
Towards Energy-Efficient Real-Time Scheduling of

Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi, and Hyoseung Kim

University of California, Riverside

ywang665@ucr.edu, mkari007@ucr.edu, hyoseung@ucr.edu

AbstractÐWith the increasing demand for computational
power, research on general-purpose graphics processing units
(GPUs) has been active for various real-time systems spanning
from autonomous vehicles to real-time clouds. While the use
of GPUs can significantly benefit compute-intensive tasks with
timing constraints, their high power consumption becomes an
important problem given that it is not rare to see multiple GPUs
in today’s systems. In this paper, we present our study towards
energy-efficient real-time scheduling in heterogeneous multi-GPU
systems. We first make observations using a custom power
monitoring setup that, in a multi-GPU system, conventional
task allocation approaches for multiprocessors do not lead to
energy efficiency and there is no clear winner. Then we propose
a multi-GPU real-time scheduling framework, sBEET-mg, that
builds upon prior work on single-GPU systems and makes offline
and runtime scheduling decisions to execute a given job on
the energy-optimal GPU while exploiting spatial multitasking on
each GPU for better concurrency and real-time performance.
We implemented the proposed framework on a real multi-GPU
system and evaluated it with randomly-generated task sets of
benchmark programs. We also experimentally simulated our
method in a system containing more GPUs. Experimental results
show that sBEET-mg reduces deadline misses by up to 23%
and 18% compared to the conventional load distribution and
load concentration methods, respectively, while simultaneously
achieving lower energy consumption than them.

I. INTRODUCTION

Graphics processing units (GPUs) are attracting much at-

tention due to their outstanding performance over CPUs by

allowing huge data parallelism. With the increasing demand

driven by data-driven and machine-intelligent applications, re-

search on real-time GPU multitasking becomes more and more

popular while leaving their high power consumption as an

open problem. According to [1], the high power consumption

of GPUs has a significant impact on scalability, reliability and

feasibility. An increase in power consumption also raises the

risk of thermal violations [2±4]. Without proper management,

these issues can be worse in a heterogeneous multi-GPU sys-

tem which is not rare to see in today’s computing environment.

In a multi-GPU system, the workload allocation methods

can be generally classified into load distribution and load

concentration. For load distribution, due to the fact that CUDA

kernels rarely fully utilize all the internal computing units of a

GPU [5], the idle energy consumption of the computing units

of an active GPU causes energy inefficiency [6, 7] and this

issue is likely to be magnified in a multi-GPU system. For

load concentration, as we will discuss more details later, dif-

ferent tasks may have different energy-preferred GPUs; hence,

packing and offloading to the same GPU while keeping other

GPUs idle does not necessarily lead to better energy efficiency

than load distribution. The problem gets more complicated in

real-time systems, since tasks have their own arriving patterns

with different timing requirements.

This paper paves a new way to address the energy efficiency

and scheduling problem in heterogeneous multi-GPU real-

time systems. To gain a precise understanding of power usage

characteristics, we analyze a multi-GPU system consisting of

two heterogeneous GPUs with a custom hardware tool. With

the obtained power characteristics of benchmark programs

on different GPUs, we give observations on the energy con-

sumption of a multi-GPU system when different scheduling

strategies are applied. Based on these, we present a multi-

GPU scheduling framework, sBEET-mg, by extending the

latest energy-aware real-time scheduling approach [6] to a

multi-GPU system. sBEET-mg allocates tasks to their energy-

optimal GPUs offline and performs runtime migration based

on the estimation of the resulting energy consumption of

all GPUs in the system. It also takes advantage of spatial

multitasking to improve real-time performance without losing

energy efficiency.

To evaluate the performance of sBEET-mg, the frame-

work is implemented in the multi-GPU system we built.

We conduct experiments using randomly-generated tasksets

of well-known benchmarks to compare the schedulability and

energy consumption of our framework against three existing

approaches based on load concentration and load distribution.

By judiciously executing jobs on the right GPUs with a

proper number of GPU’s internal computing units, sBEET-mg

achieves lower energy consumption as well as deadline misses.

The contribution of this work is summarized as follows:

• We analyze the power usage characteristics of various

benchmarks on two recent NVIDIA architectures using

precise measurements from our own power monitoring

setup. This leads to observations that neither conventional

load concentration nor load distribution scheduling strate-

gies are preferable for energy efficiency in a multi-GPU

system.

• To the best of our knowledge, the proposed sBEET-mg

framework is the first attempt to simultaneously address

the timeliness and energy efficiency in a heterogeneous

multi-GPU environment. It builds upon the latest work

but includes several unique approaches, including offline

allocation of tasks to energy-preferred GPUs and runtime



job migration with spatial multitasking and energy con-

sumption estimation across all GPUs in the system.

• We conduct experiments using a real heterogeneous

multi-GPU platform as well as simulation of larger scale

systems. Experimental results indicate that sBEET-mg

can achieve up to 23% and 18% of reduction in deadline

misses compared to the conventional load concentration

and distribution approaches while consuming less energy

than them at the same time.

II. RELATED WORK

Real-Time GPU Scheduling. Real-time scheduling methods

for GPU tasks can be categorized into two types: temporal

and spatial multitasking. Temporal multitasking views each

GPU as an indivisible, minimum unit of resource and focuses

on time-sharing of the GPU. Given that many GPUs provide

no support or only a limited level of preemption, many

earlier studies have modeled a GPU as a non-preemptive

resource [8±12]. In particular, Elliott et al. [10] considered

a multi-GPU system where a k-exclusion locking protocol

was used to assign tasks to k GPUs. This allows the system

to utilize multiple GPUs in a work-conserving manner, but

can result in poor energy consumption as we will show later.

In addition, their focus was limited to homogeneous GPUs

and no performance variation across GPUs was considered.

Spatial multitasking, on the other hand, explicitly takes into

account internal processing units of a GPU, such as NVIDIA’s

Streaming Multiprocessors (SMs) and AMD’s Compute Units

(CUs),1 and allows one GPU to execute two or more GPU

tasks at the same time by using persistent threads [13±15].

Recent studies have shown that spatial multitasking offers

better performance isolation and concurrency [16] and better

schedulability and resource utilization [17, 18] than spatial

multitasking for real-time workloads. However, their focus was

primarily on a single GPU and none of them considered energy

efficiency along with the timeliness of GPU tasks.

GPU Energy Efficiency. Prior work on GPU energy manage-

ment has mainly focused on regulating the number of active

SMs [13, 19±21]. This is based on the assumption that, if the

GPU hardware supports SM-level power gating, unused SMs

can be turned off and energy consumption can be reduced.

For example, Hong and Kim [19] focused on finding the

optimal number of SMs for the highest performance-per-Watt.

Aguilera et al. [13] and Sun et al. [20] proposed QoS-aware

SM allocation techniques based on spatial multitasking to

provide both performance and energy efficiency. However,

these approaches have been tested using only analytical power

models or simulation, and the claimed benefits are difficult to

obtain in today’s commercial GPUs because even the latest

GPU architectures do not support SM-level power gating. So

some SMs left unused by those methods can continue to

consume active-idle power until all SMs of the GPU become

fully idle. The lack of capability to power-gate individual SMs

1We will use SMs to refer to those internal processing units in the rest of
the paper.

also makes the energy management problem of GPUs different

from that of multi-core CPUs.

Recently, Wang et al. [6] proposed an energy-efficient real-

time GPU scheduler, called sBEET. They first showed that

although spatial multitasking benefits schedulability, it may

lead to an energy-inefficient schedule due to the active-idle

power consumption of unused SMs. Then they proposed a

runtime scheduler that balances the energy inefficiency caused

by spatial multitasking with improved real-time performance

in a single GPU system. Our work is motivated by this

and aims to generalize to a system equipped with multiple

heterogeneous GPUs.

III. BACKGROUND AND SYSTEM MODEL

A. Background

Our description here is based on NVIDIA GPUs and the

CUDA programming abstractions but it generally applies to

other types of GPUs, e.g., AMD’s ROCm platform and HIP

runtime APIs. For more information, interested readers can

refer to [6, 16, 22±25].

GPU Execution Model. GPU programs written in CUDA can

make processing requests to a GPU at runtime. The general

sequence for running a GPU program is as follows: (i) allocate

GPU memory, (ii) copy input data from main memory to GPU

memory, (iii) request to launch the GPU program code (called

kernel), (iv) copy the results back from GPU to main memory,

and (v) deallocate GPU memory. While the CUDA memory

model by default separates GPU and main memory spaces, it

offers a unified memory model that eliminates the need for

explicit data copies between GPU memory and main memory.

CUDA provides streams as means to control concurrency.

All memory copy and kernel execution requests on the same

CUDA stream are executed sequentially. However, different

CUDA streams can run in an overlapped manner as long as

resources are available, thereby allowing better concurrency.

Once launched, a kernel is executed by using all available

SMs on the GPU. CUDA APIs do not provide an option to

determine the number of SMs used by each kernel, but the

spatial multitasking technique [16, 17, 26, 27] implements this

in software and provides a controlled way to execute multiple

kernels in parallel.

GPU Power Management. As a GPU consists of multiple

SMs, the power management of the GPU happens at both the

SM level and the device level. An SM goes to the active-

idle state as soon as it is not used. When all of the SMs

are unused, the GPU is power-gated2 and each SM no longer

consumes active-idle power. In other words, if only one SM

is active, the GPU is not power-gated and the other SMs

consume active-idle power. While SM-level power gating has

been studied extensively in the literature to achieve better

energy efficiency [19, 28], our experiments have confirmed that

2Since the details of NVIDIA GPU’s power management mechanisms are
not publicly available, we are unsure if it is actually power-gated or just clock-
gated. Nonetheless, we use the term ªpower gatingº since it is generally used
in the literature of GPU power management.

2



it is still not available on NVIDIA’s latest Ampere architecture.

This matches with the observations of the recent paper [6].

When the GPU is left fully idle for a relatively long time, it

enters a deeper low-power mode. This time interval is observed

to be approximately 2 seconds in our experiments. While

exploiting this power state would be beneficial in interactive

systems, we do not consider it in this work since such a long

idle time is hard to expect in real-time systems serving periodic

or sporadic workloads.

B. System Model

We describe our models for the hardware platform, tasks,

and power and energy consumption. The summary of the

notation is listed in Table I.

Platform Model. We consider a single-ISA system Π con-

sisting of ω heterogeneous GPUs. The k-th GPU in the system

is denoted by πk, and each GPU is characterized by its power

model, computational capacity and clock speed. The GPU

πk consists of Mk SMs, each of which is an independent

computing unit from the view of spatial multitasking. We

use type(πk) to denote the type of the GPU device πk, e.g.,

type(πk) = type(π′
k) means two GPUs are identical.

Task Model. We consider a taskset Γ consisting of n sporadic

GPU tasks with fixed priority and constrained deadlines. We

focus on the kernel execution and memory copy operations,

and a task τi is characterized as follows:

τi := (Gi, Ti, Di)

• Gi: The cumulative worst-case execution time (WCET)

of GPU segments (including memory copies and kernels)

of a single job of τi. The duration depends on how many

SMs are assigned to a particular job.

• Ti: the period or the minimum inter-arrival time.

• Di: the relative deadline of each job of τi, and is smaller

than or equal to the period, i.e., Di ≤ Ti.

A task τi consists of a sequence of jobs Ji,j , where Ji,j
indicates the j-th job of task τi,

3 and we assume that the input

size of each job of a task is constant along the time. Following

the idea of spatial GPU multitasking [16, 17, 26, 27], each job

Ji,j of the task τi can execute with a different number of SMs

on a different GPU. Hence, we use Gi,j(m,πk) to represent

the WCET of Ji,j , where m denotes the number of SMs used

by Ji,j on the GPU πk. Gi,j(m,πk) is given by the sum of

the following three parameters:

Gi,j(m,πk) = Ghd
i (πk) +Ge

i,j(m,πk) +Gdh
i (πk)

• Ghd
i (πk): the worse-case data copy time from the host to

the device memory on the GPU πk

• Ge
i,j(m,πk): the worst-case kernel execution time of Ji,j

when m SMs are assigned to it on the GPU πk

• Gdh
i (πk): the worse-case data copy time from the device

to the host memory on the GPU πk

With the above parameters, a job’s finish time can be

estimated from the start of the job and we use fi,j to denote

3For simplicity, we may omit the subscript j and use Ji when we do not
need to distinguish individual jobs.

Table I: Symbols and their definitions in this work

Notation Definition

πk The k-th GPU in the system
Mk The total number of SMs on the GPU πk

M limit
k

The number of SMs that allowed (by the user) on the πk

Gi The cumulative WCET of GPU segments of task τi
Ti The period of task τi
Di The relative deadline of task τi, and Di ≤ Ti

Ji,j The j-th job of task τi
ri,j The arrival time of Ji,j
di,j The absolute deadline of Ji,j
fi,j The estimated finish time of Ji,j
m Number of SMs
Gi,j The WCET of Ji,j
Ghd

i (πk) The WCET of device to host memory copy of τi on πk

Gdh
i (πk) The WCET of device to host memory copy of τi on πk

Ge
i (m,πk) The WCET of kernel execution of τi on πk with m SMs

Ui(πk) The utilization of task τi on πk

U(πk) The utilization of πk

it. The utilization of a task τi on a GPU πk is defined as the

average utilization when different number of SMs are assigned,

and it is computed as Ui(πk) =
∑Mk

m=1
Ui(m,πk)
Mk

, where Mk is

the total number of SMs on the GPU πk. The utilization of

τi with m SMs on πk is Ui(m,πk) = Gi(m,πk)
Ti

. The GPU

utilization U(πk) is the summation of all the tasks that are

assigned to the GPU πk, i.e., U(πk) =
∑

Ui(πk). Without

loss of generality, we assume a discrete-time system where

timing parameters can be represented in positive integers.

Power Model. Following the power modeling approach in [6,

29, 30], the power consumption of a GPU at time t can be

represented as follows:

P = P s + P d + P idle (1)

where P s is the static power consumption, P d is the dynamic

power consumption from active SMs, and P idle is the power

consumption from idle SMs. Specifically, P d is the power

consumption required to execute kernels on SMs, and depends

on the kernel characteristics including memory access patterns

and the number of SMs used [30]. It can be decomposed into

a linear sum of per-SM power consumed by each job. For a

subset of jobs J = {J1, J2, ...} that are executing simultane-

ously on the GPU πk at time t, the power consumption of the

GPU πk, Pk, can be computed as follows:

Pk =







P s
k +

∑

Ji∈J

P d
k,i(mi) + P idle

k (Mk −
∑

Ji∈J

mi) if J = ∅

P s
k if J ̸= ∅

(2)

where m1,m2, ... are the number of SMs that are being used

by J1, J2, ... at time t (
∑

mi ≤ Mk). P d
k,i(mi) is the dynamic

power consumption of Ji on πk with mi active SMs. P idle
k (m)

is the idle power consumption of m inactive SMs, and Mk,

as defined previously, is the total number of SMs on the GPU

πk. Since dynamic and idle power is known to be linear to the

number of SMs [30], P d
k,i(mi) = mi ·P

d
k,i(1) and P idle

k (m) =

mi · P
idle
k (1) holds, respectively. Note that when all SMs on

the GPU are idle (i.e.
∑

mi = 0), the GPU is power-gated

and there is no power consumption from P d
k and P idle

k , i.e.
∑

P d
k (0) = 0 and P idle

k (Mk) = 0.

In this paper, we directly measured these power parameters

3



of using our test-bed setup (Sec. IV-A), but they can also be

estimated using analytical methods [30].

Energy Consumption. We adopt the energy computation

method in Eq. 5 in [6]. Let us consider a set of jobs

J = {J1, J2, ...} that are scheduled on the GPU πk during a

time interval [t1, t2]. Depending on scheduling decisions, some

jobs of J may be active at t ∈ [t1, t2] while the others may

be inactive. We define a binary indicator xm
i (t) that returns

1 if the m-th SM is actively used by a job Ji at time t, and

0 otherwise. Using this, the energy consumption on a single

GPU πk can be computed by:

Ek([t1, t2]) =

∫ t2

t1

(

P s
k +

∑

Ji∈J

(

P d
k,i(

Mk
∑

m=1

xm
i (t))

)

+ P idle
k

(

Mk −
∑

Ji∈J

Mk
∑

m=1

xm
i (t)

)

)

dt

(3)

And further, the total energy consumption of all GPUs in the

the system Π can be obtained by:

E([t1, t2]) =
∑

∀πk∈Π

Ek([t1, t2]) (4)

In the above modeling, we did not explicitly consider other

on-device components such as copy engines, caches, and

buses. However, their power consumption is relatively small

compared to that of SMs and can be captured as part of Ps

and Pd. We will later show with our experiments that our

power and energy models are faithful enough to use for making

energy-efficient scheduling decisions.

IV. ENERGY USAGE CHARACTERISTICS OF

MULTI-GPU SYSTEMS

The energy consumption of heterogeneous multi-GPU sys-

tems is hard to predict since there is no correlation of dynamic

power parameters (Pd and Pidle) and kernel execution time

(Gi) across different types of GPUs. In this section, we focus

on a system equipped with two GPUs and explore the impact

of scheduling policies on energy consumption.

A. Hardware Setup

The system used in this work consists of one NVIDIA

RTX 3070 and one NVIDIA T400. RTX 3070 is based on

the latest Ampere architecture. It has 8 GB of global memory

and 46 SMs with 5888 CUDA cores. All the SMs share a

L2 cache of 4096 KB. Another GPU in our system, T400, is

based on the Turing architecture, a predecessor of Ampere. It

has 2 GB global memory and 6 SMs with 384 CUDA cores,

while 512 KB of L2 cache is shared among all the SMs. For

both GPUs, data connection is established directly from the

GPU to the PCI Express (PCIe) of the motherboard. During

experiments, we fixed the SM clock speed of both GPUs to the

maximum, i.e., 1725 MHz for RTX 3070 and 1425 MHz for

T400, and both GPUs were able to maintain their frequencies

without throttling.

It is worth noting that, although some NVIDIA devices

provide power readings via nvidia-smi using a built-in

USB

Data

Data

12V

12V

12V

i2c

i2c i2c

NVIDIA RTX 3070

NVIDIA T400

nRF52832

Power Supply

Motherboard

PCIe

PCIeINA260

INA260

INA260

(a) Block diagram of our hardware setup

(b) Implementation of the block diagram

Figure 1: Multi-GPU system with a power monitoring tool

power sensor, its accuracy is not high (ª+/- 5 wattsº according

to the official document [31]) and the power reading is not

available on the T400 device. The power measurements by the

built-in sensor may show anomalies and need to be corrected

as the prior work suggested [32].

Due to these reasons, we developed a custom hardware tool

to obtain a precise measurement of power consumption by

each GPU. Fig. 1 shows our system with two GPUs connected

to the power monitoring tool. We used an INA260 sensor [33]

for each of the power supply lines of the GPUs. We used

PCIe risers and cut the 12V power lines to install INA260

sensor sensors in series. Due to the high power consumption

of NVIDIA RTX 3070 and the limitation of PCIe standard

power provision, i.e., 75 Watt, the GPU receives power from

both PCIe and the power supply. However, the power provided

by PCIe is sufficient for NVIDIA T400 and it does not require

any external power supply. We used an nRF52832 SoC [34]

to configure the sensors to sample voltage and current. The

maximum sampling rate we could obtain from the I2C protocol

of the INA260 sensor is 500 Hz, which leads to one sample for

every two milliseconds. The data of the sensors are combined

and sent to the same computer via USB cable to ensure the

best timing synchronization between GPU states and power

measurements. Each power sample is recorded in milliWatt,

and a high-resolution timestamp is added to each sample as

soon as the sample arrives. The power consumption of RTX

3070 is the summation of its power drawn from both PCIe

and the power supply. It should be noted that the power

4



Table II: Power parameters of benchmarks and GPUs

(a) Dynamic power of benchmarks

Benchmarki P d
0,i(1) P d

1,i(1)

MatrixMul 3.77 W 2.06 W
Stereodisparity 1.63 W 0.98 W
Hotspot 1.14 W 0.81 W
DXTC 1.67 W 1.15 W
BFS 0.98 W 1.07 W
Histogram 0.91 W 1.19 W

(b) Idle and static power of each GPU

GPUk P s
k

P idle
k

π0 (RTX 3070) 46 W 0.445 W
π1 (T400) 8 W 0.652 W

consumption from the 3.3V line of PCIe was not considered

because it was negligibly small (the current was less than 30

mA) and it was not substantially affected by the current state of

the GPU. More details can be found in our tool demonstration

paper [35].

B. Benchmarks and Power Profiles

Six benchmark programs are considered in our exper-

iments: MATRIXMUL, STEREODISPARITY, DXTC, HIS-

TOGRAM from NVIDIA CUDA 11.6 Samples [36], and

HOTSPOT, BFS from the Rodinia GPU benchmark suite [37].

This choice is made based on whether the execution time of

the program is long enough on both GPUs for the sampling

rate of our power monitoring tool or whether the input size is

configurable to increase the execution time. Each program is

then modified to use spatial multitasking on a separate CUDA

stream, but within the same CUDA context to enable concur-

rent execution of these streams. The software environment we

used is Ubuntu 18.04 and CUDA 11.6 SDK.

To explore the impact of different scheduling policies on

these workloads, we measured their execution time and power

parameters using our setup shown in the previous subsection.

Fig. 2 depicts the WCET of each benchmark as the number of

SMs changes on the two GPUs considered. Note that we took

the maximum observed execution time as the WCET. On RTX

3070, Although the execution time of some programs appears

to plateau on RTX 3070 after a certain number of SMs, it in

fact decreases in proportion to the SM count. When the same

number of SMs is used, RTX 3070 gives shorter execution time

as it uses a newer architecture running at a higher frequency,

but the ratio of the difference varies by benchmarks.

Table II shows the dynamic power parameters of the bench-

marks and the idle and static power of the two GPUs. π0 is

RTX 3070 and π1 is T400. For dynamic power, we report

only the case of SM count mi = 1, i.e., P d
k,i(1), because

P d
k,i(mi) = mi · P

d
k,i(1) holds as discussed in Sec. III-B. In-

terestingly, RTX 3070 does not always consume more dynamic

power than T400 despite its higher frequency. Idle power is

lower in RTX 3070, probably due to its newer architecture.

Static power is significantly higher on RTX 3070 but this does

not affect the energy consumption of the entire system unless

the GPU device is unplugged or put in a deep sleep mode.

0

80

160

240

320

400

480
MatrixMul

0

80

160

240

320

400
Stereodisparity

0

80

160

240

320

400 Hotspot

0

40

80

120

160

200

240
DXTC

1 6 11 16 21 26 31 36 41 46
0

15

30

45

60

75

90
BFS

1 6 11 16 21 26 31 36 41 46
0

20

40

60

80

100

120
Histogram

Number of active SMs

W
C

E
T 

on
 G

PU
 (m

s)

RTX3070 T400

Figure 2: WCET of benchmarks on RTX 3070 and T400

C. Observations

Based on real execution time and power parameters, we now

give some examples to make observations and gain insights

towards energy-efficient scheduling on a multi-GPU system.

Baseline scheduling approaches. Let us consider two work-

load allocation approaches that are well understood in the

context of multiprocessor systems.

• Load Concentration: Assigns given workloads to the same

resource until it gets fully utilized. For GPUs with spatial

multitasking, this means a GPU task is assigned to the

most packed GPU, with the remaining SMs of that GPU.

This is the default allocation approach of the NVIDIA

driver when the system has multiple GPUs.

• Load Distribution: Uniformly distributes given workloads

across available resources. Hence, it chooses an idling

GPU first (or a GPU with the highest number of unused

SMs when spatial multitasking is considered). Note that

this is the expected behavior when k-exclusion locking

protocols are used [10].

In the following examples, we show how the choice of

workload allocation contributes to the energy consumption

of the resulting schedule. The task parameters used in the

examples are extracted from the results shown in Fig. 2 and

summarized in Tables III and IV. For ease of presentation, we

focus on kernel execution time, Ge
i , and omit data copy time.

Homogeneous GPUs. Consider a homogeneous multi-GPU

system Π = {π0, π1} containing two identical NVIDIA T400

GPUs, i.e., type(π0) = type(π1).

Example 1. Consider two tasks with the execution time

parameters given in Table. III. The tasks are running on

different CUDA streams, so asynchronized memory copy and

current kernel execution can happen. For each GPU, a single

execution instance is created for each task so that different

GPUs can be used simultaneously.

To emulate a scenario that the system is lightly loaded, the

number of SMs each task can use is limited to 3 on T400.

5



GPU 1

T400

6

0

0 20 60
f = 1425MHz

40

GPU 0

T400

6

0

0 20 60
f = 1425MHz

40

(a) Schedule w/ distributed load:
E=2.3J

6

0

0 20 6040

6

0

0 20 6040

(b) Schedule w/ concen-
trated load: E=2.05J

Figure 3: Scheduling results in Example 1

We select an observation window of 100ms for the following

two possible schedules shown in Fig. 3: schedules by load

distribution and by load concentration. In Fig.3a, the job of

τ1, J1,1, and the job of τ2, J2,1, are distributed to two GPUs,

and the estimated energy consumption of this schedule is 2.3J

computed by Eq. (4). Fig.3b shows the schedule under load

concentration strategy. In this schedule, J1,1 and J2,1 share the

GPU π0 while leaving π1 idle so that it can be power gated.

The estimated energy consumption of the system is 2.05J.

Table III: Taskset in Examples 1 and 2

Task Application Ge
i (π0, 6) Ge

i (π0, 4) Ge
i (π0, 3) Ge

i (π0, 2)
τ1 = τ2 Histogram 32.67 ms 47.95 ms 63.724 ms 95.53 ms

Although the above example shows that load concentration

(i.e., packing tasks to as few GPUs as possible while keeping

the other GPUs idle so that they can be power gated) may

be more energy efficient, it is not always true. As mentioned

in [6], the use of spatial multitasking can lead to energy

inefficiency since the GPU is not SM-level power-gated and

unused SMs incur idle power consumption when the GPU

remains active. In the next example, we will show that packing

tasks to one GPU while leaving the other idle can be less

energy efficient than distributing tasks to all GPUs, especially

when it is inevitable to leave idle SMs for a long time.

Example 2. Consider the same tasks as in Examples 1. Now,

the job of τ1, J1,1, executes on π0 with 4 SMs, and the exe-

cution time parameters are given in Table III. In the schedule

shown in Fig. 4a, J1,1 and J2,1 are distributed to π0 and π1,

and J2,1 executes on π1 with 6 SMs. In the schedule in Fig. 4b,

J2,1 is assigned to π0 with the remaining SMs and executes

in with J1,1 concurrently, while π1 stays idle. However, after

J1,1 finishes execution, J2,1 is still running, during which the

idle SMs on π0 keep consuming energy, and this makes it less

energy efficient than the schedule with load distribution. With

Eq. (4), we can calculate the estimated energy consumption of

two schedules in an observation window of 100ms, and they

are 2.12J and 2.18J respectively.

Heterogeneous GPUs. In the next two examples, we will

explore the energy consumption under two allocation ap-

proaches in a heterogeneous multi-GPU system Π = {π0, π1}
(i.e.m type(π0) ̸= type(π1)). This is the same hardware

configuration as in Sec. IV-A.

Example 3. Consider a taskset with parameters listed in

Table IV. Suppose at t = 0, the job of τi, J1,1, has just

GPU 1

T400

6

0

0 20
f = 1425MHz

40

GPU 0

T400

6

0

0 20
f = 1425MHz

40

(a) Schedule w/ distributed
load: E=2.12J

6

0

0 20 6040

6

0

0 20 6040 80

80

(b) Schedule w/ concentrated
load: E=2.18J

Figure 4: Scheduling results in Example 2

Table IV: Taskset in Example 3 and 4

Task Application Ge
i (30, π0) Ge

i (16, π0) Ge
i (6, π1)

τ1 MatrixMul 11.98 ms 21.55 ms -
τ2 Hotspot 12.00 ms 22.31 ms 73.188 ms

started its kernel execution on the GPU π0 with 16 SMs, and

at the same time, the job of τ2, J2,1, is ready for execution.

Following the work distribution approach, J2,1 will execute

on the GPU π1 and the resulting schedule of the two tasks

is shown in Fig. 5a. Similar to the previous examples, when

an observation window of 100ms is considered, the energy

consumption of this schedule is calculated to be 7.35J.

Fig. 5b shows the schedule under the load concentration

approach. Since J1,1 is not using all the SMs of the GPU π0,

J2,1 is able to use the remainder. In this way, π1 is idle so that

it can perform power gating to save energy and the estimated

energy consumption of this schedule is 7.24J.

Example 4. Consider the same multi-GPU system and task

parameters as in Example 3. But at this time, J1,1 starts

kernel execution with 30 SMs on πk. Following the load

concentration approach, J2,1 uses the remaining 16 SMs on

πk as shown in Fig. 6b and the estimated energy consumption

of this schedule is 7.3J. Since π1 is idle when J2,1 is ready

for its execution, the load distribution approach executes J2,1
on π2 with all the available SMs. Fig. 6a shows this schedule

and the estimated energy consumption here is 7.19J, which is

smaller than that with the load concentration approach.

To summarize, the above examples suggest that neither

load concentration nor distribution should be preferred over

the other when making scheduling decisions in a multi-GPU

system, regardless of whether GPUs are homogeneous or not.

One thing we can clearly observe is that, if all tasks assigned

to the same GPU have similar finish time, this could be

helpful to reduce active-idle power consumption of unused

SMs. However, this is hard to realize with real-time tasks

since they have different periods and arrival patterns and their

absolute completion time is determined only at runtime. The

difficulty of this problem multiplies when timing constraints

are considered.

V. ENERGY-EFFICIENT MULTI-GPU SCHEDULING

Based on the observations from the previous section,

we propose our scheduling framework that makes runtime

scheduling decisions for both timeliness and energy efficiency

in multi-GPU systems. This approach extends sBEET [6],

which is the latest work on energy-efficient real-time GPU

6



!!,!

46

0

GPU 0

RTX3070

GPU 1

T400

6

0

0 20 60

f = 1725MHz

f = 1425MHz
40

30

!#,!

(a) Schedule w/ distributed load:
E=7.35J

!!,!

46

0

6

0

0 20 6040

30

!#,!

(b) Schedule w/ concen-
trated load: E=7.24J

Figure 5: Scheduling results in Example 3

!!,!

!#,!

46

0

GPU 0

RTX3070

GPU 1

T400

6

0

0 20 60

f = 1725MHz

f = 1425MHz
40

30

(a) Schedule w/ distributed load:
E=7.19J

!!,!

46

0

6

0

0 20 6040

30
!#,!

(b) Schedule w/ concen-
trated load: E=7.3J

Figure 6: Scheduling results in Example 4

scheduling for a single GPU system. Hence, we name our

framework as ªsBEET-mgº.

A. Energy Optimality

To better explain the proposed scheduling framework, here

we revisit the definition of the energy-optimal number of SMs

given in [6] and give the definition of energy-preferred GPU

for each task in a multi-GPU system.

Definition 1 (Energy optimal SMs [6]). The energy-optimal

number of SMs m
opt
k,i for a task τi on a GPU πk is de-

fined as the number of SMs that leads to the lowest en-

ergy consumption computed by Eq. (3) when it executes in

isolation on the GPU πk during an arbitrary time interval

δ ≥ maxm≤Mk
Ge

i,j(m,πk).

In the above definition, it is worth noting that the energy-

optimal number of SMs is unaffected by the duration of δ.

This is derived from Eq. (3). Assume the minimum possible

δmin = maxm≤Mk G
e
i , j(m,πk), which is long enough for τi

to complete execution no matter how many SMs are allocated.

After δmin, the GPU is power-gated and only P s contributes

to energy consumption under any SM allocation. Using this

and the energy consumption model in Eq. (3), we can define

the energy-preferred GPU as below.

Definition 2. (Energy preferred GPU) The energy-preferred

GPU for a task τi in a multi-GPU system Π is given by:

argmin
πk∈Π

∫ δ

0

P s
k + P d

k,i(m
opt
k,i ) + P idle

k (Mk −m
opt
k,i )dt (5)

where δ is an arbitrary time interval (δ ≥ maxGe
i,j(πk,m))

and m
opt
k,i is the energy-optimal number of SMs for τi on the

GPU πk. This gives the GPU that consumes the least amount

of energy when τi executes with m
opt
k,i SMs on it.

B. Overview of sBEET-mg

The main idea of sBEET-mg is to adaptively select the

GPU and the SM configuration for individual jobs of real-

time tasks. When a job is arrived or completed, among all

possible assignments, the scheduler chooses the one that the

job can bring the minimum expected energy consumption to

all GPUs in the system.

The software framework structure of sBEET-mg is similar

to that of sBEET, except that sBEET-mg is specifically de-

signed to handle multiple GPUs. The sBEET-mg framework

maintains one centralized server in the system and multiple

worker threads for each GPU. The role of the central server

is to receive jobs from GPU tasks and let them share the

same CUDA context for concurrent stream execution. Once

the scheduling algorithm of the server determines the target

GPU to dispatch a job, it sends the job to the corresponding

worker thread for execution on that GPU. Then this worker

thread calls cudaSetDevice() to set the GPU device to

use and launches the kernel in a separate CUDA stream. With

this design, a separate execution instance is available for each

running job so that multiple GPUs can be utilized simultane-

ously. We adopt persistent threads for GPU partitioning. In

this way, sBEET-mg enables parallel kernel execution on all

GPUs in the system, and the decision on which GPU to use

and when to use spatial multitasking is made by our scheduling

algorithm presented later.

When the sBEET-mg framework starts, the procedure in

Alg. 1 is executed to allocate tasks to GPUs. More details

on this procedure will be explained below. Following the

observation in [6], we limit the number of worker threads on

each GPU to two since more parallelism does not necessarily

improve performance [6]. Hence, the server creates two worker

threads as well as two CUDA streams for each GPU, and each

worker is bounded to one CUDA stream. When the worker

thread receives a job, it runs that job on the corresponding

CUDA stream. Each worker shares the status of its SM, i.e.,

active or idle, with the server through a global shared data

structure whenever a job assigned to it begins and completes

execution. This allows the server to have a global view of the

system and make scheduling decisions properly.

Whenever a new job Ji,j arrives, the server invokes the

runtime scheduling algorithm given in Alg. 2 (explained later)

to decide whether to execute this job on the preassigned

GPU by Alg. 1 or migrate it to another GPU. When a job

completes, the server is notified by the corresponding worker

and freed SM resources are reclaimed for the execution of next

or pending jobs.

C. Offline Task Distribution

For a given taskset Γ, the proposed task distribution al-

gorithm allocates tasks to GPUs offline. Basically, for each

task τi ∈ Γ, the algorithm tries to assign it to the energy-

preferred GPU πx with m
opt
x,i as long as the capacity of πx

permits. Alg. 1 depicts the pseudocode of the task distribution

procedure. It first sorts all tasks in Γ in decreasing order of

priority so that higher-priority tasks have a better chance to get

7



Algorithm 1 Offline Task Distribution

1: procedure TASK DISTRIBUTION

2: Sort tasks in Γ in decreasing order of priority
3: for τi ∈ Γ do
4: Get a list Πi of GPUs in non-increasing order of expected

energy consumption for τi
5: for πk ∈ Πi do
6: if U(πk) + Ui(πk,m

opt

k,i ) ≤ 1 then
7: Assign τi to πk

8: break
9: end if

10: end for
11: if τi is not assigned then
12: Assign τi to the GPU that has a minimum utilization

after τi is assigned
13: end if
14: end for
15: end procedure

their energy-preferred GPUs (line 2). Then for each task τi, it

obtains a list Πi of GPUs in non-increasing order of expected

energy consumption. Hence, the energy-optimal GPU of τi
goes first in this list. For each GPU πk in the ordered list Πi,

it runs a simple utilization check to decide whether τi can

be accepted (line 3 to line 10). After iterating through all the

GPUs, if τi is still not assigned to any GPU, the algorithm

assigns it to the GPU that will have the minimum utilization

after τi is assigned (line 12). The result of this allocation serves

as a guideline for the runtime scheduler.

D. Runtime Job Migration

Alg. 1 gives an offline task distribution strategy, and this can

lead to an energy-efficient schedule if all tasks can execute on

its energy-preferred GPU with the optimal number of SMs.

However, according to the given examples and the previous

work [7], it might not be energy efficient to turn on multiple

GPUs when the system is underutilized, since the GPUs are

not SM-level power gated and the energy consumed by active-

idle SMs can negatively affect the total energy consumption of

the system. Therefore, we seek opportunities to further reduce

the energy consumption of a multi-GPU system by judiciously

migrating and packing jobs at runtime.

Before introducing the proposed algorithm, we write a

function to adopt and encapsulate some methods of sBEET

(Alg. 2 and 3 in [6]):

function: SBEET(πk, Ji,j); returns (S
cfg
i,j (πk), E)

The function sBEET takes two inputs, πk and Ji,j , where

• πk is the GPU that the caller (the runtime scheduler of

sBEET-mg, namely Alg. 1) wants to check.

• Ji,j is the job that the caller is going to make a scheduling

decision for.

It returns a tuple of S
cfg
i,j and E. S

cfg
i,j is the SM allocation

result on πk for Ji,j . If S
cfg
i,j = ∅, Ji,j cannot execute on πk

for now. E is the expected energy consumption of Π during a

time window from the current time to the estimated finish time

of Ji,j , fi,j , with the SM allocation S
cfg
i,j . Hence, by Eq. (4),

E is equal to E([tnow, fi,j ]). If S
cfg
i,j = ∅, E = ∞.

Alg. 2 gives the proposed runtime job migration scheduler.

It takes as input a job Ji,j which is either a newly-released

job (if there is no other pending job) or the highest-priority

pending job. The algorithm decides whether the job should

be launched at the current time or be delayed, which GPU to

use, and how many SMs should be assigned, by considering

the current status of the task’s energy-preferred GPU πx. As

a result of scheduling decision making, the algorithm returns

a SM configuration S
cfg
i,j (πk) for Ji,j . If S

cfg
i,j (πk) = ∅, Ji,j

is pushed to the pending queue for later consideration.

• (Alg. 2 line 2 to 24) If πx is idle, the scheduler tentatively

puts Ji,j on πx with m
opt
x,i SMs, checks if Ji,j ∪ πx

can meet their deadlines,4 and then estimates the energy

consumption that Ji,j will contribute to the whole system.

If Ji,j ∪ πx are not expected to meet deadlines, the

computed energy E1 is set to ∞, meaning the assignment

is invalid (line 2 to 9). Then the scheduler will check

whether there is any chance to follow the packing strategy

to launch Ji,j on other active GPUs so that πx can

be power gated to save energy. It iterates through Πi

which is obtained in Alg. 1, and follows the method in

sBEET to find whether there is any assignment that can be

more energy efficient and reduce deadline violations by

exploiting spatial multitasking techniques. The predicted

energy will be saved as E2, and the scheduler will return

the S
cfg
i,j with the smaller predicted energy consumption

(line 10 to 24).

• (Alg. 2 line 25 to 27) In the second case, πx is partially

occupied. The scheduler calls SBEET(πk, Ji,j) to decide

and return the SM configuration S
cfg
i,j .

• (Alg. 2 line 28 to 46) If πx is fully occupied, we consider

the following two cases: (i) Ji,j can be postponed and

wait for m
opt
x,i SMs on GPU πx (line 29 to 36), or (ii)

execute on a GPU other than πx (line 37 to 43). In

case (i), the scheduler estimates the time when πx would

become available with m
opt
x,i SMs. If Ji,j can meet the

deadline with this assignment, then the scheduler predicts

the energy consumption from the current time to the

estimated finish time of Ji,j . Otherwise, the computed

energy E4 is set to ∞. In case (ii), the scheduler iterates

through Πi and predicts the energy consumption if Ji,j is

placed on a GPU other than πx. For each πk ̸=x ∈ Πi, if

πk is not fully occupied, the scheduler calls SBEET(πk,

Ji,j) to get SM configuration S′
5 and the predicted

energy consumption E′
5. After all the available GPUs

are traversed, the scheduler saves the configuration with

minimum energy consumption. After these procedures

are done, the scheduler returns the corresponding SM

allocation S
cfg
i,j of (i) or (ii) that leads to smaller energy

consumption of Ji,j’s execution.

4This is done by following the original sBEET’s approach (Alg. 3 in [6])
that generates a schedule from the current time to fi,j for a given SM
allocation on πx and checks if all jobs can meet their deadlines until fi,j .

8



Algorithm 2 Runtime Job Migration

1: function JOB MIGRATION(Ji,j)
2: if πx is idle then
3: Tentatively place Ji,j on πx with m

opt
x,i SMs

4: if Ji,j ∪ πx will meet deadlines then
5: E1 ← E([tnow, fi,j ])
6: S1 ← the corresponding SM allocation
7: else
8: E1 ←∞

9: end if
10: E2 ←∞

11: for each πk ̸=x in Πi sorted by Alg. 1 do
12: if πk is idle or πk is fully occupied then
13: continue
14: else
15: (S′

2, E′
2)← SBEET(πk, Ji,j)

16: E2 ← min(E2, E
′
2)

17: end if
18: end for
19: if E1 ==∞ and E2 ==∞ then
20: Assign Ji,j with maximum SMs on πx

21: else
22: Select the schedule with min(E1, E2)
23: end if
24: return S

cfg
i,j ▷ the corresponding SM allocation for Ji,j

25: else if πx is partially occupied then

26: (Scfg
i,j , E)← SBEET(πx, Ji,j)

27: return S
cfg
i,j

28: else ▷ If the GPU is full
29: t1 ← current time
30: Tentatively place Ji,j on πx and wait until m

opt
x,i SMs

become available
31: t2 ← fi,j
32: if Ji,j ∪ πx will meet deadlines then
33: E4 ← E([t1, t2])
34: else
35: E4 ←∞

36: end if
37: E5 ←∞

38: for each πk ̸=x in Πi sorted by Alg. 1 do
39: if πk is not full then
40: (S′

5, E′
5)← SBEET(πx, Ji,j)

41: E5 ← min(E5, E
′
5)

42: end if
43: end for
44: Select the schedule with min(E4, E5)
45: return S

cfg
i,j ▷ the corresponding SM allocation for Ji,j

46: end if
47: end function

E. Time Complexity

According to the time complexity analysis in [6], the time

complexity of the original sBEET is O(n · log(n)) where n

is the number of tasks. Suppose the number of GPUs in the

system is ω. In Alg. 2, the procedure to check whether a job

can be scheduled on each GPU (lines 11 to 18 and 38 to 43) is

upper-bounded by ω ·O(n·log(n)); hence, the time complexity

of the runtime job migration is given by O(ω · n · log(n)).

F. Offline Schedule Generation

This work targets soft real-time systems with no hard

guarantees. Tasks are always accepted, and our algorithms try

to minimize deadline misses and energy consumption. If one

needs hard guarantees, our algorithms can be used to generate

a schedule for one hyperperiod offline, check if this meets all

deadlines, and run it as a time-triggered schedule at runtime.

VI. EVALUATION

This section carries out experiments using our implemen-

tation for real hardware setup as well as simulation.5. The

majority of experiments are conducted on the hardware setup

given in Sec. IV-A. To evaluate performance in systems with

more GPUs, we also present experimental results from a

Python simulator we developed (Sec. VI-B).

In both experimental setups, we compare the performance

of sBEET-mg against the following approaches: (i) ªLCFº

(Little-Core-First) with LTF (Largest-Task-First), (ii) ªBCFº

(Biggest-Core-First) with LTF, both of which represent the

load concentration approach, and (iii) ªLoad-Distº (load distri-

bution).6 We also consider ªsBEET-mg Offline Onlyº to assess

the effect of the runtime algorithm (Alg. 2).

A. Hardware Experiments

In all the experiments on real hardware, we use the system

shown in Fig. 1 consisting of two GPUs, RTX3070 and T400.

Since the difference in computational power between these

two GPUs is too large, we decided to use only a portion of

SMs on RTX3070. This is reasonable since in practice, there

is a possible scenario where a portion of the GPU can be

reserved for the dedicated use of high-critical tasks, and the

remaining is shared among other tasks. In this system, Π =
{π0, π1}, where type(π0) = RTX3070 and type(π1) = T400.

We set π0 as the reference GPU, and the utilization of each

task (Ui(πk) = Ui(π0)) can be determined in this way.

Table V: Parameters for taskset generation

Parameters Range

Workload of the task One of the eight mentioned benchmarks
Number of tasks 6
Ui(π0) [0.01, 0.5]
Di 0.5 * Ti

1) Results of Schedulability: In this experiment, we com-

pare the schedulability of the proposed method with the other

approaches. For each value of utilization, 100 tasksets are

randomly generated with the parameters given in Table V

using the UUnifast algorithm [38], and we use RM to decide

task priorities. For each taskset, we run each approach for 15

seconds, and measure the deadline miss ratio of the tasks. Due

to the reason mentioned in Sec. VI-A, we limit the number

of SMs to be used on RTX3070 to 6, 12 and 24, and run the

same tasksets on the respective SM configurations.

Fig. 7 presents the absolute runtime deadline miss ratio

under each method, and sBEET-mg always has the lowest

deadline miss ratio among them. In particular, sBEET-mg

achieves up to 23% and 18% reduction in deadline misses

compared to Load-Dist and BCF, respectively. Since we use

the same tasksets in all the cases, the system gets most heavily

5Source code is available at https://github.com/rtenlab/sBEET-mg/.
6We define a ªbig-coreº as a GPU with higher computational capacity and

a ªlittle-coreº as a GPU with lower capacity, i.e. more and fewer SMs.

9



0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

0

20

40

60

80

100
D

ea
dl

in
e 

m
is

s 
ra

tio
 % sBEET-mg

sBEET-mg Offline Only
Load-Dist
LCF

BCF

(a) 6 SMs allowed on RTX3070

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

0

20

40

60

80

100

D
ea

dl
in

e 
m

is
s 

ra
tio

 % sBEET-mg
sBEET-mg Offline Only

Load-Dist
LCF

BCF

(b) 12 SMs allowed on RTX3070

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

0

20

40

60

80

100

D
ea

dl
in

e 
m

is
s 

ra
tio

 % sBEET-mg
sBEET-mg Offline Only

Load-Dist
LCF

BCF

(c) 24 SMs allowed on RTX3070

Figure 7: Deadline miss ratio w.r.t. the utilization of taskset

loaded when SMs on RTX3070 is limited to 6 as Fig. 7a

shows, and least loaded when SMs on RTX3070 is limited to

24 as Fig. 7c shows. We can see that the deadline miss ratio

under all methods is getting lower from the top figure to the

bottom. In Fig. 7a, all the curves are closer to each other since

both of the GPUs only have 6 SMs that are allowed to be used.

Due to this reason, there is not much space for sBEET-mg to

play around. However, as more SMs are allowed on RTX3070

as shown in Fig. 7b and 7c, especially as the system gets

overloaded, since our proposed method takes into account the

future arrival of the tasks to find the right GPU and the number

of SMs, the tasks will have less chance get starved, our method

can significantly reduce deadline miss ratio.

2) Results of Energy Consumption: While running the

experiments in Sec. VI-A1, we also measured the runtime

energy consumption of the five approaches, and the results

are shown in Fig. 8. At first, we can observe that, with 24

SMs on RTX3070 and U ≤ 1.0, BCF yields marginally better

energy consumption than sBEET-mg. This is because BCF

assigns all workloads to the bigger GPU (RTX3070) and leaves

the smaller GPU (T400) idle all the time; however, it causes

an excessively high number of deadline misses, as shown in

Fig. 7c. In the other cases, the energy consumption of sBEET-

mg and sBEET-mg Offline Only is always lower than the other

three approaches that are energy-agnostic. Under all the three

SM configurations with U ≤ 1.0, the energy consumption

of sBEET-mg is lower than sBEET-mg Offline Only. The

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

1.0

1.1

1.2

1.3

1.4

1.5

M
ea

su
re

d 
en

er
gy

 (k
J) sBEET-mg

sBEET-mg Offline Only
Load-Dist
LCF

BCF

(a) 6 SMs allowed on RTX3070

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

1.0

1.1

1.2

1.3

1.4

1.5

M
ea

su
re

d 
en

er
gy

 (k
J) sBEET-mg

sBEET-mg Offline Only
Load-Dist
LCF

BCF

(b) 12 SMs allowed on RTX3070

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

1.0

1.1

1.2

1.3

1.4

1.5

M
ea

su
re

d 
en

er
gy

 (k
J) sBEET-mg

sBEET-mg Offline Only
Load-Dist
LCF

BCF

(c) 24 SMs allowed on RTX3070

Figure 8: Energy consumption w.r.t. taskset utilization

reason is, when the system is not overloaded, the job migration

algorithm has more chances to take effect to save energy. Also,

sBEET-mg is always more energy-efficient than sBEET-mg

Offline Only when 24 SMs are used on RTX3070. With 6

and 12 SMs enabled on RTX3070 and U ≥ 1.2, the energy

consumption of sBEET-mg Offline Only is the lowest because

(1) it guarantees that the tasks always run with mopt, and (2)

in sBEET-mg, the use of the runtime algorithm with spatial

multitasking and job migration improves schedulability, which

inevitably causes more energy consumption [6].

0 50 100 150 200 250 300
Time (s)

0
25
50
75

100
125
150
175
200

Po
w

er
 c

on
su

m
pt

io
n Measured power Predicted power

Figure 9: Trace of actual and predicted power consumption

3) Power Prediction Accuracy: To evaluate the effective-

ness of the power prediction method used in our proposed

scheduler, we compare the predicted power consumption with

the actual power consumption measured by the power moni-

toring tool in Sec. IV-A. For each utilization considered, we

randomly select one taskset consisting of 6 tasks from the

10



Table VI: Power prediction for tasksets with different utilizations

* Note: Maximum power is ≈ 180 W

Taskset Util. Emeas (kJ) Epred (kJ) MAEpower (W) Released job Missed job

0.8 21.53 21.70 10.79 8882 1
1.0 22.12 22.71 9.56 13174 1
1.2 21.91 23.14 8.33 11858 0
1.4 22.30 24.05 10.55 16909 4
1.6 23.14 22.92 10.53 18033 438
1.8 24.16 24.84 11.54 23173 456
2.0 26.36 27.84 14.27 25841 865

benchmark pool using the parameters given in Table V, and

run each taskset using our proposed scheduler for 5 minutes.

Fig. 9 illustrates the measured and estimated power traces of

a taskset with utilization of 1.0. Table. VI summarizes the

results from all tasksets tested: Emeas and Epred stand for

measured and predicted energy, respectively, and MAE is the

mean-absolute-error (MAE) in power prediction. The numbers

of jobs released and missed deadlines during measurement are

also reported. The average MAE of all the tasksets of different

utilization is 10.80 W (≈ 6% of 180 W), and we can say the

power prediction accuracy is good enough for this work.

4) Comparison with sBEET: One may wonder how the

original sBEET would perform if it is used in a multi-GPU

system with conventional offline task allocation methods such

as BFD, WFD, and FFD. In this experiment, we answer this

question by comparing the schedulability of the proposed work

against the original sBEET combined with three allocation

methods. The tasksets generated with the parameters in Ta-

ble V are used, and the number of SMs is set to 24 on

RTX3070. For each taskset, we run sBEET-mg, sBEET Offline

Only, WFD + sBEET, FFD + sBEET and BFD + sBEET

for 15 seconds each, and measure the deadline miss ratio.

Fig. 10 presents the absolute deadline miss ratio under the five

approaches, and sBEET-mg has the lowest among all of them.

Note that the curves of FFD + sBEET and BFD + sBEET are

overlapped because they had the exact same performance in

our experiments.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Utilization of taskset

0

20

40

60

80

100

D
ea

dl
in

e 
m

is
s 

ra
tio

 % sBEET-mg
sBEET-mg Offline Only

WFD+sBEET
BFD+sBEET

FFD+sBEET

Figure 10: Deadline miss ratio of sBEET-mg and sBEET

5) Effect of Job Migration: To better understand the effect

of runtime job migration, let us consider the following two

case studies.

Case Study 1. Fig. 11 depicts the execution traces of the

taskset listed in Table VII under sBEET-mg with and without

job migration. The trace was collected using NVIDIA Nsight

Compute. The task-related GPU activities are highlighted in

different colors. For this taskset, all tasks are assigned to

RTX3070 by Alg. 1 due to the energy efficiency consideration.

However, they are not schedulable when job migration is not

used; as noted in Fig. 11a, J3,1 is skipped. Fig. 11b shows

the case where job migration is enabled. Unlike the previous

case, when J1,1 arrives, the line 4 of Alg. 2 finds that the

schedule would not be feasible if J1,1 is executed with mopt.

Hence, it jumps to line 20 and runs J1,1 as fast as possible

on RTX3070. Later when J2,1 arrives, as RTX3070 is fully

occupied by J1,1, line 32 takes effect and finds J2,1 would

miss the deadline if it waits until RTX3070 becomes idle. The

algorithm further looks for opportunities to run J2,1 on other

GPUs and decides to move J2,1 to T400. In this way, all three

jobs are schedulable.

Table VII: Taskset used in case study 1

Task Di = 0.5 ∗ Ti (ms) Offset (ms) GPU assigned by Alg. 1

τ1 60 0 RTX3070
τ2 45 1 RTX3070
τ3 40 2 RTX3070

GPU 0 

worker 0

GPU 0 

worker 1

GPU 1 

worker 0

GPU 1 

worker 1

Job release/deadline&! &# &%

The first instance 

of !! is skipped

(a) sBEET-mg w/o migration

GPU 0 

worker 0

GPU 0 

worker 1

GPU 1 

worker 0

GPU 1 

worker 1

Job release/deadline&! &# &%

The first instance 

of !" is migrated

The first instance of !! is schedulable

(b) sBEET-mg

Figure 11: Job migration case study 1

Case Study 2. The taskset used in this case study is listed in

Table VIII and the execution traces are shown in Fig. 12. For

11



this taskset, τ1 and τ2 are assigned to RTX3070 and T400,

respectively, by Alg. 1. In Fig. 12a where migration is not

used, J1,1 and J2,1 run on their assigned GPUs exclusively.

In Fig. 12b, when J2,1 arrives, Alg. 2 decides to move it

to another GPU to run concurrently with J1,1 for energy

efficiency (line 10 to 24. We measured the energy consumption

of these two schedules: the one without migration is 6.51J and

the one with migration is 6.49J. Despite the small difference,

this result shows the energy benefit of runtime migration.

Table VIII: Taskset used in case study 2

Task Di = 0.5 ∗ Ti (ms) Offset (ms) GPU assigned by Alg. 1

τ1 100 0 RTX3070
τ2 100 1 T400

GPU 0 

worker 0

GPU 0 

worker 1

GPU 1 

worker 0

GPU 1 

worker 1

Job release/deadline&! &#

(a) sBEET-mg w/o migration

GPU 0 

worker 0

GPU 0 

worker 1

GPU 1 

worker 0

GPU 1 

worker 1

Job release/deadline&! &#

Migrated for 

energy efficiency

(b) sBEET-mg

Figure 12: Job migration case study 2

B. Simulation with Multiple GPUs

Although there are only two GPUs in our hardware setup,

our proposed method can handle a system containing more

GPUs, including homogeneous GPUs. We developed a sim-

ulator using Python for this purpose, in which our proposed

method and the baselines are implemented.

With the collected workload and power profile on the

real GPUs, we add the third GPU, another RTX3070 to the

simulation. In this experiment, we limit the number of SMs

on both RTX3070s to 12, and the configuration is given

in Table IX. With parameters given in Table V, for each

taskset utilization, 200 tasksets are generated and each runs

for 15 seconds. The results of the deadline miss ratio and the

predicted energy consumption are demonstrated in Fig. 13.

The proposed method has the best schedulability among the

five methods, and in most cases, sBEET-mg and sBEET

Offline Only have better energy consumption compared to the

other baselines. The reason why sBEET has higher energy

consumption than sBEET-mg Offline Only when U ≥ 1.6 is

due to its better schedulability, as discussed in Sec. VI-A2.

VII. CONCLUSION

In this paper, we first provided observations about schedul-

ing strategies in a multi-GPU system and found that existing

simple task allocation approaches are not a preferred option

Table IX: GPU configurations in simulation

GPU Id GPU Mk M limit
k

π0 RTX3070 46 12
π1 RTX3070 46 12
π2 T400 6 6

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Utilization of taskset

0

20

40

60

80

100

D
ea

dl
in

e 
m

is
s 

ra
tio

 % sBEET-mg
sBEET-mg Offline Only

Load-Dist
LCF

BCF

(a) Miss ratio w.r.t utilization of taskset

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Utilization of taskset

1.6

1.8

2.0

2.2

2.4

2.6

Pr
ed

ic
te

d 
en

er
gy

 (k
J) sBEET-mg

sBEET-mg Offline Only
Load-Dist
LCF

BCF

(b) Predicted energy w.r.t utilization of taskset

Figure 13: Simulation results of GPU configuration in Table IX

for energy efficiency regardless of whether GPUs are homo-

geneous or heterogeneous. This is mainly due to the fact that

today’s GPU architectures are not SM-level power-gated but

device-level power-gated; thus, some unused SMs can continue

to draw power although leaving as many processing units

idle as possible has been considered conventional wisdom

for CPU energy management. Based on these observations,

we extended prior work and proposed sBEET-mg, the multi-

GPU scheduling framework that improves both real-time per-

formance and energy efficiency by assigning energy-preferred

GPUs to tasks and performing job-level migration with SM-

level resource allocation. The effects of sBEET-mg in reducing

energy consumption and deadline miss rates are demonstrated

through various experiments on real hardware and simulation.

The precise measurement and analysis of power consump-

tion on the latest GPU architectures will give insights to future

research endeavors. We hope that our findings can serve as

an important stepping stone for the development of energy-

efficient multi-GPU real-time systems.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation

(NSF) grants 1943265 and 1955650.

REFERENCES

[1] S. Mittal and J. Vetter, ªA Survey of Methods For Analyzing and
Improving GPU Energy Efficiency,º ACM Computing Surveys, vol. 47,
04 2014.

[2] S. Hosseinimotlagh, A. Ghahremannezhad, and H. Kim, ªOn dynamic
thermal conditions in mixed-criticality systems,º in 2020 IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2020, pp. 336±349.

12



[3] S. Hosseinimotlagh and H. Kim, ªThermal-aware servers for real-time
tasks on multi-core GPU-integrated embedded systems,º in 2019 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS). IEEE, 2019, pp. 254±266.

[4] Y. Lee, K. G. Shin, and H. S. Chwa, ªThermal-aware scheduling
for integrated CPUs-GPU platforms,º ACM Transactions on Embedded

Computing Systems (TECS), vol. 18, no. 5s, pp. 1±25, 2019.

[5] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, ªThe case
for GPGPU spatial multitasking,º in IEEE International Symposium on

High-Performance Comp Architecture, 2012, pp. 1±12.

[6] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, ªBalancing energy
efficiency and real-time performance in GPU scheduling,º in 2021 IEEE

Real-Time Systems Symposium (RTSS), 2021, pp. 110±122.

[7] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, ªGPU-NEST:
Characterizing energy efficiency of multi-GPU inference servers,º IEEE

Computer Architecture Letters, vol. 19, no. 2, pp. 139±142, 2020.

[8] G. Elliott and J. Anderson, ªGlobally scheduled real-time multiprocessor
systems with GPUs,º Real-Time Systems, vol. 48, pp. 34±74, 05 2012.

[9] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, ªA server-based
approach for predictable GPU access with improved analysis,º Journal

of Systems Architecture, vol. 88, pp. 97±109, 2018.

[10] G. Elliott et al., ªGPUSync: A framework for real-time GPU manage-
ment,º in IEEE Real-Time Systems Symposium (RTSS), 2013.

[11] G. Elliott and J. Anderson, ªAn optimal k-exclusion real-time locking
protocol motivated by multi-GPU systems,º Real-Time Systems, vol. 49,
no. 2, pp. 140±170, 2013.

[12] P. Patel, I. Baek, H. Kim, and R. Rajkumar, ªAnalytical enhancements
and practical insights for MPCP with self-suspensions,º in IEEE Real-

Time and Embedded Technology and Applications Symposium (RTAS),
2018.

[13] P. Aguilera, K. Morrow, and N. S. Kim, ªQoS-aware dynamic resource
allocation for spatial-multitasking GPUs,º in 2014 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), 2014, pp. 726±731.

[14] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
ªEnabling preemptive multiprogramming on GPUs,º in 2014 ACM/IEEE

41st International Symposium on Computer Architecture (ISCA), 2014,
pp. 193±204.

[15] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen,
ªEfficient GPU spatial-temporal multitasking,º IEEE Transactions on

Parallel and Distributed Systems, vol. 26, no. 3, pp. 748±760, 2015.

[16] S. Jain, I. Baek, S. Wang, and R. Rajkumar, ªFractional GPUs: Software-
based compute and memory bandwidth reservation for GPUs,º in 2019

IEEE Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2019, pp. 29±41.

[17] S. Saha, Y. Xiang, and H. Kim, ªSTGM: Spatio-temporal GPU manage-
ment for real-time tasks,º in 2019 IEEE 25th International Conference

on Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2019, pp. 1±6.

[18] A. Zou, J. Li, C. D. Gill, and X. Zhang, ªRTGPU: Real-time GPU
scheduling of hard deadline parallel tasks with fine-grain utilization,º
arXiv preprint arXiv:2101.10463, 2021.

[19] P.-H. Wang, C.-L. Yang, Y.-M. Chen, and Y.-J. Cheng, ªPower gating
strategies on GPUs,º TACO, vol. 8, p. 13, 10 2011.

[20] Q. Sun, Y. Liu, H. Yang, Z. Luan, and D. Qian, ªSMQoS: Improving
utilization and energy efficiency with QoS awareness on GPUs,º in
2019 IEEE International Conference on Cluster Computing (CLUSTER),
2019, pp. 1±5.

[21] Z.-G. Tasoulas and I. Anagnostopoulos, ªImproving GPU performance
with a power-aware streaming multiprocessor allocation methodology,º
Electronics, vol. 8, no. 12, 2019. [Online]. Available: https:
//www.mdpi.com/2079-9292/8/12/1451

[22] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
ªGPU scheduling on the NVIDIA TX2: Hidden details revealed,º in
2017 IEEE Real-Time Systems Symposium (RTSS), 2017, pp. 104±115.

[23] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D.
Smith, A. Berg, and S. Wang, ªAn evaluation of the NVIDIA TX1 for
supporting real-time computer-vision workloads,º in IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2017.

[24] N. Otterness and J. H. Anderson, ªAMD GPUs as an alternative to
NVIDIA for supporting real-time workloads,º in Euromicro Conference

on Real-Time Systems (ECRTS), 2020.

[25] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar, ªA server-based
approach for predictable GPU access control,º in 2017 IEEE 23rd Inter-

national Conference on Embedded and Real-Time Computing Systems

and Applications (RTCSA). IEEE, 2017, pp. 1±10.
[26] J. Sun, J. Li, Z. Guo, A. Zou, X. Zhang, K. Agrawal, and S. Baruah,

ªReal-time scheduling upon a host-centric acceleration architecture with
data offloading,º in 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2020, pp. 56±69.
[27] Y. Kang, W. Joo, S. Lee, and D. Shin, ªPriority-driven spatial resource

sharing scheduling for embedded graphics processing units,º Journal of

Systems Architecture, vol. 76, pp. 17±27, 2017.
[28] R. A. Bridges, N. Imam, and T. M. Mintz, ªUnderstanding GPU

power. a survey of profiling, modeling, and simulation methods,º ACM

Computing Surveys, vol. 49, no. 3, 9 2016.
[29] C. Isci and M. Martonosi, ªRuntime power monitoring in high-end

processors: methodology and empirical data,º in Proceedings. 36th An-

nual IEEE/ACM International Symposium on Microarchitecture, 2003.

MICRO-36., 2003, pp. 93±104.
[30] S. Hong and H. Kim, ªAn integrated GPU power and performance

model,º ACM SIGARCH Computer Architecture News, vol. 38, p. 280,
2010.

[31] ªNvidia-smi,º https://developer.download.nvidia.com/compute/DCGM/
docs/nvidia-smi-367.38.pdf, accessed: May. 2022.

[32] M. Burtscher, I. Zecena, and Z. Zong, ªMeasuring GPU power with
the K20 built-in sensor,º in Proceedings of Workshop on General

Purpose Processing Using GPUs, ser. GPGPU-7. New York, NY,
USA: Association for Computing Machinery, 2014, p. 28±36. [Online].
Available: https://doi.org/10.1145/2588768.2576783

[33] Texas Instrument, ªIna260 36v, 16-bit, precision i2c output current/volt-
age/power monitor,º https://www.ti.com/product/INA260.

[34] Nordic Semiconductor, ªNrf52832 soc,º https://www.nordicsemi.com/
products/nrf52832.

[35] M. Karimi, Y. Wang, and H. Kim, ªAn open-source power mon-
itoring framework for real-time energy-aware GPU scheduling re-
search,º in Open Demo Session of IEEE Real-Time Systems Symposium

(RTSS@Work), 2022.
[36] ªNvidia CUDA samples,º https://github.com/NVIDIA/cuda-samples.
[37] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and

K. Skadron, ªRodinia: A benchmark suite for heterogeneous computing,º
in 2009 IEEE International Symposium on Workload Characterization

(IISWC), 2009, pp. 44±54.
[38] E. Bini, ªMeasuring the performance of schedulability tests,º Real-Time

Systems, vol. 30, pp. 129±154, 05 2005.

13


	Introduction
	Related Work
	Background and System Model
	Background
	System Model

	Energy Usage Characteristics of Multi-GPU Systems
	Hardware Setup
	Benchmarks and Power Profiles
	Observations

	Energy-Efficient Multi-GPU Scheduling
	Energy Optimality
	Overview of sBEET-mg
	Offline Task Distribution
	Runtime Job Migration
	Time Complexity
	Offline Schedule Generation

	Evaluation
	Hardware Experiments
	Results of Schedulability
	Results of Energy Consumption
	Power Prediction Accuracy
	Comparison with sBEET
	Effect of Job Migration

	Simulation with Multiple GPUs

	Conclusion
	References

