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ABSTRACT: High entropy oxide (HEO) has shown to be a new type of catalyst support with tunable composition-function
properties for many chemical reactions. However, the preparation of metal nanoparticle catalyst supported on metal oxide
support is time-consuming and takes multiple complicated steps. Herein, we used a one-step glycine-nitrate-based combustion
method to synthesize highly dispersed rhodium nanoparticles on a high surface area high entropy oxide. This catalyst shows
a high selectivity to produce CO in CO; hydrogenation with 80% higher activity compared to rhodium nanoparticle-based
catalysts. We've also studied the effect of different metal elements in HEO and demonstrated that high CO selectivity is
achieved if one of the metals in the metal oxide support favors CO production. We identified that copper and zinc are respon-
sible for the observed high CO selectivity due to their low *CO binding strength. During hydrogenation, a strong metal-support
interaction (SMSI) was created through charge transfer and formed an encapsulated structure between rhodium nanoparticles
and HEO support to lower the *CO binding strength, which enables high CO selectivity in the reaction. By combining different
metal oxide into high entropy oxide as a catalyst support, high activity and high selectivity can be achieved at the same time

in the CO; hydrogenation reaction.

INTRODUCTION

Heterogeneous catalysis is the dominating process in the
current chemical industry, such as the Fischer-Tropsch syn-
thesis, ammonia synthesis, biomass conversion, selective
oxidation, and others'-2. Over the years, metal nanoparticles
catalyst is becoming the main choice in heterogenous catal-
ysis, but it requires a support, such as metal oxide with high
specific surface areas, porosities, and thermal and mechani-
cal stability, to stabilize the nanoparticles and provide an en-
vironment to maximize the catalyst activity of the nanopar-
ticles> 3. The general synthesis methods of supported nano-
particle catalysts include precipitation, impregnation and
drying, and other emerging techniques, such as melt infiltra-
tion, colloidal synthesis and atomic layer deposition (ALD)?,
which requires multiple steps. New methods that can pro-
duce these catalysts in a more economical and simple man-
ner is desired by the society.

In this work, we choose to study the solid-gas phase CO»
hydrogenation reaction in order to suppress the emission of
CO; and convert it to useful chemicals*. Under the ambient
pressure, CO and CHy are the products through reverse wa-
ter-gas shift (RWSQ) reaction and methanation reaction. It
is important that the selectivity can be tuned to produce CO,
because it can be readily converted, along with H,, to lower
olefins, gasoline diesel, wax and oxygenates in Fischer-
Tropsch synthesis®. Various metal (Cu®7, Pd®, Pt°, Rh'°, and
Ni'") and metal oxide (TiO, *% 19, Zr0,% !, ALO5’, CeO,®
1Y combination has been reported to actively produce CO in
the CO; hydrogenation reaction. In these reactions, *CO is
an important intermediate in the CO, hydrogenation

reaction'?. The binding strength between *CO and metal/ox-
ide interface dominates whether it primarily produce CO or
further hydrogenated to CH4*. It was discovered in 1978 that
strong metal-support interaction (SMSI) can be induced by
reducing noble metals supported on TiO> to decrease the ad-
sorption energy of CO and H,'’. In CO, hydrogenation,
SMSI can lower the adsorption energy of *CO and form the
encapsulated structure to block the CO, methanation active
sites to achieve desirable high CO selectivity'+'®. Reducible
metal oxides, such as CeO,, MoOs and ZrO», are used to form
SMSI'* 19, SMSI can also be enhanced by changing the crys-
tal structure of the supports'> 6, and photochemistry method
through UV irradiation'®. The particle size as well as metal
loading could also affect the activity and selectivity by form-
ing more active sites and more encapsulated structures
through SMSI®.,

Recently, a new class of materials, high entropy material
(HEMs), has emerged as a novel catalyst for HER?’, OER?":
22, ORR?*?*, and CO; conversion reactions?>?’. One specific
type of HEMs, High entropy oxide (HEO), has recently been
applied in the fields of thermal, electro- and photo- cataly-
sis?®32 and used as catalyst support to stabilize single atom
catalysts or nanoparticles?® 33 34 However, the reported
mechanochemical synthesis method needs to use ball mill-
ing for 2 hours to achieve single phase HEO crystal or fol-
lowed by adding noble metal precursor and calcinating at
high temperature®®3*, Herein, we designed a novel, easy, and
one-step synthesis method for synthesizing highly dispersive
rhodium nanoparticles on HEO support using the glycine-
nitrate combustion method, which was used for synthesizing
oxide ceramic powder and first reported in 1990%. A single-



phase high entropy oxide was synthesized immediately after
evaporating all water, and then combustion happened. Add-
ing rhodium nanoparticles on high entropy oxide could also
be integrated into the combustion process and achieve one-
step synthesis simultaneously by adding rhodium precursor
to the aqueous solution. The obtained catalyst exhibits high
catalytic performance and highly selective CO production in
CO; hydrogenation reaction. We also discovered that copper
and zinc are the two key elements in the HEO support that
contributes to high CO selectivity. We conclude that the
combined high catalytic performance and highly selective
CO production comes from the synergy with the catalytic
HEO support and strong metal-support interaction with the
HEO support by forming encapsulated structure and lower-
ing *CO binding strength under the CO» hydrogenation re-
action conditions.

RESULTS AND DISCUSSION

The synthesis of high entropy oxide is by a combustion
method using nitrate salts as precursor in aqueous solution
(as shown in Scheme 1). After evaporating all water and get-
ting a slurry, violent combustion (Figure 1a) happened in the
round bottom flask. A uniform powder sample was collected
and washed with deionized water to remove all organic res-
idue and salts. X-ray diffraction (XRD) pattern in Figure 1b
demonstrated that a single-phase rock salt high entropy ox-
ide was formed after combustion. The HAADF images and
EDS mapping with 50nm scale bar showed all six elements
(O, Mg, Co, Ni, Cu, Zn) were well distributed in high en-
tropy oxide. It also indicated that the combustion method is
successful in synthesizing high entropy oxide in a fast sin-
gle-step process.

To use this high entropy oxide as catalyst support, two meth-
ods were used to introduce rhodium on the high entropy ox-
ide support. First, rhodium nanoparticle was synthesized on
high entropy oxide support by a wet impregnation method
using rhodium chloride as precursor followed by hydrogen
reduction in a tube furnace at 400°C for 2 hrs, which is
named as Rh-w/HEO. Second, Rh catalyst supported on
HEO were produced by directly adding Rh precursor (rho-
dium chloride) into the HEO precursor mixture before the
combustion process (as shown in scheme 1). Samples pre-
pared using this method were named as Rh-c/HEO. Under
the HAADF images and rhodium mapping (Figure 2b and
2c¢), the rhodium nanoparticles with size of 10nm (Figure S1)
were well dispersed on the high entropy oxide by using gly-
cine-nitrate combustion (Rh-c/HEO, figure 2b). However,
the rhodium nanoparticles synthesized by wet-impregnation
(Rh-w/HEOQ, figure 2c) were easier to aggregate together,
and formed some 20nm clusters on the HEO support. All six

elements were well dispersed in HEO support for Rh-c/HEO.

However, on Rh-w/HEQO, there were a few spots that cobalt
and copper were aggregated due to the hydrogen reduction
in the synthesis. X-ray diffraction (XRD) pattern was per-
formed to compare the crystal structure of HEO and rhodium
in different samples (as shown in figure 2a). The HEO has

three major peaks at 36.6°, 42,6° 61.9°, which attribute to
(111), (200), (220) planes of the cubic rock salt structure.
The other two small peaks at 74.1° and 77.1° are from (311)
and (222) planes. When the rhodium nanoparticles were
added on HEO by wet impregnation method (Rh-w/HEO),
the peak position of (111) (200), and (220) is the same, indi-
cating that the HEO crystal structure remains same after add-
ing rthodium nanoparticles on it. When using glycine-nitrate
combustion method to add rhodium on HEO (Rh-¢c/HEO),
all the peak shifts to large numbers by 0.2°, which are at
36.8°, 42.8° and 62.1°. This indicates that rhodium had
strong interaction with HEO, which led to a smaller lattice
distortion. The X-ray photoelectron spectroscopy (XPS) was
used to measure the oxidation state of rhodium nanoparticles
on HEO, As shown in Figure S2, rhodium 3ds; has a
310.3eV binding energy, which is higher than Rh metal
(307.6eV) and Rh native oxide (308.8eV). This further
demonstrates that rhodium had strong interaction with HEO
support. The Rh-O, Rh-metal, Rh-O-metal binding causes
that rhodium 3ds,; has a broad peak with high binding energy.
Due to the combustion in the air, Rh-c/HEO had a stronger
peak at 35.6° than Rh-w/HEO, which was attributed to rho-
dium oxide. Rh-w/HEO had another small peak at 38.9°,
which can be attributed to CuO (111) plane.

To test the catalytic performance of these two catalysts
which have the same composition (5wt% Rh on HEO) but
different structures through different synthesis methods, the
reactor setup as shown in Figure 3a has been used. Two ther-
mocouples were used to measure the catalyst top tempera-
ture as T1 and the catalyst bottom temperature as T2. T2 was
used as the set temperature for all measurements. In the CO,
hydrogenation reaction, both CH4 and CO were detected as
products. The Rh-c/HEO is a more active catalyst compared
to Rh-w/HEO in CO, hydrogenation reaction for producing
both CO and CHj4 (as shown in Figure 3b and 3c). The pro-
duction rate increased exponentially when the set tempera-
ture increased from 200°C to 500°C. At 500°C, the CO pro-
duction rate of Rh-c/HEO can reach 100.2 umol/g s, which
is 63.2% higher than Rh-w/HEO (61.4 umol/g s). The CH4
production rate of Rh-c/HEO is 1.7 pumol/g s at 500°C, which
is almost 7 times higher than the Rh-w/HEO production rate
(0.25umol/g s). It can demonstrate that highly dispersive
rhodium nanoparticles on HEO synthesized by combustion
method have more active sites compared to using wet-im-
pregnation method putting rhodium nanoparticles on HEO
with the same weight ratio (5%).

To study how the composition of the HEO supports affect
the selectivity in CO; hydrogenation reaction, thodium na-
noparticles supported on single element metal oxide sup-
ports were synthesized using the same glycine-nitrate syn-
thesis method, and the rhodium weight ratio is controlled at
around 5%, verified by EDS (Figure S5 and Table S1). As
shown in Figure 4a, all catalysts with rhodium on metal ox-
ides support can produce CO. Among them, the catalyst on
NiO support has the highest CO production rate. It reaches
the highest production rate at 475°C with an 87.0 umol/g s
CO production rate. The other four metal oxide supports
reach the highest production rate at 500°C. The highest CO



production rates are 64.3 pmol/g s, 58.3 umol/g s, 48.2
pmol/g s, and 41.4 pmol/g s for catalysts supported on MgO,
Co0, ZnO, and CuO at 500C, respectively. For CH4 produc-
tion as shown in Figure 4b, NiO, MgO, and CoO are still the
same metal oxides support and have the highest production
rates. The CH4 production rate reaches 60.8 umol/g s, 42.7
pmol/g s, and 40.8 pmol/g s at 500°C, respectively. For CuO
and ZnO metal oxide supports, the CH4 production rate is
substantially lower compared to the other three metal oxide
supports and their own CO production rate. It can only reach
0.17 pmol/g s and 0.20 pmol/g s respectively. Therefore,
rhodium on CuO or ZnO has an over 99% CO selectivity in
CO; selectivity. But for NiO, MgO, and CoO, both CO and
CH,4 were produced. As the CH4 production rates increase
exponentially faster than the CO production rate, the CHy4
selectivity increases as the temperature increases (as shown
in Figure 4c). The CH4 selectivity reaches 41.8%, 39.9%,
and 41.2% for NiO, MgO, and CoO, respectively, which
turns to 58.2%, 60.1%, and 58.8% CO selectivity.

After discovering that CuO and ZnO are two metal oxide
supports that initiate high CO selectivity in CO; hydrogena-
tion, while NiO, MgO, and CoO are metal oxide supports
that can produce both CO and CHs. Further experiments
have been performed to understand and explain high entropy
oxide with 5 elements enables high CO selectivity while
maintaining high reactivity. First, using the same glycine-
nitrate combustion to synthesize rhodium on the tri-metal
oxide support, (MgCoNi)O with the same 5% rhodium
weight ratio, verified by EDS (Figure S5 and Table S1).
Since all the single metal oxides can produce both CO and
CH4 and they favor producing more CHy as temperature in-
creases, when mixing three metal oxides together, the CHy
selectivity increases to 65.7% at 500°C as shown in Figure
4d. Then, Cu was added to synthesize rhodium on quad-
metal oxides (MgCoNiCu)O with the same synthesis
method and same rhodium ratio. As shown in Figure 4d, the
CO selectivity was enhanced from 34.3% to 87.0% after
CuO was added to (MgCoNi)O, and CO selectivity can be
further enhanced to 99% after ZnO was added as a high en-
tropy oxide support. It demonstrates that CuO and ZnO are
the two key factors for high CO selectivity in HEO catalyst
support. The CO, hydrogenation reaction pathway will
change from CH4 to CO if CuO or ZnO exist in the metal
oxide catalyst support. However, if Cu and Zn were the only
component of metal oxide support, the CO selectivity can
still be over 99%, but the CO production rate was only 29.2
pmol/g s, less than 30% of Rh-c/HEO (Figure S6a and S6b).

To study the surface chemistry and interaction between rho-
dium catalyst and metal oxide catalyst support, the XPS of
the original catalyst and the catalyst reduced by H in a tube
furnace at 500°C was studied. Since the Mg auger electron
spectrum overlaps with Rh 3d orbital energy under mono-
chromated Al Ko (1486.7eV) X-ray source, two of the sam-
ples, Rh-c/HEO and Rh/MgO, were measured using a lower
X-ray energy source (Mg Ka, 1253.6eV). However, the
lower X-ray energy source resulted in a lower resolution in
the spectrum. Since the samples only contained around 5%
Rh, it resulted in the fact that Rh peak was not observed in

the survey. Therefore, in Table S2, only four samples that
didn’t contain Mg were included. For all the samples, the
atomic ratio between rhodium and metallic elements in
metal oxide decreased after H, treatment. Among these four
samples, Rh/NiO had the largest decrease (from 0.84 to
0.037), and the highest CO production rate as shown in Fig
3(a). The Rh/CoO had a medium production rate, and it had
a 64% decrease in the ratio (from 0.35 to 0.127). The
Rh/CuO and Rh/ZnO had the two lowest CO production
rates, it only having a 38% (from 0.23 to 0.142) and 21%
(0.231 to 0,186) decrease in the ratios, respectively. Since
XPS is a surface sensitive method, and its sensitivity is de-
pendent on the kinetic energy of Rh 3d electrons and their
inelastic mean free path (IMFP) and effective attenuation
length (EAL). IMFP is defined as average distance that an
electron with an given energy can travel, and EAL is consid-
ered for the application of measurement of overlayer-film
thickness®®. Herein, we used NIST standard reference data-
base to calculate the IMFP of Rh before H, treatment, and
EAL after H, treatment and the SMSI layer is formed®” 38,
The IMFPs of Rh are estimated as 1.348nm under Al Ka
(1486.7¢V) X-ray source, or 1.591nm under Mg Ka
(1253.6eV) X-ray source. However, the EALs of Mg, Co,
Ni, Cu, Zn on Rh are estimated as 0.55A, 0.315A, 0.303A.
0.328A, 0.363A, respectively. The SMSI formed by reduced
layer is one to two atomic layer thick. Therefore, the esti-
mated EALS are close to the SMSI layer thickness>. The de-
crease in the ratio between Rh and other metal elements is
an indication of the formation of embedded Rh structures on
the catalyst surface. The degree of the decrease of this ratio
had an inverse relationship with the CO production rate.
which indicates that the more rhodium embedded structures
formed, the higher CO it could produce. The SMSI layer
formed by reducible metal oxide support is the key to high
CO production rate. This phenomena was observed by other
groups in in situ XPS that Ru/Mo surface ratio decrease
when the reduction temperature increase, which was ex-
plained as the graduate encapsulation by metal oxide sup-
port'*. As shown in Figure 5a and b, in high resolution
STEM image and HAADF mode, there was an amorphous
SMSI layer on the crystallized Rh nanoparticle for the used
Rh-c/HEO catalysts. This is direct evidence shown that
SMSI was formed during the CO, hydrogenation reaction.
The thickness of SMSI layer varied from 0.46 A to 1.3 nm,
which matched the XPS penetration depth. Co, Ni, Cu has
been reported as catalyst CO, hydrogenation reaction*®-2,
For the used Rh-c/HEO catalysts, under the reduced condi-
tion, Co, Ni, Cu had a few bright spots shown in EDS map-
ping (Figure S8), which indicated some nanoparticles and
clusters were formed on HEO support. The Cu and Zn map-
pings were closer to O mapping compared to Mg, Co, Ni. In
the XRD pattern, the single-phase crystal peaks were split
into 2 peaks for the used catalysts (Figure S9). The Cu and
Zn formed its own binary metal oxide. HEO could also be
the catalyst support itself, which contributed to around 30%
CO production here (Figure S10a). But adding rhodium
would also decrease the methane production rate to 30% of
the pure HEO at 500°C (Figure S10b). The methane produc-
tion on HEO was prevented with Rh added. The high CO
production rate and high selectivity comes from synergy of



highly well dispersed rhodium nanoparticles from combus-
tion, SMSI layer formed by H, reduction, and catalytic high
entropy oxide support. Even though, HEO support could be
reduced during the CO» hydrogenation reaction and crystal
structure would become different (Figure S9 and S10), the
CO production rate of Rh-c/HEO can remain stable for 100
hours (Figure S11)

To understand the high CO selectivity from CuO and ZnO,
we compared Rh 3ds» XPS spectra for all five single metal
oxide support (Figure 5). Rh exists in either a metallic state
(lower binding energy), or an oxidized state (higher binding
energy). It can be seen that metallic Rh in CuO and ZnO had
lower binding energy, 306.24 eV and 306.46 eV respectively
compared to other metal oxides and the calibration standard
(307.6 eV). With strong metal-support interaction (SMSI),
the decrease of metallic Rh binding energy could come from
electron charge transfer from the metal oxide support with
the additional valence electron charge. Therefore, Rh had
stronger SMSI with CuO and ZnO compared to other metal
oxide supports, which limited the CH4 production.

To further study the *CO binding strength affected by the
composition of catalyst support, in situ diffuse-reflectance
infrared Fourier transform spectroscopy (DRIFTS) was used
to study the reaction intermediates and molecules adsorbed
on the catalyst surface at 500°C during the CO, hydrogena-
tion reaction. As shown in Figure 6, all the catalysts showed
a strong CO, binding peak from 2300 cm™ to 2380 cm™,
which corresponds to the reaction results that all catalysts
are active in the CO; hydrogenation reaction. Both Rh/MgO
and Rh/(MgCoNi)O show a *CO binding peak at 2040 cm’
!, but the *CO binding peak was not detected on Rh-c/HEO
and Rh/(MgCoNiCu)O. This further demonstrated that the
overall *CO binding strength can be lowered by adding Cu
and Zn into metal oxide support. The binding strength of
*CO on the catalyst is a crucial factor to control the selectiv-
ity in CO, hydrogenation reaction®. Weaker *CO binding
strength favors higher CO selectivity due to faster desorption
of *CO, and a strong *CO binding strength is an indication
of lower CO selectivity due to further dissociation to *C and
*Q and subsequent hydrogenation to CH4'2. Therefore, the

DRIFTS results indicate that Cu and Zn are two key ele-
ments in high entropy oxide support that are responsible to
the high CO selectivity by lowing the *CO binding strength
at the metal/oxide interface. Without Cu and Zn in the metal
oxide support composition (Rh/(MgCoNi)O), the CO selec-
tivity was only 34%. With Cu adding to the composion, the
*CO binding strength was weakened, the CO selectivity was
enhanced to 87%. With Zn adding to form high entropy ox-
ide, the *CO binding strength was further weakened, the
overall 99% selectivity was achieved (Figure 4d).

In the high entropy support composition, Mg, Co and Ni
were responsible for forming more Rh embedded SMSI
structure for high CO production, Cu and Zn were responsi-
ble for weakening *CO binding strength for high CO selec-
tivity. The synergy between rhodium nanoparticle and high
entropy oxide, and each element in the high entropy oxide
support made this catalyst having the both highest activity
and CO selectivity among all rhodium-based catalysts re-
ported in the literatures (Table S3)

CONCULSION

Using one-step glycine-nitrate combustion method to syn-
thesize rhodium nanoparticles on high entropy oxide, small
size thodium nanoparticles can be well dispersed on high
entropy oxide support making it easier to form a strong
metal-support interaction. The HEO metal oxide support
has 99% CO selectivity and highest CO production activity
in the CO» hydrogenation reaction compared to other single
metal oxide supports. Within the HEO, Cu and Zn are the
two key elements that could form a stronger metal-support
interaction with rhodium than Mg, Co, Ni, which lowers
the *CO binding strength to enable high CO selectivity in
the CO, hydrogenation reaction. Overall, by combing metal
oxides in the form of HEO, highly selective CO production
with high catalytic activity can be achieved simultaneously,
demonstrating the advantage of HEO as a versatile catalyst
support in heterogeneous catalysis.



Figures and Captions:

nitrate salts + glycine
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Scheme 1 One step synthesis of high entropy oxide (MgCoNiCuZn)O
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Figure 1 Synthesis of high entropy oxide. (a) nitrate-glycine combustion reaction; (b) X-ray diffraction (XRD) pattern of high
entropy oxide; (c) High-angle annular dark-field (HADDF) images and energy dispersive X-ray analysis (EDS) mappings of
high entropy oxide.
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Figure 2 (a) X-ray diffraction patterns for high entropy oxide, HEO (blue curve), Rh-w/HEO (red curve), and Rh-c/HEO
(yellow curve); (b) HAADF image and rhodium mapping of Rh-w/HEO by wet-impregnation synthesis method; (c) HAADF
image and rhodium mapping of Rh-c/HEO by glycine-nitrate combustion synthesis method; (d) EDS mapping of high entropy
oxide of Rh-c/HEO; (e) EDS mapping of high entropy oxide of Rh-w/HEO
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curve), Rh/NiO (yellow curve), Rh/CuO (purple curve), Rh/ZnO (green curve); (d) Calculated CO and CHj selectivity, symbol
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Figure 1: Synthesis of high entropy oxide. (a) nitrate-glycine combustion reaction; (b) X-ray diffraction (XRD) pattern of
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Figure 5: (a) High resolution STEM image for used Rh-c/HEO catalysts; (b) High resolution STEM image in HAADF mode
for used Rh-¢/HEO catalysts; (c)Rh 3d5/2 XPS spectra from all five single metal oxide catalysts. Envelope (blue curve), Rh®
(red curve), Rh® (yellow curve), background (purple curve).
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Figure 6: in situ DRIFTS spectra of (a) Rh/MgO, (b) Rh/(MgCoNi)O, (c) Rh/(MgCoNiCu)O and (d) Rh-c/HEO.



