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ABSTRACT: Hydrofluorocarbon (HFC) refrigerants with zero
ozone-depleting potential have replaced chlorofluorocarbons and
are now ubiquitous. However, some HFCs have high global
warming potential, which has led to calls by governments to phase
out these HFCs. Technologies to recycle and repurpose these
HFCs need to be developed. Therefore, thermophysical properties
of HFCs are needed over a wide range of conditions. Molecular
simulations can help understand and predict the thermophysical
properties of HFCs. The prediction capability of a molecular
simulation is directly tied to the accuracy of the force field. In this
work, we applied and refined a machine learning-based workflow
to optimize the Lennard-Jones parameters of classical HFC force
fields for HFC-143a (CF;CHs), HFC-134a (CH2FCFs), R-50
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(CH4), R-170 (CoHg), and R-14 (CFy). Our workflow involves liquid density iterations with molecular dynamics simulations and
vapor-liquid equilibrium (VLE) iterations with Gibbs ensemble Monte Carlo simulations. Support vector machine classifiers and
Gaussian process surrogate models save months of simulation time and can efficiently select optimal parameters from half a million
distinct parameter sets. Excellent agreement as evidenced by low mean absolute percent errors (MAPEs) of simulated liquid density
(ranging from 0.3% to 3.4%), vapor density (ranging from 1.4% to 2.6%), vapor pressure (ranging from 1.3% to 2.8%), and enthalpy
of vaporization (ranging from 0.5% to 2.7%) relative to experiments was obtained for the recommended parameter set of each
refrigerant. The performance of each new parameter set was superior or similar to the best force field in the literature.

l INTRODUCTION

Hydrofluorocarbon (HFC) refrigerants are used widely in
heating, ventilation, air conditioning, and refrigeration
systems.! Because of the high global warming potentials
(GWPs) of HFCs, recent regulation requires their gradual
phase out over the next two decades.2 Many HFCs in use are
(near-)azeotropic mixtures, and novel processes must be
developed to separate the components for subsequent
recycling or repurposing. As such, technologies to recycle
these HFCs are developing quickly. For example, recent work
demonstrates how ionic liquids (ILs) can facilitate HFC
separation.’”” Other works have used machine learning to
search for new refrigerants and estimate HFC solubility in
ILs.%? However, all HFC separation endeavors require the
often limited knowledge of the thermophysical properties of
these HFC mixtures."'* Computer-aided molecular design of
HEFC separations! 1011 has shown promise to accelerate the
development of novel processes to meet the required goals.
Accurate vapor-liquid equilibrium (VLE) data of HFC
mixtures are desired, as is a microscopic understanding of
the underlying physics that governs their physical properties.
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Classical molecular dynamics (MD) and Monte Carlo
(MC) simulations have played an important role to obtain
thermophysical property predictions while providing micro-
scopic insights of the various physical phenomena of practical
interest. A key component of MD and MC simulations is an
accurate description of molecular interactions, which has been
traditionally achieved using classical molecular force fields.
Force fields (FFs) make use of simple algebraic formulas
parametrized to match the macroscopic properties of interest
at the desired thermodynamic conditions. One recurring
strategy to obtain FF parameters is to conduct quantum
mechanical calculations of isolated molecules to obtain the
parameters for covalent and electrostatic interactions. For
dispersion interactions, parameters are often hand-tuned so
that experimental properties are reproduced. Further manual
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refining might be required for both interaction types to
improve the experimental agreement. Variants of this
methodology have been used by general purpose FFs such
as the Generalized Amber Force Field (GAFF)'? or the
Optimized Potentials for Liquid Simulations (OPLS) force
field.”® For the case of HFCs, molecule-specific FFs have been
developed to target different properties. For instance, a
semirigid all-atom model consisting of Halgren’s Buf 14-7
function and Coulombic potential was introduced to describe
HFC-125 (CF;CHF;) and HFC-134a (CH:FCEF;).™*
Although fixed bond lengths and angles were used and only
the torsion about the carbon-carbon bond was considered,
the model demonstrated reasonable prediction of thermody-
namic properties and showed great potential for later studies
on ethane-type refrigerants. Lisal and Vacek!® extended the
semirigid all-atom model to study the conformational
difference of fluoroethane isomers, including HFC-134
(CHF,CHF,), HFC-134a, HFC-143 (CHF,CH.F), HFC-
143a (CF;CHs), HFC-152 (CH.FCHF), and HFC-152a
(CHF.CHa). Potter et al.'o applied the 12-6 Lennard-Jones
(L)) potential and Coulombic interactions for fluoromethanes,
like HFC-32, HFC-23 (CHF;), and R-14 (CFy). The latent
enthalpy of HFC-32, HFC-23, and R-14 showed mean
absolute percent errors (MAPEs) of 11%, 3%, and 12%,
respectively, in comparison to experimental values. Also, the
vapor pressure of HFC-32, HFC-23, and R-14 had MAPEs of
122%, 75%, and 32%, respectively. The model was able to
accurately predict the orthobaric densities of all three
refrigerants but was unable to replicate the structure of
HFC-32, likely because of lack of polarization. Higashi and
Takada also applied all-atom 12-6 L] and Coulombic pair
potentials to study various properties, including partial radial
distribution functions, coordination numbers, pair potential
energy distribution functions, the lifetime of clusters, and the
liquid structure of HFC-32.17 A semirigid all-atom force field
was developed by Fermeglia et al.,'® which includes a 9-6 L]
potential and Coulombic interactions for HFC-32, HFC-161
(CH3CHF), HFC-152a, HFC-134, HFC-134a, HFC-143,
HFC-143a, and HFC-125. Reasonable agreement was
observed for intramolecular energetic and geometric proper-
ties, like bond lengths and angles, relative to experiments. The
simulated saturated liquid and vapor densities showed an
average deviation of approximately 2% from the correspond-
ing experimental values. Four potential models with different
L] parameters and partial charges were proposed for HFC-
134a by Peguin et al.!” with the OPLS-AA functional form.
The model with the best performance showed average
deviations of 0.7%, 4.4%, 3.2%, 0.2%, 0.1%, 6.2%, 0%, and
2.2% when compared to the experimental values of liquid
density, vapor density, vapor pressure, critical density, critical
temperature, critical pressure, boiling temperature, and heat of
vaporization, respectively, and was considered as the first all-
atom model with 12-6 L] potential to describe HFC-134a.
Two all-atom FFs with the same intramolecular parameters
but different L] parameters and different partial charges were
derived for HFC-152a by Yang et al.”’ based on the AMBER
force field. The best FF showed mean absolute deviations of
0.89%, 2.32%, and 2.84% relative to experiments from 250 to
360 K for saturated liquid density, saturated vapor density,
and vapor pressure, respectively, and average deviations of
0.49%, 0.38%, 3.80%, 0.34%, and 0.45% for critical density,
critical temperature, critical pressure, boiling temperature, and
heat of vaporization at 308.15 K of pure HFC-152a,

respectively. Their study also provided justification for the
capability of the aforementioned force fields to accurately
predict phase equilibrium properties of the binary mixture of
HFC-152a and HFC-32. An all-atom force field using the
AMBER functional form was applied to predict the
thermophysical properties of pure HFC-161 and VLE
properties of the HFC-161 and HFO-1234yf mixture.?! The
average absolute relative deviations of vapor pressure,
saturated liquid and vapor densities, critical temperature,
critical pressure, and critical density of pure HFC-161 relative
to experiments were 1.37%, 3.87%, 1.86%, 0.40%, 1.86%, and
1.47%, respectively. Raabe also hand-tuned an all-atom force
field for HFC-32, which can accurately reproduce VLE
properties, including saturated liquid density, saturated vapor
density, vapor pressure, and enthalpy of vaporization with
MAPEs of 1.45%, 7.17%, 4.31%, and 2.48%, respectively.?>?3
This hand-tuned FF is used as a comparison for the
optimization of the HFC-32 FF2* which serves as the basis
of this work.

Manual fine-tuning of classical FFs is time consuming,
computationally inefficient, and requires substantial human
expertise. Recently, automated workflows have been proposed
to accelerate the creation and refinement of classical FFs. For
example, the CHARMM lipid force field> has been recently
reparametrized using a semiautomated workflow that con-
sistently included long-range dispersion through the L]
particle-mesh Ewald method. The OpenFF initiative?0~28
develops a software infrastructure that accelerates the creation,
refinement, and validation of small organic molecule force
fields.

Automated force field development opens the possibility of
leveraging machine learning models to increase the accuracy
and confidence of the predictions obtained from molecular
FFs. For example, Madin and Shirts* showed that training a
Gaussian process (GP) to reproduce the different physical
properties of small molecules (e.g., alcohols, ketones, alkanes,)
while tuning LJ parameters using differential evolution yielded
significantly more accurate results than OpenFF. Multifidelity
surrogate modeling strategies have shown similar results in FF
optimization®**! and surrogate modeling, in general, and seen
success in structure optimization.’? In our previous work, we
developed a semiautomated workflow that leverages machine
learning models to accelerate the proposal of new parameters
using the L] potential energy function. Specifically, we used a
GP to emulate the results of a molecular simulation, and these
results were used to tune L] parameters for HFC-32 and
HFC-125 FFs. The results indicate that the parameters
developed using this method offer better predictions of
density, saturated vapor density, vapor pressure, and enthalpy
of vaporization relative to Raabe’s force field and to the
popular GAFF model, which was parametrized for small
organic molecules.?

Intramolecular parameters and partial charges are reliably
calculated without egregious computational effort from
quantum mechanical (QM) calculations, while the L]
parameters are relatively difficult to compute.?> This is
particularly important because the VLE properties we are
interested in for HFC separation depend heavily on the L]
parameters and partial charges. At the same time, they are
relatively insensitive to the intramolecular parameters.
Therefore, L] parameters are often optimized by fitting
experimental data for liquid phase properties such as heat of
vaporization, molecular volume, or hydration free energy.
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This is most commonly achieved by manual tuning,'33037
derivative-based optimization,®™! and stochastic heuristics
such as genetic algorithms.*>"# In this work, we improve the
machine learning workflow from Befort et al.>* to optimize the
L] parameters of the classical FFs of HFC-143a, HFC-134a,
R-50, R-170, and R-14 with the structures shown in Figure 1.

H F
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b F
Methane Tetrafluoromethane
R-50 R-14
F H F, F, H H
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HFC-143a HFC-134a R-170

Figure 1. 2D chemical structures and shorthand names of studied
refrigerants. Different notation reflects different atom types for LJ
parameters, and there is no shared atom type between refrigerants.
There are two atom types for R-50 (C and H), R-14 (C and F), and
R-170 (C and H), five atom types for HFC-134a (Cy, Co, Fy, Fy, and
H), and four atom types for HFC-143a (C;, C, F, and H).

The L] parameters of these five refrigerants yield comparable
or more accurate VLE property predictions than other
available FFs in the literature. This workflow, consisting of a
support vector machine (SVM) classifier, GP surrogate model,
liquid density (LD) iterations using MD simulations, and VLE
iterations using Gibbs ensemble Monte Carlo (GEMC)
simulations, has been gradually refined and can be generalized
to a broader family of refrigerants. The resulting parameters
are easily accessible via public repositories, and the Foyer
XML format facilitates the implementation in various
simulation engines. The results of this work will establish a
foundation for calibrating a generalized L] parameter set for
classical HFC FFs in future work.

METHODS
Problem Statement. The HFC FFs developed in this
study use the GAFF'? functional form:
V= X k=t L kL0~ 002 + X kleos(np = 7) + 1]

bonds angles a torsions
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where ¥ the total potential energy, k is the force constant,
rp is the nominal bond length, 8 is the nominal bond angle, y
is the nominal dihedral angle, » is the multiplicity, &, and oy
are the L] parameters, ¢ is the partial charge, € is the vacuum
permittivity, and r; is the distance between atom i and atom .
Intramolecular bonded parameters were directly taken from
GAFF. Partial charges were obtained using density functional
theory calculations at the B3LYP/6-311++g(d,p) level of
theory using the RESP method.“ The unlike interactions
were calculated using the Lorentz-Berthelot combining rule.
We chose to use the Lorentz—Berthelot combining rule partly
for convenience and partly because it is widely used in the

10

literature. We recognize, however, that relaxing this constraint
might lead to more accurate force fields, and so we plan to
investigate the combining rule in future studies. Following
traditional Class I force field approaches, we assigned atom
types based on their local environment. These atom types are
defined in Figure 1. Other atom typing schemes could be
used, such as the topology automated FF interactions
(TAFFI) framework,*” which leverages an automated atom-
typing procedure along with a combination of hierarchical
quantum chemical calculations and iterative MD simulations
to parametrize transferable FF models.

The goal of this work is to estimate optimal parameters o
and ¢ using experimental liquid density and VLE data
evaluated at different state points for five refrigerants.

General Workflow. The ¢ and o parameters of the L]
potential were optimized using our machine learning-aided
workflow described in Figure 2. First, the number of atom
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Figure 2. Overall workflow of machine learning-based optimization
of LJ parameters of classical HFC FFs. Each color in the workflow
represents a different step in the process. Green represents workflow
initialization using Latin hypercube sampling (LHS). The blue loop
uses Gaussian processes (GPs) and support vector machine (SVM)
classifiers to estimate parameters using liquid density (LD)
simulations and experimental data. Next, the purple loop uses
Gibbs ensemble Monte Carlo (GEMC) simulations to predict
vapor-liquid equilibrium (VLE) properties and select the non-
dominated points from all the samples. Red represents the end of the
workflow.

Enabling Software:

Cassandra

pes and upper/lower parameter bounds were determined
rom domain knowledge. The initial parameter sets were
generated using Latin hypercube sampling (LHS) for each
refrigerant. MD simulations were conducted to compute the

liquid density (LD) for the initial parameter sets. The
simulation results from the first LD iteration were used to
train the SVM classifier and GP surrogate model which then
were applied to select 500,000 distinct L] parameter sets for
the next iteration. The selection criteria involved experimental
root-mean-square error (RMSE) ranking and a space filling
algorithm. LD iterations continued until 25 parameter sets
with experimental RMSE less than 10 kg/m3 were obtained.
MC simulations were employed to calculate the VLE
properties for the 25 parameter sets at different state points.
Simulation results from MC were used to train different GP
models for different VLE properties. The 25 well-separated
parameter sets were selected using multiobjective optimization
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concepts*4? for the next iteration. VLE iterations continued
until a recommended parameter set was found with a
satisfactorily small error in all VLE properties.

The remainder of this section describes the workflow
(Figure 2) in detail.

MD Simulations. The GROMACS package® was applied
to perform MD simulations under the NPT ensemble to
compute liquid density at five different temperatures and
corresponding vapor pressures. Detailed temperatures and
pressures for each refrigerant are documented in Table S1.
The number of molecules was 300 for one-carbon refrigerants,
R-50 and R-14, and 150 for two-carbon refrigerants, HFC-
143a, HFC-134a, and R-170. Molecules were randomly
inserted into the simulation box using Packmol®52 with an
initial density of 1000 kg/m?3 for HFC-143a, 1000 kg/m3 for
HFC-134a, ;300 kg/m? for R-50, 500 kg/m3 for R-170, and
1200 kg/m  for R-14. A steepest descent algorithm was used
in energy minimization. The maximum step size was 0.01 nm,
the maximum force was 100.0 kJ/mol/nm, and the maximum
number of minimization steps was 50,000. The equilibration
phase ran for 0.5 ns, which was followed by a 2.5 ns
KIroduction run. A leapfrog algorithm® for integrating

ewton’s equations of motion was used. The time step was
1 fs. For the equilibration, the thermostat was the modified
Berendsen thermostat™ with a time constant of 0.1 ps, while
the barostat was the Berendsen barostat®™ with a time
constant of 0.5 ps. For the production phase, the thermostat
was the modified Berendsen thermostat> with a time constant

of 0.5 ps, while the barostat was the Parrinello-Rahman
barostat® with a time constant of 1.0 ps. Long-range

dispersion corrections were applied for energy and pressure.
The fast smooth particle-mesh Ewald method>” was used for
long-range electrostatics. P-LINCS* was the constraint used
for all bonds with the highest order in the expansion of the
constraint coupling matrix equal to 8 and the number of

R SR AR S AP B BT e aind Van
der Waals interactions was 1 nm. Periodic boundary
conditions were applied in the x, y, and z directions. All the
other settings are listed in the GitHub repository associated

with this paper (https://github.com/dowlinglab/HFC-FFO).

MC Simulations. GEMC simulations were employed to
study the VLE properties of the five refrigerants using the

Cassandra package.”® The initial number of molecules in the

vapor phase and liquid phase was 160 and 640, respectively.
The initial vapor and liquid boxes were randomly generated at
experimental vapor and liquid density, respectively, using
Packmol.>1>? iguid b -equilibrated for 5000
sv%%e&ounder%ﬁ%% sirr?&iaﬁgrsls}jggh?glll was oeiﬂ)woerd y a
GEMC equilibration on the whole system for 10,000 sweeps

and a production run for 100,000 sweeps using Cassandra.
The cutoffs of Coulombic and van der Waals interaction were
1.2 nm for the liquid box and 2.5 nm for the vapor box. Ewald
summation was applied for long-range electrostatics with a
relative accuracy of 1075. All bonds were fixed at the nominal
bond length. Standard L] tail corrections were applied to
pressure and energy. All the other settings are listed on the
GitHub page associated with this work (https://github.com/
dowlinglab/ HFC-FFO).

Classifier. We used a support vector machine (SVM)
classifier to predict the phase of a MD simulation performed
with a specific parameter set and state point, represented by
the vector x. We label each simulation in the training data set

i €al either a liquid (y; = 1) if the density is above the
threshold or otherwise as a vapor (y; = —1). The SVM then
predicts the label for a new postulated simulation with inputs
x* as follows:

sgn(w” ¢(X*) +b) _ sgn?z v, ik(x;, X)) + bz
hiez | £ @

Here, sgn(-) is the sign function. x; are the input variables (L]
parameters, temperature), and y; are the labeled outputs for
the simulations in the training data setd I. Moreover, w
and a are the primal and dual variables for the SVM training
problem, which is fully described in ref 60. For this classifier,
we use a radial basis function (RBF) kernel:

i (1% — X2
k(x;, x;) = expj_ [l \é
j 27 €]
k {
Here, k(x;, X)) is the kernel function evaluated with respect to
data x; and x;, and js a tunable hyperparameter. In the
context of eq 2, the function ¢(-) is defined such that
k(x,x)= ,(x)T (x), and b is a constant. The SVM

%) o))
classifier was trained using scikitlearn with a stopping
criterion of 0.001.

GP Model. Single-output GP surrogate models were used
to predict the liquid density from MD simulations and
saturated liquid density, saturated vapor density, vapor
pressure, and enthalpy of vaporization from GEMC
simulations. The inputs to the GP model, denoted
X = [0, ¢, T] € R", were L] parameters and temperatures,
and the output, denoted y, was the aforementioned properties.
Throughout the workflow in Figure 2, we used an 80%-20%
split between training and tested data. A linear mean function,
denoted m(x) was applied. For each LD iteration, we
compared RBF (eq 3), Matern, = 3, and Matern,, = 2

kernels. During the VLE iterations, all GP models used a RBF
kernel, except for the GP model of vapor density, which used
a Materny = §2 kernel.

The Matern kernels, shown in eq 4, are defined by the
smoothness parameter v:

k(x, x) = 4117‘%(1 %IIK Sv%p—d%/
P2 ”?{ 9o ”%
dij = |[x = %], @

Here, d is the Euclidean distance betwele_n inputs x and x,

ij i J
v ) is a modified Bessel function, and ) is the gamma
function. The hyperparametel was trained via maximum
likelihood estimation (MLE):

InplylX; ) = —;ymx, X}) + g2y

y

1 n
— “INK(X, X)) + goq) — log 2,

2 2 ©)
Here, p(y|X, ) is the log likelihood of observed data y (i.e.,
liquid density, vapor density, vapor pressure, or enthalpy of
vaporization) given independent data matrix X and hyper-
parameters/ . Let matrix Xe& R™" represent the training
input data, where each column x; corresponds to output y; for
observation i in the training data set Z. Thus, the vector
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y '"EsRhe output training data for a single thermophysical
property. As such, the matrix K(X, XJ) corresponds to the
kernel function (-, -) evaluated element-wise for all pairwise
combinations of the columns of X. Additionally, Iis the
identity matrix, » is the number of observations, || is the
matrix determinant, and 0 is the standard deviation of the
observed data, i.e., random noise from MD or MC
simulations.

The output predictions of a GP, by definition, follow a
multivariate normal distribution. As such, for a new input x*,
there is an analytic formula for the prediction mean and
prediction variance:

w1 = mx"1)
+ k(x", XPKEX, X|) + A (y - m(X))  (6a)

c2(x"f) = k(x", x"|))
— k(x", XP)K(X, XJ) + ¢2I]"k(X, x'|))
(6b)

These key mathematical properties make GPs excellent
emulators of computationally expensive black-box functions,
such as molecular simulation. Qualitatively, as the point x*
approaches a point x; in the training data set, the prediction
uncertainty ¢¢ decreases and approaches 02 in the limit.
Likewise, as the point x* moves away from all points in the
training data set X, the prediction uncertainty grows and
eventually plateaus. Thus, a GP is a nonparametric model to
interpolate between points in the training data set X and y
where the kernel choice and hyperparmate? adjust the
smoothness of the mean and scale of the prediction
uncertainty.®’ As shown in Figures S2 and S3 in the
Supporting Information, the GP predictions can be
unphysical, e.g., predict a negative liquid density, especially
if the molecular simulation parameters are unrealistic.

LD Ilterations. Each LD iteration starts with 1000
isothermal—-isobaric (NPT) MD simulations to predict the
liquid density of 200 parameter sets at five different
temperatures. For the first LD iteration, we use the initial
200 parameter sets generated using a space-filling LHS
algorithm. The generated parameter sets were constrained
by upper and lower bounds, which were informed from
domain knowledge and are documented in Table 1. The
upper and lower bounds are determined to cover a broad
range of physically reasonable values. Informed by the final
nondominated parameter sets of HFC-32 and HFC-125 from
ref 24, we slightly extended the upper and lower bounds for
each parameter accordingly. The same bounds were initially
used for R-14 as other refrigerants; however, very few
parameter sets that give satisfying LD predictions were
obtained after a few rounds of LD iterations, so we used a
broader range of L] parameters. We consider atoms in the
same chemical environment as the same atom type, and no
shared atom type is considered between different refrigerants.
As shown in Figure 1, there are two atom types for R-50, R-
14, and R-170, five atom types for HFC-134a, and four atom
types for HFC-143a. Previous work has shown that this atom-
typing scheme can lead to overparametrization.?* Future work
will be conducted on a more generalized atom-typing
framework for a family of HFCs.

The pressures and temperatures set in the MD simulations
were the experimental saturation conditions obtained from the

Table 1. Lower and Upper Parameter Bounds for o in A
and &kg in Kelvin of R-50, R-14, R-170, HFC-134a, and
HFC-143a

Refrigerant o lower  upper &/ks lower  upper
R-50 oc 3.0 40 &c/ ks 20.0 75.0
O 15 3.0 &n/ ks 20 10.0

R-14 ac 20 40 &c/ks 10.0 75.0
OF 25 35 &/ ks 15.0 50.0

R-170 ac 3.0 40 &c/ks 20.0 75.0
Ol 15 3.0 &u/ ks 20 10.0

HFC-134a ac, 30 40 &,/ ks 20.0 75.0

1

o, 30 40 e/ 200 750
o, 25 35  e/ks 150 400

1

O 25 35 e /ks 150 400

2

O 15 3.0 &n/ ks 20 10.0

HFC-143a Oc 3.0 40 &c,/ ks 20.0 70.0

1

oc 30 40  ec/ks 200 700

2

OF 20 4.0 &r/ ks 15.0 40.0
OH 15 3.0 &n/ ks 20 10.0

REFPROP package®? or the NIST Web site®® (see Table S1).

The resulting simulations were classified into liquid or vapor
phase using predefined density-based thresholds that depend
on the simulated HFC. The LD thresholds of R-50, R-14, R-
170, HFC-134a, and HFC-143a were 200, 1100, 320, 500, and
500 in kg/m3, respectively. It is important to adjust the liquid
density threshold for different molecules to avoid the
supercritical region.

A SVM classifier with the RBF kernel was trained to predict
whether a given set would yield a liquid or vapor
thermodynamic state. The information generated from the

previous iteration was used to train this model. Additionally,
the GP model with the RBF kernel was trained to predict the
simulation density from temperature and L] parameters. A
larger set of 500,000 candidate parameter sets was generated
using the LHS method, and their thermodynamic state and
densities were predicted with the trained SVM and GP,
respectively. A pretrained SVM classifier was used to classify
500,000 candidate sets generated with LHS into liquid
samples and vapor samples at the highest temperature. The
GP surrogate model was then used to predict the simulation
LD results of liquid and vapor samples at each temperature.
We selected the best 200 liquid parameter sets across
temperatures that yielded an experimental RMSE less than 25
kg/m3. A space-filling algorithm shown in Algorithm 1 was
used to ensure parameter diversity and maximize the distance
between the points selected.

Algorithm 1 Space-Filling Downselection of Nondominated Points
1: Given: d > 0, maximum distance between points
2 Given: [ xq, ..., %, | set of n candidate nondominated parameter sets
3: Given: N < n target number of candidate parameter sets to advance
i: Initialize set T = {1,....,n}
5 while |Z]> N do
i Choose a point from ¢ € T at random
7. Compute Ly norm £ = |[x; — x;]h, V) € I\ {i}
8 Remove all points j where j < d, ie., I« I\{j: {; <d}
9: end while

10: Return T

Given this algorithm, we used a bisection method to adjust
the input d in Algorithm 1 such thatf] | = 200. When there

https://doi.org/10.102 | /acs.jctc.3c00338
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were fewer than 200 liquid parameter sets with RMSE less
than 25 kg/m?3, we selected the rest from the vapor sets with
RMSE relative to experimental LD less than 25 kg/m? to keep
the total number of parameter sets for each iteration at 200.
This is a refinement of the procedure used by Befort et al.,2
where they selected 100 parameter sets from both liquid and
vapor samples to balance the inconsistency (e.g., classified as
vapor but with low RMSE relative to experimental LD)
between the classifier and GP model. However, we only focus
on the consistent subset between classifier and GP (i.e.,
classified as liquid and with low RMSE relative to
experimental LD). Without selecting sets from vapor samples,
the whole workflow would be more efficient. MD simulations
were conducted using the selected set of liquid parameters to
start a new iteration of the workflow.

LD iteration stops when the 25 best performing, well-
separated parameter sets were selected using an RMSE
between simulated and experimental LD of less than 10 kg/
m?3. We performed four, three, four, four, and five LD
iterations and obtained 800, 600, 800, 800, and 1000
simulated parameter sets for HFC-143a, HFC-134a, R-50,
R-170, and R-14, respectively.

VLE Iterations. The Cassandra package™ was applied to
perform GEMC simulations to calculate VLE properties of the
best performing 25 parameter sets for each refrigerant. The
properties of interest included the saturated liquid density,
saturated vapor density, vapor pressure, and enthalpy of
vaporization, at five different temperatures. Four GP models
were trained to predict the saturated liquid density, saturated
vapor density, vapor pressure, and enthalpy of vaporization as
a function of L] parameters and temperature. The LD GP
model was trained on all LD iterations (except for R-50 which
was trained on the last three LD iterations). Parameter sets
among all 500,000 parameter sets generated from LHS whose
difference between predicted LD RMSE value from
GROMACS and Cassandra exceeded 25 kg/m?® were
discarded. VLE properties of the remaining parameter sets
were evaluated by four VLE GP surrogate models. The law of
rectilinear diameter® was applied to calculate the critical
temperature and critical density. The RMSE of each VLE
property was calculated between GP predictions and
experimental data across all five temperatures. The non-
dominated parameter sets were obtained by examining the
RMSE of these six VLE properties (i.e., saturated liquid
density, saturated vapor density, vapor pressure, enthalpy of
vaporization, critical temperature, and critical density) using
the same approach as Befort et al.** More specifically, a
parameter set is considered nondominated if there are no
other evaluated parameter sets that can improve the RMSE of
one VLE property without sacrificing the RMSEs for one or
more other VLE properties. Thus, a nondominated parameter
set captures an optimal trade-off between objectives, i.e., the
nondominated property (finite discrete set) is closely related
to Pareto optimally (infinite generalization) in multiobjective
optimization.*3#° A space-filling algorithm was applied to
select 25 well-separated parameter sets out of nondominated
parameter sets among VLE properties for the next VLE
iteration. This was done to ensure diversity among the best
parameter sets. After each VLE iteration, we checked if there
were parameter sets with errors less than 5% in all VLE
properties, including the saturated liquid density, saturated
vapor density, vapor pressure, enthalpy of vaporization, critical
temperature, and critical density. If no parameter set was

found, VLE iteration continued. If parameter sets were found,
the set exhibiting the smallest error was recommended. We
performed four, three, three, two, and two VLE iterations and
obtained 37, 22, 27, 29, and 18 nondominated parameter sets
for HFC-143a, HFC-134a, R-50, R-170, and R-14, respec-
tively. Only one parameter set with less than 3%, 2.5%, 3.5%,
2.5%, and 2% error in all VLE properties was recommended
for HFC-143a, HFC-134a, R-50, R-170, and R-14, respec-
tively.

RESULTS AND DISCUSSION
Machine Learning Model Results. The SVM classifier
achieves staggering success in classifying vapor and liquid
samples. Figure 51 is the confusion plot, which visualizes the
classifier’s accuracy. Table 2 shows the details of the accuracy
of the classifier on the testing data for each iteration. For all
iterations, the accuracy of the classifier is greater than 92%.

Table 2. Accuracy of the SVM Classifier on Testing Data of
HFC-143a, HFC-134a, R-50, R-170, and R-14 for Each LD
Iteration”

Refrigerant LD-1 LD-2 LD-3 LD-4 LD-5
HFC-143a 96.0% 92.5% 92.8% 94.0% -
HFC-134a 92.5% 96.5% 96.5% - -
R-50 96.0% 98.8% 97.8% 98.0% -
R-170 96.5% 96.0% 96.2% 96.8% -
R-14 95.5% 95.5% 93.8% 94.3% 94.8%

“LD-n, where n is the iteration number. The classifier was trained on
all the available data from current and previous iterations.

Overall, the GPs predicted the results of molecular
simulations very accurately. Figure 54 demonstrates that the
GP consistently emulates the results of the molecular
simulations after training on all discussed VLE properties.
Moreover, GPs are particularly relevant to molecular
simulations because of their ability to predict over state
points. Transferability is an important topic in molecular
simulations and the results of Figure 54 demonstrate that
using a GP to estimate a molecular simulation inherently
accounts for this. Table 3 demonstrates that the overall
MAPEs between the GP predictions and molecular simulation
results of all iterations of each refrigerant are always less than
10% and frequently less than 3%.

LD Iteration Results. We conducted four, three, four,
four, and five LD iterations for HFC-143a, HFC-134a, R-50,
R-170, and R-14, respectively. Figure 3 shows the cumulative
number of parameter sets plotted versus liquid density MAPE.
The performances of LD-1 (blue curves) were reasonably
unsatisfying for all refrigerants since unphysical parameter sets
were randomly selected by the LHS. Vapor simulations lead to
spikes in LD-1 and “jumps” in the curves for later iterations.
Vapor density was small relative to liquid density, causing a
normalization error in MAPE calculation. Spikes near 100% in
LD-1 mean that simulations predicted that the molecule was
in the vapor phase at all five temperatures we studied. At the
same time, jumps near 20%, 40%, 60%, and 80% in later
iterations mean that simulations vaporized at one, two, three,
and four studied temperatures, respectively. Over the course
of the iterations, the GP surrogate model showed significant
improvement, which was reflected by more parameter sets
with relatively low MAPE as the number of iterations
increased. With more iterations being performed, more
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Table 3. Overall MAPEs of Liquid Density, Vapor Density, Vapor Pressure, and Enthalpy of Vaporization between GP
Predictions and MD or GEMC Results of HFC-143a, HFC-134a, R-50, R-170, and R-14 for all LD or VLE Iterations

Property Simulation HFC-143a HFC-134a R-50 R-170 R-14
o MD 0.89% 0.63% 0.61% 0.84% 0.69%
o GEMC 0.3% 0.2% 0.2% 0.2% 0.2%
o GEMC 4.6% 9.6% 2.7% 2.9% 4.9%
Puap GEMC 25% 7.6% 1.9% 1.8% 6.5%
AH,, GEMC 0.5% 0.3% 0.2% 0.3% 0.2%
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Figure 3. Cumulative number of parameter sets of each LD iteration (LD-n, where n is the iteration number) as a function of liquid density
MAPE relative to experimental data for HFC-143a, HFC-134a, R-50, R-170, and R-14. n equals to 4, 3, 4, 4, and 5 for HFC-143a, HFC-134a, R-
50, R-170, and R-14, respectively. Blue, yellow, green, red, and purple represent LD-1, LD-2, LD-3, LD-4, and LD-5, respectively. The inset plot is

zoomed for MAPE less than 2.5%.

parameter sets provide accurate liquid density. Although the
improvement from later iterations (n 2 3) was limited,
additional parameter sets with low MAPE were generated. LD
iterations stopped when enough (25) parameter sets with
RMSE less than 10 kg/m? relative to the experiments were
obtained.

VLE Iteration Results. We conducted four, three, three,
two, and two VLE iterations for HFC-143a, HFC-134a, R-50,
R-170, and R-14, respectively. Figure 4 shows the cumulative
number of parameter sets as a function of MAPE of VLE
properties, including liquid density, vapor density, vapor
pressure, enthalpy of vaporization, critical temperature, and
critical density. The critical temperature and critical density
were not directly included in the optimization workflow and
were calculated using the law of the rectilinear diameter.*
Higher MAPE represents a higher error in estimating certain
VLE properties. Significant improvement was observed in
VLE-2 relative to VLE-1 in vapor density, vapor pressure,
enthalpy of vaporization, and even in critical temperature and

critical density. The performance of each VLE iteration is
gradually improved based on an overall evaluation of liquid
density, vapor density, vapor pressure, enthalpy of vapor-
ization, critical temperature, and critical density. For R-50,
fewer parameter sets were found giving lower liquid density
MAPE in VLE-2 and 3 compared to VLE-1, since the whole
workflow balanced the performance of these six VLE
properties using multiobjective optimization concepts. 4
Final Parameter Sets Determination. Finally, we
obtained 37, 22, 29, 27, and 18 nondominated parameter
sets for HFC-143a, HFC-134a, R-170, R-50, and R-14,
respectively, which are plotted in Figure 5. For HFC-143a
and HFC-134a, all nondominated parameter sets provide a
MAPE less than 20%, and most are less than 10%. The
MAPEs of all promising parameter sets are less than 30%,
10%, and 8% for R-50, R-170, and R-14, respectively. Most
interesting, the Oy, values in all nondominated parameter sets
for HFC-143a, HFC-134a, and R-14 are all contained in a
narrow range. Mathematically, this suggests the physical
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Figure 4. Cumulative number of parameter sets of each VLE iteration (VLE-n, where n is the iteration number) as a function of MAPE of liquid
density (o;), vapor density (0,), vapor pressure (Pyap), enthalpy of vaporization (AHyqp), critical temperature (7c), and critical density (oc)
relative to corresponding experimental data for HFC-143a, HFC-134a, R-50, R-170, and R-14. n equals 4, 3, 3, 2, and 2 for HFC-143a, HFC-
134a, R-50, R-170, and R-14, respectively. Blue, yellow, green, and red represent VLE-1, VLE-2, VLE-3, and VLE-4, respectively.

property predictions are very sensitive to Of, and this
parameter can be inferred with confidence. This is consistent
with the observation that fluorine-containing molecules often
exhibit unusual physical properties, such that results are highly
sensitive to the fluorine parameters. In contrast, the
nondominated sets encompass a large range of values for
other parameters such as 0c, and 0c,. Mathematically, this

means there are several distinct values of the parameters that
yield good predictions. Physically, this can be interpreted as
possible offsetting errors, where the carbon parameters are
“effective” parameters that together capture average properties.
These results are consistent with our prior work,? in which
we show via sensitivity and identifiability analyses that the best
FF parameters are locally unique. This is not surprising, as
nonlinear model calibration problems are nonconvex opti-
mization problems that often exhibit many locally optimal
solutions. Our analysis mitigates this concern in part by
identifying the nondominated parameter sets that capture
trade-offs between multiple physical properties. Furthermore,
we hypothesize that creating a generic refrigerant FF will
further remove the degeneracy illustrated in Figure 5.

For each system, we recommend a single parameter set that
exhibits less than 3% (HFC-143a), 2.5% (HFC-134a), 3.5%
(R-50), 2.5% (R-170), and 2% (R-14) error in all VLE
properties. These sets are shown in bold blue in Figure 5. The
recommended L] parameters of these five refrigerants are
documented in Table 4. Partial charges and intramolecular

parameters are obtained from GAFF and ab initio calculations
and are documented in Table 4 and Tables S2-54,
respectively.

Our optimized parameter sets for HFC-143a, R-50, R-170,
and R-14 show significantly better performance than classical
GAFF'? as can be seen in Figure 5 and Table 5. The MAPEs
of GAFF are generally 1-2 orders of magnitude larger than
ours. The recommended parameter set of HFC-134a is
superior to the OPLS model of Peguin et al.'” with smaller
MAPE:s for all VLE properties.

The recommended parameter sets for R-50, R-170, and R-
14 are comparable to the united-atom Mie potentials of Potoff
et al.® who fit three parameters to experimental data: the
repulsive exponent 7, 0, and €. In this work, we fixed the
repulsive exponent to 12 and only tuned o and € while
achieving similar accuracy. For example, our model can more
accurately predict vapor density and enthalpy of vaporization
of R-50 than the model from Potoff et al.’® For R-170, the
MAPE of enthalpy of vaporization of Potoff is significantly
larger than ours, while other properties showed similar
accuracy.

The recommended parameter sets of R-50 and R-170
present a similar or better performance relative to the
TraPPE® force field. For example, the MAPEs of our
model for R-170 are 1.8%, 1.6%, 2.1%, and 2.0% for liquid
density, vapor density, vapor pressure, and enthalpy of
vaporization, respectively, while the MAPEs of TraPPE
model are 0.8%, 4.6%, 4.0%, and 8.2%.
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Figure 5. L] parameter sets with good performance of HFC-143a, HFC-134a, R-50, R-170, and R-14. Each line represents a parameter set. The
FF represented by the bold blue line is recommended due to its low MAPE for all properties less than 3%, 2.5%, 3.5%, 2.5%, and 2% for HFC-
143a, HFC-134a, R-50, R-170, and R-14, respectively. Others are the nondominated parameter sets. The gray, green, and red squares are the
performance of GAFF,12 TraPPE,% and available literature,'%¢ respectively, and their detailed L] parameters can be found in the Supporting
Information. The GAFF MAPEs of R-50, R-170, and R-14 are very inaccurate and not shown here.

The VLE envelope and vapor pressure and enthalpy of
vaporization as functions of the temperature of our
recommended parameter sets compared with GAFF,!?
TraPPE,® other literature values,'¢® and REFPROP

experimental results®? are shown in Figures 6 and 7,
respectively. The corresponding VLE envelopes and vapor
pressure and enthalpy of vaporization versus temperature plots
of all the nondominated parameter sets are presented in

https://doi.org/10.102 | /acs.jctc.3c00338
J. Chem. Theory Comput. XXXX, XXX, XXX-XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00338/suppl_file/ct3c00338_si_002.xlsx
https://doi.org/10.1021/acs.jctc.3c00338?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00338?fig=fig5&ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Table 4. Recommended Partial Charges (q) and LJ
Parameters (0 and &) for HFC-134a, HFC-143a, R-170, R-

50, and R-14
Refrigerant Atom  Atom type q o (A) € (K
HFC-134a C 3 0.61542 3.745 20.73
C 3 -0.020709 3.754 72.61
F f -0.210427 2.982 2313
F2 f -0.193556 2.607 39.98
H hl 0.115063 2.237 2.55
HFC-143a C 3 0.78821 3.809 69.97
C 3 -0.583262 3.037 55.40
F f -0.252614 3.424 17.05
H hc 0.184298 1.711 3.55
R-170 C 3 -0.00612 3.810 52.20
H hc 0.00204 2.316 6.16
R-50 C 3 -0.512608 3.727 71.73
H hc 0.128152 2.569 453
R-14 C 3 0.781024 3.490 36.24
F f -0.195256 2917 29.07

Table 5. MAPEs of Liquid Density (p1), Vapor Density (pv),
Vapor Pressure (Pvap), and Enthalpy of Vaporization

(AHyqap) of Parameter Sets from This Work
(Recommended), GAFF,!? Literature,'”*® and TraPPE®

for HFC-134a, HFC-143a, R-170, R-50, and R-14¢

Refrigerant Model MAPE, MAPE, MAPE,,, MAPEsy,
HFC-143a  This work 1.1% 2.6% 2.8% 2.3%
GAFF2 43% 33.0% 22.3% 28.4%
HFC-134a  This work 0.3% 1.6% 1.9% 0.5%
Peguin' 2.2% 31% 44% 0.7%
R-50 This work 34% 1.4% 2.5% 2.7%
GAFF2 14.5% 90.8% 59.8% 33.4%
Potoffee 14% 3.7% 0.8% 84%
TraPPE® 0.8% 6.5% 8.0% 1.1%
R-170 This work 1.8% 1.6% 21% 2.0%
GAFF2 224%  180.3% 83.0% 50.5%
Potoffee 21% 32% 1.9% 14.4%
TraPPE® 0.8% 4.6% 4.0% 8.2%
R-14 This work 0.6% 1.5% 1.3% 0.7%
GAFF22 6.7% 72.0% 62.9% 61.5%
Potoffoe 0.4% 1.9% 0.5% 2.0%

“The lowest MAPE for each property of each refrigerant is shown in

bold.

Figures S5 and S6. Detailed values of nondominated L]
parameters and their corresponding VLE properties are
documented in the Supporting Information.

Our proposed nondominated parameter sets provide an
excellent estimation of the VLE envelope, vapor pressure, and
enthalpy of vaporization compared to the experiments. Small
interactions at lower temperatures lead to small error spreads
for vapor in the VLE envelope, as shown for R-50 in Figure
S5. Previous FFs!%65% precisely estimate the VLE envelope.
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Figure 6. VLE envelopes of the recommended parameter set of
HFC-143a, HFC-134a, R-50, R-170, and R-14 (blue circles) with
comparison to GAFF!2 (gray squares), TraPPE® (red stars),
literature%¢ (blue and yellow triangles), and REFPROP exper-
imental results®? (black crosses).

Error around the critical point is expected for GAFF. Some
literature FFs'% can also predict vapor pressure and enthalpy
of vaporization accurately. The TraPPE model estimates vapor
pressure quite well, but cannot precisely predict the
temperature dependence of enthalpy of vaporization. Prom-
inent deviations between the experiment and GAFF are
observed for vapor pressure and enthalpy of vaporization.

Notably, taking R-170 as an example, the wall clock time for
each LD iteration is around 2 h, while each VLE iteration is
much more computationally expensive and can be finished in
3-4 days. Because each LD iteration requires 1000
simulations (1 core per simulation) and each VLE iteration
requires 125 simulations (2 cores per simulation), the total
CPU times are 2—-3 months and 2-3 years for each LD and
VLE iteration, respectively. Thanks to parallel computing, the
whole parametrization process can be completed within weeks
and save months of computational expenses relative to the
traditional hand-tuning process.

I CONCLUSIONS

Our machine learning-enabled force field optimization work-
flow has been refined and generalized to HFC-143a, HFC-
134a, R-50, R-170, and R-14. Multiple nondominated
parameter sets were found for each refrigerant. A recom-
mended L] parameter set based on the GAFF functional form
is proposed for each refrigerant which surpasses the previously
developed force fields in the literature. Based on the five
refrigerants studied in this work and HFC-32 and HFC-125
studied before? a generalized HFC force field will be
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Figure 7. Vapor pressure and enthalpy of vaporization of HFC-143a,
HFC-134a, R-50, R-170, and R-14 (blue circles) with comparison to
GAFF'2 (gray squares), TraPPE® (red stars), literature'®¢ (blue
and yellow triangles), and REFPROP experimental resultsé? (black
crosses).

calibrated in future work. Additionally, we are exploring
Bayesian optimization to automate the selection of the single
next best simulation (instead of batches of 200 simulations).
Further investigations should also be taken to investigate the
transferability of this method to property predictions not
included as optimization objectives. Relevant properties
include diffusivity, viscosity, thermal conductivity, heat
capacity, speed of sound, Joule-Thomson coefficient,
compressibility, and expansivity. This workflow can also be
extended to other complex molecules like hydrofluoroolefins
and ionic liquids (ILs). For example, dihedral parameters of

ILs that are initially not included in GAFF and hand-tuned
before®” can be optimized using this workflow.

l ASSOCIATED CONTENT

Data Availability Statement

The code of this workflow is available to the public at https://
github.com/dowlinglab/HFC-FFO. Example files for GRO-
MACS and Cassandra and scripts of workflow.
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The Supporting Information is available free of charge at
https:/ /pubs.acs.org/doi/10.1021/acs.jctc.3c00338.

Referenced experimental data; detailed values of
intramolecular parameters; plots of VLE envelop,
vapor pressure, and enthalpy of vaporization (PDF)
Detailed L] parameters and VLE properties of all the
nondominated parameter sets (XLSX)
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