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Abstract

The phytohormone salicylic acid (SA) is known to regulate
plant immunity against pathogens. Plants synthesize SA via
the isochorismate synthase (ICS) pathway or the phenylala-
nine ammonia-lyase (PAL) pathway. The ICS pathway has
been fully characterized using Arabidopsis thaliana, a model
plant that exhibits pathogen-inducible SA accumulation. Many
species including Populus (poplar) depend instead on the
partially understood PAL pathway for constitutive as well as
pathogen-stimulated SA synthesis. Diversity of SA-mediated
defense is also evident in SA accumulation, redox regulation,
and interplay with other hormones like jasmonic acid. This
review highlights the contrast between Arabidopsis and poplar,
discusses potential drivers of SA diversity in plant defenses,
and offers future research directions.
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Introduction
Salicylic acid (SA) is a phytohormone and a central
mediator of pathogen-induced plant defenses [1,2]. The
discovery of SA has a storied past; it was first prepared
from salicin, an analgesic produced in willow and poplar
(family Salicaceae), and ultimately inspired the devel-
opment of the blockbuster drug aspirin [3]. Nearly two
centuries following its discovery, our understanding of
SA biosynthesis in plants remains incomplete. Signifi-
cant progress in understanding SA action in plant de-
fense has been made using the powerful Arabidopsis
model system. Translating these findings to crops and

trees has not been straightforward, in part because of
variation between species in SA biosynthesis, accumu-
lation, and signaling. This review highlights recent ad-
vances in SA biosynthesis, redox regulation, and
signaling crosstalk, with an added focus on the woody
perennial Populus (poplar). Given the multifaceted roles
of SA in plant responses to biotic and abiotic stresses,
the underexplored diversity in SA biosynthesis and
signaling presents a challenge to translational research
for crop improvement in the face of climate change.
SA biosynthesis pathways: universal or
lineage-specific?
Plants have evolved two distinct routes for synthesizing
SA (Figure 1). Classical radiolabeling studies in diverse
plant species support a biosynthetic origin of SA from

cinnamic acid and benzoic acid [4,5]. This route shares
common steps with the central phenylpropanoid
pathway initiated by phenylalanine ammonia lyase
(PAL) in the cytosol (Figure 1A). Despite this early
finding, several biosynthetic enzymes leading to benzoic
acid and SA remain hypothetical [6]. Major break-
throughs have come from forward genetic screens and
functional characterization of Arabidopsis SA mutants.
The chloroplastic AtICS1 (isochorismate synthase1, also
known as SA INDUCTION DEFICIENT2 or SID2) is
central to pathogen-induced SA synthesis [7]. This ICS
pathway (Figure 1a) resembles the eubacterial synthesis

of SA-derived siderophores [8], but the plant homolog
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Figure 1

Diversity of SA biosynthesis and signaling. a. SA biosynthetic routes and
vacuolar storage of SA conjugates. ICS and PAL pathways are shown in
blue and yellow, respectively. The three Brassicaceae-specific proteins
are shown in blue. Dashed lines indicate multi-step pathways and grey
denotes unclarified steps. Ancestral ICS function in phylloquinone
biosynthesis via chloroplast and peroxisome is shown in green box. b.
Simplified representation of SA-sensitive redox signaling with key players
shown. Responses reported for Arabidopsis and Populus are shown in
red and blue, respectively.
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for bacterial isochorismate-pyruvate lyase remained
elusive. In 2019, two groups independently identified
the missing link as AtGH3.12, an acyl adenylase family
protein (also called AtPBS3 or avrPphB SUSCEPTI-

BLE3) involved in disease resistance [9,10]. AtGH3.12
is a cytosolic enzyme and catalyzes the conjugation of
glutamate to isochorismate (IC) to form IC-glutamate
[9,10] (Figure 1a). The IC-glutamate conjugate is
then converted to SA either spontaneously or more
efficiently by AtEPS1 (ENHANCED PSEUDO-
MONAS SUSCEPTIBILITY1), a BAHD acyltrans
ferase-like protein [9,10].

These studies fully elucidated the ICS pathway for SA
biosynthesis in Arabidopsis, but several questions remain.
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Perhaps the most underappreciated fact is that all three
biosynthetic genes in this pathway, AtICS1, AtGH3.12,
and AtEPS1, are only found in the Brassicaceae family
[10e12]. AtICS1 is derived from a Brassicaceae-specific
genome duplication, and its exon-intron structure, basal
expression, and pathogen-inducibility all differ from
AtICS2 [7,13]. AtICS2 resembles the ancestral gene
involved in the biosynthesis of phylloquinone (vitamin

K1) essential for photosynthetic electron transport
[11**] (Figure 1a). The phylloquinone pathway has an
endosymbiotic origin and is similar to eubacterial
menaquinone (vitamin K2) biosynthesis [14,15]. Inter-
estingly, pathway diversification at ICS also occurs in
eubacteria, with EntC and MenF differentially involved
in the biosynthesis of SA-derived siderophores and
menaquinone, respectively [8,16]. Poplar, like many
genome-sequenced plants, harbors a single ICS that is
transcriptionally insensitive to abiotic stress and SA
[11**,17]. These data strongly suggest recruitment of

AtICS1 to SA biosynthesis as a lineage-specific event.
The recent findings that downstream enzymes
AtGH3.12 and AtEPS1 for SA biosynthesis are also
Brassicaceae-specific [10,12,18] lend credence to the
ICS pathway as a taxon-restricted evolutionary novelty
rather than a conserved mechanism.

PAL pathway involvement in SA synthesis (Figure 1a)
by many crop and tree species remains under-studied
even where evidence for ICS involvement is at best
equivocal. In barley, for instance, characterization of a

homozygous ics mutant derived from fast neutron
mutagenesis unequivocally demonstrated ICS involve-
ment in phylloquinone, but not SA, biosynthesis [19*].
In the absence of large-scale mutant collections,
CRISPR-based approaches can be used to generate
targeted knockout mutants to aid functional character-
ization. Alternatively, a genome-wide association study
(GWAS) in conjunction with metabolite and expression
profiling of 300 unrelated Populus tomentosa individuals
identified putative pathway intermediates and candi-
date genes for SA biosynthesis [20]. Although that
analysis did not discriminate between ICS and PAL

pathways for relevance to poplar SA synthesis, similar
approaches with a refined focus should be fruitful in the
quest for missing genes in the PAL pathway.
SA redox signaling: the devil is in the
details
Arabidopsis SA defense signaling requires AtNPR1
(NONEXPRESSOR OF PATHOGENESIS-RELATED
GENES1), a redox-sensitive master regulator and SA

receptor [21]. Upon pathogen stimulation or SA treat-
ment, AtNPR1 undergoes conformational changes for
translocation into the nucleus where it interacts with
other transcription factors to activate downstream de-
fense gene expression [22] (Figure 1b). Redox modifi-
cation of cysteine residues in both the protein-protein
www.sciencedirect.com
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interaction and the cryptic trans-coactivation domains of
NPR1 is essential for its regulatory function [21,23,24].
For instance, mutations in the evolutionarily conserved
Cys82 and Cys216 resulted in monomerization and nu-
clear localization of NPR1 in both Arabidopsis and rice
(Oryza sativa L.) and constitutive activation of defense
gene expression [25,26]. However, SA-induced AtNPR1
monomerization and nuclear import is catalyzed by

thioredoxins AtTRXh3 and AtTRXh5 via thiol-disulfide
exchange reactions at Cys156 [21]. Paradoxically, this
AtNPR1-AtTRXh3/h5 interaction appears taxon-
restricted because the regulatory Cys156 is found in a
small minority of the Viridiplantae NPR gene family in
Phytozome v13 (13 out of 181 members), all belonging
to Brassicaceae. The rice ortholog OsTRXh2 implicated
in OsNPR1-dependent disease resistance [26] was
recently shown to be a direct target of a bacterial
effector for proteasomal degradation, which dampens
host immunity [27**]. Nicotiana benthamiana defense

against barley stripe mosaic virus (BSMV) also depends
on SA activation and signaling, but involves the
AtTRXh1 ortholog NbTRXh1 [28**]. BSMV gb protein
physically interacts with NbTRXh1 to weaken its
reductase activity, thereby allowing viral spread [28**].
Whether NbNPR1 has a role is not known. In rice,
pathogen-induced SA response can be independent of
OsNPR1, as the transcription factor OsWRKY45 by-
passes the NPR1-mediated defense [29,30]. Similarly,
in Populus, NPR1 is poorly expressed, insensitive to in
planta or exogenous SA manipulations, and lacks a

defined role in pathogen defense [17,31**].

These studies support diversified redox signaling in SA-
mediated defense depending on the species and/or
cellular milieu, due in part to the functional multiplicity
of plant TRX proteins [32,33]. For instance, AtTRXh5
but not its genome duplicate AtTRXh3 is involved in
the Arabidopsis response to victorin, a fungal toxin [34].
Populus lacks AtTRXh3/h5 orthologs but harbors a tandem
array of Nucleoredoxin1 (NRX1), a subfamily of the TRX
superfamily [17]. Gene network modeling identified
PtaNRX1 as the only small redox protein family in poplar

leaves that exhibits SA-dependent regulation [17]. The
ortholog in cotton (Gossypium barbadense), GbNRX1, has
been implicated in resistance against soil-borne patho-
gens via apoplast ROS modulation [35]. Arabidopsis
AtNRX1 also modulates ROS scavenging; however, it
acts as a negative regulator of disease resistance [36].
These data reinforce the complexity and diversity of
redox signaling, as well as the challenges in translating
results across species. With the advent of CRISPR
technologies, precision gene editing at the allele, indi-
vidual gene or gene family level can now be routinely

achieved in a growing number of crop species. A recent
study reported generation of null nrx1 poplar mutants by
CRISPR knockout of all seven tandemly duplicated
genes [37]. Such mutants will be invaluable for func-
tional characterization to address redundancy versus
www.sciencedirect.com
specificity of small redox protein (super)family mem-
bers in SA signaling.
SA-JA interplay can be antagonistic and
synergistic in plant defense
Research from Arabidopsis has established that SA-
mediated defense is more effective against (hemi)-
biotrophs while jasmonic acid (JA)-mediated defense is
operative against necrotrophs. Furthermore, it is broadly
accepted that these two hormones function in an
antagonistic manner. Consistent with this dichotomy,
certain pathogens have evolved virulence mechanisms
that exploit the SA-JA antagonism to neutralize host
defense [38,39]. The SA receptor AtNPR1 controls not
only SA signaling but also SA-JA antagonism [40]. The
JA receptor AtCOI1 (CORONATINE INSENSITIVE1)

regulates JA-mediated inhibition of the SA pathway
[41]. However, several recent studies suggest alterna-
tives to SA-JA antagonism. For instance, the SA re-
ceptors NPR3 and NPR4 function oppositely to NPR1
[42] and can activate JA signaling during effector-
triggered immunity with synergistic induction of both
SA and JA defenses [43]. Under natural conditions,
plants encounter numerous pathogens simultaneously,
necessitating deployment of varied SA and JA defenses
for ecological success. A meta-analysis of global tran-
scriptome data revealed that a large number of defense
genes activated by both biotrophy and necrotrophy are

also induced by SA and JA [44]. Another study demon-
strated spatial coordination of the SA and JA pathways
during effector-triggered immunity in Arabidopsis [45].
The SA-JA interplay is likely modulated by additional
factors, including the early signaling after pathogen
recognition by the host, pathogen lifestyle, plant species
and developmental stage, and resource availability, all of
which deserve further research.

In Populus, SA concentrations increase markedly upon
infection by multiple pathogens, including biotrophs

[31**], hemibiotrophs [46], and necrotrophs [47].
Interestingly, JA-metabolites also increased in response
to the rust fungus Melampsora larici-populina, an obligate
biotroph [31**,48**]. Complex SA and JA signaling
interplay may be especially relevant in long lived pe-
rennials because biotic pressures are varied and must be
coped with year-round. In a recent study, poplars with
constitutively elevated SA were found to accumulate
higher levels of JA metabolites while exogenous JA ap-
plications increased the content of SA [48**.] Trans-
genic perturbation of the Salicaceae-specific salicinoid

biosynthesis by CRISPR-knockout of a glycosyl-
transferase in poplar also resulted in elevated accumu-
lation of both SA and JA-metabolites [49*]. SA was
shown to positively regulate the biosynthesis of flavo-
noid phytoalexins, such as flavan-3-ols in poplar
[31**,48**] and sakuranetin in rice [50]. JA also in-
creases these antimicrobial flavonoids in both species
Current Opinion in Plant Biology 2023, 72:102349
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[48**,51]. In rice, SA hydroxylase-knockout lines
increased not only SA but also JA and sakuranetin con-
tents, which resulted in broad-spectrum resistance
against both hemibiotrophic and necrotrophic patho-
gens [52*].

These examples suggest synergistic SA-JA in-
teractions may be more common in poplar and rice

than in Arabidopsis. While the underlying molecular
mechanism awaits further investigation, variations in
SA biosynthesis, homeostasis, and signaling pathways
likely contribute to the diversity. The basal levels of
SA in poplar and rice leaves are substantially higher
than pathogen-induced SA accumulation in Arabi-
dopsis [31**,53] (Figure 2). Compared to Arabidopsis,
levels of SA-glucoside (SAG) stored in poplar and rice
leaves are 10- and 20-fold higher, respectively
(Figure 2). SAG can be hydrolyzed to SA without de
novo synthesis under stressed conditions [54], though

the responsible enzyme has not been characterized.
Both SA and SAG (and the dihydroxybenzoate de-
rivatives) can activate defense response [55,56]. The
low-SA accumulator Arabidopsis relies on the
pathogen-inducible ICS pathway for defense and
Figure 2

Constitutive levels of SA and SAG in the leaves of Arabidopsis, poplar and ric
with tandem mass spectrometry as described previously [48**] using approxim
under standard long day (16/8 h day/night cycle) growth conditions at 21�C,
P. trichocarpa (genotype 262/263) and P. nigra (genotype Firtzlar2) were gro
from trees around 80 cm in height were collected for hormone analysis. O. sat
previously [62] and leaf samples were harvested from 4-week-old seedlings. D
SAG are indicated above the bars.
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often displays a trade-off with JA signaling. In
contrast, woody perennials and field crops accrue
substantial amounts of SA and SAG via the PAL
pathway, which shares common precursors for the
biosynthesis of several classes of phytoalexins co-
regulated by SA and JA (Figure 3). Furthermore,
several Pathogenesis-related (PR) genes are frequently
considered as SA markers in Arabidopsis [2]. However,

PR gene expression remained largely unchanged in
poplars with multifold differences in SA levels or
following exogenous applications with an SA analog
[48**], and PR genes were absent in the poplar SA-
responsive gene network modules [17]. Instead, PR
transcript abundances correlated positively with
pathogen growth in infected leaves across multiple
poplar genotypes with varying levels of rust resistance
[31**,48**]. This is consistent with the original
discovery of PRs as abundant antimicrobial proteins
following pathogen infection [57]. Variable SA-

responsiveness of the expanded PR1 gene family
has also been reported in rice [58]. The different
transcriptional responses of PR genes to SA and other
chemical stimuli may reflect differential adaptive
evolution between species.
e. Hormone levels were determined using liquid chromatography coupled
ately 40 mg of fresh tissues. A. thaliana (ecotype Col-0) plants were grown
and four-week-old rosette leaves were collected for SA analysis.
wn as described previously [48**]. Three youngest fully-expanded leaves
iva (cv. Nipponbare) seedlings were grown under the conditions described
ata represent mean with standard error (n = 5). Average levels of SA and
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Figure 3

Regulation of SA-mediated immunity in Arabidopsis and Populus against phytopathogens. In Arabidopsis, infection by biotrophic pathogens activates
defense via the SA receptor NPR1, often with concomitant inhibition of JA signaling (blue lines). In poplar, both SA and JA pathways are induced
simultaneously upon pathogen attacks, irrespective of their lifestyles (biotrophy or necrotrophy). Synergism between SA and JA pathways induces the
accumulation of antimicrobial flavonoids, including catechins and proanthocyanidins (red arrows). Pathogen-inducible PR genes are not responsive to
constitutively elevated SA in the absence of pathogens, and the involvement of NPR1 in poplar pathogen defense is unclear.
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Conclusions and future directions
Multiple aspects of SA-mediated defense signaling from
SA biosynthesis and homeostasis to redox modulation and
hormonal crosstalk are more diverse than previously
thought. Emerging data suggest that the key genes and
regulators identified from the Arabidopsis model repre-
sent lineage-specific innovations and may not be directly
translated across species. However, the SA signal relay
and regulatory cascades defined in Arabidopsis provide a
foundational framework to guide research efforts in crops.

Elucidating missing steps in the PAL-mediated SA
biosynthetic pathway will require integration of genetic,
transcriptomic and metabolomic approaches as elegantly
illustrated for the Arabidopsis ICS pathway [9,10]. For
crop and tree species that lack genome-scale mutant
collections, exploiting natural variations by GWAS and
high-throughput phenotyping can be fruitful. This
approach successfully identified multiple resistant and
susceptible genes against the causal fungal pathogen of
Septoria canker in poplar [59*]. Closing knowledge gaps
in redox modulators and response markers will also be

critical toward understanding SA signaling in diverse crop
species. In the absence of SA mutants that have been
instrumental in Arabidopsis research, ectopic expression
of a bacterial SA synthase for constitutive (or inducible)
accumulation of SA in non-model species can generate
www.sciencedirect.com
novel insights for downstream processes. This approach
has been used in different poplar species to facilitate
discovery of NRX1 as an alternative to TRXh in SA-
responsive redox cascades [17], SA regulation of flavo-
noid phytoalexins [31**], and synergistic SA-JA crosstalk

in pathogen defense [48**]. Given the multifaceted role
of SA in biotic and abiotic defense as well as growth and
development [60,61], taxon-specific fine-tuning and
evolutionary novelties in SA synthesis, activation and
signaling cascades are perhaps the norm. Exploiting this
diversity can lead to additional molecular targets to aid
breeding, genomic selection and/or CRISPR-based crop
improvement efforts.
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