

1 Widespread subseafloor gas hydrate in the Barents Sea and Norwegian Margin

2 A.E. Cook^{1*}, A. Portnov², R.C. Heber¹, S. Vadakkepuliyambatta^{3,4} and S. Bünz³

3 ¹Ohio State University, Columbus, Ohio, USA

4 ²University of Texas at Austin, Austin, Texas, USA

5 ³CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, UiT-The Arctic University of
6 Norway, Tromsø, Norway

7 ⁴National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences,
8 Government of India, Goa, India

9 *Corresponding Author: cook.1129@osu.edu

10
11

12 **Abstract**

13 The distribution and concentration of subseafloor natural gas hydrate across margins is not well
14 understood, because these systems are challenging to image and quantify remotely. Furthermore,
15 it is unknown if shallow hydrate systems are linked to deeper oil and gas reservoirs. Herein, we
16 analyze petroleum industry well logs with data in the gas hydrate stability zone and find that low
17 concentrations of hydrate commonly occur below the seafloor in the Barents Sea and the
18 Norwegian Margin. We observe hydrate in half of analyzed industry wells using a set of
19 conservative criteria that requires a resistivity increase of at least $0.5 \Omega\text{m}$ above background
20 resistivity. Hydrate accumulations occur significantly above the base of the hydrate stability
21 zone, in layers with thicknesses ranging from tens of centimeters to tens of meters. Moreover, we
22 find that there is no relationship between wells with hydrate accumulations and deeper oil and
23 gas reservoirs; hydrate is just as likely to occur above identified oil and gas reservoirs as in areas
24 with dry holes (i.e., no oil or gas reservoir). We argue the low concentration of hydrate, the
25 occurrence of hydrate significantly above the base of the gas hydrate stability zone, and the lack
26 of association between hydrate occurrence and deeper oil and gas reservoirs implies that the gas
27 in these hydrate systems is likely transported via diffusion and is primarily microbial in origin.

28

29 1. Introduction

30 Natural gas hydrate is a significant methane reservoir, estimated to store ~5-20% of
31 Earth's mobile carbon (Boswell and Collett, 2011; Ruppel and Kessler, 2017). Most natural gas
32 hydrate on Earth occurs within marine sediments on continental slopes, yet how natural gas
33 hydrate distributes and concentrates within hydrate systems and across basins and margins is
34 largely unknown. As the Earth warms, gas hydrate systems near the landward limit of hydrate
35 stability or in Arctic regions are more vulnerable to dissociation (Archer, 2007; Gorman and
36 Senger, 2010; Phrampus and Hornbach, 2012). Therefore, the location, concentration and
37 distribution of hydrate will directly influence the flow of carbon to the ocean and atmosphere. In
38 addition, when hydrate dissociates, it can increase pore pressure which may lead to slope
39 instability, reduced shear strength and submarine landslides (Maslin et al., 2010).

40 Reflection seismic surveys, the most widely used geophysical technique for identifying
41 hydrate systems, rarely detects gas hydrate itself. Seismic data can only detect thick (at least 6-
42 12 m, depending on signal frequency) high saturation layers of gas hydrate; this is due to the

43 resolution of seismic data and the fact that hydrate saturations less than ~40% do not strongly
44 affect compressional velocity (Yun et al., 2005). Instead, seismic data is usually used to identify
45 bottom simulating reflections (BSRs), which are a negative acoustic impedance interface that is
46 caused by free gas at the base of gas hydrate stability (Haacke et al., 2007; Shipley et al., 1979).
47 The BSR usually approximates the thermodynamic interface that separates gas hydrate above
48 from free gas below. The presence of a BSR, however, provides little to no information about
49 the concentration and distribution of gas hydrate within the gas hydrate stability zone (GHSZ),
50 meaning the characteristics of most gas hydrate systems are broadly unknown.

51 Unlike lower-resolution seismic data, a suite of downhole well logs can identify the
52 presence of gas hydrate in specific depth intervals due to their significantly higher vertical
53 resolution. In addition, the wide range of well log measurements potentially provide information
54 about the sediment or rock type, in situ characteristics of hydrate, and hydrate saturation
55 (Goldberg et al., 2010; Tsuji et al., 2009). The most important well log needed to detect hydrate
56 is resistivity; hydrate is an electrical insulator and even small amounts of gas hydrate in the pore
57 space or in a fracture increases the measured resistivity.

58 Well logs along with sediment cores and pressure cores are often collected as a part of
59 scientific ocean drilling programs and state-funded hydrate drilling programs in China, India,
60 Japan, South Korea and the United States (Barnes et al., 2019; Collett et al., 2019; Flemings et
61 al., 2020; Tamaki et al., 2017). While these drilling campaigns provide valuable information and
62 excellent datasets, they usually focus on the rare areas where high-saturation hydrate is
63 detectable on seismic data or in the environments that are favorable to high-saturation hydrate.

64 This leaves us with very little information on lower saturation gas hydrate systems that very
65 likely constitute the overwhelming majority of hydrate systems on Earth.

66 Herein, we use industry well log and drilling data archived by the Norwegian Petroleum
67 Directorate in the Barents Sea and on the mid Norwegian Margin to illuminate gas hydrate
68 occurrence and distribution below the seafloor, similar to the approach used in the Gulf of
69 Mexico by Majumdar et al. (2017). The industry wells used herein always have resistivity and
70 gamma ray well logs in the GHSZ, and some industry wells also have additional data making the
71 analysis more robust. Importantly, industry wells are usually drilled in areas that have no
72 evidence of fluid flow or shallow gas, meaning that the well log data is collected in systems that
73 are more likely to represent baseline or background gas hydrate systems.

74

75 2. Geologic Setting & Hydrate Occurrence

76 This study is focused on the sub-Arctic Norwegian Margin and the Arctic Barents Sea, both
77 coastal waters of Norway.

78 2.1 Barents Sea

79 The Barents Sea lies at the intersection of warm Atlantic waters and cold Arctic waters,
80 making it an Arctic climate transition zone (Loeng, 1991). Over the Cenozoic, the area has been
81 shaped by a complex geologic history involving tectonic uplift, subsidence and glacial erosion
82 (Faleide et al., 1984; Lasabuda et al., 2021; Vorren et al., 1991). These geologic processes likely
83 promoted subseafloor fluid flow and gas seepage into the water column, resulting in extensive
84 pockmark fields and craters on the modern seafloor (Andreassen et al., 2017; Nixon et al., 2019;
85 Rise et al., 2014; Serov et al., 2017; Solheim and Elverhøi, 1985). Sub-seafloor fluid migration
86 in the Barents Sea is controlled by gas chimneys, faults and fractures, which are potential

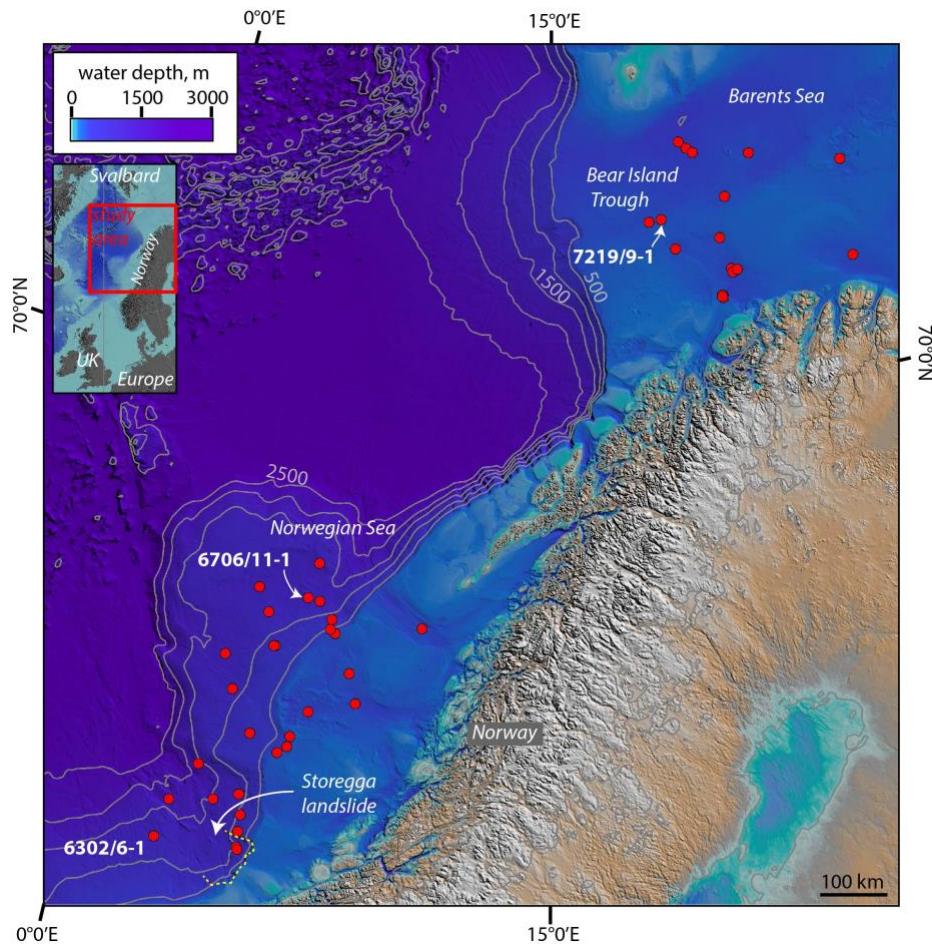
87 pathways for natural gas to flow into the GHSZ (Laberg et al., 1998; Ostanin et al., 2013;
88 Vadakkepuliyambatta et al., 2017, 2013).

89 Compared to many continental slopes that host gas hydrate in more temperate
90 environments, the Barents Sea is quite shallow, with an average water depth of ~230 m. In
91 addition, there is a relatively thin drape of Pliocene to Pleistocene glacial sediments (between 0-
92 1000 m) depending on the location (Vorren et al., 1989). These sediments are underlain by more
93 compact sediments and lithified sedimentary rocks of Paleogene, Cretaceous and Jurassic age
94 (NPD, 2014) .

95 Gas hydrate could be actively dissociating in the Barents Sea, because global temperature
96 increases have a significant impact on the water temperature in shallow seas (Ferré et al., 2012).

97 Gas hydrate was sampled directly from the seafloor at the Håkon Mosby mud volcano (Pape et
98 al., 2011; Vogt et al., 1997) and farther north at pingo-like features in Storfjordrenna (Serov et al
99 2017); however, there have been no hydrate samples from subseafloor systems. Therefore, there
100 are many uncertainties regarding hydrate saturation, hydrate distribution, and hydrate volume in
101 the rock and sediment below the seafloor in the Barents Sea (Minshull et al., 2020).

102 Even so, there is evidence for thermogenic gas hydrate occurring several hundred meters
103 below the seafloor in the Barents Sea. Laberg et al. (1998) observed BSRs in seismic data in the
104 Bear Island Trough at ~220 meters below seafloor (mbsf), where water depths are just over 400
105 m. For comparison, gas hydrate stability models at water depths 400 m suggest the base of
106 stability is at ~150 mbsf for pure methane systems; the base of stability increases to ~400 mbsf
107 with a gas composition of 96% methane, 3% ethane and 1% propane (Vadakkepuliyambatta et
108 al., 2017). Rajan et al. (2013) similarly observed BSRs at depths ranging from ~225-345 mbsf in
109 Paleogene-Neogene lithified sediments in water depths of 300-350 m. These observations


110 strongly suggest that hydrate accumulations in the Barents Sea have a significant component of
111 higher-order hydrocarbons that increase the depth of the base of the GHSZ relative to pure
112 methane systems (Ostanin et al., 2013; Waage et al., 2019).

113 2.2 Norwegian Margin

114 The formation of the Norwegian Margin is a result of multiple rifting events during the
115 Mesozoic that led to the eventual inception of seafloor spreading in the late Cretaceous along the
116 Atlantic mid-ocean ridge (Skogseid and Eldholm, 1995). Thermal subsidence of the crust
117 (Skogseid and Eldholm, 1995), the development of N-S trending domes (Doré and Lundin, 1996)
118 and differential subsidence of sediments on the continental slope (Martinsen et al., 2005) led to
119 the development of a number of sedimentary basins along the margin. These basin are filled with
120 ~10-km-thick deposits of sediment (Brekke, 2000). More recent deposition of sediment on the
121 Norwegian slope is controlled by glacial-interglacial cycles, and that sediment may be
122 redeposited in several different contourite drifts on the continental slope (Laberg et al., 2001).

123 On the Norwegian Margin, a number of studies focus on gas hydrate near the Storegga
124 Slide, which is one of the largest known submarine landslides having moved 3400 km³ to 5600
125 km³ of sediment during several slope failure events (Bryn et al., 2005; Bugge et al., 1987; Bünz
126 et al., 2003)(Figure 1). Near the headwall and the northern sidewall of the Storegga Slide, BSRs
127 are visible at water depths between 550 to 1300 m (Bünz et al., 2003; Mienert et al., 1998). The
128 modern day BSR is the shallowest along the headwall, at just 185 ms two-way-time, which is
129 ~150 mbsf (Bünz et al., 2003). Hustoft et al.(2007) also observed seafloor pockmarks and fluid
130 migration at the Storegga Slide. Furthermore, hydrate samples were obtained near the seafloor at
131 a pockmark field along the northeastern sidewall of the Storegga Slide (Ivanov et al., 2007).
132 Using velocity data from ocean bottom seismometers, hydrate saturation was estimated from 3-

133 6% (Bünz et al., 2005) to 10-20% (Westbrook et al., 2008) along the northern sidewall of the
134 Storegga Slide. These estimates have large uncertainties, however, because the physical
135 properties of the sediment and the morphology of the hydrate are not known.

136
137 Figure 1. Industry wells (red) with well logging data in the gas hydrate stability zone analyzed
138 herein on the Norwegian Margin and in the Barents Sea.
139

140 3. Methods

141 Well logging data is collected during the drilling and assessment of petroleum industry
142 boreholes. Industry reservoir targets are below the GHSZ, but well logs are often collected
143 through the shallow GHSZ. Publicly available well logs and well data for the Barents Sea and

144 the Norwegian Margin were downloaded from the DISKOS data repository operated by the
145 Norwegian Petroleum Directorate. Well log data was in either a digital file (.las) or an image
146 (jpeg or pdf). The first step in the assessment of the well logs is to determine if any data occurs
147 in the gas hydrate stability zone.

148 3.1. Gas Hydrate Stability

149 Hydrate stability is controlled by pressure, temperature, gas content and pore water
150 salinity (Sloan and Koh, 2007; Tishchenko et al., 2005). We calculated estimates for the base of
151 the GHSZ (or BGHSZ) for each well location using the Colorado School of Mines Hydrate
152 CSMHYD Program, an open source code available through the Colorado School of Mines which
153 calculates a hydrate stability curve based on pressure, temperature, gas content and salinity
154 (Sloan and Koh, 2007). For all calculations, we assume a pore water salinity of standard
155 seawater, which is a reasonable assumption in near seafloor sedimentary systems that are not in a
156 region with shallow salt. All other parameters are discussed below.

157 3.1.1. Geothermal Gradient

158 Accurately estimating the geothermal gradient at each well is essential for hydrate
159 stability calculations. To estimate the geothermal gradient, both the seafloor temperature and
160 temperature measurements below the seafloor are needed. For each well location, the seafloor
161 temperature was estimated from water column temperature and depth data from the World Ocean
162 Database (Boyer et al., 2013). For in-hole temperature measurements, bottomhole temperature
163 (BHT) and true vertical bottomhole depth were acquired from the public well reports on the

164 Norwegian Petroleum Directorate website. The geothermal gradient was calculated using linear
165 function between the seafloor and BHT.

166 BHT may underestimate true formation temperature because it measures the temperature
167 of the drilling fluid at the bottom hole, which can be cooler than the surrounding sediment or
168 rock (Evans and Coleman, 1974). BHT corrections can be applied (e.g. Peters and Nelson,
169 2012), but require multiple logging runs that record time and temperature or information such as
170 effective thermal diffusivity of the bottomhole rock, which was not available in the existing
171 dataset.

172 High-quality temperature measurements are recorded during a drill stem test (DST),
173 where properties are measured in an interval that is packed off and allowed to flow over a period
174 of time. This allows the borehole fluids more time to reach equilibrium with the surrounding
175 formation (Peters and Nelson, 2012). In our dataset, five wells had publicly available DST data
176 (Wells 6405/7-1, 6506/11-6, 6506/11-7, 7122/6-1, 7122/7-2). The difference between the
177 geothermal gradient calculated with the DST vs. BHT was +3.3, +2.9, +0.1, +0.2, +12.4 °C/km,
178 respectively, with positive numbers meaning that the DST was warmer. Due to the generally
179 low, though irregular difference between gradients calculated with DST and BHT, we chose not
180 to apply any correction to the geothermal gradients calculated with BHT. If the geothermal
181 gradient derived from the BHT is slightly lower, as may be the case, this produces a base of
182 stability that is slightly deeper. For example, in Well 6405/7-1, the base of methane hydrate
183 stability with a geothermal gradient of 41.0 °C/km as estimated from the BHT is 374 m below

184 seafloor (mbsf), while a DST calculated geothermal gradient of 44.3 °C/km produces a methane
185 hydrate base of stability of 347 mbsf.

186 In all wells where a DST was available, the geothermal gradient from the DST was used
187 for hydrate stability calculations instead of the BHT data.

188 3.1.2. Gas Composition

189 Evidence strongly suggests that hydrate systems contain higher order hydrocarbon in the
190 Barents Sea (Ostanin et al., 2013; Rajan et al., 2013; Vadakkepuliyambatta et al., 2017) and
191 potentially on the Norwegian Margin (Hustoft et al., 2009). Therefore, the BGHSZ was
192 calculated twice for each well, once assuming a pure methane gas composition and a second time
193 using a gas composition with higher order hydrocarbons.

194 Due to differences in the data available, we used different hydrocarbon mixes in the
195 Barents Sea and the Norwegian Margin. In the Barents Sea, only a few industry wells had gas
196 measurements and almost all of these wells were missing crucial information on ethane and
197 propane in the publicly available data. Therefore, we chose to use a local gas mix from Chand et
198 al. (2008) and Vadakkepuliyambatta et al. (2017) of 96% methane, 3% ethane and 1% propane.
199 When Vadakkepuliyambatta et al. (2017) used this gas mix, it closely matched the BSR depth
200 within ~50 m in 12/35 locations in the Barents Sea and roughly matched the BSR depth within
201 ~100 m in another 13/35 locations. Furthermore, Ostanin et al., (2013) estimated two higher-
202 order gas mixes for the GHSZ above the Snøhvit gas field; the mix used herein is the more
203 conservative of the two and produces a shallower base of stability and thinner GHSZ.

204 On the Norwegian Margin, ten wells in the dataset contained complete gas mix data. The
205 shallowest gas measurements in each dataset were usually several hundred meters below the base
206 of gas hydrate stability. Because the gas mix can change significantly with depth, we used the

207 shallowest four gas mix measurements in each well to estimate an average gas mix as close as
208 possible to the GHSZ: 91.6% methane, 2.3% ethane, 0.8% propane, and 4.1 % carbon dioxide.

209

210 3.2. Well Data Evaluation

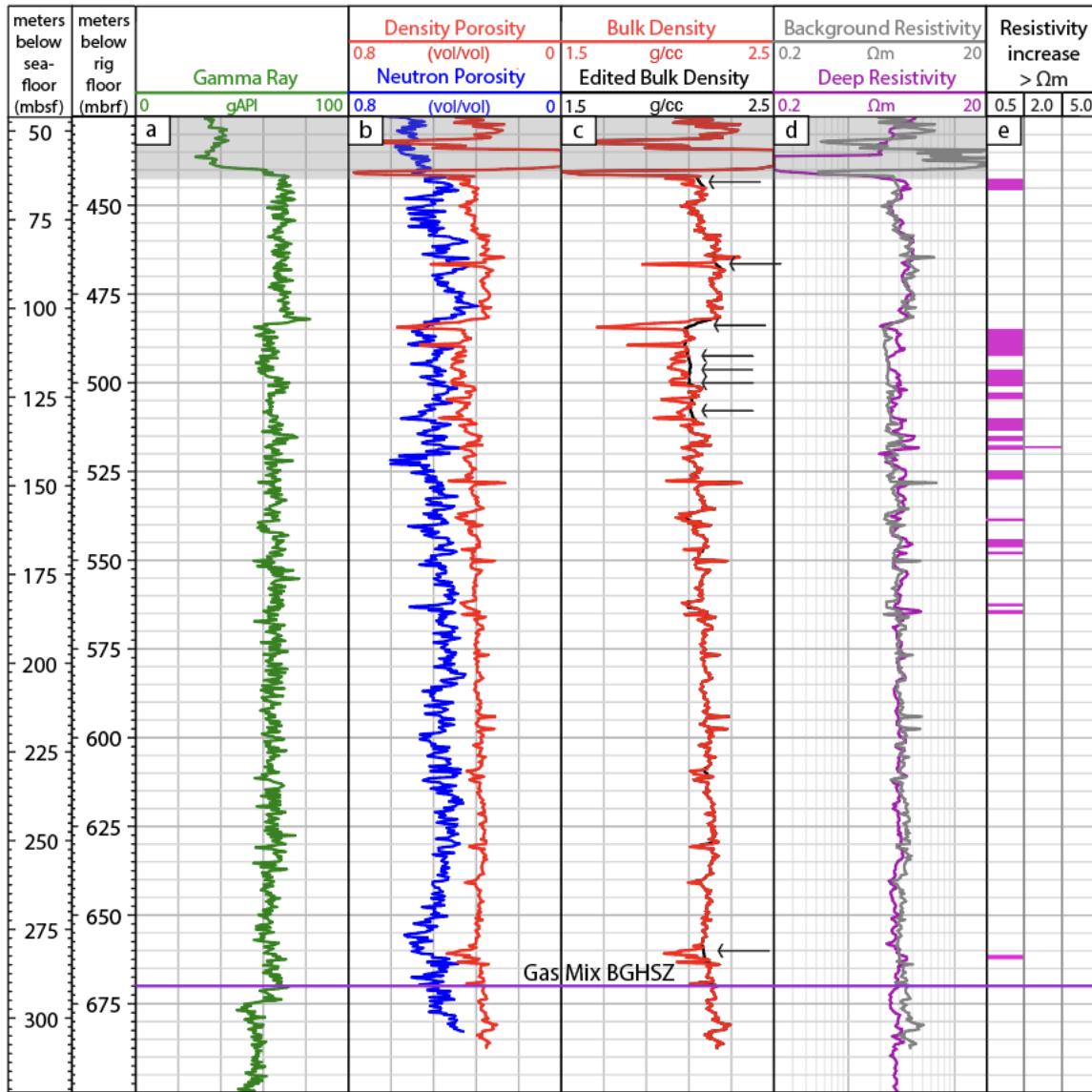
211 Industry well log data is not of equal quality from well to well, and therefore, the dataset
212 and well report for each well is evaluated individually.

213

214 On the well logs, the type of data and the quality of the data within both the methane and
215 gas mix GHSZ are considered. All wells included in this dataset have at least 30 m of both
216 gamma ray and resistivity well log data in the GHSZ. Some intervals have clearly erroneous
217 data because of casing or pipe connections, and those intervals were not included in the hydrate
218 evaluation, though well data outside those intervals was used in the evaluation. Some wells also
219 have bulk density (ρ_b) and/or neutron porosity (ϕ_{neu}) well logs in the GHSZ. We categorize
220 these wells with fair to high quality ρ_b and ϕ_{neu} data as Porosity wells and we have higher
221 confidence in our gas hydrate analysis in these wells (see Supplementary Information).

222 The well report for each well was also consulted, and we recorded the orientation of the
223 well (vertical or semi-vertical). The occurrence (or lack of) deeper gas or oil reservoirs was also
224 noted, as well as the depth of the first observance of hydrocarbons in the well (see
225 Supplementary Information).

226


227 3.3. Gas Hydrate Evaluation

228 Gas hydrate is an electrical insulator that increases measured resistivity when replacing
229 more conductive brine in the pore space. Gas hydrate bearing intervals can be identified in
230 resistivity data by an increase in resistivity relative to background water-saturated resistivity
231 (Pearson et al., 1983; Goldberg et al., 2009; Waite et al., 2009). Depending on the type and
232 quality of data available, background resistivity (R_o) can be either estimated or calculated.

233 3.3.1. Calculated Background Resistivity

234 When good- to high-quality ρ_b or ϕ_{neu} digital well logs are available, background
235 resistivity can be calculated. Well log data may be edited slightly to remove intervals with
236 significant drops in bulk density or significant increases in porosity; these intervals are likely

237 affected by increases in hole size and are not related to gas hydrate occurrence. An example of
 238 log editing is shown in Figure 2, from Well 7219/9-1 in the Barents Sea. In this well, intervals
 239 with drops in bulk density were edited (black curve identified with arrows) to match the bulk
 240 density trends of surrounding layers.

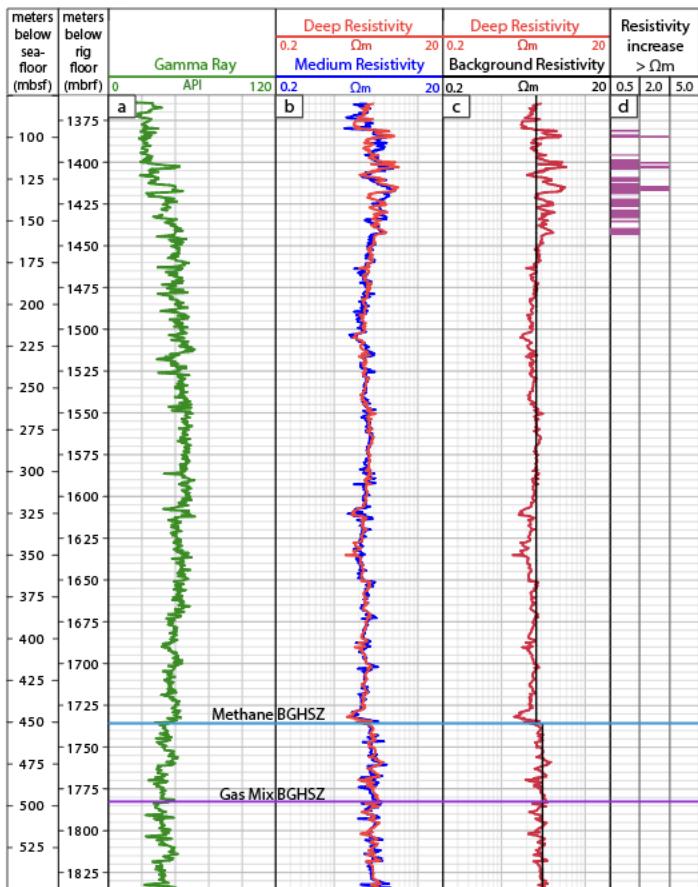
241
 242 Figure 2. An example of gas hydrate evaluation using good quality industry well data from
 243 7219/9-1 in the Barents Sea. The base of gas mix stability zone (BGHSZ) is indicated with a
 244 with a purple line; methane hydrate is not stable in 7219/9-1. Measured well log data used in the
 245 evaluation appears on Track a) gamma ray, b) neutron porosity, c) bulk density, and d) deep
 246 resistivity. Calculated and edited logs are also shown: b) calculated density porosity (Equation
 247 1), c) edited bulk density and d) background resistivity, R_o (Equation 2). Black arrows identify

248 depths where there were significant edits made in the bulk density log. Track e shows the
249 intervals that exceed 0.5, 2.0 and 5.0 Ωm based on the calculated R_o . Based on this analysis, this
250 well is categorized as a C well (Table 2). The depth interval displayed is part of the Norland
251 Group. BGHSZ = base of gas hydrate stability zone.

252
253 If ρ_b is used, porosity (ϕ) is calculated from bulk density assuming a sediment or rock
254 grain density (ρ_g) of 2.7 g/cc and a pore water density (ρ_w) of 1.03 g/cc:

255
256
$$\phi_{den} = \frac{\rho_g - \rho_b}{\rho_g - \rho_w}$$
 Equation 1

257 Then either ϕ_{neu} or ϕ_{den} is applied as ϕ in Archie's porosity-resistivity equation to calculate
258 background resistivity, R_o (Archie, 1942):


259
$$R_o = \frac{R_w}{\phi^m}$$
 Equation 2

260 where R_w is pore water resistivity, which we assume is the resistivity of seawater, $R_w = 0.3 \Omega\text{m}$
261 (Winsauer, 1952). For the cementation exponent, m , we apply an initial value of $m = 2$ (Jackson,
262 1978; Glover et al, 1997). If needed, the value of m is adjusted so that R_o matches the measured
263 resistivity in intervals that are likely water saturated, as described in Malinverno et al. (2008). In
264 Figure 2 Track d, we used $m = 2$ and the edited ϕ_{den} to calculate R_o for Well 7219/9-1.

265 3.3.2. Estimated Background Resistivity

266 If ϕ_{neu} or ρ_b logs are not available within the GHSZ or those logs are fair to poor quality,
267 then R_o is estimated. In general, in high-porosity marine sediments, R_o does not change
268 significantly between layers and is usually between 1-3 Ωm . Therefore, for wells from the
269 Norwegian Margin, we estimate R_o using the borehole data in each well. To help avoid
270 identifying intervals that are not hydrate bearing, we select a conservative R_o . This involves
271 selecting not just the lowest resistivity, but a reasonable background trend within the GHSZ and
272 just below the BGHSZ. For some wells, this includes selecting different background values for

273 different intervals or an increasing R_o trend. An example of estimated R_o where more than one
 274 value was selected is shown in Figure 3 from Well 6302/6-1 on the Norwegian Margin. From
 275 1365 m to 1736 m below rig floor (mbrf) or 79 to 450 m below seafloor (mbsf), we selected a R_o
 276 of 2.6 Ωm . Note that this background is not the lowest resistivity in this interval, but is a higher
 277 or more conservative R_o . Then, below 1736 mbrf (or 450 mbsf) a higher R_o of 3.1 Ωm was
 278 selected, as data below that interval and below the gas mix BGHSZ has a higher average
 279 resistivity.

280
 281 Figure 3. An example of gas hydrate evaluation where background resistivity is estimated using
 282 industry well data from 6302/6-1 on the Norwegian Margin. At this well, the methane BGHSZ
 283 (base of the gas hydrate stability zone) is shown in blue and the gas mix BGHSZ is shown in
 284 purple. Like many other wells in this dataset, this well has only gamma ray (Track a) medium
 285 resistivity and deep resistivity (Track b) within the gas hydrate stability zone. Track c shows the
 286 estimated background resistivity, which is based on the measured resistivity near and below the
 287 BGHSZ with the measured deep resistivity. Track d shows the intervals that exceed 0.5, 2.0 and

288 5.0 Ωm based on the estimated background resistivity. Based on this analysis, this well is
289 categorized as a C well (Table 2).
290

291 In the Barents Sea near-seafloor lithologies are older and lithified, and the range of
292 potential background resistivity was considerably higher. Therefore, we used wells where ϕ_{neu} ,
293 ρ_b or compressional velocity logs were available within or below the GHSZ to determine
294 reasonable ranges for R_o in a particular formation (Table S1, Supplementary Information). The
295 defined formation intervals for each well are available in the datasets from the Norwegian
296 Petroleum Directorate.

297
298 3.4. Categorizing Hydrate Accumulations

299 After R_o is established, resistivity increases were categorized according to a set of criteria
300 modified from Majumdar et al. (2017) (Table 1). In this scheme, A is the category representing a
301 significant hydrate accumulation with the highest increase in resistivity, which is defined as a
302 5 Ωm increase above background for a total of 10 m. Note that the increase in resistivity can be
303 distributed in smaller intervals through the GHSZ and does not have to be single layer of 10 m or
304 greater. Resistivity increases and thickness are lower for B and C categories (Table 2). The D
305 category represents the lowest increase in resistivity, 0.5 to 2 Ωm above background resistivity
306 for less than 10 m total.

307

308

309 Table 1. Resistivity classification criteria for gas hydrate accumulations adapted from Majumdar
310 et al. (2017). R_o = background resistivity.

Classification Criteria	Category
5 Ωm or more increase in resistivity above R_o for at least 10 m total	A
2 Ωm to 5 Ωm increase in resistivity above R_o for at least 10 m total, or more than 5 Ωm increase above R_o resistivity but less than 10 m	B
0.5 Ωm to 2 Ωm increase in resistivity above R_o for at least 10 m total; up to 5 Ωm increases for less than 10 m	C
0.5 Ωm to 2 Ωm increase above R_o resistivity for less than 10 m total	D
No resistivity increase greater than 0.5 Ωm above R_o	None

311

312 3.5. Hydrate Saturation

313 If high quality digital well log data is available, gas hydrate saturation, S_h , can be
314 calculated using measured resistivity, R_m , R_o and Archie's saturation equation:

315
$$S_h = 1 - \left(\frac{R_o}{R_m} \right)^{\frac{1}{n}}$$
 Equation 3

316 where n is Archie's saturation exponent, set equal to 2.5 (Cook and Waite, 2018). We note,
317 however, that there can be significant inaccuracies in the calculation of gas hydrate saturation.
318 First, the most accurate saturations are calculated when a full suite of well logs and cores are
319 available over the interval where saturation is calculated; in most cases, however, full datasets of
320 this type are not common. In these industry datasets from Norway, the best datasets include fair
321 to high quality bulk density and neutron porosity curves along with multiple resistivity logs.322 The mode of hydrate occurrence also affects the accuracy of hydrate saturation. Usually,
323 gas hydrate saturation can be calculated accurately using Equation 3 as long as the hydrate
324 occurs in the primary pore space; this is the hydrate morphology commonly observed in sands or

325 coarse silts (Kerkar et al., 2014). Gas hydrate in marine mud or clay, however, often occurs in
326 near-vertical fractures that can result in high resistivity measurements due to electrical anisotropy
327 and not because of a high saturation of hydrate (Cook et al., 2010). In this case gas hydrate
328 saturation is usually significantly overestimated when using resistivity and Equation 3 and
329 applying this equation directly should be avoided.

330

331

332 4. Results and Discussion

333 Based on the resistivity analysis and classification criteria we found evidence for gas
334 hydrate in approximately half of industry boreholes offshore Norway (Figure 4, Table 2). From
335 the publicly available well log data on the Norwegian Petroleum Directorate website and
336 additional digital data, we identified 48 wells with quality well log data above the higher-order
337 gas mix base of hydrate stability. When a gas mix is used to determine the base of stability, 10
338 out of 18 wells in the Barents Sea and 15 out of 30 wells on the Norwegian Margin have
339 evidence for gas hydrate (Figure 4, Table 2). If only pure methane gas composition is used to
340 determine the base of stability, there are only 24 wells with quality well log data in the GHSZ, as
341 methane hydrate has a more limited range of stability than higher-order gas mixes. With the
342 methane only base of stability we found evidence for gas hydrate in 0 out of 3 wells in the
343 Barents Sea and 11 out of 21 wells Norwegian Sea (Figure 4, Table 2).

344

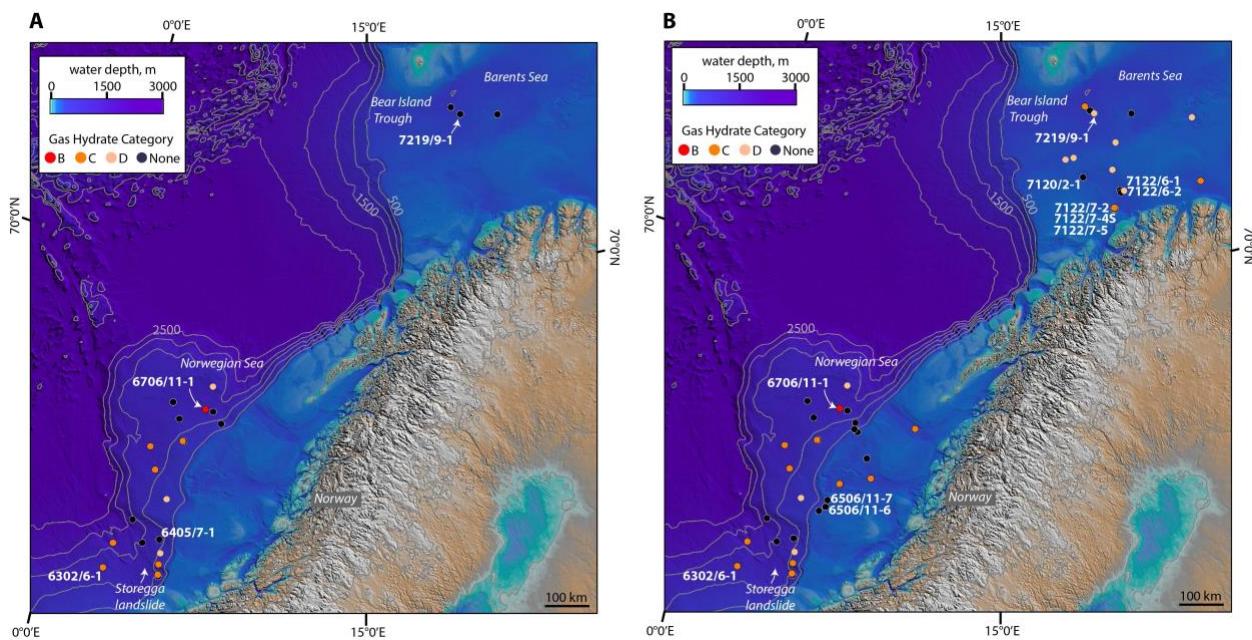
345 Table 2. The number of wells in the Barents Sea and Norwegian Margin that fall into each
 346 resistivity ranked category (Table 1); wells in Category A have significant hydrate accumulation
 347 with the highest increase in resistivity and each category below that has a lower increases in
 348 resistivity and/or a reduced thickness. The number of wells on each margin is further separated
 349 by the two estimates of the base of the gas hydrate stability zone (BGHSZ): the designated gas
 350 mix for each margin or a methane-only mix.

Hydrate Category	Barents Sea		Norwegian Margin	
	Gas Mix BGHSZ	Methane BGHSZ	Gas Mix BGHSZ	Methane BGHSZ
A	0	0	0	0
B	0	0	2	1
C	5	0	10	7
D	5	0	3	3
No Hydrate	8	3	15	10
Total & Percent with Hydrate	10/18 55.6%	0/3 0.0%	15/30 50.0%	11/21 61.1%

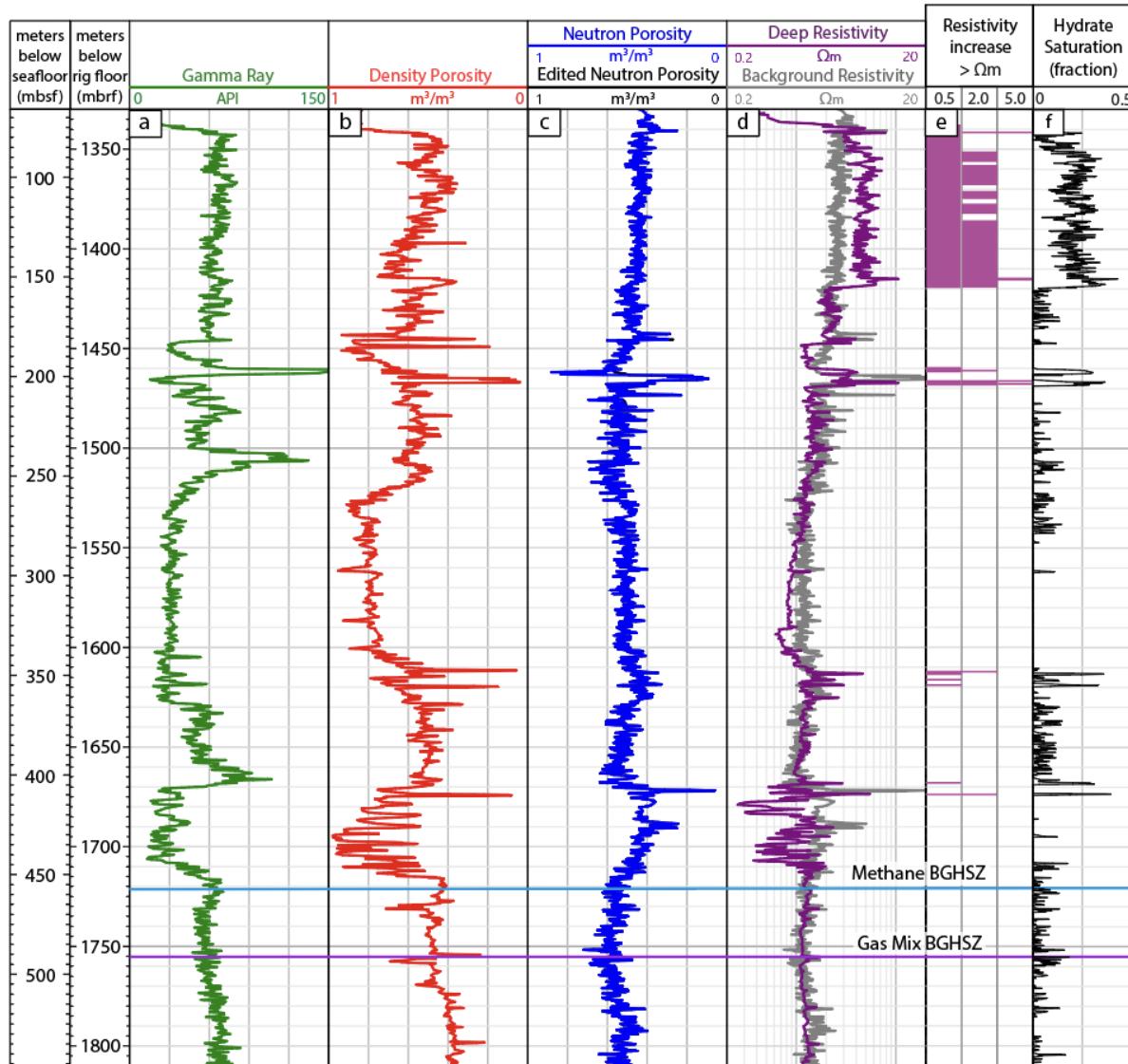
351

352

353 4.1. Gas hydrate accumulations


354 In general, in both the Barents Sea and the Norwegian Margin, gas hydrate accumulations
 355 are associated with low resistivity measurements with an increase of 0.5 and 2.0 Ωm above R_o , as
 356 shown by the predominance of C and D wells in the dataset (Table 3, Figures 2-4). Only two
 357 wells are ranked in Category B, which means they have at more than a 2 Ωm increase above
 358 background.

359 Category B Well 6706/11-1 in the Norwegian Sea, has high quality well log data,
 360 additional porosity well logs (ϕ_{neu} and ρ_b) logs in the gas hydrate stability zone and strong


361 evidence for hydrate in both the methane and gas mix GHSZ (Figure 5). In Well 6706/11-1, we
362 use ϕ_{neu} to calculate R_o (Equation 2) and identify hydrate-bearing intervals as ϕ_{neu} log in this
363 well has more consistent, reasonable porosity measurements that have a somewhat similar trend
364 to the deep resistivity measurement. In this well, we find hydrate primary concentrated **in a thick**
365 **interval** between 1341 and 1419 mbrf (77 and 155 mbsf), as indicated by increases in resistivity
366 between 2 and 5 Ω m above R_o . Based on Equation 3, this corresponds to a hydrate saturation of
367 ~20-30%. However, this calculation should be considered with caution, as the gamma ray in this
368 interval is ~70 API, which is too high for most sands or coarse silts and implies that this interval
369 likely contains a significant clay fraction; this may mean hydrate is forming in fractures or lenses
370 where Archie's saturation equation is not applicable. The other Category B well is displayed in
371 Supplementary Information.

372 Similar to Figures 2, 3, and 5, we observe hydrate accumulations in intervals ranging
373 from tens of centimeters to tens of meters; it is likely that some of these intervals are thinner than
374 true hydrate accumulations given that we select R_o conservatively and require an increase of 0.5
375 to count a layer as gas hydrate bearing. We also observe that gas hydrate was generally
376 distributed in discrete intervals in the middle of the gas hydrate stability zone. This observation
377 is partly biased by the fact that the first ~25 meters below seafloor (mbsf) is almost always
378 missing because jet-in casing is set at the top of the hole, and therefore, if gas hydrate occurs in
379 that near seafloor interval, it cannot be observed. Even so, an important observation is that gas
380 hydrate is not commonly observed near the base of the GHSZ whether it is defined based on the
381 stability in a pure methane or mixed gas system.

382

386 Figure 4. The location and gas hydrate category (Table 1) of wells in the Barents and Norwegian
 387 Sea assuming a) methane hydrate stability and b) a mix of higher order hydrocarbons in the
 388 hydrate stability zone.

389

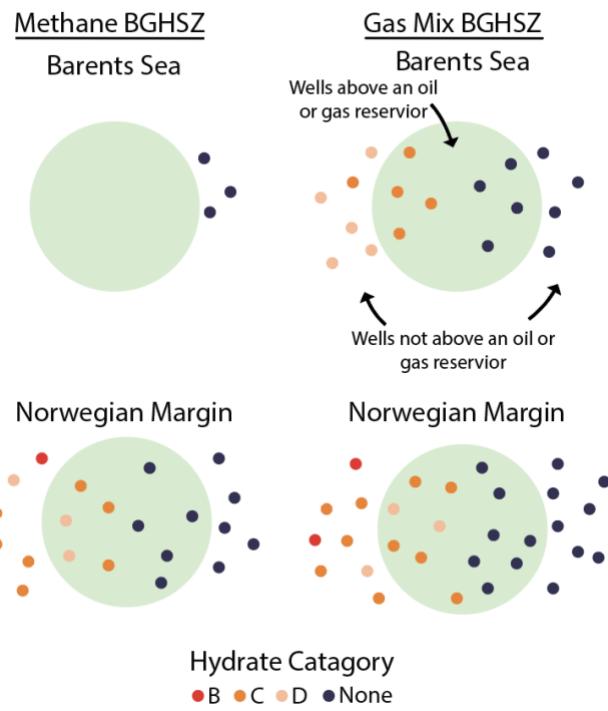
390 Figure 5. The industry well with the most significant hydrate accumulation in this the dataset,
 391 Well 6706/11-1 in the Norwegian Sea. Measured well log data appears on Track a) gamma ray,
 392 c) neutron porosity and d) deep resistivity. Calculated and edited logs are also shown: b)
 393 calculated density porosity (Equation 1), c) edited neutron porosity, d) background resistivity, R_o
 394 (Equation 2), and f) gas hydrate saturation (Equation 3). Track e shows the intervals that exceed
 395 0.5, 2.0 and 5.0 Ωm based on the calculated R_o ; this well is categorized as a B well. BGHSZ =
 396 base of gas hydrate stability zone.

397

398 4.2. The connection to deeper hydrocarbon reservoirs

399 The source of the gas bound in gas hydrate systems is an open and important scientific
 400 question (Ruppel and Kessler, 2017; You et al., 2019). In most locations, there are two

401 endmember gas sources: thermogenic gas from deeper oil and gas reservoirs or shallow
402 microbial gas generated from the consumption of organic matter within or near the GHSZ.
403 Hydrate systems may have a single source, a mixture of both sources, and may also contain
404 microbially reworked thermogenic gas. Understanding the source of the gas in hydrate systems
405 will enhance our ability to estimate the influence of hydrate in the carbon cycle and improve the
406 remote detection of hydrate systems.


407 With this dataset, we have the unique opportunity to look at the relationship between
408 shallow gas hydrate systems and the occurrence of deeper oil and gas reservoirs. The intervals
409 evaluated in the GHSZ in each well lie directly above any deeper oil and gas targets. Most wells
410 in the dataset are oriented vertically, and five wells in the Barents Sea have a semi-vertical
411 orientation with lateral deviations up to 1 km. All semi-vertical wells, however, still lie above the
412 identified mapped area of the oil or gas reservoir, when one was found. No wells deviate onto
413 another reservoir.

414 We used the available reports on the Norwegian Petroleum Directorate website to divide
415 the wells into two categories: hydrocarbon reservoir or no hydrocarbon reservoir. If producible
416 hydrocarbons were encountered in the well, we noted the top depth of the hydrocarbon
417 accumulation and categorized the well as having a hydrocarbon reservoir. If the well was listed
418 as dry or only containing a trace amount of hydrocarbon (called a 'show') it is categorized a no
419 hydrocarbon reservoir. It is possible that these trace hydrocarbons were once significant oil and
420 gas reservoirs, but it is also possible that they never were. In any case, hydrocarbon shows are
421 not currently significant hydrocarbon reservoirs that could form a buoyant phase and leak or
422 advect into shallower rocks and sediment. For this reason, we choose to categorized these as

423 non-hydrocarbon reservoirs. We also note that none of the hydrocarbon reservoirs or
424 hydrocarbon shows were within the GHSZs.

425 Using these categories, we find no relationship between the presence of hydrate and the
426 occurrence of a deeper oil and gas reservoir in either the Barents Sea or the Norwegian Margin
427 (Figure 6). Wells with evidence for hydrate are just as likely (if not slightly more so) to occur
428 above no hydrocarbon reservoir than to occur above a producible hydrocarbon reservoir. The
429 reverse also holds true: wells with no evidence for hydrate are just as likely to occur above a
430 producible hydrocarbon reservoir than no hydrocarbon reservoir. Notably, the well with the
431 most significant hydrate accumulation in the dataset, 6706/11-1 (Figure 5), is a dry hole with no
432 hydrocarbon shows.

433

436 Figure 6. A cartoon showing the wells, their hydrate category (Table 1) and their relationship to a
 437 deeper oil or gas reservoirs. Wells above the green circle lie above an oil or gas reservoir and
 438 wells outside the green circle do not. The wells are divided into four different scenarios based on
 439 the location, either Barents Sea or Norwegian Margin, and the estimated base of hydrate
 440 stability, either methane only or the margin-specific gas mix. A figure showing these results is
 441 available in the Supplementary Information and the results for each well are archived in the
 442 dataset spreadsheet.

444 Of course, the local geologic conditions influence fluid flow and shallow gas source near
 445 each well. For example, on the Norwegian Margin, there is strong evidence for shallow free gas
 446 within and near the gas hydrate stability zone on 2D seismic and ocean bottom seismometer
 447 surveys (Mienert et al., 2005a). Above the Ormen Lange field, 2 out of 3 wells had evidence for
 448 hydrate, which may suggest that these two wells could be sourced from the deeper gas field. Of
 449 course, it may also be that the shallow free gas above the Ormen Lange field doesn't have a
 450 connection to the deeper gas reservoir; there are no gas samples available from these shallow gas

451 and hydrate accumulations to verify the origin. Thus, even when more detailed scientific
452 datasets like seismic data and ocean bottom seismometer surveys exist, questions of gas source
453 cannot be fully answered.

454 Therefore, while we acknowledge that local geological conditions can certainly influence
455 natural gas flow, fluid flow and the accumulation of gas hydrate (e.g. You et al., 2019), we argue
456 that this dataset should be considered holistically as detailed geophysical and geochemical
457 datasets needed to fully characterize the gas hydrate system are not available at every site.

458

459

460 4.3. The background gas hydrate system

461 Most industry wells are drilled away from shallow high amplitudes observed in seismic
462 data that may indicate shallow gas or gas hydrate, because these amplitudes can also signify
463 dangerous and expensive to mitigate overpressured intervals. Therefore, our results from
464 industry wells provide a picture of background gas hydrate systems that are drilled away from
465 shallow high amplitudes.

466 Three of the key results from this study suggest that background hydrate systems in both
467 the Norwegian Margin and the Barents Sea are not primarily sourced from deeper thermogenic
468 oil and gas reservoirs: 1) the commonly occurring though relatively low resistivity increases
469 above R_o (Table 2), which suggests the mechanism for gas transport is very low or intermittent
470 fluid flux or a diffusive migration of gas, 2) the observation that most gas hydrate occurs in the
471 middle of the GHSZ (i.e. Figures 2, 3, and 5), away from the BGHSZ suggesting gas is not

472 primarily sourced from below and 3) the lack of distinct association between observed hydrate
473 accumulations and deeper oil and gas reservoirs (Figure 6).

474 Malinverno (2011) hypothesized that thin, coarse-sand or silt layers are slowly filled with
475 hydrate via methane transported by diffusion in the dissolved phase. In what is termed short
476 migration or diffusive migration, methane is generated by microbes within organic rich clays and
477 then transported short distances (cm to m) via diffusion to coarser sand or silt layers
478 (Malinverno, 2011). In coarser sediments, there is a lower threshold for methane solubility
479 meaning that hydrate forms in these sediments first. Once hydrate forms in the coarser sediment,
480 this results in a continuous, slow diffusive flux of methane from organic-rich clays into the
481 coarser sediments. This process has now been modeled or invoked at a number of locations to
482 explain hydrate accumulations in thin sands (cm to a few meters thick) that are not close to the
483 base of hydrate stability or a clear methane migration pathway, including the northern Gulf of
484 Mexico (Cook and Malinverno, 2013; Nole et al., 2017; Wei et al., 2019), the Hikurangi Margin,
485 New Zealand (Cook et al., 2020), the Andaman Islands (Malinverno and Goldberg, 2015), and
486 the South China Sea (Guan et al., 2021). A somewhat similar diffusive migration of methane
487 may also fill and propagate hydrate filled fractures in clays (Oti et al., 2019). Because nearly all
488 the hydrate accumulations in the Barents and Norwegian Sea are found to be significantly above
489 the base of hydrate stability with relatively low increases in resistivity (indicating low saturation
490 or concentration) and not linked to deeper oil and gas reservoirs, we argue that diffusive
491 migration is likely the main mechanism for gas transport and hydrate accumulation in
492 background gas hydrate systems offshore Norway.

493 In the Barents Sea, a microbial gas source may seem somewhat contradictory as we
494 previously noted that there is strong evidence for higher-order hydrocarbons in the shallow

495 interval that coincides with the GHSZ (Ostanin et al., 2013; Rajan et al., 2013;
496 Vadakkepuliyambatta et al., 2017). However, a concentration of only 1 or 2% higher order
497 hydrocarbon is needed to significantly increase the base of hydrate stability. While the data
498 herein suggests that thermogenic gas is not a primary source for background gas hydrate systems
499 at the locations analyzed herein, it may be enough of a secondary source to significantly increase
500 the thickness of the gas hydrate stability zone. In addition, the Barents Sea also has two unique
501 features that may allow for possible diffusion of higher-order hydrocarbons from a thermogenic
502 source: 1) thermogenic reservoirs are much closer to the hydrate stability zone (sometimes only a
503 few hundred meters away) and 2) relatively shallow rocks are significantly older (50-100 Ma)
504 meaning that there may be enough time for diffusion to take place.

505 Another possibility that can explain the microbial source implied in this dataset and
506 previous publications suggesting thermogenic source gas is that different hydrate systems may
507 have different primary sources of gas offshore Norway. In this case, hydrate systems would
508 have thermogenic source gas when strong amplitudes and migration pathways are visible on
509 seismic data and microbial source gas for background systems that do not have strong amplitudes
510 or clear migration pathways on seismic data. Scientific ocean drilling is needed to collect gas
511 samples throughout and below the GHSZ in gas hydrate systems with a range of seismic
512 signatures to clearly resolve the gas sourcing in these systems.

513

514 5. Conclusions

515 We analyze publicly available well logs from the Barents Sea and mid-Norwegian
516 Margin and find approximately 50% of well have evidence for gas hydrate in the gas hydrate
517 stability zone, suggesting gas hydrate is pervasive across offshore Norway. We observe that

518 these hydrate accumulations are usually associated with relatively low increases in resistivity,
519 which suggests low saturation or low concentration gas hydrate. In addition, we observe that
520 these accumulations are almost always significantly above the estimated base of hydrate
521 stability. When we compare the dataset of wells analyzed for gas hydrate, we find no association
522 between gas hydrate occurrence and deeper oil and gas reservoirs, suggesting that these deeper
523 oil and gas sources are not the main gas source for gas hydrate systems. Based on this evidence,
524 we infer that gas hydrate accumulations at the industry well locations studied herein are most
525 likely microbial in origin.

526

527

528 **Acknowledgments, Samples, and Data**

529 This research was funded by NSF Award number #1752882. We thank Schlumberger for their
530 donation of TechLog to Ohio State University, which was used for log analysis. We thank the
531 editor and two reviewers for their helpful comments. Well log, drilling data and reservoir maps
532 can be obtained on the Norwegian Petroleum Directorate
<https://factpages.npd.no/en/wellbore/pageview/exploration/all>). The compiled dataset for this
533 project is available and archived at: https://www.marine-geo.org/tools/search/Files.php?data_set_uid=29783

536

537

538 Andreassen, K., Hubbard, A., Winsborrow, M., Patton, H., Vadakkepuliyambatta, S., Plaza-Faverola, A.,
539 Gudlaugsson, E., Serov, P., Deryabin, A., Mattingdal, R., Mienert, J., Bünz, S., 2017. Massive blow-out
540 craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. *Science* (1979) 356, 948–
541 953. <https://doi.org/10.1126/science.aal4500>

542 Archer, D., 2007. Methane hydrate stability and anthropogenic climate change. *Biogeosciences* 4, 993–1057.
543 <https://doi.org/10.5194/bgd-4-993-2007>

544 Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics, in:
545 *Transactions of the American Institute of Mining and Metallurgical Engineers*, Vol. 146. pp. 54–63.

546 Barnes, P.M., Pecher, I.A., LeVay, L.J., Bourlange, S.M., Brunet, M.M.Y., Cardona, S., Clennell, M.B., Cook, A.E.,
547 Crundwell, M.P., Dugan, B., Elger, J., Gamboa, D., Georgiopoulou, A., Greve, A., Han, S., Heeschen, K.U.,
548 Hu, G., Kim, G.Y., Kitajima, H., Koge, H., Li, X., Machado, K.S., McNamara, D.D., Moore, G.F., Mountjoy,
549 J.J., Nole, M.A., Owari, S., Paganoni, M., Petronotis, K.E., Rose, P.S., Scream, E.J., Shankar, U., Shepherd,
550 C.L., Torres, M.E., Underwood, M.B., Wang, X., Woodhouse, A.D., Wu, H.-Y., 2019. Site U1517 372.
551 <https://doi.org/10.14379/iodp.proc.372a.103.2019>

552 Boswell, R., Collett, T.S., 2011. Current perspectives on gas hydrate resources. *Energy Environ Sci* 4, 1206.
 553 <https://doi.org/10.1039/c0ee00203h>

554 Boyer, T.P., Antonov, J.I., Baranova, O.K., Coleman, C., Garcia, H.E., Grodsky, A., Johnson, D.R., Locarnini, R.A.,
 555 Mishonov, A. v., O'Brien, T.D., Paver, C.R., Reagan, J.R., Seidov, D., Smolyar, I. v., Zweng, M.M., 2013.
 556 2013: World Ocean Database 2013, NOAA Atlas NESDIS 72. Silver Spring, Maryland.
 557 <https://doi.org/http://doi.org/10.7289/V5NZ85MT>

558 Brekke, H., 2000. The tectonic evolution of the Norwegian Sea continental margin with emphasis on the Voring and
 559 More Basins, Geological Society Special Publication. <https://doi.org/10.1144/GSL.SP.2000.167.01.13>

560 Bryn, P., Berg, K., Forsberg, C.F., Solheim, A., Kvalstad, T.J., 2005. Explaining the Storegga Slide. *Mar Pet Geol*
 561 22, 11–19. <https://doi.org/10.1016/j.marpetgeo.2004.12.003>

562 Bugge, T., Befring, S., Belderson, R.H., Eidvin, T., Jansen, E., Kenyon, N.H., Holtedahl, H., Sejrup, H.P., 1987. A
 563 giant three-stage submarine slide off Norway. *Geo-Marine Letters* 7, 191–198.
 564 <https://doi.org/10.1007/BF02242771>

565 Bünz, S., Mienert, J., Berndt, C., 2003. Geological controls on the Storegga gas-hydrate system of the mid-
 566 Norwegian continental margin. *Earth Planet Sci Lett* 209, 291–307. [https://doi.org/10.1016/S0012-821X\(03\)00097-9](https://doi.org/10.1016/S0012-821X(03)00097-9)

567 Bünz, S., Mienert, J., Vanneste, M., Andreassen, K., 2005. Gas hydrates at the Storegga Slide: Constraints from an
 568 analysis of multicomponent, wide-angle seismic data. *Geophysics* 70, 19–34.
 569 <https://doi.org/10.1190/1.2073887>

570 Collett, T.S., Boswell, R., Waite, W.F., Kumar, P., Roy, S.K., Chopra, K., Singh, S.K., Yamada, Y., Tenma, N.,
 571 Pohlman, J., Zyrianova, M., 2019. India National Gas Hydrate Program Expedition 02 Summary of Scientific
 572 Results: Gas hydrate systems along the eastern continental margin of India. *Mar Pet Geol* 108, 39–142.
 573 <https://doi.org/10.1016/j.marpetgeo.2019.05.023>

574 Cook, A.E., Anderson, B.I., Malinverno, A., Mrozewski, S., Goldberg, D., 2010. Electrical anisotropy due to gas
 575 hydrate-filled fractures. *Geophysics* 75, 173–185. <https://doi.org/10.1190/1.3506530>

576 Cook, A.E., Malinverno, A., 2013. Short migration of methane into a gas hydrate-bearing sand layer at Walker
 577 Ridge, Gulf of Mexico. *Geochemistry, Geophysics, Geosystems* 14, 283–291.
 578 <https://doi.org/10.1002/ggge.20040>

579 Cook, A.E., Paganoni, M., Clennell, M.B., McNamara, D.D., Nole, M., Wang, X., Han, S., Bell, R.E., Solomon,
 580 E.A., Saffer, D.M., Barnes, P.M., Pecher, I.A., Wallace, L.M., LeVay, L.J., Petronotis, K.E., 2020. Physical
 581 Properties and Gas Hydrate at a Near-Seafloor Thrust Fault, Hikurangi Margin, New Zealand. *Geophys Res
 582 Lett* 47, 1–11. <https://doi.org/10.1029/2020GL088474>

583 Cook, A.E., Waite, W.F., 2018. Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained
 584 Reservoirs. *J Geophys Res Solid Earth* 123. <https://doi.org/10.1002/2017JB015138>

585 Doré, A.G., Lundin, E.R., 1996. Cenozoic compressional structures on the NE Atlantic margin: Nature, origin and
 586 potential significance for hydrocarbon exploration. *Petroleum Geoscience* 2, 299–311.
 587 <https://doi.org/10.1144/petgeo.2.4.299>

588 Evans, T.R., Coleman, N.C., 1974. North Sea Geothermal Gradients. *Nature* 247, 28–30.

589 Faleide, J.I., Gudlaugsson, S.T., Jacquot, G., 1984. Evolution of the western Barents Sea. *Mar Pet Geol* 1, 70–78.
 590 [https://doi.org/10.1016/0264-8172\(84\)90082-5](https://doi.org/10.1016/0264-8172(84)90082-5)

591 Ferré, B., Mienert, J., Feseker, T., 2012. Ocean temperature variability for the past 60 years on the Norwegian-
 592 Svalbard margin influences gas hydrate stability on human time scales. *J Geophys Res Oceans* 117, 1–14.
 593 <https://doi.org/10.1029/2012JC008300>

594 Flemings, P.B., Phillips, S.C., Boswell, R., Collett, T.S., Cook, A.E., Dong, T., Frye, M., Goldberg, D.S., Guerin,
 595 G., Holland, M.E., Jang, J., Meazell, K., Morrison, J., O'Connell, J.I., Petrou, E.G., Pettigrew, T., Polito, P.J.,
 596 Portnov, A., Santra, M., Schultheiss, P.J., Seol, Y., Shedd, W., Solomon, E.A., Thomas, C.M., Waite, W.F.,
 597 You, K., 2020. Pressure coring a Gulf of Mexico deep-water turbidite gas hydrate reservoir: Initial results
 598 from The University of Texas–Gulf of Mexico 2-1 (UT-GOM2-1) Hydrate Pressure Coring Expedition. *Am
 599 Assoc Pet Geol Bull* 104, 1847–1876. <https://doi.org/10.1306/05212019052>

600 Goldberg, D.S., Kleinberg, R.L., Weinberger, J.L., Malinverno, A., McLellan, P.J., Collett, T.S., 2010. 16.
 601 Evaluation of Natural Gas-Hydrate Systems Using Borehole Logs. *Geophysical Characterization of Gas
 602 Hydrates* 239–261. <https://doi.org/10.1190/1.9781560802197.ch16>

603 Gorman, A.R., Senger, K., 2010. Defining the updip extent of the gas hydrate stability zone on continental margins
 604 with low geothermal gradients. *J Geophys Res Solid Earth* 115. <https://doi.org/10.1029/2009JB006680>

606 Guan, J., Cong, X., Archer, D.E., Wan, L., Liang, D., 2021. Spatio-temporal evolution of stratigraphic-diffusive
 607 methane hydrate reservoirs since the Pliocene along Shenhua continental slope, northern South China sea. *Mar*
 608 *Pet Geol* 125. <https://doi.org/10.1016/j.marpetgeo.2020.104864>

609 Haacke, R.R., Westbrook, G.K., Hyndman, R.D., 2007. Gas hydrate, fluid flow and free gas: Formation of the
 610 bottom-simulating reflector. *Earth Planet Sci Lett* 261, 407–420. <https://doi.org/10.1016/j.epsl.2007.07.008>

611 Hustoft, S., Dugan, B., Mienert, J., 2009. Effects of rapid sedimentation on developing the Nyegga pockmark field:
 612 Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. *Geochemistry,*
 613 *Geophysics, Geosystems* 10. <https://doi.org/10.1029/2009GC002409>

614 Hustoft, S., Mienert, J., Bünz, S., Nouzé, H., 2007. High-resolution 3D-seismic data indicate focussed fluid
 615 migration pathways above polygonal fault systems of the mid-Norwegian margin. *Mar Geol* 245, 89–106.
 616 <https://doi.org/10.1016/j.margeo.2007.07.004>

617 Ivanov, M., Westbrook, G.K., Blinova, V., Kozlova, E., Mazzini, A., Nouzé, H., Minshull, T.A., 2007. First
 618 sampling of gas hydrate from the Voring plateau. *Eos (Washington DC)* 88, 1–4.
 619 <https://doi.org/10.1029/2007EO190001>

620 Kerkar, P.B., Horvat, K., Jones, K.W., Mahajan, D., 2014. Imaging methane hydrates growth dynamics in porous
 621 media using synchrotron X-ray computed tomography. *Geochemistry Geophysics Geosystems* 15, 4759–4768.
 622 <https://doi.org/10.1002/2014GC005373>

623 Laberg, J., Andreassen, K., Knutsen, S.M., 1998. Inferred gas hydrate on the Barents Sea shelf - A model for its
 624 formation and a volume estimate. *Geo-Marine Letters* 18, 26–33. <https://doi.org/10.1007/s003670050048>

625 Laberg, J.S., Dahlgren, T., Vorren, T.O., Hafstadson, H., Bryn, P., 2001. Seismic analyses of cenozoic contourite
 626 drift development in the Northern Norwegian Sea. *Marine Geophysical Research* 22, 401–416.
 627 <https://doi.org/10.1023/A:1016347632294>

628 Lasabuda, A.P.E., Johansen, N.S., Laberg, J.S., Faleide, J.I., Senger, K., Rydningen, T.A., Patton, H., Knutsen,
 629 S.M., Hanssen, A., 2021. Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review. *Earth Sci*
 630 *Rev.* <https://doi.org/10.1016/j.earscirev.2021.103609>

631 Loeng, H., 1991. Features of the physical oceanographic conditions of the Barents Sea. *Polar Res* 10, 5–18.
 632 <https://doi.org/10.1111/j.1751-8369.1991.tb00630.x>

633 Majumdar, U., Cook, A.E., Scharenberg, M., Burchwell, A., Ismail, S., Frye, M., Shedd, W., 2017. Semi-
 634 quantitative gas hydrate assessment from petroleum industry well logs in the northern Gulf of Mexico. *Mar*
 635 *Pet Geol* 85, 233–241. <https://doi.org/10.1016/j.marpetgeo.2017.05.009>

636 Malinverno, A., 2010. Marine gas hydrates in thin sand layers that soak up microbial methane. *Earth Planet Sci Lett*
 637 292, 399–408. <https://doi.org/10.1016/j.epsl.2010.02.008>

638 Malinverno, A., Goldberg, D.S., 2015. Testing short-range migration of microbial methane as a hydrate formation
 639 mechanism: Results from Andaman Sea and Kumano Basin drill sites and global implications. *Earth Planet*
 640 *Sci Lett* 422, 105–114. <https://doi.org/10.1016/j.epsl.2015.04.019>

641 Malinverno, A., Kastner, M., Torres, M.E., Wortmann, U.G., 2008. Gas hydrate occurrence from pore water
 642 chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling
 643 Program Expedition 311). *J Geophys Res Solid Earth* 113, 1–18. <https://doi.org/10.1029/2008JB005702>

644 Martinsen, O.J., Lien, T., Jackson, C., 2005. Cretaceous and Palaeogene turbidite systems in the North Sea and
 645 Norwegian Sea basins: Source, staging area and basin physiography controls on reservoir development.
 646 *Petroleum Geology Conference Proceedings* 6, 1147–1164. <https://doi.org/10.1144/0061147>

647 Maslin, M., Owen, M., Betts, R., Day, S., Dunkley Jones, T., Ridgwell, A., 2010. Gas hydrates: past and future
 648 geohazard? *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering*
 649 *Sciences* 368, 2369–2393. <https://doi.org/10.1098/rsta.2010.0065>

650 Mienert, J., Bünz, S., Guidard, S., Vanneste, M., Berndt, C., 2005. Ocean bottom seismometer investigations in the
 651 Ormen Lange area offshore mid-Norway provide evidence for shallow gas layers in subsurface sediments.
 652 *Mar Pet Geol* 22, 287–297. <https://doi.org/10.1016/j.marpetgeo.2004.10.020>

653 Mienert, J., Posewang, J., Baumann, M., 1998. Gas hydrates along the northeastern Atlantic margin: possible
 654 hydrate-bound margin instabilities and possible release of methane. *Geol Soc Spec Publ* 137, 275–291.
 655 <https://doi.org/10.1144/GSL.SP.1998.137.01.22>

656 Minshull, T.A., Marín-Moreno, H., Betlem, P., Bialas, J., Bünz, S., Burwicz, E., Cameselle, A.L., Cifci, G.,
 657 Giustiniani, M., Hillman, J.I.T., Hölz, S., Hopper, J.R., Ion, G., León, R., Magalhaes, V., Makovsky, Y., Mata,
 658 M.P., Max, M.D., Nielsen, T., Okay, S., Ostrovsky, I., O'Neill, N., Pinheiro, L.M., Plaza-Faverola, A.A., Rey,
 659 D., Roy, S., Schwalenberg, K., Senger, K., Vadakkepuliyambatta, S., Vasilev, A., Vázquez, J.T., 2020.
 660 Hydrate occurrence in Europe: A review of available evidence. *Mar Pet Geol* 111, 735–764.
 661 <https://doi.org/10.1016/j.marpetgeo.2019.08.014>

662 Nixon, F.C., Chand, S., Thorsnes, T., Bjarnadóttir, L.R., 2019. A modified gas hydrate-geomorphological model for
663 a new discovery of enigmatic craters and seabed mounds in the Central Barents Sea, Norway. *Geo-Marine*
664 *Letters* 39, 191–203. <https://doi.org/10.1007/s00367-019-00567-1>

665 Nole, M., Daigle, H., Cook, A.E., Hillman, J.I.T., Malinverno, A., 2017. Linking basin-scale and pore-scale gas
666 hydrate distribution patterns in diffusion-dominated marine hydrate systems. *Geochemistry, Geophysics,*
667 *Geosystems* 18. <https://doi.org/10.1002/2016GC006662>

668 NPD, 2014. Lithostratigraphic Chart Norwegian Barents Sea.

669 Ostanin, I., Anka, Z., di Primio, R., Bernal, A., 2013. Hydrocarbon plumbing systems above the Snøhvit gas field:
670 Structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents
671 Sea. *Mar Pet Geol* 43, 127–146. <https://doi.org/10.1016/j.marpetgeo.2013.02.012>

672 Oti, E.A., Cook, A.E., Welch, S.A., Sheets, J.M., Crandall, D., Rose, K., Daigle, H., 2019. Hydrate-filled Fracture
673 Formation at Keathley Canyon 151, Gulf of Mexico, and Implications for Non-vent Sites. *Geochemistry,*
674 *Geophysics, Geosystems* 20, 4723–4736. <https://doi.org/10.1029/2019GC008637>

675 Pape, T., Feseker, T., Kasten, S., Fischer, D., Bohrmann, G., 2011. Distribution and abundance of gas hydrates in
676 near-surface deposits of the Håkon Mosby Mud Volcano, SW Barents Sea. *Geochemistry, Geophysics,*
677 *Geosystems* 12, 1–22. <https://doi.org/10.1029/2011GC003575>

678 Peters, K.E., Nelson, P.H., 2012. Criteria to Determine Borehole Formation Temperatures for Calibration of Basin
679 and Petroleum System Models, in: Harris, N.B., Peters, K.E. (Eds.), . SEPM (Society for Sedimentary
680 Geology), p. 219.

681 Phrampus, B.J., Hornbach, M.J., 2012. Recent changes to the Gulf Stream causing widespread gas hydrate
682 destabilization. *Nature* 490, 527–530. <https://doi.org/10.1038/nature11528>

683 Rajan, A., Bünz, S., Mienert, J., Smith, A.J., 2013. Gas hydrate systems in petroleum provinces of the SW-Barents
684 Sea. *Mar Pet Geol* 46, 92–106. <https://doi.org/10.1016/j.marpetgeo.2013.06.009>

685 Rise, L., Bellec, V.K., Ch, S., Bøe, R., 2014. Pockmarks in the southwestern Barents Sea and Finnmark fjords.
686 *Norsk Geologisk Tidsskrift* 94, 263–282. <https://doi.org/10.17850/njg94-4-02>

687 Ruppel, C., Kessler, J.D., 2017. The Interaction of Climate Change and Methane Hydrates. *Reviews of Geophysics*
688 1–43. <https://doi.org/10.1002/2016RG000534>

689 Serov, P., Vadakkepuliyambatta, S., Mienert, J., Patton, H., Portnov, A., Silyakova, A., Panieri, G., Carroll, M.L.,
690 Carroll, J.L., Andreassen, K., Hubbard, A., 2017. Postglacial response of Arctic Ocean gas hydrates to
691 climatic amelioration. *Proc Natl Acad Sci U S A* 114, 6215–6220. <https://doi.org/10.1073/pnas.1619288114>

692 Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., McMillen, K.J., Ladd, J.W., Worzel, J.L., 1979. Seismic
693 Evidence for Widespread Possible Gas Hydrate Horizons on Continental Slopes and Rises. *Am Assoc Pet
694 Geol Bull* 63, 2204–2213. <https://doi.org/10.1306/2F91890A-16CE-11D7-8645000102C1865D>

695 Skogseid, J., Eldholm, O., 1995. Rifted Continental Margin off Mid-Norway, in: Rifted Ocean-Continent
696 Boundaries. pp. 147–153. https://doi.org/10.1007/978-94-011-0043-4_8

697 Sloan, E.D., Koh, C., 2007. *Clathrate Hydrates of Natural Gases*, Third Edition, Chemical Industries. CRC Press.

698 Solheim, A., Elverhøi, A., 1985. A pockmark field in the Central Barents Sea; gas from a petrogenic source? *Polar
699 Res* 3, 11–19. <https://doi.org/10.1111/j.1751-8369.1985.tb00492.x>

700 Tamaki, M., Fujii, T., Suzuki, K., 2017. Characterization and Prediction of the Gas Hydrate Reservoir at the Second
701 Offshore Gas Production Test Site in the Eastern Nankai Trough, Japan. *Energies (Basel)* 10, 1678.
702 <https://doi.org/10.3390/en10101678>

703 Tishchenko, P., Hensen, C., Wallmann, K., Wong, C.S., 2005. Calculation of the stability and solubility of methane
704 hydrate in seawater. *Chem Geol* 219, 37–52. <https://doi.org/10.1016/j.chemgeo.2005.02.008>

705 Tsuji, Y., Fujii, T., Hayashi, M., Kitamura, R., Nakamizu, M., Ohbi, K., Saeki, T., Yamamoto, K., Namikawa, T.,
706 Inamori, T., Oikawa, N., Shimizu, S., Kawasaki, M., Nagakubo, S., Matsushima, J., Ochiai, K., Okui, T.,
707 2009. Methane-hydrate Occurrence and Distribution in the Eastern Nankai Trough, Japan: Findings of the
708 Tokai-oki to Kumano-nada Methane-hydrate Drilling Program. *Natural Gas Hydrates - Energy Resource
709 Potential and Associated Geologic Hazards: AAPG Memoir* 89 228–246.
710 <https://doi.org/10.1306/13201103M893129>

711 Vadakkepuliyambatta, S., Bünz, S., Mienert, J., Chand, S., 2013. Distribution of subsurface fluid-flow systems in
712 the SW Barents Sea. *Mar Pet Geol* 43, 208–221. <https://doi.org/10.1016/j.marpetgeo.2013.02.007>

713 Vadakkepuliyambatta, S., Chand, S., Bünz, S., 2017. The history and future trends of ocean warming-induced gas
714 hydrate dissociation in the SW Barents Sea. *Geophys Res Lett* 44, 835–844.
715 <https://doi.org/10.1002/2016GL071841>

716 Vogt, P.R., Cherkashev, G., Ginsburg, G., Ivanov, G., Milkov, A., Crane, K., Lein, A., Sundvor, E., Pimenov, N.,
717 Egorov, A., 1997. Haakon mosby mud volcano provides unusual example of venting. *Eos (Washington DC)*
718 78, 549–557. <https://doi.org/10.1029/97eo00326>

719 Vorren, T.O., Lebesbye, E., Andreassen, K., Larsen, K.B., 1989. Glacigenic sediments on a passive continental
720 margin as exemplified by the Barents Sea. *Mar Geol* 85, 251–272. [https://doi.org/10.1016/0025-3227\(89\)90156-4](https://doi.org/10.1016/0025-3227(89)90156-4)

722 Vorren, T.O., Richardsen, G., Knutsen, S.M., Henriksen, E., 1991. Cenozoic erosion and sedimentation in the
723 western Barents Sea. *Mar Pet Geol* 8, 317–340. [https://doi.org/10.1016/0264-8172\(91\)90086-G](https://doi.org/10.1016/0264-8172(91)90086-G)

724 Waage, M., Portnov, A., Serov, P., Bünz, S., Waghorn, K.A., Vadakkepuliyambatta, S., Mienert, J., Andreassen, K.,
725 2019. Geological Controls on Fluid Flow and Gas Hydrate Pingo Development on the Barents Sea Margin.
726 *Geochemistry, Geophysics, Geosystems* 20, 630–650. <https://doi.org/10.1029/2018GC007930>

727 Wei, L., Cook, A., Daigle, H., Malinverno, A., Nole, M., You, K., 2019. Factors Controlling Short-Range Methane
728 Migration of Gas Hydrate Accumulations in Thin Coarse-Grained Layers. *Geochemistry, Geophysics,
729 Geosystems* 20, 3985–4000. <https://doi.org/10.1029/2019GC008405>

730 Westbrook, G.K., Chand, S., Rossi, G., Long, C., Bünz, S., Camerlenghi, A., Carcione, J.M., Dean, S., Foucher,
731 J.P., Flueh, E., Gei, D., Haacke, R.R., Madrussani, G., Mienert, J., Minshull, T.A., Nouzé, H., Peacock, S.,
732 Reston, T.J., Vanneste, M., Zillmer, M., 2008. Estimation of gas hydrate concentration from multi-component
733 seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. *Mar Pet
734 Geol* 25, 744–758. <https://doi.org/10.1016/j.marpetgeo.2008.02.003>

735 You, K., Flemings, P.B., Malinverno, A., Collett, T.S., Darnell, K., 2019. Mechanisms of Methane Hydrate
736 Formation in Geological Systems. *Reviews of Geophysics* 57, 1146–1196.
737 <https://doi.org/10.1029/2018RG000638>

738 Yun, T.S., Francisca, F.M., Santamarina, J.C., Ruppel, C., 2005. Compressional and shear wave velocities in
739 uncemented sediment containing gas hydrate. *Geophys Res Lett.* <https://doi.org/10.1029/2005GL022607>

740
741
742
743