and thus enhance the
sensor-based HAR performance eventually.

2.3 Multi-modal based HAR
Recently, deep learning methods have been conducted on HAR
problem [1, 2, 9, 10, 59, 86]. For example, Dawar et al. proposed
the data augmentation CNN and CNN+LSTM methods based on
depth and inertial modalities, respectively. Wei et al. fed the 3D
videos frames as well as 2D inertial images to a 3D CNN and a
2D CNN models, respectively. The score fusion strategy outper-
formed the feature fusion method in this study [86]. Similarly, some
studies have also been conducted on the depth-inertial fusion tech-
niques by combining two-stream CNN architectures [1, 2]. Besides
that, Islam and Iqbal [24] also proposed a separate encoder to fuse
RGB,skeleton and inertial modalities in a similar shaped vector
representation way. Li et al. adopted the ST-GCN model [93] to ex-
tract the skeleton feature vector from videos and the R(2+1)D [34]
model to encode the RGB videos directly. While the aforementioned
multi-modal models tend to achieve better performance, one of the
drawback is the high computational overhead and larger memory
demand. Consequently, efficient model compression methods have
emerged to build deep models with less computational resource
and maintain the similar performance [19].

Knowledge distillation (KD) is one of the model compression
methods which transfer knowledge from a computational expen-
sive model into a smaller network [21]. In general, student model
tried to mimic the performance from a pre-trained teacher model as
shown in Figure 1a. Zagoruyko and Komodakis [98] proposed the
attention information transfer method by forcing a student CNN
model to mimic the attention maps from a teacher network. Park
et al. designed the distance-wise and angle-wise distillation loss for
the relational knowledge transfer in the KD process [57]. Tung et al.
proposed a new form of KD distillation loss with the constraint that
input pairs that produce similar activations in the teacher network
should also produce similar activations in the student network [73].
Different from these KD methods that mainly focus on the distilla-
tion loss task, there are only a few multi-modal KD approaches for
the HAR problem [16, 22, 30, 42, 52, 72]. For example, Hoffman et
al. designed a modality hallucination architecture by using depth
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as side information to guide an RGB object detection model [22].
Garcia et al. built a KD framework to learn representations from the
depth and RGB videos, while only use RGB data at test time. Simi-
larly, Thoker et al. proposed a multi-modal KD framework which
used RGB videos to train the teacher network for HAR task. After
that, two student networks were trained using mutual learning to
improve the performance [72]. In addition, Ni et al. present the first
multi-modal KD approach on the sensor-based HAR problem. In
this study, the complementary information from the video domain
was adaptively transferred to the sensor domain and improve the
accuracy performance of sensor-based HAR problem [52]. However,
previous works either ignored the fact that the student modality
can contribute useful information to the training of the KD process
or it is not efficient to let the small student network learn directly
from a pre-trained teacher model. Our work, instead, utilized both
teacher and student modality data to build up multiple teacher mod-
els. In this way, teacher models will tend to produce a model which
is easier for the student model to understand from the human’s
learning analogy perspective.

3 METHODS
This section describes our proposed approach in terms of the multi-
teacher models construction process, the progressive learning KD
procedure, and the designed loss function used to let the student
model adaptively learn from either one of these multiple teacher
models or the ground-truth label directly.

3.1 Multi-teacher Construction Process
While impressive progress has been achieved under the standard
teacher-student KD paradigm, the intuition that a student can learn
more effectively from multiple teachers has only been investigated
recently. Currently, there are several studies using multiple teacher
models in the KD process [17, 40, 42, 50, 71, 81, 88, 90, 95]. However,
these works ignore the following two advantages of using the
teacher model that is familiar with the student’s modality data: 1)
when the teacher model realizes and understands the intra-modality
characteristics between teacher and student domain modality data,
it can generate a model which alleviate some level of difficulties
when the student model tries tomimic its performance; 2) additional
modality data, from both teacher and student domain, can build up
teacher models with better performance.

Based on the above two perceived advantages, we constructed
our multi-teacher models which use input modality from both
teacher (i.e., skeleton sequence) and student domain (i.e., accelerom-
eter data). Inspired by [14], we use the well established Graph
Convolutional Networks (GCNs) models, Adaptive GCNs [63], to
utilize the skeleton sequences as the input for the first teacher
model 𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑠𝑘 . After that, we concatenated the skeleton se-
quence and accelerometer data together to build another teacher
model 𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝑓 𝑢 as shown in Figure 3. We briefly introduce the
fusion process here: let X𝑆𝐾 ∈ R(𝑀,𝐶𝑆𝐾 ,𝑇𝑆𝐾 ,𝑁𝑆𝐾 ) be a skeleton
sequence input, where 𝑀 is the number of participants that are
involved in an action, 𝐶𝑆𝐾 is the initial 2D joint coordinates and
size 𝑇𝑆𝐾 and 𝑁𝑆𝐾 are the sequence length and number of skele-
ton graph nodes. For accelerometer data, the input is defined as
X𝐴𝐶 ∈ R(𝑀,𝐶𝐴𝐶 ,𝑆𝐴𝐶 ,𝑇𝐴𝐶 ) , where 𝑇𝐴𝐶 is the accelerometer se+

Figure 3: The fusion of skeleton sequence [𝑥𝑛, 𝑦𝑛, 𝑧𝑛] and
accelerometer data [𝑎𝑥 , 𝑎𝑦, 𝑎𝑧].

quence length, 𝑆𝐴𝐶 is the number of sensors and 𝐶𝐴𝐶 is the chan-
nel dimension of the accelerometer data. For example, given the
accelerometer data from a smartwatch with x-, y- and z-values,
the structure would be 𝑆𝐴𝐶 = 1 and 𝐶𝐴𝐶 = 3. Similar to the skele-
ton data, 𝑀 denotes the person wearing the sensor device and
𝐶𝐴𝐶 = 𝐶𝑆𝐾 = 3 since skeleton sequences and accelerometer data
all include x-, y- and z-axis values. As a result, if there is only one
participant wearing a smartwatch during the activity performance
process, the number of𝑀𝑆𝐾 should be equivalent to that of𝑀𝐴𝐶 .
Also, a common 𝑇 can be guaranteed by resampling 𝑇𝑆𝐾 and 𝑇𝐴𝐶
to the same time length. After that, the fused data which formed as
X ∈ R(𝑀,𝐶𝑆𝐾+𝐶𝐴𝐶 ,𝑇 ,𝑁𝑆𝐾 ) , can be fed into the AGCN backbone as
shown in Figure 2.

3.2 Progressive Learning KD Procedure
Hilton et al. [21] proposed the standard KD process which referred
to a model-agnostic method where a small or less complex model
(i.e., student) tried to minimize the statistical discrepancy between
its predictions distributions and the predictions of a complicated
model (i.e., teacher). However, the standard KD process cannot fully
solve the performance gap between various modalities [42, 52].
We face the problem that the distribution of teacher and student
modality could be very far from each other at the beginning, leading
to a difficult distillation process. It has been proved that a more
powerful teacher model is not a guarantee to give rise to a better
student model during the KD process [60]. Also, it is hard to let the
student model simply mimic a pre-trained teacher model when the
capacity gap between the teacher and student is large [25, 50].

In order to solve this problem, an intermediate network has
been introduced recently [50, 60, 64]. For instance, Mirzadeh et al.
proposed the Teacher-Assistant KD method by gradually increas-
ing the teacher size to foster the distillation process [50]. This is
mainly due to the fact that the learning process can be evaluated if
a suitable goal of the teacher model is set for the student model to
follow. However, training intermediate networks will incur more
computational cost and training time [60, 64]. Therefore, different
to the original KD process where the student learns directly from
the pre-trained teacher model, inspired by [64], we introduced a
progressive KD learning procedure that requires the student model
to learn from the teacher model step-by-step or incremental fashion
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which can help the student model better mimic the performance
of the teacher model. Specially, we update the student model im-
mediately after the teacher model updates one step towards the
ground-truth labels.

However, with multiple teacher models in this study it can be
confusing for the student model to mimic their performances when
their prediction results are inconsistent or incorrect as shown in
Figure 4. For example, when both teacher models (𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑠𝑘 and
𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝑓 𝑢 ) predict incorrectly or when only one of the teacher
models (𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑠𝑘 or 𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝑓 𝑢 ) achieve the correct prediction
result, it is unrealistic for the student model to imitate their per-
formances directly. Technically, the student model should have the
knowledge to select which teacher model or the ground-truth label
it needs to follow adaptively.

3.3 Adaptive-Confidence Loss Function
Currently, several multi-teacher model studies are proposed and
the results demonstrated the beneficial effect of multi-teacher mod-
els on the KD process [15, 31, 88, 96]. For example, either fixed
weight assignment [15, 88, 96] or other label-free schemes, such as
entropy-based weight optimization method [31], has been used for
the student model to learn from the multi-teacher models. How-
ever, fixed weight assignment failed to balance the importance of
multi-teacher models and the other methods may misguide the
student model in the presence of low-quality teacher predictions.
More recently, Zhang et al. proposed the confidence-aware loss
function which adaptively assign the sample-wise reliability for
each teacher prediction based on the ground-truth labels [100].
However, they failed to realize the case where all teacher models
predicted wrong. Based on these observations, we proposed a novel
Adaptive-Confidence loss (AC) to let the student model adaptively
emulates the best teacher model performance or the ground-truth
label during the KD process. In this study, there are two teacher
models, leading to four different cases we need to consider to design
the AC loss intuitively: 1) when both teacher models,𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑠𝑘 and
𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝑓 𝑢 , all have correct prediction results, the student model
should mimic the teacher model which achieved the higher predic-
tion score; 2) when only one of the teacher models predict correctly,
the student model shall mimic the one which predict correctly; 3)
when both teacher models predict incorrectly, the student model
will have to switch and simulate the ground-truth label instead. An
illustration example of these fours cases is shown in Figure 4.

Given a teacher model𝑇𝑘 and a student model 𝑆𝑘 , the soft-target
𝑦𝑇 produced by the teacher model is considered as high-level knowl-
edge. The loss of KD when training a student model can be defined
as:

L𝐾𝐷 = LC (𝑦, 𝑦𝑆 ) + 𝛼L𝐾 (𝑦̃𝑇 , 𝑦̃𝑆 ) (1)

L𝐾 =
1
𝑚

𝑚∑︁
𝑘=0

𝐾𝐿 ( 𝑃
𝑇𝑘

𝑇
,
𝑃𝑆𝑘

𝑇
) (2)

where y and 𝑦𝑆 refer to the predicted labels and class probability
for the student network in this study, respectively. 𝑦𝑆 is the soft
target generated by the student model. Here L𝐶 is the typical
cross-entropy loss and L𝐾 is the Kullback-Leibler (KL) divergence,
while 𝑃𝑇𝑘 is the class probability for the teacher network and 𝑃𝑆𝑘
is the class probability for the student network. T represents the

Figure 4: Comparison of the previous average weight result
(red dash line) and our proposed Adaptive-Confidence weight
method (green dash line).

temperature controlling the distribution of the provability and we
use T = 4 in this study according to [21].

Intuitively, we assign different weights on each teacher model
by calculating the cross entropy loss between teacher predictions
and the ground-truth labels:

L𝐾𝐶𝐸𝐾𝐷 = −
𝐶∑︁
𝑐=1

𝑦𝑐𝑙𝑜𝑔 (𝛼 (𝑍𝑐𝑇𝐾 )), (3)

𝜔𝑘𝐾𝐷 =


− 1
𝐾−1

(
1 −

𝑒𝑥𝑝 (𝐿𝑘
𝐶𝐸𝐾𝐷

)∑
𝑗 𝑒𝑥𝑝 (𝐿

𝑗

𝐶𝐸𝐾𝐷
)

)
, L𝐾

𝐶𝐸𝐾𝐷
≤ L𝐾𝐷

0, L𝐾
𝐶𝐸𝐾𝐷

≥ L𝐾𝐷
(4)

where𝑇𝐾 denotes the kth teacher and 𝛼 (𝑧𝑐 ) is the softmax func-
tion. Consequently, the overall teacher predictions are then aggre-
gated with calculated weights:

L𝑀𝐾 = −
𝐾∑︁
𝑘=1

𝜔𝑘𝐾𝐷

𝐶∑︁
𝑐=1

𝑍𝑐𝑇𝐾
𝑙𝑜𝑔 (𝛼 (𝑍𝑐𝑆 )), (5)

Therefore, the teacher model whose prediction is closer to the
ground-truth labels will be assigned larger weight𝜔𝑘

𝐾𝐷
. In addition,

when all of the multi-teacher model predict incorrectly, the student
model will try to follow the ground-truth label instead.

Since multi-modal action data share the same semantic content
[42, 52], semantic loss is defined as:

L𝑆 =
1
𝑚

𝑚∑︁
𝑘=1

( ∥𝐻𝑆 −𝐻𝑇 ∥)22 (6)

where 𝐻𝑆 and 𝐻𝑇 represent the feature of fc0 layer from both
student and teacher models. To keep𝐻𝑆 and𝐻𝑇 spatial dimensions
same, we add one more fc layer (fc0) before its original fc layer (fc1)
shown in Figure 2.

In summary, we use the original KD loss 𝐿𝐾𝐷 and augment it
to include Adaptive-Confidence loss 𝐿𝑀𝐾 as well as the semantic
loss 𝐿𝑆 , to train the student network and the final ACS loss for the
student model is defined as follow:

L = 𝐿𝐾𝐷 + 𝛽𝐿𝑀𝐾 + 𝛾𝐿𝑆 (7)
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where 𝛼, 𝛽,𝛾 are the tunable hyperparameters to balance the loss
terms for the student network.

4 EXPERIMENTS
4.1 Dataset
In this study, three benchmark datasets were selected due to their
multi-modal data forms:

Berkeley-MHAD [53]. This dataset includes 11 action classes per-
formed by 12 participants (5 females and 7 males). There are 6
three-axis wireless accelerometers installed to measure movement
at the wrists, ankles and hips. In summary, there are 3,948 accelera-
tor samples in total. We use skeleton motion data and accelerometer
data as the teacher modality and accelerator data as the student
modality. In this study, we use the first 7 participants for training
and the rest ones for testing mentioned in [53].

UTD-MHAD [5]. This dataset covers 27 action classes performed
by 8 participants (4 females and 4 males). In this study, we use
skeleton sequences and inertial data (accelerometer data) as the
teacher modality and accelerometer data as the student modality.
Both modalities have 861 samples and we spit them in half for
training and testing mentioned in [5].

MMAct [30]. This dataset includes 37 action classes performed
by 20 participants (10 females and 10 males) containing more than
36,000 trimmed clips. Since the skeleton sequences are missing in
this dataset, we use OpenPose to extract them from RGB videos [4].
After that, we use skeleton sequences plus accelerometer data from
watch as the teacher modality and accelerometer data from watch
as the student modality. One of the various settings (cross-subject)
is used to evaluate this dataset based on the train and test split
strategy mentioned in [30].

4.2 Experimental Settings
All the experiments were performed on four Nvidia GeForce GTX
1080 Ti GPUs using PyTorch. To guarantee a deterministic and
reproducible behavior, all training procedures are initialized with a
fixed random seed. We employed the classification accuracy and
F-measure as the evaluation metric to compare the performance
of the PSKD model. Grid-search method [42] was conducted to
evaluate the effect of hyper-parameters 𝛼, 𝛽,𝛾 in three datasets.

4.3 Comparison to the State-of-the-Art
We compare the performance of our PSKD with state-of-the-art
vision-based action recognition (VAR), multi-modal action recogni-
tion methods (MMAR), skeleton-based action recognition (SKAR),
sensor-based action recognition (SAR), and knowledge distillation
(KD) methods. The comparison results of three datasets are shown
in Table 1, 2, and 3, respectively. In Table 1, the proposed PSKD
model performs better than all the previous comparable VAR mod-
els when the RGB videos used as the input data by 0.79%-9.59%
[23, 41, 65, 85, 105]. We make an improvement in the testing ac-
curacy of 4.99% compared to the study where 16 features from ac-
celerometer signals were captured for classification [18]. Similarly,
the proposed PSKD model achieved higher accuracy performances
compared to the previous MMAR and SKAR models [24, 91]. Es-
pecially, the proposed PSKD model outperforms all previous SAR
methods using both accelerometer and gyroscope data as the input,

Table 1: Comparison results between our proposed method
and state-of-the-art methods on UTD-MHAD dataset in accu-
racy performance (%). Acc. denotes accelerometer and Gyro.
denotes gyroscope.

Type Method Testing Modality Accuracy (%)

Hussein et al. [23] RGB video 85.60
Wang et al. [85] RGB Video 85.81

VAR Zhao et al. [105] RGB Video 92.10
Si et al. [65] RGB Video 94.40
Liu et al. [41] RGB Video 92.84

SKAR Xiao et al. [91] Skeleton 94.37
MMAR Islam et al. [24] Skeleton+RGB video 95.12

Singh et al. [66] Acc. + Gyro. 91.40
Ahmad and Khan [2] Acc. + Gyro. 95.80

SAR Wei et al. [86] Acc. + Gyro. 90.30
Garcia-Ceja et al. [18] Acc. 90.20

KD Ni et al. [52] Acc. 96.97
Proposed PSKD Acc. 95.19

Table 2: Comparison results between our proposed method
and state-of-the-art methods on Berkeley-MHAD dataset in
accuracy performance (%). Acc. denotes accelerometer.

Type Method Testing Modality Accuracy (%)

Wang et al. [84] RGB Video 88.19
VAR Zhou et al. [107] RGB Video 95.32

Lin et al. [36] RGB Video 96.87
Vantigodi et al. [74] Skeleton 96.06

SKAR Vantigodi et al. [75] Skeleton 97.58
Kapsouras et al. [26] Skeleton 98.18

SAR Das et al. [8] Acc.(Six locations) 88.90
KD Ni et al. [52] Acc. (Left Wrist) 90.02

Proposed PSKD Acc. (Left Wrist) 94.76

Table 3: Comparison results between our proposed method
and state-of-the-art methods on MMAct dataset in F1 socre
performance (%). Acc. denotes accelerometer and Gyro. de-
notes gyroscope.

Type Method Testing Modality Cross Subject(%)

Kong et al. [29] RGB video 62.80
Wang et al. [85] RGB video 64.40

VAR Zhou et al. [107] RGB video 66.56
Lin et al. [36] RGB video 70.12
Kong et al. [29] RGB video 59.10

SAR Kong et al. [30] Acc.(watch+phone) 62.67
KD Ni et al. [52] Acc. (watch) 60.14

Proposed PSKD Acc. (watch) 71.42

which validate the effectiveness of the PSKD model. However, it is
worth noting that the proposed PSKDmodel does not perform better
as compared to the previous method where the accelerometer data
learn the complementary information from video domain during
the KD process [52]. This degradation was mainly due to the noisy
data in the skeleton domain from the UTD-MHAD dataset[13]. In
general, these results demonstrated that accelerometer data in the
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PSKD model can achieve competitive accuracy performances. In
Table 2, even though the proposed PSKD model can not outperform
the previous SKAR and VAR models where the skeleton data or
RGB video was used during the testing modality [26, 36, 75], our
proposed PSKD method tested with only the left wrist accelerome-
ter data does perform better compared to the previous study where
accelerometer data from six locations were used [8, 52], regardless
of any data prepossessing they applied. This result sheds light on
the proposed PSKD for improving sensor-based HAR. In Table 3,
while accelerometer data from the watch is the only modality in
the testing phase, the method achieves better F-score performance
compared to [29, 30, 36, 83, 107] in which either video streams or
accelerometer data from phone and watch were used in the testing
phase. This result validates that accelerometer data in the PSKD
model can significantly learn knowledge from skeleton data and
thus effectively improve sensor-based HAR performance.

Baseline PSKD(1) PSKD(2) PSKD(3)
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94.5
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95.5
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Figure 5: Accuracy performances (%) between the baseline
and the proposed PSKD method on UTD-MHAD dataset [5].
The number in parenthesis means the epoch numbers which
the student tries to mimic either the best teacher model or
the ground-label truth iteratively.

4.4 Ablation Study
In this subsection, we design experiments to verify the effectiveness
of each component in the proposed framework based on UTD-
MHAD dataset [5] and try to answer the following questions:
(i) What is the effectiveness of multi-teachers progressive
learning scheme in PSKD?
To evaluate the effectiveness of the proposed multi-teachers pro-
gressive learning (PL) scheme in PSKD method, we compare the
PSKD with the student baseline: 1) a student baseline model which
learns directly from two pre-trained teacher model (𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑠𝑘 and
𝑇𝑒𝑎𝑐ℎ𝑒𝑟 𝑓 𝑢 ) ; 2) PSKD model with different epoch numbers which
the student tries to mimic. As shown in Figure 5, the proposed PSKD
model outperforms the student’s baseline model by 0.37%-0.62%,
proving that the PL scheme is able to reduce the performance gap
and thus improve the accuracy performance of the student model.
In addition, PSKD(1) achieved higher accuracy performance com-
pared to PSKD(2) and PSKD (3), indicating that a smaller learning
step can boost the learning capacity of the student model.

Table 4: Ablation study of accuracy (%) and F1 score (%) per-
formance on UTD-MHAD dataset. Acc. denotes accelerom-
eter and W/O denotes without. AC denotes the Adaptive-
Confidence loss 𝐿𝑀𝐾 . S denotes semantic distillation loss 𝐿𝑆 .

Method Testing Modality Accuracy F1 score

Logits [3] Acc. 93.87 94.15
Fitnet [61] Acc. 94.03 94.27
ST [21] Acc. 94.34 94.64
AT [98] Acc. 94.27 94.80
RKD [57] Acc. 95.03 95.02
SP [73] Acc. 94.06 94.56
CC [58] Acc. 94.12 94.72
ACS Acc. 95.19 95.67

AC(W/O S) Acc. 94.51 94.59
S (W/O AC) Acc. 94.82 94.21

(ii) What are the contributions of each loss terms in the pro-
posed ACS loss function?
To evaluate the effectiveness of the proposed loss function, we
compare the ACS function with state-of-the-art KD methods
[3, 21, 57, 58, 61, 73, 98]. For those methods, we use the shared
codes, and the parameters are selected according to the default set-
ting. As shown in Table 4, the proposed ACS loss function performs
better than all of the comparable KD loss functions. These observa-
tions validates that our ACS can effectively transfer the knowledge
from skeleton modalities to wearable sensor modalities by inte-
grating two complementary modules, 𝐿𝑀𝐾 and 𝐿𝑆 . In addition, the
Adaptive-Confidence loss 𝐿𝑀𝐾 contributes about 0.31% to accuracy
improvement as compared to semantic distillation loss 𝐿𝑆 , which
validates the assumption that distillation process is a key factor in
the KD process. Also, semantic distillation loss 𝐿𝑆 contributes 0.17%
to accuracy improvements, proving that the semantic information
is critical for time-series data in a KD process [52].

5 CONCLUSION
In this work, we propose a novel Progressive Skeleton-to-sensor
Knowledge Distillation (PSKD) model which only needs to accept
time-series data i.e., accelerometer data, from a smartwatch dur-
ing the testing phase. Specifically, we propose the construction of
multiple teacher models using both teacher and student modalities.
In addition, we design an effective progressive learning scheme to
eliminate the performance gap between the teacher and the student
models. After that, a novel loss function called Adaptive-Confidence
Semantic (ACS), is introduced to allow the student model adaptively
to select the correct teacher model or the ground-truth label it needs
to mimic. Extensive experimental results on UTD-MHAD, MMAct
and Berkeley-MHAD datasets confirm the effectiveness and com-
petitive performance compared to the previous methods on the
mono sensor-based HAR problem.
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