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Biomolecular analyses are used to investigate the dynamics of cyanobacterial
harmful algal blooms (cyanoHABs), with samples collected during monitoring
often analyzed by qPCR and sometimes amplicon and metagenomic
sequencing. However, cyanoHAB research and monitoring programs face
operational constraints due to the reliance on human resources for sample
collections. To address this impediment, a third-generation Environmental
Sample Processor (3G ESP) integrated with a long-range autonomous
underwater vehicle (LRAUV) was tested during seasonal blooms of
Microcystis in western Lake Erie (WLE) in 2018 and 2019. The LRAUV-3G ESP
successfully performed flexible, autonomous sampling across a wide range of
cyanoHAB conditions, and results indicated equivalency between autonomous
and manual methods. No significant differences were found between LRAUV-
3G ESP and manual sample collection and handling methods in the 12
parameters tested. Analyzed parameters included concentrations of total
cyanobacteria and microcystin toxin gene via qPCR; relative abundances of
bacterial amplicon sequence variants (ASVs) from 16S rRNA gene amplicon
sequencing; and community diversity measures from both 16S amplicon and
metagenomic sequencing. The LRAUV-3G ESP provided additional sampling
capacity and revealed differences between field seasons for bacterial taxa and
concentrations of total cyanobacteria and microcystin toxin gene.
Metagenomic analysis of multiple microcystin toxin genes corroborated the
use of the mcyE gene as a proxy for the genomic potential of WLE cyanoHABs
to produce microcystin. Overall, this study provides support for the use of
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autonomous ‘omics capability in WLE to help expand the spatial and temporal
coverage of cyanoHAB monitoring operations.
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eDNA, cyanoHAB

1 Introduction

Cyanobacterial harmful algal blooms are a serious threat to
freshwater environments across the globe, with few places more
impacted by their occurrence than western Lake Erie (WLE)
(Paerl and Huisman, 2009; Michalak et al., 2013). Transformed
habitat, disturbances across ecosystems, development of hypoxic
zones, and toxin production can all be traced back to cyanoHAB
proliferation in the region (Watson et al, 2016). These
consequences have serious ramifications for human, animal,
and ecosystem health and significantly impact the region’s
economy (Carmichael et al, 2001; Hoagland and Scatasta,
2006; Hernandez et al, 2009; Paerl and Otten, 2013). To help
communities prepare for and respond to bloom events,
monitoring programs have been established to investigate
short- and long-term seasonal bloom conditions in an effort to
understand, forecast, and mitigate the deleterious effects of
cyanoHABs (GLWQA, 2012; Cooperative Institute for Great
Lakes Research, 2019; GLRI, 2021).

Current monitoring programs take a multifaceted approach
to observe and characterize cyanoHABs, which exhibit high
interannual variability and short-term fluctuations in
development, persistence, and toxicity. Strategically sited buoys
in WLE provide important real-time physico-chemical and
biological measurements to aid in observing and modeling
algal biomass (Chaffin et al., 2018; Cooperative Institute for
Great Lakes Research, 2019). Moored second-generation
Environmental Sample Processors (2G ESPs) are currently
used to collect and analyze samples in situ for the presence of
microcystin toxin (Scholin et al, 2017; U.S. Department of
Commerce - NOAA, 2021d). Satellite remote sensing also
supplies frequent and spatially widespread observations,
identifying changes in cyanobacterial biomass to indicate
bloom distribution, trajectory, and intensity over the WLE
region (Wynne et al, 2008; Stumpf et al, 2012; Rowe et al,,
2016; U.S. Department of Commerce - NOAA, 2021c). Lastly,
crewed vessel operations facilitate the collection and analysis of
discrete samples at designated stations for targeted chemical,
physical, and genetic/genomic parameters (Cory et al., 2017;
Steffen et al., 2017; Bosse et al., 2019; Cooperative Institute for
Great Lakes Research, 2019} (Figure 1).
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Despite the extensive existing monitoring program in WLE
(GLWQA, 2012; Cooperative Institute for Great Lakes Research,
2019; GLRI, 2021), disadvantages and limitations associated
with each surveillance method in the program motivate a
desire to improve overall observational capacity. For example,
crewed vessel operations are constrained by weather, costs, and
the availability of human resources, limiting how frequently
boats can be deployed and how expansive an area can be
surveyed. Although the 2G ESP is autonomous, it only collects
data from a fixed location, and the instrument mooring is
challenging to retrieve and relocate. Satellite remote
observations can be obscured by cloud cover, making it
difficult to monitor changes in the highly dynamic bloom
conditions of WLE. Autonomous sample collection provides
the opportunity to enhance cyanoHAB monitoring by removing
the limitations of crewed vessel operations.

Robotic water samplers have begun to provide more capable
and efficient options for environmental monitoring and sample
acquisition, including nucleic acid samples. Nucleic acid
analyses over greater spatial and temporal coverage can greatly
enhance regional monitoring. For example, nudleic acids can be
analyzed by quantitative polymerase chain reaction (qPCR)
based on markers for taxonomy or gene function. Examples
include cyanobacterial 16S rRNA to detect total cyanobacteria or
the mcyE gene to detect the potential to produce the cyanoHAB
toxin, microcystin. (Davis et al., 2009; Rinta-Kanto et al., 2009;
Al-Tebrineh et al., 2012). Nucleic acids recovered from samples
also can be analyzed through amplicon and metagenomic
sequencing to provide taxonomic composition and profiles of
functional potential of microbial communities (Berry et al,
2017a; Berry et al, 2017b; Meyer et al, 2017; Smith et al,
2021; Yancey et al,, 2022). Previous studies have used
automated systems to study marine microbes, phytoplankton,
zooplankton, and invertebrate larvae (Ryan et al.,, 2011; Robidart
et al., 2014; Govindarajan et al., 2015; Herfort et al., 2015; Taylor
et al, 2015; Bowers et al., 2018; Moore et al., 2021).

One recent advancement in autonomous sample processing
for nucleic acid analysis is the 3G ESP (Pargett et al., 2015;
Scholin et al., 2017). The 3G ESP is a robotic molecular analytical
instrument capable of autonomous sample acquisition,
preparation, and analysis. It can collect up to 60 discrete
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FIGURE 1

deployment. Bathymetry contour lines shown in meters.

samples during a single deployment spanning days to weeks. The
3G ESP is a stand-alone instrument, but due to its size and
design, the 3G ESP can also be installed as a payload on a Tethys-
class long-range AUV (LRAUV), which provides mobility. The
LRAUV-3G ESP is capable of deployment for several weeks, at
depths to 300 m, and can be controlled through satellite, radio,
cellular, and acoustic communications by an operator. Mission
commands can be sent whether the vehicle is nearby,
underwater, or in the middle of a mission and are received
and implemented by the vehicle upon receiving incoming
communications when surfacing. In prior open ocean
deployments, the LRAUV-3G ESP has been used successfully
to collect and preserve nucleic acid samples near Monterey Bay,
CA and north of Oahu, HI (Yamahara et al., 2019; Zhang et al.,
2019; Zhang et al,, 2021; Truelove et al., 2022) .

This report provides the first evaluation of collection and on-
board preservation of samples for nucleic acid analysis using the
LRAUV-3G ESP in a freshwater system. This study is noteworthy
for operations of the LRAUV-3G ESP in an area as shallow as WLE
(average depth 7.4 m). Furthermore, it provides the first assessment
of instrument operation in an environment where cyanoHABs
reached high densities. This work was developed alongside real-
time microcystin toxin detection on the LRAUV-3G ESP, which
will be presented in future communications. Complex robotic
operations of the LRAUV-3G ESP in the study area, such as
adaptive sampling in response to chlorophyll measurements,
have been described elsewhere (Unpublished). Here, suitability of
the LRAUV-3G ESP instrument to supplement and expand current
cyanoHAB observational capabilities was assessed. In addition to
providing proof-of-concept for LRAUV-3G ESP use in the shallow
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and freshwater of WLE, these field trials aimed to test the efficacy of
the LRAUV-3G ESP system in a broader range of applications and
environments, including the first evaluation of the instrument for
the collection of metagenomic data. The overarching goal was
to further the development and application of a new
generation of observational capabilities employing mobile,
autonomous platforms.

2 Materials and methods

To compare the results of robotic vs. hand-sampling, water
samples containing varying amounts of biomass were collected
using either the LRAUV-3G ESP or nearby ship-based Niskin
bottles. These co-collected samples were subjected to gPCR
measurements, amplicon, and metagenomic sequencing. The
mobile and autonomous sampling capabilities of the LRAUV-
3G ESP were employed during the 2018 and 2019 WLE field
seasons. Water samples were collected at 18 waypoints in 2018
and 20 waypoints in 2019, details provided in the Supplementary
Material (SM).

2.1 LRAUV operations

The LRAUV was designed to operate in the open ocean with
several energy-saving features that enable longer deployments.
These features (e.g., ballast adjustment, neutral buoyancy, etc.)
needed adjustment for freshwater operation, but by far the
biggest challenge was the shallowness of WLE. Sampling with
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the LRAUV-3G ESP was constrained to 1 m above bottom.
There were two deployments of approximately 5 days each in
2018 and two deployments of 6 days each in 2019. During both
sampling years, the instrument was brought ashore for
approximately 24 hours between deployments to recharge its
lithium-ion batteries. An additional LRAUV, equipped with
only contextual sensors, was deployed in 2019 to test the
utility of a sentinel vehide to help direct the track of the
sampling vehicle (Unpublished).

2.2 Sample collection

The LRAUV (Figure 2A) carried a 3G ESP (Figure 2B)
equipped with 60 reusable cartridges that contained the filters
and reagents needed for collecting and processing samples in situ
(Scholin et al,, 2017). Two cartridge types were used for either

10.3389/fmars.2022.1021952

(1) sample preservation for post-deployment analysis (Archive)
(Figures 2C and 51) or (2) supporting sample homogenization
for in situ analysis of cyanoHAB toxin (Lysis) (Figure 2D).
Filtration through membrane filters (Figure 2E) for both
cartridges was terminated when either a target volume was
reached (typically 1L) or the filtration rate fell below 0.2 mL/
sec, indicating a sufficient concentration of sample particles
collected on the filter.

Archive cartridges concentrated particles in the sample
water via filtration through two stacked 25-mm diameter
Durapore filters (EMD Millipore, Burlington, MA, USA)
consisting of a 5-um filter sitting directly on top of a 0.22-um
filter. Once filtration completed, the sample volume was
recorded and ~1.6 mL of RNALater® Stabilization Solution
(Invitrogen, Carlsbad, CA, USA) was added to preserve the
particulate samples for subsequent laboratory analyses (Pargett
et al., 2015; Yamahara et al,, 2019; Truelove et al., 2022). For lysis

FIGURE 2

Frontiers in Marine Science

Components of the LRAUV-3G ESP instrument (A) LRAUV equipped with a 3G ESP payload and ready for deployment from a small research
vessel. (B) 3G ESP payload shown outside of the LRAUV. (C) An archive cartridge pulled from the rotating tray of the 3G ESP. (D) A lysis pulled
from the rotating tray of the 3G ESP. (E) The filter housing ("puck’) used in both cartridge types that holds 25-mm membrane filter(s).
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cartridges, the concentration of particle-associated microcystin
in the resulting lysate was measured onboard the LRAUV in
near-real-time using a surface plasmon resonance instrument
employing a competitive ELISA assay (Ussler et al.,, 2019).

In 2018, the LRAUV-3G ESP generally collected samples in a
triplicate configuration by sequentially engaging archive, lysis,
and archive cartridges at a targeted depth of 3 m. In 2019, the
LRAUV-3G ESP generally collected samples in a duplicate
configuration, an archive followed by a lysis cartridge, at a
targeted depth of 3 m. Sampling locations included stations
used in the current routine monitoring program (Figure 1) and
areas of high or low chlorophyll as determined from real-time
data collected by LRAUV-3G ESP, sentinel LRAUV, and
satellite. This study reports results of the archive cartridge
collections only (Tables S1 and 52).

Conventional collection methods employed during routine
monitoring in WLE were used to acquire samples for method
comparison in 2019. Water samples were collected aboard NOAA
vessel R4108 by manually deploying a Niskin sampling bottle
overboard and collecting water at a depth of 3 m to match the
depth of 3G ESP collections. Samples were filtered (36 mL-100
mL) through 25-mm stacked 5-wm and 0.22-m Durapore filters
(EMD Millipore, Burlington, MA, USA) using a vacuum manifold
set at -7.5 inHg pressure. In this study, “matched” samples refer to
a pair of samples collected within 30 minutes of each other and
less than 0.5 km apart, in which one sample was collected by
Niskin bottle and processed manually and the other collected and
processed by the 3G ESP. Ten such “matched pairs” (20 samples
total) were collected in 2019 (Tables S1 and 52).

2.3 Sample processing

All 3G ESP archive filters were aseptically recovered post-
deployment at the Great Lakes Environmental Research
Laboratory, placed in separate, sterile 2-mL screw-cap tubes
(Sarstedt, Niimbrecht, Germany), and stored frozen at -80°C
until processed. Conventionally collected samples were processed
in the field (see above) and transported on dry ice to be stored
frozen at -80°C alongside the 3G ESP filters. Samples were thawed
on a microtube cooler just prior to DNA extraction and any
residual RN Alater was removed. To extract DNA, all filters were
incubated in 100 pL Qiagen ATL tissue lysis buffer, 30 pL
proteinase K, and 300 PL Qiagen AL lysis buffer (Qiagen, Hilden,
Germany) for 1 h at 56°C, with brief mixing every 15 min by vortex.
After incubation, samples were vortexed at maximum speed for
10 min, lysates were homogenized using a Qiashredder column,
and the filtrate was purified using the Qiagen DNeasy Blood and
Tissue kit according to the manufacturer’s protocol. Purified DNA
was quantified and assessed for purity using a NanoDrop Lite
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). DNA extraction blanks consisted of 0.22-um Durapore
filters with 100 mL nuclease-free water filtered through them via
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vacuum filtration on a manifold. One blank filter was included in
each group of extractions (2018: n=9, 2019: n=8).

2.4 Quantitative real-time PCR assays

The concentration of mcyE toxin gene was determined by
the Toxin Gene assay (Phytoxigene, Inc., Belrose, AUS;
Catalogue No: 205-0051), which targets the mcyE toxin gene
in Microcystis species. The concentration of total cyanobacteria
was determined by the Total Cyanobacteria assay (Phytoxigene,
Inc.; Catalogue No: 205-0050), which targets a 16S rRNA gene
marker for cyanobacteria. For each assay, duplicate qPCR
reactions were used to amplify DNA extracted from 5-pm
pore sized filters for both 3G ESP and manually collected
samples. Quantification standards were provided with the
assays (20-200,000 gene copies (gc) per UL, Phytoxigene ™
CyanoNAS standards). The concentration (Conc) of gene target
in the original environmental sample (gc/mL) was calculated by
adjusting the qPCR result for each reaction by the volume of
water filtered for each sample according to Formula 1.

Conc = \%* %‘, (Formula 1)
where Q is the quantity of template (gc per reaction), V., is the
DNA template volume, V;j is the volume of environmental
sample filtered, and V, is final elution volume for the DNA
extracted from the sample filter, with no correction made for
extraction efficiency. Additional details regarding qPCR assay

runs and controls are available in the SM.

2.5 Amplicon sequencing and
bioinformatics processing

Amplicon sequencing of the 16S rRNA gene was used to
characterize community taxonomy. Forward and reverse
primers were custom ordered to follow the Earth Microbiome
Project 16S Illumina Amplicon Protocol (Apprill et al., 2015;
Parada et al., 2015), as detailed in the SM and Table 53. PCR was
conducted on DNA extracts from all 5-tm and 0.22-um filters
using a BiooScientific NEXTFlex 16S V4 Amplicon-Seq Kit 2.0
(NOVA-520999/Custom NOVA-4203-04) (BiooScientific,
Austin, TX, USA) at the University of Michigan Advanced
Genomics Core'. Barcoded 16S amplicons were pooled
together and sequenced at the University of Michigan
Advanced Genomics Core using the Ilumina MiSeq v3 600
cycle (2 x 300 bp) kit with 20% phiX spike-in. ZymoBIOMICS
Microbial Community DNA Standards D6306 and D6311

1  https://brcf. medicine.umich.edu/cores/dna-sequencing/
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(Zymo Research, Irvine, CA, USA) were included in each
sampling run as positive controls.

The bioinformatics workflow Tourmaline was used to process
16S amplicon sequences (Thompson et al., 2022). Sequence quality
was initially evaluated by running FastQC/MultiQC using default
parameters (Andrews, 2010; Ewels et al.,, 2016). Primers were
trimmed using Atropos (Didion et al, 2017); no quality trimming
was performed at this step; and FastQC/MultiQC was rerun on the
trimmed samples. Trimmed sequences were imported into
Tourmaline for processing within QIIME 2 (Bolyen et al, 2019),
utilizing DADA2 (Callahan et al, 2016) to generate amplicon
sequence variant (ASV) tables from paired-end sequences. For
2018 16S amplicon sequences, DADA2 truncation values were set
to 250 bp for Read 1 and 200 bp for Read 2. For 2019 data, DADA2
truncation values were set to 232 bp for Read 1 and 187 bp for Read
2. Truncation values were decided based on FastQC results and the
script fastqc_per_base_sequence_quality_dropoff.py provided with
the Tourmaline package.

Amplicon sequence variants (ASVs) classified as archaea,
chloroplast, eukaryote, mitochondria, or unassigned were
removed from the ASV table prior to analysis. For alpha
diversity analysis, the remaining bacterial taxa were rarefied to
an even sampling depth of 27,000 reads for 2018 and 20,000 reads
for 2019 data. All other analyses using the amplicon sequence data
used non-rarefied ASV table counts (Tables 54 and S5). Bacterial
taxonomy was assigned to ASVs using a consensus BLAST
approach against the Anacapa 16S database (Curd et al, 2019)
(Tables 54 and S5). For convenience, ASV's highlighted in the text
are provided in Tables 54 and S5 and named based on Microcystis
ASVs identified using a previously published naming convention
(Berry et al., 2017b) or by combining the lowest taxonomic level
assigned to the ASV and the first four characters of the ASV
Feature ID provided in the Tourmaline output.

ASV relative abundance was calculated for each sample by
dividing the sample’s read count of an individual ASV by the
total number of sample reads. ASV mean relative abundance and
the standard deviation of relative abundances was calculated
across four data subsets, 3G-ESP 5pum archive collections in 2018
and 2019, as well as 3G-ESP 0.22um archive collections in 2018
and 2019. For comparisons of “matched pairs”, Alpha diversity
(Shannon’s diversity index) was calculated using Phyloseq
(McMurdie and Holmes, 2013). Beta diversity was calculated
using Robust Aitchison PCA using DEICODE implemented in
QIIME 2 (Martino et al, 2019). ASVs classified to the phylum
cyanobacteria and the genera Microcystis were separately
identified and analyzed in QIIME 2 (Bolyen et al., 2019).

2.6 Metagenomic sequencing and
bioinformatics processing

Metagenomic sequencing was used to further characterize
community taxonomy across samples. Aliquots of DNA
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extracted from both the 5-um and 0.22-um filter fractions of
3G ESP collected samples were submitted to the University of
Michigan Advanced Genomics Core for library construction
using the NEBNext® Ultra™ II FS DNA Library Prep Kit (New
England Biolabs, Ipswich, MA, USA). For each deployment year,
submitted samples were sequenced on 25% of an Ilumina
NovaSeq 6000 sequencing run (300 cycle) with a S4 flowcell.
Primers were trimmed from the sequence data using Atropos
(Didion et al,, 2017), with no quality trimming performed at this
step. FastQC/MultiQC was run to evaluate sequences before and
after trimming.

Alpha diversity metrics for metagenomic sequences were
generated by Nonpareil v.3.4.1 (Rodriguez-R et al., 2018).
Trimmed Read 1 FASTQ sequences were processed using the
Nonpareil k-mer algorithm (-T kmer) with k-mer length 24 (-k
24) using 10,000 random sequences (-X 10000) with 36 treads (-t
36) and 64 GB of RAM (-R 64000). Nonpareil curves, diversity
(Nd) scores, and other statistics were generated in R v.4.2.1 using
the command Nonpareil.set(). For beta diversity analysis,
species-level counts were generated. Taxonomic assignments
and relative abundances were first provided by Kraken 2
v.2.1.1 (Wood et al, 2019) and Bracken v.2.5.0 (Lu et al.,
2017) using the reference library PlusPF, composed of the
Kraken 2 standard plus protozoa and fungi collection based on
NCBI RefSeq”. Non-bacterial counts were filtered from the
output using KrakenTools’, and Bracken was run to generate
species-level counts. Beta diversity was calculated using Robust
Aitchison PCA using DEICODE implemented in QIIME 2
(Martino et al., 2019).

To further explore potential toxin production and provide
targeted gene analysis using the metagenomic sequencing data,
BLASTN v.2.8.1 was used to identify all mcy genes that comprise
the microcystin biosynthetic operons (Tillett et al., 2000; Yancey
et al, 2022). Reads were aligned to a BLAST database® that
contained all publicly available mcy genes found on IMG/MER®
(accessed January 2021). This database included all mcy genes
from Microcystis, as well as mcy genes from other taxa to provide
competitive read mapping. Reads were counted as a positive hit
if they aligned to a sequence with at least 80% query coverage
and 95% identity. Positive hit reads were relatively quantified
and normalized by average length of gene. Hit counts for
ambiguously mapped reads (ie, reads that mapped to more
than one sequence with an identical bit score) were divided
among the sequences.

2 https://benlangmead.github.io/aws-indexes k2
3 https://github.com/jenniferlu717/KrakenTools
4 https://github.com/ceyancey/mcyGenotypes-databases

5 https://imgjgi.doe.gov/
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2.7 Equivalency testing between
autonomous and manual sample
collection methods

Equivalency of sampling methods was examined for a variety
of parameters (n=12; Table 1) by performing comparisons
between the ten “matched pairs” collected in 2019 (Table S1).
qPCR concentrations from both Toxin Gene and Total
Cyanobacteria assays were log transformed prior to statistical
analysis. Cyanobacteria and Microcystis ASV mean relative
abundances were compared to examine agreement between 16S
amplicon taxonomic designations for primary cyanoHAB
community members. Alpha and beta diversity measures were
compared to test whether community diversity was equivalent
for both 168 amplicon and metagenomic sequencing results. All
comparisons used the Wilcoxon rank-sum test (ot = 0.05) with
the exception of comparisons of beta diversity, which used
PERMANOVA testing in R with the adonis2 function from
the vegan package (Oksanen et al, 2015) (Tables 1 and S6).
Most statistical comparisons utilized data derived from the 5-pum
pore sized filter where cyanoHAB biomass is concentrated in
the form of Microcystis colonies and associated bacterial
assemblages (Table 1).

2.8 Cyanobacterial index values

Cyanobacterial Index (CI) values, a proxy of chlorophyll a
absorption representing cyanobacterial biomass (Wynne et al,,
20105 Urquhart et al, 2017; Mishra et al,, 2019), were extracted
from processed satellite imagery (U.S. Department of Commerce
- NOAA, 2021a) for 13 of the 20 days in which the LRAUV-3G
ESP collected samples (6 days in 2018 and 7 days in 2019). CI
values were not calculated if >50% of the area used for the
calculation was obscured by cloud cover. CI values were
correlated to concentrations obtained from the Total

10.3389/fmars.2022.1021952

Cyanobacteria gPCR assay. CI values were calculated in three
ways: 1) averaged from within a 5-km radius of the sample
coordinate, 2) averaged within a 1-km radius, and 3) the nearest
to the sample coordinate. Correlations between CI value and
total cyanobacterial concentration (log gc/mL) were assessed by
Spearman rank correlation,

3 Results

3.1 LRAUV-3G ESP vehicle deployment
and operation

Operations in WLE created challenges for the LRAUV-3G
ESP compared to the deep oceanic environments where the
vehide is typically deployed. Lessons learned in the field were
translated into engineering solutions that were implemented
over the two years of field testing. Initially, the buoyancy engine
could not provide the fine-scale control of vertical movement
needed for propulsion-free hovering. A new flight pattern
termed the “donut” was created mid-deployment to maintain
stabilizer control during sampling. The LRAUV-3G ESP was
instructed to operate in level flight with rudder hard over,
resulting in ~30 m diameter circles during sampling at station.
This adaptation to the flight behavior allowed the instrument to
maintain a stable depth in the water column and samples were
collected successfully. Engineering modifications coupled with
experience allowed for faster and finer buoyancy control during
the 2019 deployment to better approximate the type of drift
sampling performed in the ocean, but propulsion was still
required to maintain vehicle control in WLE. The adjusted
flight behavior did impact energy reserves, requiring vehicle
recovery halfway through both year’s deployments for overnight
battery charging on shore.

Poor buoyancy control in WLE resulted in the LRAUV
hitting the bottom in 2018. Mud gathered in the nose section and

TABLE1 Results of statistical analyses to test for equivalency between manual (Niskin) and autonomous (3G ESP) sampling methods.

Parameter Filter Size (jum) p-value
Total cyanobacteria (gc/mL) 5 0.052
meyE toxin gene (gc/mL) 5 0.796
Cyanobacteria (Sample Relative Abundance) 5 0.631
Microcystis (Sample Relative Abundance) 5 0.353
Alpha diversity 165 rRNA amplicon 5 0.739
(Shannon’s diversity index) 022 0.796
Metagenomic 5 0.166
(Nonpareil diversity) 022 0.684
Beta diversity 165 rRNA amplicon 5 0.076
(Robust Aitchison distance) 022 0.860
Metagenomic 5 0961
(Robust Aitchison distance) 022 0.765
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the vehicle became stuck, although no substantial damage was
incurred. The water depth was so shallow that the aft section
protruded, allowing the vehicle to maintain cellular
communications so the vehicle could be found and dislodged.
Despite vehicle limitations, the overall system was found capable
of executing on-the-fly modifications to the mission design,
allowing for sampling to be adapted to a variety of needs
and circumstances.

3.2 LRAUV-3G ESP sample collection and
equivalency testing results

The LRAUV-3G ESP successfully collected and preserved
samples over 11 days in 2018 and 12 days in 2019 (Tables 51 and
52). Archive sample filtration time ranged from 1 to 48 minutes
for filter volumes ranging from 15 to 738 mL, depending on
particle load. Average collection depth ranged from 2.4-4.0 min
2018 and 0.2-5.2 m in 2019. Water temperature during
collection ranged from 23.7-25.4°C in 2018 and 22.3-25.3°C
in 2019. Every archive cartridge deployed in 2018 and 2019
provided sufficient preservation of biomass for recovery of
nudeic acids.

Overall, data suggested that equivalent results were obtained
whether samples were collected and processed autonomously by
the LRAUV-3G ESP or by Niskin bottle with vacuum filtration.
No significant differences were observed between “matched
pairs” with autonomous versus manual collection strategies for
all 12 evaluated parameters (Table 1). Samples yielded similar
results for analysis by qPCR (Toxin Gene and Total
Cyanobacteria assays), 165 amplicon ASV relative abundance
(cyanobacteria and Microcystis), alpha diversity (165 amplicon
and metagenomic sequencing) (Figure 3), and beta
diversity (Figure 4).

3.3 LRAUV-3G ESP sampling
observations

3.3.1qPCR

For both the Toxin Gene and Total Cyanobacteria qPCR
assays, concentrations varied greatly (spanning several orders of
magnitude) depending on sample location (Table 57, Figure 52).
Higher mcyE toxin gene and total cyanobacterial concentrations
were observed in 2019 relative to 2018 (Figure 5). Linear
relationships between total cyanobacteria and mcyE toxin gene
were noted (Figures 6, 53) and these parameters were
significantly correlated during both years of deployment by
Spearman rank correlation (o = 0.05, Table 2).

Agreement between water collected in situ by the LRAUV-
3G ESP and satellite observations was evaluated by comparing
the results of the Total Cyanobacteria qQPCR assay to CI values
(Figures S4 and S5). Correlations between the Total
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Cyanobacteria qPCR assay and CI were significant for all three
methods used to calculate CI values (Spearman rank correlation,
o = 0.05) (Table 3). For the 13 sufficiently clear days, the CI
values calculated by averaging over a 5 km radius to the nearest
autonomously collected water sample provided the strongest
correlation to the Total Cyanobacteria qPCR assay (R* = 0.57;
Figure $4). The R” dropped to 0.42 when the CI was averaged
over 1 km radius and 0.36 when a nearest individual CI value
was used in the correlation.

3.3.2 Metagenomic analysis

Metagenomic analysis was utilized to corroborate the
assumption that the presence of mcyE (the gene target in the
Toxin Gene assay) was proportional to the full complement of
genes in the operon used to produce microcystin. Testing the
assumption that mcyE gene detection in the qPCR assay infers
genomic potential to produce microcystin toxin was valuable
because not all Microcystis strains in the Great Lakes contain the
full complement of genes (Yancey et al.,, 2022). In the samples
tested here, the normalized abundance of sequence reads for
each mcy gene had a strong correlation with the normalized
abundance of mcyE reads, with all gene correlations possessing
an R” value of 0.95 or greater (Figure 7).

3.3.3 16S rRNA gene amplicon analysis

In addition to insights on Microcystis in WLE, samples
collected via the LRAUV-3G ESP provided information on the
broader microbial community. In general, the observed
taxonomic composition at the phylum-level was similar for
both deployment years, with Cyanobacteria shifting into
dominance in 2019 compared to 2018. Overall, the same set of
taxa filled the top slots, with the top four phyla representing ~10-
30% of the bacterial community and the second set of six phyla
representing ~1-7% for the 5-yum size fraction (Table 4). For the
0.22-pum size fraction, the top three phyla were Bacteroidetes,
Proteobacteria, and Actinobacteria during both years,
representing between 12-39% of the community (Table $8).

In addition, the amplicon data afforded higher resolution
analysis. At the level of ASV, the cyanobacterium Synechococcus
107b was the most abundant in the 5-pum archive filter fraction
in 2018, with a mean relative abundance (+ standard deviation)
of 4.3 + 3.5% (Figure 8). The next most abundant ASV was
identified as Actinobacteria 9cfa (2.2 + 1.2%) followed by
Microcystis CCG (2.1 + 1.5%), with Microcystis CTT (1.4 *
1.2%) and Microcystis CTG (0.6 + 0.4%) also having a notable
presence in the bacterial community. In total, 8,829 unique
ASVs were identified from all samples collected in 2018 (n=91)
(Table S4).

Consistent with the higher Toxin Gene qPCR results for
2019 (Figure 5), the two most abundant ASVs collected on the 5-
um archive filters were identified as the potentially toxigenic
Microcystis CTG (104 = 5.7%) and Microcystis CCG (9.3 *
3.6%). In contrast, Synechococcus 107b only comprised a mean
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relative abundance of 0.2 + 0.4% of the bacterial community
sequenced. In total, 4,354 unique ASVs were identified across all
samples collected in 2019 (n=88) (Table S5). Other Microcystis
ASVs observed in 2019 included Microcystis CTT (0.6 + 1.2%)
and Microcystis CT(A)G (0.3 + 0.3%) (Figure 8). Microcystis was
the most abundant bacteria retained in the 5-iuim fraction for
most environmental samples collected in 2019, with the
exception of two samples (SC51-50 and SC55-50) (Tables S1
and 52). Roseomonas 9b29, an alphaproteobacteria, was the most
abundant ASV in both of these samples.

The three most abundant ASVs identified on the 0.22-um
pore size filters were classified as Actinobacteria 9cfa,
Alphaproteobacteria b744, and Actinobacteria 3f45 for both
years of deployment (Figure 8). Consistent with the 5-pum
fraction, ASVs identified in the 0.22-pum fraction as
Synechococcus 107b were more abundant in 2018 (5.3 + 5.4%
relative abundance) compared to 2019 (0.03 + 0.04%). As
expected, cyanobacteria appeared to have been mostly retained
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on the 5-um filter; the most abundant cyanobacterial ASV in
2019 from the 0.22-pm filter dataset was Microcystis CTG (0.4 +
0.3% relative abundance). ASV names, taxonomic assignments,
and sequences are detailed in Tables S4 and S5.

4 Discussion

The LRAUV-3G ESP system successfully collected and
preserved samples for nucleic acid analysis in the Great Lakes,
demonstrating adaptability of the system to new environments.
The instrument performed within its intended specifications and
exemplified an ability to carry out its mission to autonomously
sample cyanoHABs with minimal intervention. Success included
operation during bloom conditions, where a risk for clogging
and potential cross-contamination of samples was a concern.
Compared to the stationary 2G ESP, the mobility offered to the
3G ESP by the LRAUV system allowed a freedom to investigate
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Table S6 for PERMANOVA results.

locations that may offer greater insight into bloom dynamics.
The vehicle was able to operate and collect data in weather that
kept NOAA boats ashore and during cloud-cover that effectively
blinded satellites (e.g., Figure S5), further exemplifying its utility
for cyanoHAB monitoring operations.

The shallowest depths of WLE (<4m) prevented access to
areas of interest (i.e., monitoring stations WE06 and WEQ9;
Figure 1); thereby exposing limitations imposed by the Tethys-
class vehide used during these missions. This operational field
experience inspired engineering modifications and the current
development of an alternative uncrewed system better suited for
the requirements dictated by WLE conditions. Through modular
design, the 3G ESP payload that provides the autonomous
‘omics capability of the system can be swapped into a variety
of uncrewed system configurations.

Although there were challenges deploying the LRAUV-3G
ESP in the shallow waters of the WLE, there were advantages. For
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165 amplicon (A, B) and metagenomic (C, D) sequences for DNA extracted from 5-pm (triangles) or 0.22-um (circles) filters. Samples were
collected either manually (orange) or autonomously (blue) and data point labels (A-J) indicate matched pairs (see main text for definition). See

example, the availability of numerous marinas surrounding the
sampling region simplified launch and recovery. Ubiquitous cell-
phone coverage throughout the region allowed the vehicle to be
easily monitored and receive commands sent from all deployment
locations. Ease of communication is not always the case in oceanic
deployments. Offshore cell phone ‘dead’ spots are common during
ocean operations, forcing reliance on satellite communication
which has latency and bandwidth limitations.

4.1 Equivalency between autonomous
and manual methods

Previously, the instrument had not been challenged by the
sticky flocs and patchy distributions that characterize Microcystis
blooms in WLE (Figure 9). The biomass of WLE blooms is often
unevenly distributed vertically and horizontally in the water
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FIGURE 5

column and can change quickly with the surrounding
hydrodynamics (Rowe et al, 2016). This patchiness caused
concern that agreement between “matched” samples would not
be achieved because of temporal (<30 min) and spatial (<0.5 km)
separation between manual and autonomously collected samples.
In addition, sample collection via Niskin is fast compared to the
LRAUV-ESP, which can take 30 minutes to filter the sample in
situ. The need to keep the vehicle in motion to maintain depth (see
above) and to avoid collisions between the instrument and vessel
also resulted in autonomous samples collected over a greater area
(~30 m diameter) than is surveyed by manual deployment of a
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qPCR assay results of samples collected in 2018 and 2019 using the LRAUV-3G ESP. (A) Toxin Gene (log gc/ml) and (B) Total Cyanobacteria (log ge/ml).

Niskin bottle. Despite the environmental conditions and potential
to sample different water masses, QPCR and sequencing results did
not differ significantly between manual and autonomous sampling
for all (12) parameters tested (Table 1). Ultimately, these Great
Lakes field trials increased the range of environments in which the
LRAUV-3G ESP has been successfully deployed, as previous
demonstrations with qPCR (Yamahara et al, 2019) and
amplicon data (Truelove et al, 2022) were restricted to open-
ocean systems,

Overall, the extensive agreement observed between sample
collection methods (Table 1) supports the use of the LRAUV-3G
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Toxin Gene and Total Cyanobacteria gPCR assay results for samples collected in 2018 and 2019 using the LRAUV-3G ESP.
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TABLE 2 Spearman rank correlation results testing correlation between Phytoxigene Toxin Gene and Total Cyanobacteria qPCR assay

concentrations (log gc/mL).

Deployment n p-value rho
2018 39 0.000 0575
2019 27 0.000 0.875
2018 & 2019 66 0.000 0.900

Significant correlations (alpha = 0.05) are indicated in bold.

TABLE 3 Spearman rank correlation results testing correlation of Total Cyanobacteria qPCR assay concentrations (log gc/mL) versus
Cyanobacterial Index (Cl) calculated based on three conditions.

CI Parameter n p-value rho
Nearest value 41 0.000 0.556
1-km 41 0.000 0.680
5-km 40 0.000 0.772

Significant correlations (alpha = 0.05) are indicated in bold.

ESP to expand and supplement current nucleic acid sample
collection strategies. The adaptive sampling provided by the
LRAUV-3G ESP can provide characterizations of bloom
dynamics that are not feasible using conventional crewed
operations. These successful field demonstrations suggest that

samples collected via this autonomous platform can be used to
enhance spatial and temporal data coverage and contribute to a
time series established by more than a decade of seasonal
cyanoHAB monitoring (CIGLR, University of Michigan; NOAA
GLERL, Cooperative Institute for Great Lakes Research 2019).
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TABLE 4 Top 10 bacterial taxonomic assignments to the level of phylum for 165 amplicon relative abundances (RA) obtained from the LRAUV-3G
ESP 5-pum size fraction samples, by deployment year.

2018 (n = 39 samples) Mean RA % 2019 (n = 27 samples) Mean RA %
Bacteroidetes 29 Cyanobacteria 31
Cyanobacteria 26 Proteobacteria 22
Proteobacteria 22 Bacteroidetes 22
Planctomycetes 9 Planctomycetes 11
Actinobacteria 7 Actinobacteria 4
Firmicutes 3 Firmicutes 3
Verrucomicrobia 2 Verrucomicrobia 3
Chloroflexi 1 Acidobacteria 2
Acidobacteria 0.4 Chloroflexi 1
Gemmatimonadetes 03 Gemmatimonadetes 1

See Table 54 and 55 for full results.

4.2 Applications of autonomously
collected sample datasets

4.21 qPCR

These field trials demonstrated that autonomously collected
samples can provide gPCR data, including detection of toxin
genes. The widespread observations enabled by the LRAUV-3G
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ESP revealed correlations between concentrations of mcyE toxin
gene and total cyanobacteria (Table 2). A linear relationship was
observed between these parameters (Figure 6), although the
slope varied between deployment years (Figure S3). Differences
were expected because the total cyanobacterial population
includes both toxigenic and non-toxigenic populations, which
have been documented to shift over time (Dick et al,, 2021).
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The increased sampling capability of the LRAUV 3G-ESP
can be employed to help understand periods during which a
cyanobacterial population is toxigenic or non-toxigenic. Current
cyanoHAB monitoring anticipates a 48-h turnaround time for
sample processing after collection to obtain qPCR results, which
may be similarly accomplished on autonomously collected
samples upon retrieval of the instrument. Future inclusion of
onboard qPCR measurements would further the ability to
incorporate ‘omics data into routine observing programs.

4.2.2 Amplicon sequencing

Autonomous sampling identified shifts in the bacterial
community across deployment years with important
implications for bloom toxigenicity. According to data
obtained from the LRAUV-3G ESP, total cyanobacterial
concentrations were higher and had increased potential to
produce microcystin in 2019 relative to 2018 (Figure 5). These
results were supported by routine manual sampling observations
of chlorophyll taken near or during the period of autonomous
deployments (Figure $6). The autonomously-collected
information also was consistent with the annual bloom
analysis provided by the Operational Lake Erie Harmful Algal
Bloom Forecast (HABs Forecast) (U.S. Department of
Commerce - NOAA, 2021c), which classified 2019 as a severe
bloom with a severity index of 7.3 and 2018 as a mild bloom with
a severity index of 3.6 (U.S. Department of Commerce - NOAA,
2021b). The HABs Forecast characterizes biomass over the peak
30 days of the bloom using core observing and ensemble
modeling components that combine weather forecasts, satellite
imagery, and current models (Stumpf et al, 2012; Bridgeman
et al., 2013; Obenour et al., 2014).
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CyanoHAB bloom in WLE captured August 19, 2019 during LRAUV- 3G ESP deployment. Credit: NOAA and Zachary Haslick, Aerial Associates

Amplicon sequencing indicated the dominance of the non-
toxic cyanobacterium Synechococcus 107b during the 2018
deployment. In contrast, Microcystis ASVs dominated in 2019
(Figure 8), consistent with the more severe bloom conditions
observed during that time. The Microcystis ASVs observed here
(Tables S4, S5) matched Microcystis CTG, CCG, and CCT
oligotypes that have been demonstrated to produce
microcystin toxin (Berry et al., 2017b). An additional
Microcystis ASV, termed Microcystis CT(A)G, was identified
regularly in the 2019 dataset, comprising up to 1% relative
abundance of sample sequences. This ASV was identical to
Microcystis CTG except that it possessed an A (adenine) at
position 105 instead of a G (guanine) (Figure S7). These findings
support autonomous sample collection for the purpose of
delivering molecular analyses with a high level of genetic
resolution. Autonomous real-time toxin detection onboard the
LRAUV-3G ESP is under development and will allow a deeper
understanding of the relationship between bloom genetic
profiles and toxin levels in the water.

4.2.3 Metagenomic data

It has become conventional practice to assume that the
individual gene mcyE is always associated with the entire
microcystin biosynthesis operon, thus indicating a genetic
potential to produce microcystin (Zhu et al, 2014; Kramer
et al, 2018; Chaffin et al., 2019; McKindles et al., 2019).
However, Microcystis has recently been identified as possessing
a partial microcystin biosynthesis operon in WLE (Yancey et al.,
2022). A partial microcystin biosynthesis operon does not have
the capacity to produce the toxin microcystin, yet quantification
of the mcy genes retained in a partial operon could result in the
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artificial inflation of toxigenic populations. Therefore, it is
important to identify whether the mcyE gene corresponds with
each individual gene of the microcystin biosynthesis operon.
Overall, the correlations observed here between the presence of
mcyE and all microcystin biosynthesis operon genes (Figure 7)
supports the utility of mcyE gene as a proxy to represent the
presence of the entire microcystin biosynthesis operon required
to produce the toxin microcystin. This analysis illustrates the
utility of broad collection of ‘omics data, and more extensive
analysis of the metagenomic data recovered by the LRAUV-3G
ESP remains available for future studies.

4.2 .4 Forecasting

Correlations between total cyanobacteria results collected
aboard the LRAUV-3G ESP during these deployments and the
chlorophyll index calculated from satellite imagery (Table 3)
suggested that in situ measurements collected autonomously
may be used to complement and expand satellite data. Further
surveys with tighter coupling between observations will be
needed to confidently resolve the relationship between these
two monitoring approaches. If the relationship suggested here
holds, autonomous capabilities coupled with ‘omics analyses,
may be used to supplement satellite measurements, particularly
when observations are obscured due to cloud cover. The ability
to integrate such data sets would allow increased delivery of
data products.

4.2.5 Expanded applications

The main limitation observed in this study was related to
operations of the particular LRAUV rather than autonomous
sample collection. The 3G ESP performed well as a payload on
this LRAUV, providing observations of taxonomic (Total
Cyanobacteria qPCR assay and 165 rRNA gene amplicon) as
well as functional gene shifts (Toxin Gene qPCR assay and
microcystin biosynthesis operon metagenomics). To further
expand the reach of the 3G ESP sample collection and
processing capabilities in WLE, the 3G ESP will be installed in
an alternative vehicle. The uncrewed surface vehicle will be able to
reach the shallowest regions of WLE, where cyanoHABs often
show highest toxicity. This additional vehicle will further expand
the instrument’s potential range of sampling environments.
Furthermore, incorporation of transcriptomics, proteomics, and
eDNA surveys is planned for future deployments. All of these
approaches have previously shown successes in marine surveys
using ESP technology (Saito et al., 2011; Yamahara et al, 2019;
Zhang et al, 2019; Zhang et al,, 2021). The implementation of
transcriptomics and proteomics will further increase the utility of
the instrument to investigate molecular-level population dynamics
within cyanoHABs, while eDNA can be used to monitor fish
populations or screen for invasive species. While neither the 3G-
ESP nor LRAUV are currently available commercially, future
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licensing agreements are expected to make both instruments
available to the broader public in the coming year.

4.2.6 Conclusions - WLE monitoring

Successful autonomous sample collection demonstrated the
ability to expand the practical capabilities of current monitoring
efforts in WLE. These field tests demonstrated the benefits of
mobile and flexible operations associated with autonomous
observing platforms. Autonomous sampling provides a
powerful means to inform cyanoHABs monitoring and
forecasting whether used alone or combined with current
monitoring operations to expand coverage. Importantly, these
LRAUV-3G ESP field trials provided valuable data to
characterize cyanoHABs bacterial communities.
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