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INTRODUCTION 

Hydrofluorocarbon (HFC) refrigerants are used widely in 
heating, ventilation, air conditioning, and refrigeration 
systems.1 Because of the high global warming potentials 
(GWPs) of HFCs, recent regulation requires their gradual 
phase out over the next two decades.2 Many HFCs in use are 
(near-)azeotropic mixtures, and novel processes must be 
developed to separate the components for subsequent 
recycling or repurposing. As such, technologies to recycle 
these HFCs are developing quickly. For example, recent work 
demonstrates how ionic liquids (ILs) can facilitate HFC 
separation.3−7 Other works have used machine learning to 
search for new refrigerants and estimate HFC solubility in 
ILs.8,9 However, all HFC separation endeavors require the 

Classical molecular dynamics (MD) and Monte Carlo 
(MC) simulations have played an important role to obtain 
thermophysical property predictions while providing micro- 
scopic insights of the various physical phenomena of practical 
interest. A key component of MD and MC simulations is an 
accurate description of molecular interactions, which has been 
traditionally achieved using classical molecular force fields. 
Force fields (FFs) make use of simple algebraic formulas 
parametrized to match the macroscopic properties of interest 
at the desired thermodynamic conditions. One recurring 
strategy to obtain FF parameters is to conduct quantum 
mechanical calculations of isolated molecules to obtain the 
parameters for covalent and electrostatic interactions. For 
dispersion interactions, parameters are often hand-tuned so 
that experimental properties are reproduced. Further manual 

often limited knowledge of the thermophysical properties of   

these HFC mixtures.1,10 Computer-aided molecular design of 
HFC separations1,10,11 has shown promise to accelerate the 
development of novel processes to meet the required goals. 
Accurate vapor−liquid equilibrium (VLE) data of HFC 
mixtures are desired, as is a microscopic understanding of 
the underlying physics that governs their physical properties. 
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ABSTRACT: Hydrofluorocarbon (HFC) refrigerants with zero 
ozone-depleting potential have replaced chlorofluorocarbons and 
are now ubiquitous. However, some HFCs have high global 
warming potential, which has led to calls by governments to phase 
out these HFCs. Technologies to recycle and repurpose these 
HFCs need to be developed. Therefore, thermophysical properties 
of HFCs are needed over a wide range of conditions. Molecular 
simulations can help understand and predict the thermophysical 
properties of HFCs. The prediction capability of a molecular 
simulation is directly tied to the accuracy of the force field. In this 
work, we applied and refined a machine learning-based workflow 
to optimize the Lennard-Jones parameters of classical HFC force 
fields for HFC-143a (CF3CH3), HFC-134a (CH2FCF3), R-50 
(CH4), R-170 (C2H6), and R-14 (CF4). Our workflow involves liquid density iterations with molecular dynamics simulations and 
vapor−liquid equilibrium (VLE) iterations with Gibbs ensemble Monte Carlo simulations. Support vector machine classifiers and 
Gaussian process surrogate models save months of simulation time and can efficiently select optimal parameters from half a mi llion 
distinct parameter sets. Excellent agreement as evidenced by low mean absolute percent errors (MAPEs) of simulated liquid density 
(ranging from 0.3% to 3.4%), vapor density (ranging from 1.4% to 2.6%), vapor pressure (ranging from 1.3% to 2.8%), and enthalpy 
of vaporization (ranging from 0.5% to 2.7%) relative to experiments was obtained for the recommended parameter set of each 
refrigerant. The performance of each new parameter set was superior or similar to the best force field in the literature.  
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refining might be required for both interaction types to 
improve the experimental agreement. Variants of this 
methodology have been used by general purpose FFs such 
as the Generalized Amber Force Field (GAFF)12 or the 
Optimized Potentials for Liquid Simulations (OPLS) force 
field.13 For the case of HFCs, molecule-specific FFs have been 
developed to target different properties. For instance, a 
semirigid all-atom model consisting of Halgren’s Buf 14-7 
function and Coulombic potential was introduced to describe 
HFC-125  (CF3CHF2)  and  HFC-134a  (CH2FCF3).14 
Although fixed bond lengths and angles were used and only 
the torsion about the carbon−carbon bond was considered, 
the model demonstrated reasonable prediction of thermody- 
namic properties and showed great potential for later studies 
on ethane-type refrigerants. Lisal and Vacek15 extended the 
semirigid all-atom model to study the conformational 
difference of fluoroethane isomers, including HFC-134 
(CHF2CHF2), HFC-134a, HFC-143 (CHF2CH2F), HFC- 
143a (CF3CH3), HFC-152 (CH2FCH2F), and HFC-152a 
(CHF2CH3). Potter et al.16 applied the 12-6 Lennard-Jones 
(LJ) potential and Coulombic interactions for fluoromethanes, 
like HFC-32, HFC-23 (CHF3), and R-14 (CF4). The latent 
enthalpy of HFC-32, HFC-23, and R-14 showed mean 
absolute percent errors (MAPEs) of 11%, 3%, and 12%, 
respectively, in comparison to experimental values. Also, the 
vapor pressure of HFC-32, HFC-23, and R-14 had MAPEs of 
122%, 75%, and 32%, respectively. The model was able to 
accurately predict the orthobaric densities of all three 
refrigerants but was unable to replicate the structure of 
HFC-32, likely because of lack of polarization. Higashi and 
Takada also applied all-atom 12-6 LJ and Coulombic pair 
potentials to study various properties, including partial radial 
distribution functions, coordination numbers, pair potential 
energy distribution functions, the lifetime of clusters, and the 
liquid structure of HFC-32.17 A semirigid all-atom force field 
was developed by Fermeglia et al.,18 which includes a 9-6 LJ 
potential and Coulombic interactions for HFC-32, HFC-161 
(CH3CH2F), HFC-152a, HFC-134, HFC-134a, HFC-143, 
HFC-143a, and HFC-125. Reasonable agreement was 
observed for intramolecular energetic and geometric proper- 
ties, like bond lengths and angles, relative to experiments. The 
simulated saturated liquid and vapor densities showed an 
average deviation of approximately 2% from the correspond- 
ing experimental values. Four potential models with different 
LJ parameters and partial charges were proposed for HFC- 
134a by Peguin et al.19 with the OPLS-AA functional form. 
The model with the best performance showed average 
deviations of 0.7%, 4.4%, 3.2%, 0.2%, 0.1%, 6.2%, 0%, and 
2.2% when compared to the experimental values of liquid 
density, vapor density, vapor pressure, critical density, critical 
temperature, critical pressure, boiling temperature, and heat of 
vaporization, respectively, and was considered as the first all- 
atom model with 12-6 LJ potential to describe HFC-134a. 
Two all-atom FFs with the same intramolecular parameters 
but different LJ parameters and different partial charges were 
derived for HFC-152a by Yang et al.20 based on the AMBER 
force field. The best FF showed mean absolute deviations of 
0.89%, 2.32%, and 2.84% relative to experiments from 250 to 
360 K for saturated liquid density, saturated vapor density, 
and vapor pressure, respectively, and average deviations of 
0.49%, 0.38%, 3.80%, 0.34%, and 0.45% for critical density, 
critical temperature, critical pressure, boiling temperature, and 
heat of vaporization at 308.15 K of pure HFC-152a, 

B 

respectively. Their study also provided justification for the 
capability of the aforementioned force fields to accurately 
predict phase equilibrium properties of the binary mixture of 
HFC-152a and HFC-32. An all-atom force field using the 
AMBER functional form was applied to predict the 
thermophysical properties of pure HFC-161 and VLE 
properties of the HFC-161 and HFO-1234yf mixture.21 The 
average absolute relative deviations of vapor pressure, 
saturated liquid and vapor densities, critical temperature, 
critical pressure, and critical density of pure HFC-161 relative 
to experiments were 1.37%, 3.87%, 1.86%, 0.40%, 1.86%, and 
1.47%, respectively. Raabe also hand-tuned an all-atom force 
field for HFC-32, which can accurately reproduce VLE 
properties, including saturated liquid density, saturated vapor 
density, vapor pressure, and enthalpy of vaporization with 
MAPEs of 1.45%, 7.17%, 4.31%, and 2.48%, respectively.22,23 
This hand-tuned FF is used as a comparison for the 
optimization of the HFC-32 FF24 which serves as the basis 
of this work. 

Manual fine-tuning of classical FFs is time consuming, 
computationally inefficient, and requires substantial human 
expertise. Recently, automated workflows have been proposed 
to accelerate the creation and refinement of classical FFs. For 
example, the CHARMM lipid force field25 has been recently 
reparametrized using a semiautomated workflow that con- 
sistently included long-range dispersion through the LJ 
particle-mesh Ewald method. The OpenFF initiative26−28 
develops a software infrastructure that accelerates the creation, 
refinement, and validation of small organic molecule force 
fields. 

Automated force field development opens the possibility of 
leveraging machine learning models to increase the accuracy 
and confidence of the predictions obtained from molecular 
FFs. For example, Madin and Shirts29 showed that training a 
Gaussian process (GP) to reproduce the different physical 
properties of small molecules (e.g., alcohols, ketones, alkanes,) 
while tuning LJ parameters using differential evolution yielded 
significantly more accurate results than OpenFF. Multifidelity 
surrogate modeling strategies have shown similar results in FF 
optimization30,31 and surrogate modeling, in general, and seen 
success in structure optimization.32 In our previous work, we 
developed a semiautomated workflow that leverages machine 
learning models to accelerate the proposal of new parameters 
using the LJ potential energy function. Specifically, we used a 
GP to emulate the results of a molecular simulation, and these 
results were used to tune LJ parameters for HFC-32 and 
HFC-125 FFs. The results indicate that the parameters 
developed using this method offer better predictions of 
density, saturated vapor density, vapor pressure, and enthalpy 
of vaporization relative to Raabe’s force field and to the 
popular GAFF model, which was parametrized for small 
organic molecules.24 

Intramolecular parameters and partial charges are reliably 
calculated without egregious computational effort from 
quantum mechanical (QM) calculations, while the LJ 
parameters are relatively difficult to compute.33 This is 
particularly important because the VLE properties we are 
interested in for HFC separation depend heavily on the LJ 
parameters and partial charges. At the same time, they are 
relatively insensitive to the intramolecular parameters.34 
Therefore, LJ parameters are often optimized by fitting 
experimental data for liquid phase properties such as heat of 
vaporization, molecular volume, or hydration free energy.35 

https://doi.org/10.1021/acs.jctc.3c00338 

https://doi.org/10.1021/acs.jctc.3c00338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article 

C https://doi.org/10.1021/acs.jctc.3c00338 
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX 

 

 

■ 

~ n 

This is most commonly achieved by manual tuning,13,36,37 
derivative-based optimization,38−41 and stochastic heuristics 
such as genetic algorithms.42−45 In this work, we improve the 
machine learning workflow from Befort et al.24 to optimize the 
LJ parameters of the classical FFs of HFC-143a, HFC-134a, 
R-50, R-170, and R-14 with the structures shown in Figure 1. 

 

 

Figure 1. 2D chemical structures and shorthand names of studied 
refrigerants. Different notation reflects different atom types for LJ 
parameters, and there is no shared atom type between refrigerants. 
There are two atom types for R-50 (C and H), R-14 (C and F), and 
R-170 (C and H), five atom types for HFC-134a (C1, C2, F1, F2, and 
H), and four atom types for HFC-143a (C1, C2, F, and H). 

 

The LJ parameters of these five refrigerants yield comparable 
or more accurate VLE property predictions than other 
available FFs in the literature. This workflow, consisting of a 
support vector machine (SVM) classifier, GP surrogate model, 
liquid density (LD) iterations using MD simulations, and VLE 
iterations using Gibbs ensemble Monte Carlo (GEMC) 
simulations, has been gradually refined and can be generalized 
to a broader family of refrigerants. The resulting parameters 
are easily accessible via public repositories, and the Foyer 
XML format facilitates the implementation in various 
simulation engines. The results of this work will establish a 
foundation for calibrating a generalized LJ parameter set for 
classical HFC FFs in future work. 

METHODS 

Problem Statement. The HFC FFs developed in this 
study use the GAFF12 functional form: 

literature. We recognize, however, that relaxing this constraint 
might lead to more accurate force fields, and so we plan to 
investigate the combining rule in future studies. Following 
traditional Class I force field approaches, we assigned atom 
types based on their local environment. These atom types are 
defined in Figure 1. Other atom typing schemes could be 
used, such as the topology automated FF interactions 
(TAFFI) framework,47 which leverages an automated atom- 
typing procedure along with a combination of hierarchical 
quantum chemical calculations and iterative MD simulations 
to parametrize transferable FF models. 

The goal of this work is to estimate optimal parameters σ 
and ε using experimental liquid density and VLE data 
evaluated at different state points for five refrigerants. 

General Workflow. The ε and σ parameters of the LJ 
potential were optimized using our machine learning-aided 
workflow described in Figure 2. First, the number of atom 

 

 

Figure 2. Overall workflow of machine learning-based optimization 
of LJ parameters of classical HFC FFs. Each color in the workflow 
represents a different step in the process. Green represents workflow 
initialization using Latin hypercube sampling (LHS). The blue loop 
uses Gaussian processes (GPs) and support vector machine (SVM) 
classifiers to estimate parameters using liquid density (LD) 
simulations and experimental data. Next, the purple loop uses 
Gibbs ensemble Monte Carlo (GEMC) simulations to predict 
vapor−liquid equilibrium (VLE) properties and select the non- 
dominated points from all the samples. Red represents the end of the 
workflow. 
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types and upper/lower parameter bounds were determined 
l  ÄÅ 12 6

ÉÑ | from domain knowledge. The initial parameter sets were 
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o Åj ij z j ij z Ñ   i j  o generated using Latin hypercube sampling (LHS) for each + mo4 ijÅj z j z Ñ + } 

i  j>i o Åj rij 
z j rij 

z Ñ 
4 0rij 

o refrigerant. MD simulations were conducted to compute the 
o ÅÅÇk { k { ÑÑÖ o (1) 

liquid density (LD) for the initial parameter sets. The 
where is the total potential energy, k is the force constant, 
r0 is the nominal bond length, θ0 is the nominal bond angle, γ 
is the nominal dihedral angle, n is the multiplicity, εij and σij 

are the LJ parameters, q is the partial charge, ϵ0 is the vacuum 
permittivity, and rij is the distance between atom i and atom j. 
Intramolecular bonded parameters were directly taken from 
GAFF. Partial charges were obtained using density functional 
theory calculations at the B3LYP/6-311++g(d,p) level of 
theory using the RESP method.46 The unlike interactions 
were calculated using the Lorentz−Berthelot combining rule. 
We chose to use the Lorentz−Berthelot combining rule partly 
for convenience and partly because it is widely used in the 

simulation results from the first LD iteration were used to 
train the SVM classifier and GP surrogate model which then 
were applied to select 500,000 distinct LJ parameter sets for 
the next iteration. The selection criteria involved experimental 
root-mean-square error (RMSE) ranking and a space filling 
algorithm. LD iterations continued until 25 parameter sets 
with experimental RMSE less than 10 kg/m3 were obtained. 
MC simulations were employed to calculate the VLE 
properties for the 25 parameter sets at different state points. 
Simulation results from MC were used to train different GP 
models for different VLE properties. The 25 well-separated 
parameter sets were selected using multiobjective optimization 
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concepts48,49 for the next iteration. VLE iterations continued 
until a recommended parameter set was found with a 
satisfactorily small error in all VLE properties. 

The remainder of this section describes the workflow 

i as either a liquid (yi = 1) if the density is above the 
threshold or otherwise as a vapor (yi = −1). The SVM then 
predicts the label for a new postulated simulation with inputs 
x* as follows: 

(Figure 2) in detail. 
MD Simulations. The GROMACS package50 was applied 

 
sgn(wT (x*) + b) 

ij
 yz y ik(xi, xj) + bz 

to perform MD simulations under the NPT ensemble to 
compute liquid density at five different temperatures and 

i z 
(2) 

corresponding vapor pressures. Detailed temperatures and 
pressures for each refrigerant are documented in Table S1. 
The number of molecules was 300 for one-carbon refrigerants, 
R-50 and R-14, and 150 for two-carbon refrigerants, HFC- 
143a, HFC-134a, and R-170. Molecules were randomly 
inserted into the simulation box using Packmol51,52 with an 

Here, sgn(·) is the sign function. xi are the input variables (LJ 
parameters, temperature), and yi are the labeled outputs for 
the simulations in the training data set i . Moreover, w 
and α are the primal and dual variables for the SVM training 
problem, which is fully described in ref 60. For this classifier, 
we use a radial basis function (RBF) kernel: 

initial density of 1000 kg/m3 for HFC-143a, 1000 kg/m3 for 
HFC-134a, 300 kg/m3 for R-50, 500 kg/m3 for R-170, and 3 

 
i 
j k(xi, xj) = expj 

xi xj 2 y 
z 

1200 kg/m for R-14. A steepest descent algorithm was used j 2 2 
z 

(3) 
in energy minimization. The maximum step size was 0.01 nm, k { 
the maximum force was 100.0 kJ/mol/nm, and the maximum 
number of minimization steps was 50,000. The equilibration 
phase ran for 0.5 ns, which was followed by a 2.5 ns 

Here, k(xi, xj) is the kernel function evaluated with respect to 
data xi and xj, and is a tunable hyperparameter. In the 
context of eq 2, the function ϕ(·) is defined such that 

production run. A leapfrog algorithm53 for integrating k(x , x ) = (x )T (x ), and b is a constant. The SVM 
Newton’s equations of motion was used. The time step was i j i j 

1 fs. For the equilibration, the thermostat was the modified 
Berendsen thermostat54 with a time constant of 0.1 ps, while 
the barostat was the Berendsen barostat55 with a time 
constant of 0.5 ps. For the production phase, the thermostat 
was the modified Berendsen thermostat54 with a time constant 
of 0.5 ps, while the barostat was the Parrinello−Rahman 
barostat56 with a time constant of 1.0 ps. Long-range 

classifier was trained using scikitlearn with a stopping 
criterion of 0.001. 

GP Model. Single-output GP surrogate models were used 
to predict the liquid density from MD simulations and 
saturated liquid density, saturated vapor density, vapor 
pressure, and enthalpy of vaporization from GEMC 
simulations. The inputs to the GP model, denoted 

dispersion corrections were applied for energy and pressure. x = [ ,  , T] m, were LJ parameters and temperatures, 
The fast smooth particle-mesh Ewald method57 was used for 
long-range electrostatics. P-LINCS58 was the constraint used 
for all bonds with the highest order in the expansion of the 
constraint coupling matrix equal to 8 and the number of 
iterations to correct for rotational lengthening in LINCS was 

and the output, denoted y, was the aforementioned properties. 
Throughout the workflow in Figure 2, we used an 80%−20% 
split between training and tested data. A linear mean function, 
denoted m(x) was applied. For each LD iteration, we 
compared RBF (eq 3), Mate ́rn  =  3 , and Mate ́rn  =  5 

set to 4. The short-range cutoff for both Coulombic and van 2 
2

 

der Waals interactions was 1 nm. Periodic boundary 
conditions were applied in the x, y, and z directions. All the 
other settings are listed in the GitHub repository associated 

with this paper (https://github.com/dowlinglab/HFC-FFO). 
MC Simulations. GEMC simulations were employed to 

kernels. During the VLE iterations, all GP models used a RBF 
kernel, except for the GP model of vapor density, which used 

a Matérn =  5 kernel. 

The Matérn kernels, shown in eq 4, are defined by the 
smoothness parameter ν: 

study the VLE properties of the five refrigerants using the i y i y 
Cassandra package.59 The initial number of molecules in the k(x , x ) = 

 1 j   2 
d z K j

  2 
d z, 

vapor phase and liquid phase was 160 and 640, respectively. 
The initial vapor and liquid boxes were randomly generated at 
experimental vapor and liquid density, respectively, using 

i j 

 
di,j = 

( )2  1 j 

xi xj 

i,jz j 
{ k 

i,jz 
{ 
 

 
(4) 

Packmol.51,52 The liquid box was pre-equilibrated for 5000 Here, d is the Euclidean distance between inputs x and x , 
sweeps under NPT MC simulations, which was followed by a K (· i,j i j Γ(· 
GEMC equilibration on the whole system for 10,000 sweeps ν ) is a modified Bessel function, and ) is the gamma 

and a production run for 100,000 sweeps using Cassandra. 
The cutoffs of Coulombic and van der Waals interaction were 

function. The hyperparameter was trained via maximum 
likelihood estimation (MLE): 

1.2 nm for the liquid box and 2.5 nm for the vapor box. Ewald 
summation was applied for long-range electrostatics with a 

ln p(y|X, ) = 
 1 

yT(K(X, X| ) + 
2 

2I) 1y 

relative accuracy of 10−5. All bonds were fixed at the nominal 
bond length. Standard LJ tail corrections were applied to 
pressure and energy. All the other settings are listed on the 

1 
ln|K(X, X| ) + 

2 
2I| 

n 
log 2 

2 

 
(5) 

GitHub page associated with this work (https://github.com/ 
dowlinglab/HFC-FFO). 

Classifier. We used a support vector machine (SVM) 
classifier to predict the phase of a MD simulation performed 

Here, p(y|X, ) is the log likelihood of observed data y (i.e., 
liquid density, vapor density, vapor pressure, or enthalpy of 
vaporization) given independent data matrix X and hyper- 
parameters . Let matrix X  m×n represent the training 

with a specific parameter set and state point, represented by 
the vector x. We label each simulation in the training data set 

D 

input data, where each column xi corresponds to output yi for 
observation i in the training data set . Thus, the vector 

https://doi.org/10.1021/acs.jctc.3c00338 

2 
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y n is the output training data for a single thermophysical 
property. As such, the matrix K(X, X| ) corresponds to the 
kernel function k(·, ·) evaluated element-wise for all pairwise 
combinations of the columns of X. Additionally, I is the 
identity matrix, n is the number of observations, |·| is the 
matrix determinant, and σ is the standard deviation of the 
observed data, i.e., random noise from MD or MC 
simulations. 

The output predictions of a GP, by definition, follow a 
multivariate normal distribution. As such, for a new input x*, 
there is an analytic formula for the prediction mean and 
prediction variance: 

*
(x*| ) = m(x*| ) 

Table 1. Lower and Upper Parameter Bounds for σ in Å 
and ε/kB in Kelvin of R-50, R-14, R-170, HFC-134a, and 
HFC-143a 

+ k(x *, X| )[K(X, X| ) + 
2I] 1 

(y m(X| )) (6a) 
2 2 

2(x*| ) = k(x*, x*| ) 

k(x*, X| )[K(X, X| ) + 2I] 1k(X, x*| )  
(6b) 

These key mathematical properties make GPs excellent 
emulators of computationally expensive black-box functions, 
such as molecular simulation. Qualitatively, as the point x* 
approaches a point xi in the training data set, the prediction 

uncertainty  2 decreases and approaches σ2 in the limit. 

 
 

 
REFPROP package62 or the NIST Web site63 (see Table S1). 

Likewise, as the point x* moves away from all points in the 
training data set X, the prediction uncertainty grows and 
eventually plateaus. Thus, a GP is a nonparametric model to 
interpolate between points in the training data set X and y 
where the kernel choice and hyperparmater adjust the 
smoothness of the mean and scale of the prediction 
uncertainty.61 As shown in Figures S2 and S3 in the 
Supporting Information, the GP predictions can be 
unphysical, e.g., predict a negative liquid density, especially 
if the molecular simulation parameters are unrealistic. 

LD Iterations. Each LD iteration starts with 1000 
isothermal−isobaric (NPT) MD simulations to predict the 
liquid density of 200 parameter sets at five different 
temperatures. For the first LD iteration, we use the initial 
200 parameter sets generated using a space-filling LHS 
algorithm. The generated parameter sets were constrained 
by upper and lower bounds, which were informed from 
domain knowledge and are documented in Table 1. The 
upper and lower bounds are determined to cover a broad 
range of physically reasonable values. Informed by the final 
nondominated parameter sets of HFC-32 and HFC-125 from 
ref 24, we slightly extended the upper and lower bounds for 
each parameter accordingly. The same bounds were initially 
used for R-14 as other refrigerants; however, very few 
parameter sets that give satisfying LD predictions were 
obtained after a few rounds of LD iterations, so we used a 
broader range of LJ parameters. We consider atoms in the 
same chemical environment as the same atom type, and no 
shared atom type is considered between different refrigerants. 
As shown in Figure 1, there are two atom types for R-50, R- 
14, and R-170, five atom types for HFC-134a, and four atom 
types for HFC-143a. Previous work has shown that this atom- 
typing scheme can lead to overparametrization.24 Future work 
will be conducted on a more generalized atom-typing 
framework for a family of HFCs. 

The pressures and temperatures set in the MD simulations 
were the experimental saturation conditions obtained from the 

E 

The resulting simulations were classified into liquid or vapor 
phase using predefined density-based thresholds that depend 
on the simulated HFC. The LD thresholds of R-50, R-14, R- 
170, HFC-134a, and HFC-143a were 200, 1100, 320, 500, and 
500 in kg/m3, respectively. It is important to adjust the liquid 
density threshold for different molecules to avoid the 
supercritical region. 

A SVM classifier with the RBF kernel was trained to predict 
whether a given set would yield a liquid or vapor 
thermodynamic state. The information generated from the 

previous iteration was used to train this model. Additionally, 
the GP model with the RBF kernel was trained to predict the 
simulation density from temperature and LJ parameters. A 

larger set of 500,000 candidate parameter sets was generated 
using the LHS method, and their thermodynamic state and 
densities were predicted with the trained SVM and GP, 
respectively. A pretrained SVM classifier was used to classify 
500,000 candidate sets generated with LHS into liquid 
samples and vapor samples at the highest temperature. The 

GP surrogate model was then used to predict the simulation 
LD results of liquid and vapor samples at each temperature. 
We selected the best 200 liquid parameter sets across 

temperatures that yielded an experimental RMSE less than 25 
kg/m3. A space-filling algorithm shown in Algorithm 1 was 
used to ensure parameter diversity and maximize the distance 

between the points selected. 
 

Given this algorithm, we used a bisection method to adjust 
the input d in Algorithm 1 such that | | = 200. When there 

https://doi.org/10.1021/acs.jctc.3c00338 

Refrigerant σ lower upper ε/kB lower upper 

R-50 σC 3.0 4.0 εC/kB 20.0 75.0 

 σH 1.5 3.0 εH/kB 2.0 10.0 

R-14 σC 2.0 4.0 εC/kB 10.0 75.0 

 σF 2.5 3.5 εF/kB 15.0 50.0 

R-170 σC 3.0 4.0 εC/kB 20.0 75.0 

 σH 1.5 3.0 εH/kB 2.0 10.0 

HFC-134a σC1 
3.0 4.0 εC1

/kB 20.0 75.0 

 σC 3.0 4.0 εC /kB 20.0 75.0 

 σF1 
2.5 3.5 εF1

/kB 15.0 40.0 

 σF2 
2.5 3.5 εF2

/kB 15.0 40.0 

 σH 1.5 3.0 εH/kB 2.0 10.0 

HFC-143a σC1 
3.0 4.0 εC1

/kB 20.0 70.0 

 σC2 
3.0 4.0 εC2

/kB 20.0 70.0 

 σF 2.0 4.0 εF/kB 15.0 40.0 

 σH 1.5 3.0 εH/kB 2.0 10.0 

 

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00338?fig=sec2.7&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00338?fig=sec2.7&ref=pdf
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were fewer than 200 liquid parameter sets with RMSE less 
than 25 kg/m3, we selected the rest from the vapor sets with 
RMSE relative to experimental LD less than 25 kg/m3 to keep 
the total number of parameter sets for each iteration at 200. 
This is a refinement of the procedure used by Befort et al.,24 
where they selected 100 parameter sets from both liquid and 
vapor samples to balance the inconsistency (e.g., classified as 
vapor but with low RMSE relative to experimental LD) 
between the classifier and GP model. However, we only focus 
on the consistent subset between classifier and GP (i.e., 
classified as liquid and with low RMSE relative to 
experimental LD). Without selecting sets from vapor samples, 
the whole workflow would be more efficient. MD simulations 
were conducted using the selected set of liquid parameters to 
start a new iteration of the workflow. 

LD iteration stops when the 25 best performing, well- 
separated parameter sets were selected using an RMSE 

found, VLE iteration continued. If parameter sets were found, 
the set exhibiting the smallest error was recommended. We 
performed four, three, three, two, and two VLE iterations and 
obtained 37, 22, 27, 29, and 18 nondominated parameter sets 
for HFC-143a, HFC-134a, R-50, R-170, and R-14, respec- 
tively. Only one parameter set with less than 3%, 2.5%, 3.5%, 
2.5%, and 2% error in all VLE properties was recommended 
for HFC-143a, HFC-134a, R-50, R-170, and R-14, respec- 
tively. 

RESULTS AND DISCUSSION 
Machine Learning Model Results. The SVM classifier 

achieves staggering success in classifying vapor and liquid 
samples. Figure S1 is the confusion plot, which visualizes the 
classifier’s accuracy. Table 2 shows the details of the accuracy 
of the classifier on the testing data for each iteration. For all 
iterations, the accuracy of the classifier is greater than 92%. 

between simulated and experimental LD of less than 10 kg/   

m3. We performed four, three, four, four, and five LD 
iterations and obtained 800, 600, 800, 800, and 1000 
simulated parameter sets for HFC-143a, HFC-134a, R-50, 
R-170, and R-14, respectively. 

Table 2. Accuracy of the SVM Classifier on Testing Data of 
HFC-143a, HFC-134a, R-50, R-170, and R-14 for Each LD 

Iterationa 

 
 
 
 

 

were trained to predict the saturated liquid density, saturated 
vapor density, vapor pressure, and enthalpy of vaporization as 
a function of LJ parameters and temperature. The LD GP 
model was trained on all LD iterations (except for R-50 which 
was trained on the last three LD iterations). Parameter sets 
among all 500,000 parameter sets generated from LHS whose 
difference between predicted LD RMSE value from 
GROMACS and Cassandra exceeded 25 kg/m3 were 
discarded. VLE properties of the remaining parameter sets 
were evaluated by four VLE GP surrogate models. The law of 
rectilinear diameter64 was applied to calculate the critical 
temperature and critical density. The RMSE of each VLE 
property was calculated between GP predictions and 
experimental data across all five temperatures. The non- 
dominated parameter sets were obtained by examining the 
RMSE of these six VLE properties (i.e., saturated liquid 
density, saturated vapor density, vapor pressure, enthalpy of 
vaporization, critical temperature, and critical density) using 
the same approach as Befort et al.24 More specifically, a 
parameter set is considered nondominated if there are no 
other evaluated parameter sets that can improve the RMSE of 
one VLE property without sacrificing the RMSEs for one or 
more other VLE properties. Thus, a nondominated parameter 
set captures an optimal trade-off between objectives, i.e., the 
nondominated property (finite discrete set) is closely related 
to Pareto optimally (infinite generalization) in multiobjective 
optimization.48,49 A space-filling algorithm was applied to 
select 25 well-separated parameter sets out of nondominated 
parameter sets among VLE properties for the next VLE 
iteration. This was done to ensure diversity among the best 
parameter sets. After each VLE iteration, we checked if there 
were parameter sets with errors less than 5% in all VLE 
properties, including the saturated liquid density, saturated 
vapor density, vapor pressure, enthalpy of vaporization, critical 
temperature, and critical density. If no parameter set was 

F 

aLD-n, where n is the iteration number. The classifier was trained on 
all the available data from current and previous iterations. 

 

Overall, the GPs predicted the results of molecular 
simulations very accurately. Figure S4 demonstrates that the 
GP consistently emulates the results of the molecular 
simulations after training on all discussed VLE properties. 
Moreover, GPs are particularly relevant to molecular 
simulations because of their ability to predict over state 
points. Transferability is an important topic in molecular 
simulations and the results of Figure S4 demonstrate that 
using a GP to estimate a molecular simulation inherently 
accounts for this. Table 3 demonstrates that the overall 
MAPEs between the GP predictions and molecular simulation 
results of all iterations of each refrigerant are always less than 
10% and frequently less than 3%. 

LD Iteration Results. We conducted four, three, four, 
four, and five LD iterations for HFC-143a, HFC-134a, R-50, 
R-170, and R-14, respectively. Figure 3 shows the cumulative 
number of parameter sets plotted versus liquid density MAPE. 
The performances of LD-1 (blue curves) were reasonably 
unsatisfying for all refrigerants since unphysical parameter sets 
were randomly selected by the LHS. Vapor simulations lead to 
spikes in LD-1 and “jumps” in the curves for later iterations. 
Vapor density was small relative to liquid density, causing a 
normalization error in MAPE calculation. Spikes near 100% in 
LD-1 mean that simulations predicted that the molecule was 
in the vapor phase at all five temperatures we studied. At the 
same time, jumps near 20%, 40%, 60%, and 80% in later 
iterations mean that simulations vaporized at one, two, three, 
and four studied temperatures, respectively. Over the course 
of the iterations, the GP surrogate model showed significant 
improvement, which was reflected by more parameter sets 
with relatively low MAPE as the number of iterations 
increased. With more iterations being performed, more 

https://doi.org/10.1021/acs.jctc.3c00338 

VLE Iterations. The Cassandra package59 was applied to Refrigerant LD-1 LD-2 LD-3 LD-4 LD-5 

perform GEMC simulations to calculate VLE properties of the HFC-143a 96.0% 92.5% 92.8% 94.0% − 

best performing 25 parameter sets for each refrigerant. The HFC-134a 92.5% 96.5% 96.5% − − 

properties of interest included the saturated liquid density, R-50 96.0% 98.8% 97.8% 98.0% − 

saturated vapor density, vapor pressure, and enthalpy of R-170 96.5% 96.0% 96.2% 96.8% − 

vaporization, at five different temperatures. Four GP models R-14 95.5% 95.5% 93.8% 94.3% 94.8% 

 

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_001.pdf
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Table 3. Overall MAPEs of Liquid Density, Vapor Density, Vapor Pressure, and Enthalpy of Vaporization between GP 
Predictions and MD or GEMC Results of HFC-143a, HFC-134a, R-50, R-170, and R-14 for all LD or VLE Iterations 

 

Property Simulation HFC-143a HFC-134a R-50 R-170 R-14 

ρl MD 0.89% 0.63% 0.61% 0.84% 0.69% 

ρl GEMC 0.3% 0.2% 0.2% 0.2% 0.2% 

ρv GEMC 4.6% 9.6% 2.7% 2.9% 4.9% 
Pvap GEMC 2.5% 7.6% 1.9% 1.8% 6.5% 
ΔHvap GEMC 0.5% 0.3% 0.2% 0.3% 0.2% 

 

Figure 3. Cumulative number of parameter sets of each LD iteration (LD-n, where n is the iteration number) as a function of liquid density 
MAPE relative to experimental data for HFC-143a, HFC-134a, R-50, R-170, and R-14. n equals to 4, 3, 4, 4, and 5 for HFC-143a, HFC-134a, R- 
50, R-170, and R-14, respectively. Blue, yellow, green, red, and purple represent LD-1, LD-2, LD-3, LD-4, and LD-5, respectively. The inset plot is 
zoomed for MAPE less than 2.5%. 

 

 

parameter sets provide accurate liquid density. Although the 
improvement from later iterations (n ≥ 3) was limited, 
additional parameter sets with low MAPE were generated. LD 
iterations stopped when enough (25) parameter sets with 
RMSE less than 10 kg/m3 relative to the experiments were 
obtained. 

VLE Iteration Results. We conducted four, three, three, 
two, and two VLE iterations for HFC-143a, HFC-134a, R-50, 
R-170, and R-14, respectively. Figure 4 shows the cumulative 
number of parameter sets as a function of MAPE of VLE 
properties, including liquid density, vapor density, vapor 
pressure, enthalpy of vaporization, critical temperature, and 
critical density. The critical temperature and critical density 
were not directly included in the optimization workflow and 
were calculated using the law of the rectilinear diameter.64 
Higher MAPE represents a higher error in estimating certain 
VLE properties. Significant improvement was observed in 
VLE-2 relative to VLE-1 in vapor density, vapor pressure, 
enthalpy of vaporization, and even in critical temperature and 

critical density. The performance of each VLE iteration is 
gradually improved based on an overall evaluation of liquid 
density, vapor density, vapor pressure, enthalpy of vapor- 
ization, critical temperature, and critical density. For R-50, 
fewer parameter sets were found giving lower liquid density 
MAPE in VLE-2 and 3 compared to VLE-1, since the whole 
workflow balanced the performance of these six VLE 
properties using multiobjective optimization concepts.48,49 

Final Parameter Sets Determination. Finally, we 
obtained 37, 22, 29, 27, and 18 nondominated parameter 
sets for HFC-143a, HFC-134a, R-170, R-50, and R-14, 
respectively, which are plotted in Figure 5. For HFC-143a 
and HFC-134a, all nondominated parameter sets provide a 
MAPE less than 20%, and most are less than 10%. The 
MAPEs of all promising parameter sets are less than 30%, 
10%, and 8% for R-50, R-170, and R-14, respectively. Most 
interesting, the σF1 

values in all nondominated parameter sets 
for HFC-143a, HFC-134a, and R-14 are all contained in a 
narrow range. Mathematically, this suggests the physical 

G https://doi.org/10.1021/acs.jctc.3c00338 
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Figure 4. Cumulative number of parameter sets of each VLE iteration (VLE-n, where n is the iteration number) as a function of MAPE of liquid 
density (ρl), vapor density (ρv), vapor pressure (Pvap), enthalpy of vaporization (ΔHvap), critical temperature (TC), and critical density (ρC) 
relative to corresponding experimental data for HFC-143a, HFC-134a, R-50, R-170, and R-14. n equals 4, 3, 3, 2, and 2 for HFC-143a, HFC- 
134a, R-50, R-170, and R-14, respectively. Blue, yellow, green, and red represent VLE-1, VLE-2, VLE-3, and VLE-4, respectively. 

 

 

property predictions are very sensitive to σF1
, and this 

parameter can be inferred with confidence. This is consistent 
with the observation that fluorine-containing molecules often 
exhibit unusual physical properties, such that results are highly 
sensitive to the fluorine parameters. In contrast, the 
nondominated sets encompass a large range of values for 
other parameters such as σC1 

and σC2
. Mathematically, this 

parameters are obtained from GAFF and ab initio calculations 
and are documented in Table 4 and Tables S2−S4, 
respectively. 

Our optimized parameter sets for HFC-143a, R-50, R-170, 
and R-14 show significantly better performance than classical 
GAFF12 as can be seen in Figure 5 and Table 5. The MAPEs 
of GAFF are generally 1−2 orders of magnitude larger than 
ours. The recommended parameter set of HFC-134a is 

means there are several distinct values of the parameters that 
yield good predictions. Physically, this can be interpreted as 
possible offsetting errors, where the carbon parameters are 
“effective” parameters that together capture average properties. 
These results are consistent with our prior work,24 in which 
we show via sensitivity and identifiability analyses that the best 
FF parameters are locally unique. This is not surprising, as 
nonlinear model calibration problems are nonconvex opti- 
mization problems that often exhibit many locally optimal 
solutions. Our analysis mitigates this concern in part by 
identifying the nondominated parameter sets that capture 
trade-offs between multiple physical properties. Furthermore, 
we hypothesize that creating a generic refrigerant FF will 
further remove the degeneracy illustrated in Figure 5. 

For each system, we recommend a single parameter set that 
exhibits less than 3% (HFC-143a), 2.5% (HFC-134a), 3.5% 
(R-50), 2.5% (R-170), and 2% (R-14) error in all VLE 
properties. These sets are shown in bold blue in Figure 5. The 
recommended LJ parameters of these five refrigerants are 
documented in Table 4. Partial charges and intramolecular 

H 

superior to the OPLS model of Peguin et al.19 with smaller 
MAPEs for all VLE properties. 

The recommended parameter sets for R-50, R-170, and R- 
14 are comparable to the united-atom Mie potentials of Potoff 
et al.66 who fit three parameters to experimental data: the 
repulsive exponent n, σ, and ϵ. In this work, we fixed the 
repulsive exponent to 12 and only tuned σ and ϵ while 
achieving similar accuracy. For example, our model can more 
accurately predict vapor density and enthalpy of vaporization 
of R-50 than the model from Potoff et al.66 For R-170, the 
MAPE of enthalpy of vaporization of Potoff is significantly 
larger than ours, while other properties showed similar 
accuracy. 

The recommended parameter sets of R-50 and R-170 
present a similar or better performance relative to the 
TraPPE65 force field. For example, the MAPEs of our 
model for R-170 are 1.8%, 1.6%, 2.1%, and 2.0% for liquid 
density, vapor density, vapor pressure, and enthalpy of 
vaporization, respectively, while the MAPEs of TraPPE 
model are 0.8%, 4.6%, 4.0%, and 8.2%. 
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Figure 5. LJ parameter sets with good performance of HFC-143a, HFC-134a, R-50, R-170, and R-14. Each line represents a parameter set. The 
FF represented by the bold blue line is recommended due to its low MAPE for all properties less than 3%, 2.5%, 3.5%, 2.5%, and 2% for HFC- 
143a, HFC-134a, R-50, R-170, and R-14, respectively. Others are the nondominated parameter sets. The gray, green, and red squares are the 
performance of GAFF,12 TraPPE,65 and available literature,19,66 respectively, and their detailed LJ parameters can be found in the Supporting 
Information. The GAFF MAPEs of R-50, R-170, and R-14 are very inaccurate and not shown here. 

The VLE envelope and vapor pressure and enthalpy of 
vaporization as functions of the temperature of our 

recommended parameter sets compared with GAFF,12 
TraPPE,65 other literature values,19,66 and REFPROP 

I 

experimental results62 are shown in Figures 6 and 7, 
respectively. The corresponding VLE envelopes and vapor 

pressure and enthalpy of vaporization versus temperature plots 
of all the nondominated parameter sets are presented in 

https://doi.org/10.1021/acs.jctc.3c00338 
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Table 4. Recommended Partial Charges (q) and LJ 
Parameters (σ and ε) for HFC-134a, HFC-143a, R-170, R- 
50, and R-14 

 

Refrigerant Atom Atom type q σ (Å) ε (K) 

HFC-134a C1 c3 0.61542 3.745 20.73 

 C2 c3 −0.020709 3.754 72.61 
 F1 f −0.210427 2.982 23.13 
 F2 f −0.193556 2.607 39.98 

 H h1 0.115063 2.237 2.55 

HFC-143a C1 c3 0.78821 3.809 69.97 

 C2 c3 −0.583262 3.037 55.40 
 F f −0.252614 3.424 17.05 

 H hc 0.184298 1.711 3.55 

R-170 C c3 −0.00612 3.810 52.20 

 H hc 0.00204 2.316 6.16 

R-50 C c3 −0.512608 3.727 71.73 

 H hc 0.128152 2.569 4.53 

R-14 C c3 0.781024 3.490 36.24 

 F f −0.195256 2.917 29.07 

 

Table 5. MAPEs of Liquid Density (ρl), Vapor Density (ρv), 
Vapor Pressure (Pvap), and Enthalpy of Vaporization 

(ΔHvap) of Parameter Sets from This Work 
(Recommended), GAFF,12 Literature,19,66 and TraPPE65 
for HFC-134a, HFC-143a, R-170, R-50, and R-14a 

 

Refrigerant Model MAPEρl 
MAPEρv 

MAPEPvap 
MAPEΔHvap

 

HFC-143a This work 1.1% 2.6% 2.8% 2.3% 

 GAFF12 4.3% 33.0% 22.3% 28.4% 

HFC-134a This work 0.3% 1.6% 1.9% 0.5% 

 Peguin19 2.2% 3.1% 4.4% 0.7% 

R-50 This work 3.4% 1.4% 2.5% 2.7% 
 GAFF12 14.5% 90.8% 59.8% 33.4% 
 Potoff66 1.4% 3.7% 0.8% 8.4% 

 TraPPE65 0.8% 6.5% 8.0% 1.1% 

R-170 This work 1.8% 1.6% 2.1% 2.0% 

 GAFF12 22.4% 180.3% 83.0% 50.5% 
 Potoff66 2.1% 3.2% 1.9% 14.4% 

 TraPPE65 0.8% 4.6% 4.0% 8.2% 

R-14 This work 0.6% 1.5% 1.3% 0.7% 

 GAFF12 6.7% 72.0% 62.9% 61.5% 
 Potoff66 0.4% 1.9% 0.5% 2.0% 
aThe lowest MAPE for each property of each refrigerant is shown in 
bold. 

 

 
Figures S5 and S6. Detailed values of nondominated LJ 
parameters and their corresponding VLE properties are 
documented in the Supporting Information. 

Our proposed nondominated parameter sets provide an 
excellent estimation of the VLE envelope, vapor pressure, and 
enthalpy of vaporization compared to the experiments. Small 
interactions at lower temperatures lead to small error spreads 
for vapor in the VLE envelope, as shown for R-50 in Figure 
S5. Previous FFs19,65,66 precisely estimate the VLE envelope. 

 
 
 

Figure 6. VLE envelopes of the recommended parameter set of 
HFC-143a, HFC-134a, R-50, R-170, and R-14 (blue circles) with 
comparison to GAFF12 (gray squares), TraPPE65 (red stars), 
literature19,66 (blue and yellow triangles), and REFPROP exper- 
imental results62 (black crosses). 

 

Error around the critical point is expected for GAFF. Some 
literature FFs19,66 can also predict vapor pressure and enthalpy 
of vaporization accurately. The TraPPE model estimates vapor 
pressure quite well, but cannot precisely predict the 
temperature dependence of enthalpy of vaporization. Prom- 
inent deviations between the experiment and GAFF are 
observed for vapor pressure and enthalpy of vaporization. 

Notably, taking R-170 as an example, the wall clock time for 
each LD iteration is around 2 h, while each VLE iteration is 
much more computationally expensive and can be finished in 
3−4 days. Because each LD iteration requires 1000 
simulations (1 core per simulation) and each VLE iteration 
requires 125 simulations (2 cores per simulation), the total 
CPU times are 2−3 months and 2−3 years for each LD and 
VLE iteration, respectively. Thanks to parallel computing, the 
whole parametrization process can be completed within weeks 
and save months of computational expenses relative to the 
traditional hand-tuning process. 

CONCLUSIONS 

Our machine learning-enabled force field optimization work- 
flow has been refined and generalized to HFC-143a, HFC- 
134a, R-50, R-170, and R-14. Multiple nondominated 
parameter sets were found for each refrigerant. A recom- 
mended LJ parameter set based on the GAFF functional form 
is proposed for each refrigerant which surpasses the previously 
developed force fields in the literature. Based on the five 
refrigerants studied in this work and HFC-32 and HFC-125 
studied before,24 a generalized HFC force field will be 
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Figure 7. Vapor pressure and enthalpy of vaporization of HFC-143a, 
HFC-134a, R-50, R-170, and R-14 (blue circles) with comparison to 
GAFF12 (gray squares), TraPPE65 (red stars), literature19,66 (blue 
and yellow triangles), and REFPROP experimental results62 (black 
crosses). 

 

 
calibrated in future work. Additionally, we are exploring 
Bayesian optimization to automate the selection of the single 
next best simulation (instead of batches of 200 simulations). 
Further investigations should also be taken to investigate the 
transferability of this method to property predictions not 
included as optimization objectives. Relevant properties 
include diffusivity, viscosity, thermal conductivity, heat 
capacity, speed of sound, Joule−Thomson coefficient, 
compressibility, and expansivity. This workflow can also be 
extended to other complex molecules like hydrofluoroolefins 
and ionic liquids (ILs). For example, dihedral parameters of 

K 

ILs that are initially not included in GAFF and hand-tuned 
before67 can be optimized using this workflow. 
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