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ABSTRACT
Knowledge-Intensive Visual Question Answering (KI-VQA) refers
to answering a question about an image whose answer does not lie
in the image. This paper presents a new pipeline for KI-VQA tasks,
consisting of a retriever and a reader. First, we introduce DEDR,
a symmetric dual encoding dense retrieval framework in which
documents and queries are encoded into a shared embedding space
using uni-modal (textual) and multi-modal encoders. We introduce
an iterative knowledge distillation approach that bridges the gap
between the representation spaces in these two encoders. Extensive
evaluation on two well-established KI-VQA datasets, i.e., OK-VQA
and FVQA, suggests that DEDR outperforms state-of-the-art base-
lines by 11.6% and 30.9% on OK-VQA and FVQA, respectively.

Utilizing the passages retrieved by DEDR, we further introduce
MM-FiD, an encoder-decodermulti-modal fusion-in-decoder model,
for generating a textual answer for KI-VQA tasks. MM-FiD encodes
the question, the image, and each retrieved passage separately and
uses all passages jointly in its decoder. Compared to competitive
baselines in the literature, this approach leads to 5.5% and 8.5%
improvements in terms of question answering accuracy on OK-
VQA and FVQA, respectively.

CCS CONCEPTS
• Information systems→ Information retrieval; Question an-
swering; Multimedia and multimodal retrieval; • Computing
methodologies → Computer vision.
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Figure 1: An example KI-VQA question. Answering these
question requires external knowledge.
Image © zrim, https://www.flickr.com/photos/zrimshots/2788695458

1 INTRODUCTION
Knowledge-intensive visual question answering1 (KI-VQA) is a
variant of visual question answering tasks whose questions cannot
be answered using the image alone. Therefore, accessing external
knowledge sources is necessary to answer these questions. KI-VQA
has a large number of real-world applications. Imagine customers
of e-commerce websites taking a photo of a product or a part of a
product and asking a question about it. In the context of education,
students can ask a question about an image in their textbook. Users
can take a photo of a visual sign or a piece of art and ask questions
about its meaning or history. These are just a few examples of KI-
VQA applications. Figure 1 shows an example of KI-VQA tasks: the
image is sufficient to identify the “animals” as giraffes, and likely
also the the subspecies, but not to answer how tall they get.

The majority of prior work on KI-VQA, such as [12, 14, 37, 50, 57],
assumes that the external knowledge can be obtained from a struc-
tured knowledge base. However, a high-quality and complete knowl-
edge base may not be available for some domains [1]. Besides, main-
taining knowledge bases with up-to-date information is challenging
[54]. To prevent these issues, following Qu et al. [40], we take an
alternative approach to KI-VQA: using a large text corpus as the
external knowledge source. In this setting, a two-stage pipeline for
KI-VQA systems is to first retrieve a list of passages for a given
question-image pair and then process the retrieved passages to
generate an answer.2 This pipeline is depicted in Figure 2.

The effective performance of dense retrieval models in various
information retrieval tasks [23, 62, 63] and their extension flexibility
to multi-modal3 input have motivated us to focus on dense retrieval
for implementing the first stage of the KI-VQA pipeline (i.e., passage

1This task is also referred to as outside-knowledge visual question answering (OK-
VQA) in the literature [38]. OK-VQA is also the name of a dataset used in this paper.
To avoid confusion, we use “KI-VQA” to refer to the task.
2This is similar to the retriever and reader stages in open-domain question answering
tasks [4].
3In this paper, multi-modality refers to the combination of text and image.
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retrieval). A property of this retrieval task is that it deals with
asymmetric input modalities: the user information need is multi-
modal (question-image pair) while the information items (passages)
are uni-modal. As a result of this property, Qu et al. [40] recently
showed that a KI-VQA dense retrieval model that uses a multi-
modal encoder for representing the question-image pair and a text
encoder for representing the passages in the collection leads to
state-of-the-art passage retrieval performance. We argue that using
such an asymmetric bi-encoder architecture is sub-optimal, since
the encoders produce outputs in different semantic spaces and
fine-tuning the encoders cannot always close this gap. We first
study two alternatives for developing symmetric dense retrieval
models:4 (1) producing a textual representation of the image and
using a symmetric uni-modal bi-encoder architecture for dense
retrieval, and (2) converting passages to a multi-modal input format
and using a symmetric multi-modal bi-encoder architecture. We
observe that both alternatives suffer from information loss, but also
that they produce complementary representations. This observation
motivates us to not only combine these two encodings, but also
transfer knowledge between them. In more detail, we propose an
iterative knowledge distillation approach to transfer knowledge
between these two alternative symmetric dense retrieval models.
The proposed symmetric dual encoding approach leads to 11.6%
and 30.9% MRR improvements compared to the state-of-the-art
baseline on OK-VQA [38] and FVQA [56] test sets, respectively.

For the second stage of the pipeline, unlike much prior work
on answer span detection for KI-VQA [12, 14, 37, 50, 57] (i.e., an-
swer extraction from the retrieved passages), we focus on retrieval-
augmented autoregressive answer generation. We propose MM-FiD,
a simple yet effective extension of the Fusion-in-Decoder (FiD) [20]
architecture to multi-modal input. FiD is a retrieval-augmented text
generation model that has recently shown effective performance in
question answering tasks [20]. MM-FiD uses a multi-modal encoder
to represent the question, the image, and the retrieved passages and
uses a uni-modal decoder that generates an answer and is trained
using the maximum likelihood objective. Extensive experiments on
both OK-VQA and FVQA datasets demonstrate that MM-FiD signifi-
cantly outperforms alternative approaches for answer generation. It
also performs better than answer span detection baselines. In more
detail, our end-to-end pipeline achieves 5.5% and 8.5% improvement
compared to the baselines on OK-VQA and FVQA question answer-
ing tasks, respectively. We open-source our code and release our
learned model parameters for research purposes5.

2 RELATED WORK
(Multi-Modal) Dense Retrieval. Using dense vectors for retriev-
ing textual documents related to a textual query has been studied
since the emergence of Latent Semantic Analysis [7]. However,
dense retrievers’ performance remained inferior to that of sparse
retrievers like BM25 until Karpukhin et al. [23]’s Dense Passage
Retriever (DPR), which uses the [CLS] token output by BERT [8], a
pre-trained language model. While many dense retrievers only use
a single vector to represent the query and the document [23, 41, 59],

4Symmetric dense retrieval refers to a bi-encoder architecture with shared parameters.
5https://github.com/alirezasalemi7/DEDR-MM-FiD

using multiple vectors per document and query has been also stud-
ied [11, 19, 24, 36, 49].

Multi-modal dense retrieval has recently been investigated in
different forms: (1) uni-modal query and multi-modal documents
[15, 34, 52], (2) multi-modal query and uni-modal documents [40],
(3) multi-modal query and multi-modal documents [51], and (4) uni-
modal query and uni-modal documents with queries and documents
from different modalities, i.e., cross-modal retrieval [21, 42].

In this work, we focus on the second case, where the query
is multi-modal while the documents only contain text. Qu et al.
[40] utilized an asymmetric bi-encoder with LXMERT [53], a pre-
trained vision-language model based on BERT [8] for encoding
queries, and BERT itself for encoding documents. As we show,
such an asymmetric architecture is sub-optimal; utilizing different
encoders creates a semantic “gap” in the embedding space and fine-
tuning cannot easily overcome the issue. We instead propose a new
symmetric dual encoding framework that addresses this issue.

Knowledge Distillation for Dense Passage Retrieval. Due to
the vast number of learnable parameters in dense passage retriev-
ers, sometimes available datasets are insufficient to train them [62].
Consequently, knowledge distillation, in which a teacher model pro-
vides labels for a student model, has become a standard approach
for training dense retrieval models and has shown compelling out-
comes [17, 30]. Existing work in this area often uses cross-encoder
rerankers that input both query and document as teacher models for
dense retrieval models with a bi-encoder architecture [44]. Another
approach is to distill knowledge from multi-vector dense retrieval
models, such as ColBERT [24] to single-vector dense retrievers [63].

In our experiments, we did not find knowledge distillation from
cross-encoder rerankers helpful for KI-VQA datasets. Thus, we in-
troduce a novel approach: iterative knowledge distillation for dual
encoding, in which knowledge distillation happens iteratively be-
tween two bi-encoders that use different modalities in their inputs.
Accordingly, each model learns the perspective of the other, adjust-
ing their representation spaces for more effective dense retrieval.

Knowledge-Intensive VisualQuestion Answering. Knowledge-
intensive refers to a category of retrieval-enhanced machine learn-
ing problems [61] whose inputs are not sufficient to produce the
output and external information should be provided. KILT [39] is a
benchmark for natural language knowledge-intensive tasks such
as open-domain question answering, fact-checking, entity-linking,
slot-filling, and knowledge-based dialogue. All the mentioned tasks
are text-only knowledge-intensive tasks. To the best of our knowl-
edge, there is no unified benchmark on multi-modal knowledge-
intensive tasks, which is relatively less explored. Therefore, this
paper focuses on knowledge-intensive visual question answering.

Visual question answering (VQA) is a multi-modal question an-
swering task whose goal is to answer a natural language question
about an image [3]. VQA is primarily designed to measure the abil-
ity of models in representing and comprehending multi-modal data.
Therefore, questions in VQA are often related to visual features (e.g.,
color or shape of the objects) and sometimes require commonsense
knowledge. In other words, a human can answer VQA questions by
just looking at the image, without accessing external information.
Given this formulation, VQA has limited real-world use cases. In
contrast to VQA, knowledge-intensive visual question answering

https://github.com/alirezasalemi7/DEDR-MM-FiD
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Figure 2: A pipeline for KI-VQA tasks that retrieves unstruc-
tured text in response to the input question-image pair and
uses the retrieved passages as supporting documents to gen-
erate textual answer.

is the task of answering a question about an image that needs an
external piece of information not available in the image to answer
the questions. Fact-based Visual Question Answering (FVQA) [56]
is a visual question-answering dataset in which answering the ques-
tions about an image needs the model to consider a relevant fact.
Alternatively, outside-knowledge visual question answering (OK-
VQA) [38] is a dataset similar to FVQA, but the required knowledge
is not limited by facts.

Current approaches for OK-VQA utilize different strategies to
solve the problem: some rely on implicit knowledge stored in lan-
guage or vision-language models to answer the questions without
using any external source of knowledge [48, 60], while others use
external knowledge sources for this purpose in addition to implicit
knowledge [12–14, 37, 57]. Using OCR and dense object labels can
also be effective for this task [10, 32], but is beyond the scope of this
paper. In order to use an explicit knowledge source, it is necessary
to design a retriever that retrieves a small set of relevant passages to
the image and question [40] and a reader that selects or generates
the response from the retrieved passages [13, 14, 35]. This paper
proposes effective solutions for both of these steps.

3 PROBLEM STATEMENT
In knowledge-intensive visual question answering, a user asks a
natural language question about an image, which requires access
to external information. In other words, the answer to the question
does not exist in the image, which necessitates the utilization of ex-
ternal resources. See Figure 1 for an example of KI-VQA tasks. These
resources can be in many different forms, from structured and semi-
structured knowledge bases to unstructured text retrieved from the
web. In this paper, we consider a scenario where the answer should
be retrieved and extracted from a collection of unstructured natural
language passages. In the following, we specify more formally the
KI-VQA task studied in this paper.

Let𝑇 = {(𝑄1, 𝐼1, 𝐴1, 𝑅1), (𝑄2, 𝐼2, 𝐴2, 𝑅2), · · · , (𝑄𝑛, 𝐼𝑛, 𝐴𝑛, 𝑅𝑛)} de-
note the training set for a KI-VQA task. Each training instance
consists of a natural language question 𝑄𝑖 , an image 𝐼𝑖 , a set of
short textual answers 𝐴𝑖 , and a set of relevant passages 𝑅𝑖 . That
means each questionmay have multiple answers in the training set
(i.e., |𝐴𝑖 | ≥ 1), which are often semantically the same but syntac-
tically different. Similarly, there may exist multiple passages that
are relevant to the question (i.e., |𝑅𝑖 | ≥ 1). All relevant passages are
selected and annotated from a large-scale collection C. Therefore,
𝑅𝑖 ⊆ C : ∀1 ≤ 𝑖 ≤ 𝑛. We study the following two related tasks:

Passage Retrieval for KI-VQA: the retrieval task is to use the
training set 𝑇 to train a retriever that retrieves relevant passages
from the collection C for a given question-image pair (𝑄, 𝐼 ).

Retrieval-Augmented Answer Generation for KI-VQA: the
retrieval-augmented answer generation task is to generate a short
textual answer for any unseen question-image pair (𝑄, 𝐼 ) by having
access to the collection C. Therefore, models in this task naturally
retrieve passages from C and utilize them for generating an answer.

We first propose a symmetric dual encoding architecture for
dense retrieval in KI-VQA and then introduce a multi-modal fusion-
in-decoder model as a retrieval-enhanced answer generation ap-
proach.

4 DEDR: DUAL ENCODING DENSE
RETRIEVER FRAMEWORK

Figure 2 depicts a pipeline for knowledge-intensive visual question
answering tasks. As shown in the pipeline, the input to the dense
retrieval model is asymmetric – query encoder takes multi-modal
input (i.e., a question and an image), while the passage encoder
takes a uni-modal text input (i.e., a passage from C). This asym-
metric property in the input modalities makes it challenging to
design an effective symmetric dense retrieval model. This is why
the current state-of-the-art dense retrieval model proposed by Qu
et al. [40] uses an asymmetric architecture, where a pre-trained
multi-modal language model (i.e., LXMERT [53]) is used for query
encoding and a pre-trained uni-modal language model (i.e., BERT
[8]) is used for document encoding. Since such asymmetric ar-
chitectures start from fundamentally different embedding spaces,
they suffer from slow convergence speed and sub-optimal dense
retrieval performance. Conversely, extensive research on dense re-
trieval for uni-modal data (textual queries and documents) suggests
that symmetric architectures lead to significantly better perfor-
mance. State-of-the-art dense passage retrieval models, such as
TAS-B [17], ColBERT [24, 49], RocketQA [41, 44], and CLDRD [62],
use symmetric architectures. Motivated by this observation, our
goal is to learn a symmetric dense retrieval model for KI-VQA tasks.

To this aim, we study two alternative solutions. First, we convert
all model inputs to a uni-modal textual form and then use uni-modal
language models for both query and document encoding (Section
4.1). Second, we convert all inputs to the samemulti-modal (text and
image) form and then use multi-modal language models for both
encoders (Section 4.2). We hypothesize that these two models learn
complementary representations for the following reasons: (1) they
take different input formats, and (2) the pre-training process and
data in uni-modal and multi-modal language models are different.
Our experimental results also validate this hypothesis (see Section
6.3). Following this observation, we propose an iterative knowledge
distillation approach that alternates between these two encoding
approaches as teacher and student models. Finally, by combining
these two encoding approaches DEDR learns a symmetric dual
uni-modal/multi-modal encoder for both queries and documents.

4.1 Unified Uni-Modal Encoding
In order to use a shared uni-modal (textual) encoder for representing
both queries and passages, we need to convert the image in the
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Figure 3: The training and inference procedure in the DEDR framework. DEDR first trains uni-modal and multi-modal encoders
in isolation (left), then uses iterative knowledge distillation to adjust both representation spaces (middle). At inference, DEDR
uses the aggregation of both encodings to construct a symmetric dual encoding dense retriever (right).

query to text. This model can be formulated as follows:

𝑆𝑇 ((𝑄, 𝐼 ), 𝑃) = 𝐸𝑇 (concat(𝑄,𝜙𝐼→𝑇 (𝐼 ))) · 𝐸𝑇 (𝑃) (1)

where · denotes dot product between two vectors, 𝐸𝑇 is a uni-modal
text encoder, and 𝜙𝐼→𝑇 is a modality converting module that takes
an image and produces a textual description for it.

There are several approaches to implement the modality con-
verter 𝜙𝐼→𝑇 . One approach is to generate the name of objects that
are in the image using object detection approaches. We take an
alternative approach by using image captioning objectives to train
the modality converter model 𝜙𝐼→𝑇 . The reason is that image cap-
tioning approaches produce open-ended descriptions of images, as
opposed to predefined categories in object detectionmodels. In addi-
tion, collecting training data for image captioning models is cheap,
given the availability of large-scale images with captions on the
web. In more detail, we use the ExpansionNet v2 [18] architecture to
implement 𝜙𝐼→𝑇 . Expansion V2 is an encoder-decoder architecture
designed on top of the Swin-Transformer [33] extended by Block
Dynamic and Static Expansion [18] and multi-head attention [55].
The model is first pre-trained using images and captions from the
Microsoft COCO dataset [31]. Then, the self-critical optimization
[46] is performed to complete the model’s training. Once the model
is trained for producing textual descriptions of images, we freeze
the ExpansionNet v2’s parameters and only optimize the text en-
coder 𝐸𝑇 . This substantially reduces the number of parameters that
need to be learned using the KI-VQA training set.

For implementing the text encoder 𝐸𝑇 , there are numerous lan-
guage models available. In our experiments, we use BERT-base [8]
and the representation associated with the [CLS] token is consid-
ered as the output of the encoder𝐸𝑇 . Note that in Equation (1), query
and passage encoders are the same and they use shared parameters,
guaranteeing a symmetric architecture for dense retrieval.

4.2 Unified Multi-Modal Encoding
Even though using a multi-modal encoder for both query and pas-
sage encoding seems straightforward, most multi-modal language
models do not accept text-only inputs. Therefore, we need to de-
velop a technique to fill this modality gap. Our unified multi-modal
encoding approach can be formulated as follows:

𝑆𝑀𝑀 ((𝑄, 𝐼 ), 𝑃) = 𝐸𝑀𝑀 (𝑄, 𝐼 ) · 𝐸𝑀𝑀 (𝑃, 𝐼[MASKED]) (2)

where 𝐸𝑀𝑀 is a pre-trained multi-modal encoder that represents
a pair of text and image as input. To address the modality gap
between the query and passage sides, we use a multi-modal lan-
guage model that has used the masking technique in the visual
side during pre-training. In more detail, we use LXMERT [53] that
uses Faster R-CNN [45] to recognize 36 objects in the given image
and generate their representations and bounding boxes. Then, this
information about objects in addition to the text tokens are fed to a
dual-encoder transformer network with a cross-modality encoder
on top. Finally, the [CLS] token is used to represent the whole input.
Since LXMERT has been pre-trained with different pre-training
objectives, including Masked Object Prediction, it is a perfect fit for
our unified multi-modal representation learning.

In order to overcome the aforementioned problem with encod-
ing textual only data for passage representation, we propose a
simple yet effective technique that we call Passage Expansion using
Masked Image Representation (PEMIR). In this technique, we feed
a passage to LXMERT as the textual input and zero (masked) as the
visual input with bounding boxes of [0.0, 0.0, 1.0, 1.0]. This visual
input means 36 masked objects with bounding boxes of the whole
image. Intuitively, we ask the model to generate a representation for
the input passage while trying to generate the best visual object rep-
resentations based on the textual input data. Thus, this is roughly
equivalent to expanding the passage with image representation
based on the passage content.

Using this approach, we can generate the representation for
queries and documents using the same multi-modal encoder with
shared parameters. This is beneficial because it helps the dual en-
coder architecture start from the same shared embedding space.
Additionally, we can use only a single encoder as both query and
document encoder, which results in decreasing the number of pa-
rameters of the model.

4.3 Dual Encoding Optimization via Iterative
Knowledge Distillation

𝐸𝑇 and 𝐸𝑀𝑀 represent the KI-VQA inputs from different perspec-
tives; 𝐸𝑇 only considers the textual representation of the inputs,
while 𝐸𝑀𝑀 considers their multi-modal representations. These
models also use unique pre-training data and objectives. Hence, we
hypothesize that these two representation learning models provide
complementary information. Our empirical analysis validates this
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Figure 4: The architecture of MM-FiD. It uses multi-modal
encoder to encode each question-image-passage triplet sepa-
rately and then concatenates their encodings as input to the
decoder for knowledge aggregation and answer generation.

hypothesis, see Figure 5. Given this observation, we propose to use
a knowledge distillation approach to improve both of these models.

Isolated Training of Encoders. We first optimize the parameters
of these two models separately using the retrieval training set for
each KI-VQA task. Following DPR [23], we use a contrastive loss
function based on cross-entropy to train the models:

𝐿isolated = − log
𝑒𝑆𝑋 ( (𝑄,𝐼 ),𝑃𝑝𝑜𝑠 )

𝑒𝑆𝑋 ( (𝑄,𝐼 ),𝑃𝑝𝑜𝑠 ) +∑︁
𝑃 ′∈Pneg 𝑒

𝑆𝑋 ( (𝑄,𝐼 ),𝑃 ′ )
(3)

where 𝑋 ∈ {𝑇,𝑀𝑀} is the encoding approach used to generate
scores, and 𝑃𝑝𝑜𝑠 is a positive (relevant) passage and Pneg is a set of
negative passages for the question-image pair (𝑄, 𝐼 ). To construct
Pneg, we use a hard negative sampling approach used in [40] in ad-
dition to in-batch negatives – in which all the positive and negative
documents of other queries in the training batch are considered as
negative documents to the query.

Iterative Knowledge Distillation among Encoders. In order
to adjust the representations space in 𝐸𝑇 and 𝐸𝑀𝑀 and improve
their generalization, we design an iterative knowledge distillation
approach. In this method, we first use the more effective encoder,
based on the performance of the validation set, as the teacher and
the other encoder as the student. Then, we train the student using
the scores provided by the teacher. We use the following listwise
KL-divergence loss function:

𝐿IKD = −
∑︂

𝑃 ′∈Pneg∪{𝑃𝑝𝑜𝑠 }
𝑆 ′𝑌 ((𝑄, 𝐼 ), 𝑃

′) log
𝑆 ′
𝑋
((𝑄, 𝐼 ), 𝑃 ′)

𝑆 ′
𝑌
((𝑄, 𝐼 ), 𝑃 ′) (4)

where 𝑋 and 𝑌 respectively denote the student and teacher model.
𝑆 ′ ((𝑄, 𝐼 ), 𝑃 ′) is the normalized score of 𝑆 ((𝑄, 𝐼 ), 𝑃 ′) for 𝑃 ′ ∈ Pneg∪
{𝑃𝑝𝑜𝑠 } generated by the student or teacher model using the softmax
function. Similar to Equation (3), 𝑃𝑝𝑜𝑠 is a positive passage, and
the same method is used for negative sampling. We continue the
training of the student using the teacher’s scores until a stopping
criterion is met: either the computing budget finishes (i.e., it reaches
the maximum number of epochs set in the experiment) or early
stopping based on validation performance.

In the next round of distillation, we swap the teacher and the
student. In other words, the student of the previous round acts as
the teacher in this round to provide scores for the previous teacher’s
training in this round. This iterative approach to knowledge distilla-
tion is helpful because, in each round, the student model learns the
perspective of the teacher model in scoring documents, especially
when these two models rely on two different embedding spaces to
generate scores. We continue this iterative distillation process and
use early stopping based on validation performance to terminate.

4.4 Retrieval Inference using Dual Encoding
As we mentioned earlier, 𝐸𝑇 and 𝐸𝑀𝑀 , introduced in previous sec-
tions, retrieve passages in response to a multi-modal query using
separate embedding spaces. The former focuses on textual embed-
ding space, while the latter encodes queries and passages into a
multi-modal embedding space. An idea to combine these two mod-
els in a single embedding space is to concatenate each model’s
representation for its inputs together. If each of these encoders pro-
duce a 𝑑-dimensional encoding for each input, the final embedding
space consists of 2𝑑 dimensions.

There are twomethods to use this combined embedding space: (1)
we can use the concatenated representation of the models to train a
new ranker from scratch using the loss function in Equation 3, and
(2) we can use the best rankers of each type after knowledge distilla-
tion and combine their representations without further training to
generate representations for queries and passages. The latter does
not need training because each model has been trained previously.
We just combine their representations to index the embeddings
using Faiss [22] and search the index to retrieve passages.

5 MULTI-MODAL FUSION-IN-DECODER
Fusion-in-Decoder (FiD) [20] is a state-of-the-art generative encoder-
decoder model based on T5 [43]. It is intended to aggregate knowl-
edge across multiple passages and generate a single response based
on them. It has produced strong performance on a wide range of
knowledge-intensive language tasks (KILTs). The current state-of-
the-art model on six benchmarks from the KILT leaderboard6 is
based on a light variant of FiD [16]. We extend FiD architecture to
multi-modal data and propose MM-FiD.

To formalize the task, for a query consisting of an image 𝐼 and a
question𝑄 , we assume a set 𝑃 = {𝑝1, ..., 𝑝𝑛} including 𝑛 supporting
passages is provided (e.g., by a retrieval model). The goal of the
multi-modal fusion-in-decoder (MM-FiD) is to generate a textual
answer to 𝑄 about the 𝐼 by considering all passages in the 𝑃 .

We use VL-T5 [6] architecture, a multi-modal text generative
visual-language model pre-trained with different text generation
tasks, as a start point to design multi-modal fusion-in-decoder ar-
chitecture. VL-T5 takes a piece of text and image objects’ features
detected by Faster R-CNN [45] as input and generates a piece of
text as output. The simplest solution to the mentioned problem
formulation in this section is to feed VL-T5 with the concatenation
of the question, image, and each passage to generate an answer
based on each supporting document; however, the aggregation and
reduction of the generated answers for each document are challeng-
ing because the model might generate a different answer for each
document. Another approach to solving the problem is to concate-
nate the question, image, and all documents and feed it to VL-T5 to
generate a single answer based on them; this approach suffers from
two shortcomings: (1) concatenating all passages results in a long
sequence, which decreases the speed of the model and increases
the memory consumption and may also reach the maximum token
limit, and (2) concatenation of different passages together makes it
hard for the model to consider the context of each passage because
the passage set 𝑃 can be about different unrelated subjects.

6https://eval.ai/web/challenges/challenge-page/689/leaderboard/

https://eval.ai/web/challenges/challenge-page/689/leaderboard/
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MM-FiD uses an alternative approach, shown in Figure 4. In
this architecture, the question and image are concatenated with
each document in the supporting set independently and fed to the
encoder of VL-T5 to be encoded. Then, the encoded representation
of each question, image, and each passage is concatenated together
to be fed to the decoder of VL-T5. In this approach, the image,
question, and each document are encoded separately, which helps
the model decrease memory use and consider the context better
than the two other alternatives mentioned above. Additionally,
concatenating the encoded representations of all passages at the
decoder helps the model consider the information in all documents
for generating a single answer to the question about the image.

In order to train the MM-FiD for text generation, we use the
cross-entropy loss function using the following formulation:

𝐿mm-fid = −
∑︂
𝑘

log 𝑃 (𝑦𝑘 |𝑦𝑖<𝑘 , {𝐼 ,𝑄, 𝑝1}, {𝐼 ,𝑄, 𝑝2}, ..., {𝐼 ,𝑄, 𝑝𝑛})

where 𝑦𝑘 is 𝑘th output token, 𝐼 is the image, 𝑄 is the question, and
𝑝𝑖 is the 𝑖th supporting (e.g., retrieved) passage.

6 EXPERIMENTS
6.1 Datasets
Outside-Knowledge Visual Question Answering (OK-VQA)
[38]: This dataset consists of triplets, including an image, a ques-
tion about the image, and an answer to the mentioned question.
Answering most of the questions in this dataset needs a piece of
information that is not provided in the image. Therefore, access-
ing an external source of information is required for this task. A
retrieval dataset based on a Wikipedia dump7 with 11 million pas-
sages was later constructed by Qu et al. [40], which we use to train
and evaluate our retrievers. This dataset contains 9009 questions
for training, 2523 questions for validation, and 2523 for testing [41].
We also use original OK-VQA dataset to evaluate the performance
of our end-to-end retrieval and answer generation pipeline.
Fact-based Visual Question Answering (FVQA) [56]: Each data
point in this dataset consists of an image, a question about the
image, the answer, and a fact supporting the answer. This dataset
has also provided an unstructured knowledge source containing all
the facts (i.e., sentences) we need to answer the question about the
image. We use 70% of samples (4077) in this dataset for train set
and augment them similar to Qu et al. [40] with five hard negatives
retrieved by BM25, 15% for validation (874), and 15% for test set
(874). We use the original FVQA dataset to evaluate the performance
of our end-to-end retrieval and answer generation pipeline.

6.2 Experimental Setup
Retriever Training Setup. In our experiments, we use the Adam
optimizer [26] with a batch size of 16 and a learning rate of 10−5.
We use a linear learning rate scheduler with 10% of total steps as
warm-up steps. We also use gradient clipping with the value of 1.0.
The maximum input length of each encoder is set to 400 tokens.
We train each model for 2 epochs on OK-VQA and 4 epochs on
FVQA. All the experiments are conducted on a machine with a
Nvidia RTX8000 GPU with 49GB of memory and 256GB of RAM.
7This Wikipedia collection is available at https://ciir.cs.umass.edu/downloads/
ORConvQA/all_blocks.txt.gz.

We use Faiss [22] to index the learned embeddings with a flat index
for efficient dense retrieval. For BM25, Pyserini is used.

Multi-Modal Fusion-in-Decoder Training Setup. We use the
AdamW optimizer with a batch size of 1 with 32 gradient accumula-
tion steps, which results in an effective batch size of 32. We utilize
a learning rate of 5 × 10−5 and weight decay of 0.1 for training the
MM-FiD model. Given the training dataset sizes, we use a linear
learning rate scheduler with 800 and 200 warm-up steps for the
OK-VQA and FVQA datasets, respectively. We train the model for
5000 (OK-VQA) and 2000 (FVQA) gradient update steps. We create a
checkpoint of the model every 500 training steps and select the best
checkpoint based on its performance on the validation set. We also
use gradient clipping at 1.0 for training. The maximum encoder’s
input length of each question and passage pair is set to 420 (OK-
VQA) and 64 (FVQA) tokens. Since the answers in both datasets are
short, we set the MM-FiD’s output length to 16. MM-FiD’s decoder
uses beam search [58] with a beam size of 2 for answer generation.
We train MM-FiD using 32 (OK-VQA) and 5 (FVQA) supporting
passages for each question and image pair, where the supporting
passages are retrieved using the proposed DEDR model. The MM-
FiD experiments are conducted on a machine with a single Nvidia
RTX8000 GPUwith 49GB of memory and 128GB of RAM. Following
[56], we use five-fold cross-validation for the FVQA dataset. Note
that we train an individual DEDR for each fold to avoid data leaks.

Evaluation Metrics. To be consistent with the literature, we use
the common metrics suggested for each dataset. Following Qu
et al. [40], we use mean reciprocal rank (MRR) and precision of
the top five retrieved documents (MRR@5 and P@5) for evaluating
the retrieval models on the OK-VQA dataset. We use MRR@5 and
P@1 for retrieval evaluation on the FVQA dataset. Since the FVQA
dataset provides only one ground truth passage per question, we use
Precision@1 as the evaluation metric. We use a two-tailed paired
t-test with Bonferroni correction to identify statistically significant
improvements (p-value < 0.05).

For the evaluation of the answer generation model for the OK-
VQA dataset, we follow the official evaluation script provided by
Marino et al. [38]. It uses the evaluation metric for VQA [3] task,
which relies on human annotations. For evaluation on the FVQA
dataset, we follow Wang et al. [56] and use Top-1 Accuracy or
Exact Match (EM) as the evaluation metric, in which we lowercase
answers and remove articles (e.g. a, an, the) and punctuation.

6.3 Passage Retrieval Results for KI-VQA Tasks
Baselines. We compare the proposed dense retrieval framework
with the following baselines:

• Sparse (TermMatching) Retrieval Models:We use two sparse
retrieval baselines: (1) BM25: this baseline uses the BM25 for-
mulation [47] with questions as queries, ignoring the images,
and passages as documents. (2) BM25-Obj (CombMax): this ap-
proach extracts 36 objects from the image (objects are generated
by a Faster R-CNN [45] model pre-trained on Visual Genome
[2, 27]) and concatenates each object’s name to the question as
the query and uses the BM25 formulation to retrieve passages.
Then it uses CombMax [9, 28] to aggregate these 36 ranked lists.

https://ciir.cs.umass.edu/downloads/ORConvQA/all_blocks.txt.gz
https://ciir.cs.umass.edu/downloads/ORConvQA/all_blocks.txt.gz
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Table 1: Passage retrieval performance for KI-VQA tasks on OK-VQA and FVQA datasets. The superscript ∗ denotes statistically
significant improvement compared to all the baselines based on two-tailed paired t-test with Bonferroni correction (𝑝 < 0.05).

Dataset OK-VQA FVQA

Model Validation Test Validation Test
MRR@5 P@5 MRR@5 P@5 MRR@5 P@1 MRR@5 P@1

Sparse Retrievers
BM25 0.2565 0.1772 0.2637 0.1755 0.3368 0.2700 0.3509 0.2848
BM25-Obj (CombMax) 0.3772 0.2667 0.3686 0.2541 0.3903 0.3272 0.4057 0.3421

Symmetric Single-Encoding Dense Retrievers
Dense-BERT (question, passage) 0.4555 0.3155 0.4325 0.3058 0.3860 0.3089 0.3836 0.3020
Dense-BERT (question + caption, passage) → Our 𝐸𝑇 0.5843 0.4445 0.5797 0.4420 0.4409 0.3558 0.4292 0.3409
Dense-LXMERT → Our 𝐸𝑀𝑀 0.5722 0.4276 0.5465 0.4066 0.4293 0.3478 0.4269 0.3409

Asymmetric Dual-Encoding Dense Retrievers
BERT-LXMERT 0.4704 0.3364 0.4526 0.3329 0.1455 0.1006 0.1477 0.1029

Symmetric Dual-Encoding Dense Retrievers
DEDR 0.6260∗ 0.4890∗ 0.6469∗ 0.5059∗ 0.5833∗ 0.4931∗ 0.5618∗ 0.4713∗

% relative improvement w.r.t. the best baseline 7.1% ↑ 10.0% ↑ 11.6% ↑ 14.5% ↑ 32.3% ↑ 38.6% ↑ 30.9% ↑ 37.8% ↑

Qu et al. [40] explored other rank aggregation approaches as well
and CombMax was found to be the best solution for this task.

• Symmetric Single-Encoding Dense Retrieval Models: We
use three baselines in this category: (3, 4) Dense-BERT: a BERT-
based dense retrieval model (similar to DPR [23]) with the same
training objective as ours. We provide the results for two varia-
tions of this model, an image-independent approach whose query
encoder only encodes the question, and an image-dependent
approach whose query encoder takes the concatenation of the
question and the image caption (captions are generated by Ex-
pansionNet v2 [18]). The latter is the same as our 𝐸𝑇 encoder. (5)
Dense-LXMERT is a model that uses a multi-modal encoder, i.e.,
LXMERT, to encode queries and passages. It uses masked image
tokens on the passage side. This approach is our 𝐸𝑀𝑀 encoder.

• Asymmetric Dual-Encoding Dense Retrieval Models: In
this category, we use BERT-LXMERT, proposed in [40], that uses
BERT for passage encoding and LXMERT for query encoding.8

For fair comparison, we use the same training and evaluation pro-
cess for all (our and baseline) models. To the best of our knowledge,
our baseline results are the highest reported in the literature.

Comparison Against Retrieval Baselines. The passage retrieval
results are reported in Table 1. We observe that dense retrieval
models generally outperform sparse retrieval baselines, confirming
our design choice to focus on dense retrieval for KI-VQA tasks.
Interestingly, sparse retrieval models achieve higher MRR on FVQA
than on OK-VQA, while dense retrieval models perform signifi-
cantly better on the OK-VQA dataset. This observation suggests
that relevant documents in FVQA perhaps have higher term over-
lap with the questions and image objects. The results show that
image-independent models (i.e., BM25 and Dense-BERT that only
encodes the question) underperform their own variant with image
information (i.e., generated objects or captions). This highlights the
importance of representing images in KI-VQA tasks. Furthermore,
Table 1 shows that the asymmetric dense retrieval baseline (BERT-
LXMERT) does not perform as well as symmetric dense retrieval
baselines. In particular, BERT-LXMERT shows a poor performance

8The original paper [40] refers to this baseline as Dense-LXMERT. We rename it to
BERT-LXMERT to avoid confusion.

Figure 5: Difference between reciprocal rank (RR) obtained
by 𝐸𝑇 and 𝐸𝑀𝑀 for each query on the OK-VQA test set. The
blue / orange color denotes the queries where 𝐸𝑇 / 𝐸𝑀𝑀 wins.

on the FVQA dataset. That can be due to the smaller training set
in FVQA,9 as asymmetric models often require more training data.
Another observation from these results is that performance on
validation and test sets are relatively close, therefore it is safe to
argue that performances on the validation sets are generalizable to
the test sets and no aggressive overfitting is observed. The results
show that our own encoders 𝐸𝑇 and 𝐸𝑀𝑀 are the best performing
baselines. We conducted an experiment to see if these two encoding
approaches provide complementary information. To this aim, we
compute the reciprocal rank (RR) obtained by 𝐸𝑇 and 𝐸𝑀𝑀 for
each query in OK-VQA and plot their differences in Figure 5. For
better visualization, this figure sorts the queries with respect to
their Δ𝑀𝑅𝑅 in descending order. Figure 5 shows that 𝐸𝑇 and 𝐸𝑀𝑀

perform similarly for about half of the queries, while 𝐸𝑇 performs
better for about 25% of queries and 𝐸𝑀𝑀 performs better for the
other ∼ 25%. This shows that these two encoders contain com-
plementary information and their aggregation can improve
the results – confirming the motivation of designing DEDR.

Results obtained by DEDR suggest statistically significant im-
provements compared to all the baselines. We achieve 11.6% higher
MRR and 14.5% higher P@5 than the best baseline (including our
own encoders 𝐸𝑇 and 𝐸𝑀𝑀 ) on the OK-VQA test set and 30.9%

9FVQA not only has fewer training questions, but only has a single relevant passage
per question.
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Table 2: Ablation study for iterative knowledge distillation in DEDR. The superscript ∗ denotes statistically significant improve-
ment compared to all the ablation cases based on two-tailed paired t-test with Bonferroni correction (𝑝 < 0.05).

Dataset OK-VQA FVQA

Model Validation Test Validation Test
MRR@5 P@5 MRR@5 P@5 MRR@5 P@1 MRR@5 P@1

DEDR (joint encoders, no KD) 0.5930 0.4507 0.5405 0.4263 0.4669 0.3764 0.4498 0.3684
DEDR (isolated encoders, no KD) 0.6236 0.4771 0.6330 0.4972 0.5551 0.4668 0.5313 0.4439
DEDR 0.6260 0.4890∗ 0.6469∗ 0.5059∗ 0.5833∗ 0.4931∗ 0.5618∗ 0.4713∗

Figure 6: DEDR performance at different iterations of the
proposed iterative knowledge distillation approach on the
test set of both OK-VQA and FVQA datasets.

higher MRR and 37.8% higher P@1 on the FVQA test set. We believe
that our symmetric dual encoding approach works well without
requiring a large scale training set, which justifies substantially
larger gain on the FVQA dataset. Note that DEDR also uses BERT
and LXMERT and the obtained improvements are not due to larger
model parameters or different pretraining. However, compared to
Dense-BERT and Dense-LXMERT, DEDR has the ability to take
advantage of knowledge from both uni- and multi-modal language
models. BERT-LXMERT, however, could not take advantage of such
extra implicit “knowledge” effectively due to its asymmetric design.

DEDRAblations. To empirically study the impact of each decision
we made in designing DEDR, we report ablation results in Table 2.
The first row of the table is associated with a model that jointly used
both encoders (𝐸𝑇 and 𝐸𝑀𝑀 ) at both training and evaluation. The
second row, on the other hand, train each encoder separately until
convergence and only concatenates them at inference. There is no
knowledge distillation in either of these two models. The results
show that DEDR outperforms both of these models, demonstrating
the effectiveness of the proposed iterative knowledge distillation
approach for dual encoding. The improvements are statistically
significant in nearly all cases, except for MRR@5 on the OK-VQA
validation set. We further plot the retrieval performance at each
knowledge distillation training step in Figure 6. We observe that in
the first three iterations the performance of both encoders generally
increases on both datasets. Models show different behavior on the
different datasets in Figure 6. This shows that the number of itera-
tions in the knowledge distillation approach is dataset-dependent
and should be tuned for best results.

6.4 Question Answering Results for KI-VQA
In this section, we report and discuss the end-to-end retrieval and
answer generation results. A wide range of question answering

methods has been applied to KI-VQA tasks. Not all of these methods
are publicly available and not all of them use the same knowledge
source. We compare our methods to the best performing models in
the literature with relatively similar model size. Note that MM-FiD
contains 220 million parameters. In our first set of experiments, we
also exclude the models that use GPT-3 (175 billion parameters)
as an implicit “knowledge” source. The results are reported in Ta-
ble 3. As mentioned in the table, different approaches on OK-VQA
use different knowledge sources, such as ConceptNet, Wikidata,
Wikipedia, Google Search, and Google Images. The FVQA dataset
released a fact corpus which is used by several models. We observe
that MM-FiD that uses passages retrieved by DEDR for answer gen-
eration outperforms all the baselines listed in Table 3. We observe
8.5% improvements on FVQA compared to the best performing base-
line. This table also includes the results for MM-FiD without any
supporting document (i.e., without retrieval). We observe that the
MM-FiD is able to produce competitive performance even without
utilizing retrieval results. The reason is that these large language
models contain a lot of information in their parameters from pre-
training phase and they can answer many questions based on their
internal implicit “knowledge”. MM-FiD without retrieval even out-
performs all the baselines on OK-VQA. Note that the number of
parameters in MM-FiD (220M) is comparable to the baselines. The
results suggest that employing retrieval results leads to larger gain
on FVQA than on OK-VQA, possibly due to the nature of the ques-
tions in fact-based visual question answering.

Note that some models use the outputs produced by GPT-3 as a
knowledge source and often outperform those models above that
use explicit knowledge. However, it is difficult to draw conclusions,
as the GPT-3 training set is unknown and it has 175B parameters,
making it extremely expensive to run and not truly comparable to
any other model mentioned above in terms of capacity. That being
said, we do compare our model against state-of-the-art baselines
with comparable model size that use GPT-3’s output as support-
ing evidence. The results on the OK-VQA dataset are reported in
Table 4.10 When our model uses GPT-3’s output in addition to pas-
sages, it still outperforms its alternatives, but with a smaller margin,
highlighting the impact of document quality in KI-VQA tasks.

Question Answering Ablations and Analysis. For a deeper
understanding of the proposed answer generation solution, we con-
duct careful ablation studies whose results are reported in Table 5.
The results on both datasets suggest that when using the same
retriever (i.e., DEDR), MM-FiD outperforms its uni-modal variation,
FiD [20], that has been also used for KI-VQA tasks, for example
in KAT [13]. Moreover, Table 5 demonstrates the impact of differ-
ent retrieval models on the final answer generation. For example,
10We do not have access to the GPT-3’s output for FVQA questions.
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Table 3: Question answering performance for models with explicit knowledge source on both OK-VQA and FVQA datasets. All
these models are relatively comparable in terms of model size and contain less than 1 billion parameters.

OK-VQA FVQA
Model Knowledge Source Acc. Model Knowledge Source Top-1 Acc.
KAT-base [13] WikiData 40.93 BAN [25] None 35.69
RVL [50] ConceptNet 39.04 RVL [50] ConceptNet 54.27
MAVEx [57] Wikipedia, ConceptNet, Google Images 40.28 BAN [25] + KG-AUG [29] None 38.58
UnifER+ViLT [14] ConceptNet 42.13 UnifER + ViLT [14] FVQA Corpus 55.04
VRR [35] Google Search 39.20 Top1-QQmaping [56] FVQA Corpus 52.56
LaKo-base [5] ConceptNet, DBPedia, WebChild 42.21 Top3-QQmaping [56] FVQA Corpus 56.91
MM-FiD None 42.82 MM-FiD None 52.78
DEDR +MM-FiD Wikipedia 44.57 DEDR +MM-FiD FVQA Corpus 61.80

% relative improvement w.r.t. the best baseline 5.5% ↑ % relative improvement w.r.t. the best baseline 8.5% ↑

Table 4: QA performance of SOTA models that rely on the
output of GPT-3 as a “knowledge source” on OK-VQA.

Model Knowledge source Accuracy
PICa-full [60] Frozen GPT-3 48.00
KAT-base [13] Frozen GPT-3, Wikidata 50.58
DEDR + MM-FiD Frozen GPT-3, Wikipedia 51.02

Table 5: Ablation study of the the proposed KI-VQA pipeline.
The superscript ∗ denotes statistically significant improve-
ment compared to all the ablation cases based on two-tailed
paired t-test with Bonferroni correction (𝑝 < 0.05).

Retriever Answer OK-VQA FVQA
Generator Acc Top-1 Acc

DEDR FiD 39.48 60.85
BM25-Obj (CombMax) [40] MM-FiD 41.97 54.65
Best retrieval baseline from Table 1 MM-FiD 41.82 52.78
DEDR MM-FiD 44.57∗ 61.80∗

Figure 7: MM-FiD accuracy and the hit ratio in the supporting
passages at different ranking cut-off levels.

using DEDR for retrieval instead of the best performing retrieval
baseline from Table 1 would lead to 13% higher accuracy in FVQA,
highlighting the importance of retrieval in the KI-VQA pipeline.

Figure 7 plots the sensitivity of MM-FiD performance to the
number of passages retrieved by DEDR. It also plots the hit ratio,
i.e., the ratio of success retrieving at least one relevant passage to
be presented to MM-FiD. Generally speaking, the more documents
we feed to MM-FiD on OK-VQA, the higher the question answering
accuracy. Its accuracy becomes relatively stable after retrieving 16
documents. The accuracy curve follows the same behavior as the

hit curve on OK-VQA. However, FVQA demonstrates a substantially
different behavior. The highest accuracy is achieved when only five
supporting passages are retrieved. That is due to the nature of the
dataset, where there is only one relevant fact for each question
and retrieving more (potentially inaccurate) facts may confuse the
answer generation model. Note that DEDR reaches a hit ratio of 70%
by only retrieving two passages on FVQA, while the same model
needs to retrieve 4 passages to reach the same level of hit ratio on
OK-VQA. This finding suggest that it is worth studying automatic
prediction of ranking cut-off for KI-VQA tasks in the future.

7 CONCLUSIONS AND FUTUREWORK
This paper presented DEDR, a novel symmetric dense retrieval
framework based on dual uni-modal and multi-modal encoding.
We propose an iterative knowledge distillation approach for up-
dating these two encoding representation spaces and aggregating
them at inference. It also proposed MM-FiD, an extension to the
fusion-in-decoder architecture [20] for multi-modal data. Exten-
sive experiments on two well-established datasets, OK-VQA and
FVQA, suggested that retrieving passages using DEDR and using
them to generate answers via MM-FiD substantially outperforms
state-of-the-art baselines with comparable capacity. For instance,
this approach led to 37.8% retrieval improvement in terms of P@1
and 8.5% exact match accuracy improvement on FVQA test set
compared to the best performing baselines. We demonstrated the
impact of every design decision we made in both DEDR and MM-
FiD through extensive ablation studies and highlight open areas for
future explorations. For example, our results suggest accurate pre-
diction of ‘when to retrieve’ is an impactful area for KI-VQA tasks.
Hence, exploring retrieval performance prediction and ranking cut-
off truncation in KI-VQA tasks can potentially be a fruitful future
direction. We also intend to explore universal knowledge-intensive
models for both textual and multi-modal inputs. We further plan to
expand the applications of knowledge-intensive multi-modal tasks
beyond question answering.
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