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  7 

Summary 8 

Microbial enzymes can address diverse challenges such as degradation of toxins. However, if the 9 

function of interest does not confer a sufficient fitness effect on the producer, the enzymatic 10 

function cannot be improved in the host cells by a conventional selection scheme. To overcome 11 

this limitation, we propose an alternative scheme, termed ‘partner-assisted artificial selection’ 12 

(PAAS), wherein the population of enzyme producers is assisted by function-dependent feedback 13 

from an accessory population. Simulations investigating the efficiency of toxin degradation reveal 14 

that this strategy supports selection of improved degradation performance, which is robust to 15 

stochasticity in the model parameters. We observe that conventional considerations still apply in 16 

PAAS: more restrictive bottlenecks lead to stronger selection but add uncertainty. Overall, we 17 

offer a guideline for successful implementation of PAAS and highlight its potentials and 18 

limitations. 19 

 20 

Introduction 21 

The vast diversity of bacterial and fungal enzymes offers potential solutions to many current 22 

challenges, including the removal of toxic compounds. Recycling complex compounds is an 23 

integrated part of the life-style for many bacteria and fungi. The same enzymes can potentially 24 

target and remove toxins that contaminate our food, water, and environment. One hurdle in 25 

employing native bacterial and fungal enzymes is that the function they are adapted for may not 26 

match the degradation of our toxins of interest. As a result, the degradation performance will not 27 

meet the demands for practical applications. How can we improve such enzymatic functions? 28 

Selection for improved activity would be a clear choice, but what if enzymatic activity against 29 

such toxins is a secondary function, where toxin presence or degradation has no direct impact on 30 

the growth of bacterial or fungal cells that produce the enzyme?  31 

An illustrative example is the bacterial degradation of mycotoxins—fungal produced food 32 

contaminants that are toxic to consume. There are several bacteria and fungi that have already been 33 

identified to carry enzymes that degrade mycotoxins 1–6. However, at least in some cases, the 34 

presence of the toxin has little impact on the growth of bacterial cells, posing a challenge for 35 

selection. To show an example of such a situation, we have measured the growth rate of 36 

Rhodococcus erythropolis under different concentrations of aflatoxin G2 (AFG2) in the culture 37 

(Fig S1). Even though R. erythropolis is known to degrade aflatoxins 7,8, AFG2 has little positive 38 
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or negative impact on its growth rate.  39 

To implement a selection scheme for improving secondary microbial functions, such as 40 

detoxification of AFG2 by Rhodococcus, the detoxification performance should be linked to the 41 

detoxifier’s growth properties. We propose adding an “assisting” partner population that provides 42 

the feedback from the toxin to the detoxifier (Fig 1). Community evolution has recently been 43 

revisited for its potential to improve community functions 9–11. Here we take a slightly different 44 

approach by designing a community to select for a desired microbial function. We assume here 45 

that we have a library of variants with different quantitative traits, and our selection scheme favors 46 

variants with the best detoxification properties.  47 

 48 

Results 49 

Indirect selection of toxin degraders by interaction with an assisting population 50 

We consider a scenario in which a toxin T, is degraded by a ‘degrader’ species D, but the toxin 51 

has little impact (positive or negative) on the growth properties of D cells. To enable selection of 52 

cells with improved degradation efficiency, we introduce an assisting population, A, satisfying the 53 

following requirements (Fig 1, left): A is inhibited by T and provides a benefit to D, but the direct 54 

impact of D on A (i.e. in the absence of toxin) is negligible. Degradation of the toxin in coculture 55 

of A and D, alleviates growth inhibition of A thus increasing the positive influence of A on D. The 56 

positive feedback between A and D confers selective advantage of variants of D that better degrade 57 

T. In each round of the proposed selection scheme (Fig 1, right), the ancestral A is paired with 58 

evolved D from a previous round, thereby focusing the evolutionary pressure on D. The interaction 59 

with A, enables selection of the best-performing D variants at each round (Fig 1, right). Variation 60 

among different droplets arise from variations within the D population from previous rounds of 61 

selection as well as random mutations (either natural or induced). The benefit of exclusive 62 

propagation of the evolved D is two-fold: (1) Avoiding the acquisition of toxin resistance by A 63 

that would, in turn compromise the selection of improved degraders, and (2) simplifying the 64 

population dynamics by reverting to the ancestral population of A at the beginning of each cycle, 65 

relieving some of the anticipated restrictions on the scope of community evolution 12. 66 

To assess the feasibility and potential efficiency of the selection scheme in Fig 1, we employed a 67 

population model (termed ImpInt) that accounts for the effects of A on D, D on T, and T on A 68 

(Methods-Model 1). These types of effects are likely applicable to diverse microbial systems (see 69 

Materials and Methods for more details and references). For simplicity, we assume that the rate of 70 

growth and carrying capacity of the assisting population A decrease with increasing concentration 71 

of the toxin T (consistent with 13–16). We also assume that the rate of toxin degradation is 72 

proportional to the density of the degraders D, and that changes in toxin concentration lead to 73 

proportional changes in the growth rate and carrying capacity of A 17. Fig. 2 provides an example 74 

for the simulated dynamics of A, D and T, starting with a given concentration of toxin and low 75 

densities of the populations A and D (compared their densities at carrying capacity). It 76 

demonstrates constant rate of growth of A accompanied by accelerated growth of D and reciprocal 77 

decrease in the toxin concentration leading to its complete depletion before the populations A and 78 



D reach their saturation levels. 79 

To assess the adequacy of the ImpInt model for analyzing the dynamics in this system, we 80 

compared the results of this model to the results of two additional models that explicitly 81 

incorporate, either the T-degrading enzyme produced by D (ExpEnz, Methods-Model 2), or the A-82 

derived resource supporting the growth of D (ExpRes, Methods-Model 3). We found that the 83 

ImpInt model adequately approximates the dynamics of the more explicit ExpEnz and ExpRes 84 

models (Figs S2 and S3), except for the case of very strong enzymatic degradation of the toxin. 85 

For simulations outside the regime of strong degradation, we therefore used the simpler ImpInt 86 

model, whereas for simulations within this regime, one could use a modified implicit model 87 

(ImpLD, Methods-Model 4), in which the toxin is degraded only by growing D cells (Fig S4). 88 

Geometric mean of A and D population sizes determines culture usability 89 

We next sought to investigate the range of co-culture conditions permitting over 50% reduction of 90 

toxin concentration within the time scale of observation (direct derivation of conditions satisfying 91 

the toxin degradation criterion is provided in Supplementary Information). We found that the 92 

propensity to satisfy this condition increases with higher initial densities of A and D (Fig 3A) and 93 

that the geometric mean of the initial densities of A and D (√𝐴0𝐷0) is a good predictor of the 94 

ability to degrade the toxin within a given time (Fig 3B). An initially high density of either of A 95 

or D can therefore compensate for low initial density of its partner.  96 

Despite other sources of stochasticity, selection based on total cell density leads to 97 

improved detoxification 98 

The main premise of our proposed PAAS scheme is that effective detoxification will be translated 99 

into improved overall culture growth (measured as the total cell density)—a trait that can be readily 100 

selected on. To assess the efficacy of such an approach, we computationally examined whether 101 

variants with better detoxification rates would be selected using PAAS. To create a more realistic 102 

situation, we assumed that in addition to the detoxification coefficient, other properties of the 103 

population (including their growth rates, carrying capacities, inhibition coefficient of A by T, and 104 

growth support coefficient of D by A) also varied stochastically (see Table 2). We then simulated 105 

many conditions (n=10000 instances) with random assignments of these variables and examined 106 

the traits in the output.   107 

First, we found that the detoxification rate (𝑑𝐷) showed a positive association with overall cell 108 

density, measured in total cell density (Fig 4A). Additionally, the overall detoxification 109 

performance was correlated with the total cell density, as expected (Fig 4B). To examine the 110 

efficacy of selection, we compared the distributions of the detoxification rates before selection and 111 

after selecting the top 10% instances with the highest total cell densities. This selection in PAAS 112 

clearly exhibits a preference for higher detoxification rates (Fig 4C). These results confirm the 113 

capability of PAAS to select for improved detoxifiers. Additionally, PAAS offers the advantage 114 

that cell density as the primary trait of interest is relatively easy to measure, compared to direct 115 

measurements of the toxin concentration, e.g. through fluorescence 18, ELISA, or HPLC 19,20.  116 

Effective detoxification selection is sensitive to the timing of propagation 117 



To assess the efficacy of the selection scheme, we used detox improvement as a measure of 118 

improvement in function, defined as the average detoxification rate of selected instances compared 119 

to that of initial instances. We first assessed how the initial composition of the coculture affected 120 

detox improvement. Interestingly, the selection performance—as estimated by detox 121 

improvement—was higher in a particular range of initial densities (Fig 5A). Further investigation 122 

revealed that this range corresponded to initial cell densities that resulted in T being mostly, but 123 

not completely, degraded. In fact, examining the data based on the residual T after 60 hours of 124 

simulated growth showed a clear trend with detox improvement being maximum around 1% 125 

residual T and dropping to lower values when residual T was much higher or lower (Fig 5B). This 126 

trend is intuitively expected; with too little or too much degradation, there is little information for 127 

resolving which cultures are performing well for degradation. We additionally examined the effect 128 

of the time between inoculation and passage and the results, consistent with the effect of initial 129 

density (Fig 5), that low, but not too low, residual T leads to the best detox improvement (Fig S5).     130 

Detoxification selection depends on the population bottleneck 131 

Selection is expected to depend on the size of the bottleneck. With a more stringent bottleneck (i.e. 132 

selecting more extreme cases), the expectation is to get more extreme phenotypes, but at the risk 133 

of added uncertainty of losing the best performers. We asked if the same considerations applied to 134 

the PAAS scheme. We constructed 100 samples of the PAAS scheme, with n = 100 instances of 135 

coculture (with stochastic parameters as in Table 2) in each of the samples. For each of these cases, 136 

we enforced a range of bottlenecks, from choosing the top 1% total cell density, to choosing the 137 

top 30%. The results showed that, as expected, the outcome of less stringent bottlenecks was more 138 

consistent, but on average led to lower improvement (Fig 6A). Defining bottleneck stringency as 139 

the fraction of the total number of instances to the instances selected, we saw a saturable 140 

improvement with more stringent bottlenecks (Fig 6B). Importantly, the uncertainty in detox 141 

improvement was directly related to how stringent the bottleneck was, with 𝜎𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 =142 

√𝑁𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘, and 𝑁𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 as the size of the selected instances in the bottleneck (Fig 6C). 143 

Overall, these trends follow the expectations for a standard selection scheme. 144 

Stochasticity in other cell traits can disrupt effective selection in PAAS 145 

Stochasticity in other parameters is one of the main factors that can potentially derail the PAAS 146 

selection scheme by muddying which cultures are the best detoxifiers. We examined how different 147 

parameters correlated with the total cell density as our main selection criterion (Fig S6). We then 148 

asked how much stochasticity in other parameters can be tolerated in PAAS. For this, we examined 149 

a range of different values of standard deviations for the parameters listed in Table 2. We found 150 

that excessive stochasticity in other traits could mask the degradation performance of the 151 

cocultures (Fig 7). This was evident as the correlation between detoxification coefficient and the 152 

total cell density (i.e. our criterion for selection) is lost when stochasticity in other traits is large 153 

(Fig 7A). As a result, our selection for improved detoxification is no longer effective in such cases 154 

(Fig 7B). 155 

 156 



Discussion 157 

We investigated the capabilities and limitations of a partner-assisted artificial selection scheme to 158 

select for functions of interest that have no significant impact on the growth properties of cells that 159 

provide them. We introduced an assisting population that created a feedback between the function 160 

of interest (e.g. degradation of a toxin) and the growth properties of the microbial cells that provide 161 

that function. To investigate the potentials and limits of PAAS, we examined a system consisting 162 

of a toxin degrader, along with an assisting population that was sensitive to the toxin of interest 163 

and beneficial to the degrader population. As a proxy for evolutionary dynamics, we examine how 164 

different variants fare in a single round of growth within a droplet. The choice of droplets as a 165 

platform limits the interactions between different variants of the evolving toxin degrader 166 

population. Additionally, the ability to choose best-performing droplets simplifies the overall 167 

selection scheme.  168 

We found that selection for total cell density can lead to improved detoxification rates. This 169 

selection is most effective if it happens when detoxification is close to complete, so that there is 170 

enough discrimination between degraders with different performance. We see that bottleneck 171 

considerations in PAAS largely mirror our expectations in standard selection schemes. A more 172 

stringent bottleneck leads to a saturating improvement in detoxification performance, but at the 173 

cost of more uncertainty. Finally, we observe that too much stochasticity in other traits can mask 174 

the performance of toxin degradation and interfere with PAAS selection.   175 

Do successive cycles of the proposed selection improve the detoxification performance? 176 

Answering this question will address whether assessing the performance in a single cycle is a 177 

reasonable proxy for the overall selection scheme. To answer this question, we simulated the 178 

process of successive cycles of selection, outlined in Fig 1: after each round of selection, we 179 

inoculated new droplets with the D cells selected from the best-performing droplets and ancestral 180 

A cells for another round of selection. The results suggest that these successive cycles lead to 181 

further improvement in detoxification, although the improvement slows down in later selection 182 

cycles (Fig S7). Importantly, how heritable the traits are will have a sizeable impact on the 183 

improvement in the following selection cycles because the randomness added on at the end of each 184 

cycle can undo some of the progress made towards better detoxification performance in previous 185 

rounds. As expected, when A and D evolve together, selection for A’s resistance to the toxin 186 

disrupts the selection for improved detoxification (Fig S8). 187 

For practical implementation, we note that initial population sizes and the timing of selection can 188 

be used as effective design parameters. One major decision for designing an effective PAAS is the 189 

choice of bottleneck stringency; our in silico model suggests that PAAS is similar to a standard 190 

selection scheme in terms of how a more stringent bottleneck leads to stronger, but more uncertain, 191 

selection. Another major decision is the treatment of other sources of stochasticity. Among 192 

stochastic parameters that could interfere with selection, the growth rates of A and D appear to 193 

play major roles (Fig S6). Since the A population is reintroduced at the beginning of each round 194 

(Fig 1, right), a pre-adaptation step to maximize its growth rate can significantly reduce the 195 

variability in this trait. In contrast, the growth rate of D, as long as it does not come at the cost of 196 

loss of degradation capabilities, could be considered a desired trait to select for. 197 



 198 

Limitations of Study 199 

In our treatment of different traits, we have assumed that such traits are independent of each other. 200 

However, some correlation between these traits is possible, for example a positive or negative 201 

correlation between the growth rate and carrying capacity of cells 21. If known, such correlations 202 

can be directly incorporated into the model for a more realistic representation of stochasticity. As 203 

an example, we have included a tradeoff between the degradation rate (dD) and the carrying 204 

capacity (KD) of population D to account for the possibility of better degradation coming at a cost. 205 

This idea resembles the cost of providing a benefit by the associated microbes included in a model 206 

of host-microbe interactions put forward by van Vilet and Doebeli 22. Our results suggest that our 207 

previous conclusions hold with a weak tradeoff, but a strong tradeoff can disrupt this selection 208 

scheme (Fig S9). The reason is that when dD and KD are strongly anticorrelated, best detoxifiers 209 

no longer correspond to the highest total cell density. 210 

Some of the previous reports (e.g. Doulcier et al. 23 and Xie et al. 9) have discussed the details of 211 

community composition and its role on selection. In our case, the trajectory of community 212 

dynamics appears insensitive to the details of the population composition (Fig S10). Therefore, we 213 

have not entered into detailed analysis of the impact of relative abundances on the outcome.  214 

One of the assumptions in our model is that there is little direct impact on A by D, be it positive 215 

or negative. This can be controlled to some extent by choosing A that satisfies this assumption or 216 

by adjusting the resources in the environment. We expect results similar to the condition examined 217 

in this manuscript with weakly positive or negative impact on A by D. Strong positive or negative 218 

impact on A by D can change the community properties. Extreme exploitation conditions could 219 

drive A out of the community and disrupt PAAS. In contrast, strong mutualism is expected to 220 

stabilize the population dynamics 24 and lead to a more balanced performance regardless of the 221 

initial conditions.   222 

The construction of PAAS communities is conceptually similar to the “Helper-Manufacturer” 223 

communities examined by Xie and colleagues 25 with one main difference: the Helper-224 

Manufacturer system is based on commensalism, whereas the Assist-Detox system is based on 225 

mutualism. We believe some of the basic concepts and considerations for artificial selection, 226 

including those discussed in detail in 25, are shared between the two systems. However, for the 227 

specific goal of detoxification, the stronger bond between the partners in mutualism leads to 228 

stronger selection and expedites the process of finding improved detoxifiers.    229 

Overall, we propose that PAAS can be utilized as an additional tool to expand the power of 230 

selection to situations where the function of interest has little influence on the growth properties 231 

of the provider of that function. We recognize that an actual implementation will likely involve 232 

adjusting the scheme to the specifics of a system of interest. Our simplified model presented in 233 

this work offers a baseline to build upon.  234 

 235 
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 252 

Figure legends 253 

Fig 1. An assisting population A can generate a positive feedback for D from the toxin T. The 254 

overall scheme and the specific requirements are shown on the left. On the right, a conceptual 255 

selection scheme is illustrated in which cycles of coculture (with ancestral A and evolved D) leads 256 

to improved detoxification performance of D. We envision a droplet-based implementation where 257 

D is clonal within each culture but different droplets contain different variants of D. 258 

 259 

Fig 2. The assisting and degrading populations can grow together and degrade the toxin of 260 

interest. The dynamics of population densities (A) and the toxin concentration (B) are shown after 261 

incorporating all interactions. In the example shown here, populations A and D are assumed to be 262 

initially at 105 cells/ml and the initial toxin concentration is 10 μg/ml. All relevant parameters are 263 

listed in Table 1. The ImpInt model is used for this simulation. 264 

 265 

Fig 3. Usability of A-D cocultures depend on the geometric mean of the initial A and D 266 

population densities. (A) Surveying a range of initial A and D population densities shows that an 267 

increase in the initial density of one can compensate for a drop in the initial density of the other 268 

one to maintain usability for toxin removal. (B) Examining the final T concentrations suggest that 269 

the geometric mean of the initial A and D population densities is the main determinant of usability 270 

and degradation performance. Final T concentrations are taken from the simulations at 72 hours. 271 
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In all cases the initial toxin concentration is 10 μg/ml. All relevant parameters are listed in Table 272 

1. The ImpInt model is used in these simulations.  273 

 274 

Fig 4. A survey of many (n=10000) simulated instances with stochastic parameters shows 275 

that PAAS allows us to select for improved detoxification as a secondary function. (A) Scatter-276 

plot of all instances shows a positive correlation between the detoxification rate and total cell 277 

density. The red trend line is estimated based on the average total cell densities at low and high 278 

detox rates. (B) Total cell density is also tightly linked to the effectiveness of detoxification. (C) 279 

Comparing the distributions of the detoxification rates before selection and after selecting the top 280 

10% instances with the highest total cell densities shows that PAAS favors improved 281 

detoxification. Final T concentrations are taken from the simulations at 46 hours. In all cases the 282 

initial toxin concentration is 10 μg/ml. All relevant parameters are listed in Table 1 and stochastic 283 

properties are listed in Table 2. The ImpInt model is used in these simulations. 284 

 285 

Fig 5. For optimal selection, most, but not all, of the toxin should be degraded at the time of 286 

selection. (A) Mean detox improvement (defined as the average of detoxification coefficients at 287 

the end of a round divided by its initial value) is plotted as a function of initial population densities 288 

of A and D. (B) Mean detox improvement data in (A) is plotted as a function of the final residual 289 

T, showing an optimal performance around 1% residual T at the end of each round. For each data 290 

point, 1000 instances were sampled, with stochastic parameters listed in Table 2. Final T 291 

concentrations are taken from the simulations at 60 hours. In all cases the initial toxin concentration 292 

is 10 μg/ml. All relevant parameters are listed in Tables 1 and 2. The ImpInt model is used in these 293 

simulations. 294 

 295 

Fig 6. Improvement in detox, as a function of population bottleneck. (A) The distribution of 296 

detox improvement values is shown when different fractions of the top cases with the highest cell 297 

density are selected within a round. More stringent selections can potentially yield higher detox 298 

improvement, but at the risk of more uncertainty. (B) Error bars are standard deviations (n = 100). 299 

Red curve is a fit into the data, with the form 𝑦 = 1 + (𝑦𝑓 − 1) 𝑥 (𝑥 + 𝑥𝑠)⁄ , where 𝑦𝑓 = 1.3 and 300 

𝑥𝑠 = 5. (C) Red curve is a linear fit into the data, 𝑦 = 𝑚𝑥, where 𝑚 = 2.7. Final T concentrations 301 

are taken from the simulations at 72 hours. In all cases the initial toxin concentration is 10 μg/ml. 302 

All relevant parameters are listed in Table 1. The ImpInt model is used in these simulations.  303 

 304 

Fig 7. Stochasticity in other traits can interfere with PAAS efficiency. (A) Correlation between 305 

total cell density and detoxification coefficient decreases as stochasticity in other traits increases. 306 

Correlation coefficient is calculated using all instances of cocultures with parameters picked from 307 

corresponding random variables. Stochasticity is defined as the ratio of σ to µ (see Table 2) and 308 

the same value is used for all random variables except dD for which σ/µ is fixed at 0.2. Error bars 309 

are standard deviations calculated using the top 10% of instances selected based on total cell 310 



density. (B) Detox improvement decreases with more stochasticity in other traits. Here, error bars 311 

depict bootstrap 95% confidence intervals using 100 samples of PAAS. Top 10% of the instances 312 

with the largest total population densities are selected for calculating detox improvement. All 313 

relevant parameters are similar to Fig 4 and listed in Tables 1. The ImpInt model is used in these 314 

simulations. 315 

 316 

STAR Methods 317 

Resource Availability 318 

Lead Contact 319 

Further information and requests for resources and codes should be directed to and will be fulfilled 320 

by the lead contact, Babak Momeni (momeni@bc.edu). 321 

Materials availability 322 

This study did not generate new unique reagents. 323 

Data and code availability 324 

All original code has been deposited at Zenodo and is publicly available as of the date of 325 

publication. DOIs are listed in the key resources table. 326 

Method Details 327 

Bacterial growth characterization 328 

Rhodococcus erythropolis (DSM 43066) was grown from the frozen stock in glucose-yeast-malt 329 

(GYM) at 28° C with continuous shaking (240 rpm) for 24 hrs before starting the experiments. For 330 

the growth characterization experiment, R. erythropolis was cultured in basal Z medium: KH2PO4 331 

(1.5 g/L), K2HPO4 x 3H2O (3.8 g/L), (NH4)2SO4 (1.3 g/L), sodium citrate dihydrate (3.0g/L), 332 

FeSO4 (1.1 mg/L), glucose (4.0 g/L), 100x vitamin solution (1 mL), 1000x trace elements solution 333 

(1 mL), 1 M MgCl2 (5 mL), 1 M CaCl2 (1 mL), and 100x amino acid stock (10 mL). AFG2 stock 334 

(Cayman Chemical) was dissolved in LC-MS grade methanol to the final concentration of 1 335 

mg/mL. AFG2 was then introduced into the growth cultures at different concentrations by further 336 

diluting the stock in methanol to keep the total methanol concentration fixed across all cases.  337 

Final volumes of 150 µl per well were used in standard flat-bottom 96-well plates. A BioTek 338 

Synergy Mx multi-mode microplate reader was used to monitor optical density of cells at 600 nm. 339 

Reads were taken at 5 min intervals over 48 hrs. Cultures usually started at an initial OD of 0.01 340 

and were continuously shaking between reads. Five replicates were used per condition. Only the 341 

internal wells of the 96-well plate were used for samples, and the peripheral wells of the plate were 342 

filled with sterile water to contain evaporation.  343 

Growth rates were calculated using a Matlab code that extracted the data from text files generated 344 

by BioTek Synergy Mx. The function ‘fit_logistic’ (written by James Condor, and available 345 
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at https://www.mathworks.com/matlabcentral/fileexchange/41781-fit_logistic-t-q) was used to 346 

estimate the growth rates from OD readings. 347 

Models and equations 348 

There are three assumptions shared in our models. (1) The growth rate of assisting population A 349 

linearly decreases as the T concentration increases 16. (2) The growth rate of A and its carrying 350 

capacity proportionally change at different concentrations of an inhibitor 17. This trend is observed 351 

in other studies, for example in the response of Salmonella to tetracycline 13,14, response of E. coli 352 

to streptomycin 13, and response of Acetobacter to acetic acid 15. (3) Degradation rate of T is 353 

proportional to the density of the degrading population D.  354 

For the first assumption, there are numerous examples that show the decrease in growth rate at 355 

higher concentrations of an inhibitor. A few examples are shown in the Supplementary Information 356 

of Ref. [21], such as the response of Staphylococcus aureus to acetic acid and erythromycin and 357 

the response of Escherichia coli to various antibiotics. The biological justification of this 358 

relationship is that cell inhibition mechanisms often slow down basic cellular processes such as 359 

DNA replication or protein synthesis machinery and thus decrease the growth rate. 360 

Regarding the second assumption, in addition to the impact of toxins on the growth rate of species, 361 

cells have to invest more energy and resources to undo the harmful effects of the inhibitor (e.g. 362 

produce more DNA polymerase, produce more ribosomes, or activate efflux pumps to excrete the 363 

toxin). This additional investment reduces the overall resources available to the cell and thus leads 364 

to a lower carrying capacity when more toxins are present. In Ref. 17, this trend is quantitatively 365 

shown for several bacterial isolates from the human nasal passage. This trend is also observed in 366 

other studies, for example in the response of Salmonella to tetracycline 13,14, response of E. coli to 367 

streptomycin 13, and response of Acetobacter to acetic acid 15. 368 

For the third assumption, regardless of the exact details of the degradation mechanism, it is 369 

expected that with more D cells the degradation will proportionally increase. There could be 370 

exceptions to this assumption when for example quorum sensing affects D’s response, or when 371 

crowding reduces the overall performance. Nonetheless, the baseline assumption, which is 372 

expected to apply in the majority of cases is that total degradation rate is proportional to the density 373 

of D cells.  374 

To capture the main features proposed in our model, it suffices that both growth rate and carrying 375 

capacity decrease at higher T concentrations. Nonetheless, we have made more specific 376 

assumptions in our model based on known properties that are both realistic and simple to represent. 377 

Model 1: Implicit interaction effects (ImpInt) 378 

In this simplified model, we assume logistic growth for the A and D populations. The toxin T is 379 

assumed to modulate both the growth rate and the carrying capacity of the population A. Growth 380 

rate and carrying capacity of population D is capped by the benefits supplied by population A.  381 

𝑑𝐴

𝑑𝑡
= (𝑟𝐴 − 𝜌𝑇𝑇) (1 −

𝐴

𝐾𝐴(1−𝜌𝑇𝑇 𝑟𝐴⁄ )
) 𝐴   (1) 382 
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𝑑𝐷

𝑑𝑡
= 𝑚𝑖𝑛(𝑟𝐷 , 𝑠𝐴𝐴) (1 −

𝐷

𝐴𝐾𝐷 𝐾𝐴⁄
) 𝐷   (2) 383 

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷𝑇      (3) 384 

Here D and A are the densities of A and D populations, respectively, and T is the concentration of 385 

the toxin T. In Eq. (2), the maximum growth rate is presented as 𝑚𝑖𝑛(𝑟𝐷 , 𝑠𝐴𝐴). This choice is 386 

made to cap the growth rate to the intrinsic maximum growth rate, rD, which prevents the 387 

unrealistically high values of population growth rate when the support supplied by A is abundant. 388 

The motivation is that under such a situation the overall growth rate of D will be limited by another 389 

bottleneck such as the time required for duplicating the DNA. The same form of equations is used 390 

in the following in Model 2 and Model 4.  391 

Model 2: Explicit enzyme effect (ExpEnz) 392 

In this model, the T-degrading enzyme (produced by D) is explicitly included. Compared to ImpInt, 393 

rather than direct degradation of T by D, D produces the enzyme E which degrades T. We have 394 

also included an explicit term for intrinsic enzyme decay in our equations. 395 

𝑑𝐴

𝑑𝑡
= (𝑟𝐴 − 𝜌𝑇𝑇) (1 −

𝐴

𝐾𝐴(1−𝜌𝑇𝑇 𝑟𝐴⁄ )
) 𝐴   (4) 396 

𝑑𝐷

𝑑𝑡
= 𝑚𝑖𝑛(𝑟𝐷 , 𝑠𝐴𝐴) (1 −

𝐷

𝐴𝐾𝐷 𝐾𝐴⁄
) 𝐷   (5) 397 

𝑑𝐸

𝑑𝑡
= 𝜂𝐷𝐷 (1 −

𝐷

𝛾𝐴
) − 𝛿𝐸𝐸    (6) 398 

𝑑𝑇

𝑑𝑡
= −𝑑𝐸𝐸𝑇      (7) 399 

Model 3: Explicit resource effect (ExpRes) 400 

In this model, the resource R, produced by A and supporting the growth of D, is explicitly included. 401 

We assume a standard Monod-type growth for D on R as its main limiting resource. The 402 

consumption of R by D is also assumed to be proportional to the biomass generated by the growing 403 

D population.  404 

𝑑𝐴

𝑑𝑡
= (𝑟𝐴 − 𝜌𝑇𝑇) (1 −

𝐴

𝐾𝐴(1−𝜌𝑇𝑇 𝑟𝐴⁄ )
) 𝐴   (8) 405 

𝑑𝑅

𝑑𝑡
= 𝛽𝑅

𝑑𝐴

𝑑𝑡
− 𝛼𝐷 (

𝑅

𝑅+𝐾𝑅
) 𝐷    (9) 406 

𝑑𝐷

𝑑𝑡
= 𝑟𝐷 (

𝑅

𝑅+𝐾𝑅
) 𝐷     (10) 407 

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷𝑇      (11) 408 

Model 4: Implicit interaction effects, live degradation (ImpLD) 409 

In this modified phenomenological model, we assume that only growing D populations contribute 410 

to the detoxification. This will capture cases where the enzyme decay is large and thus 411 

detoxification stops when there is no growth and enzyme production by D cells.  412 

𝑑𝐴

𝑑𝑡
= (𝑟𝐴 − 𝜌𝑇𝑇) (1 −

𝐴

𝐾𝐴(1−𝜌𝑇𝑇 𝑟𝐴⁄ )
) 𝐴   (12) 413 



𝑑𝐷

𝑑𝑡
= 𝑚𝑖𝑛(𝑟𝐷 , 𝑠𝐴𝐴) (1 −

𝐷

𝐴𝐾𝐷 𝐾𝐴⁄
) 𝐷   (13) 414 

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷 (1 −

𝐷

𝐴𝐾𝐷 𝐾𝐴⁄
) 𝑇    (14) 415 

Simulations 416 

Numerical simulations were performed using MATLAB. Source codes along with descriptions of 417 

parameters are available at https://github.com/bmomeni/partner-assisted-artificial-selection. 418 

(cross-referenced at https://doi.org/10.5281/zenodo.8041025) 419 

Parameters and their values 420 

Unless otherwise stated, Table 1 lists the values of parameters used in our simulations. The order-421 

of-magnitude of values are inferred from experimental characterization of aflatoxin G2 422 

detoxification by Rhodococcus species. 423 

Random variables 424 

Table 2 lists the distributions used for different random variables used to include stochasticity in 425 

our simulations. For all normal random variables, we used the built-in random function in Matlab, 426 

with relevant parameters (e.g. ‘uniform’ for a uniform distribution and ‘normal’ for a normal 427 

distribution). To generate skew normal distributions for growth rates, we used the following 428 

transformation based on two independent random variables 𝑥1 and 𝑥2 picked from a Normal 429 

distribution 𝒩(0,1). 430 

𝑥𝑠𝑛 =
𝛼|𝑥1|+𝑥2

√1+𝛼2
    (15) 431 

Here α is the skew parameter in the distribution. The distribution is more skewed towards small 432 

(/large) values, when α is negative (/positive).  433 

Quantifications and statistical analysis 434 

Bootstrap confidence intervals are calculated using the bootci function in Matlab, with mean as 435 

the target function. 436 

 437 

Tables 438 

Table 1. Typical parameter values for the model.  439 

Parameter Description Value 

𝑡𝑓  Total simulation time per round 60 hr 

𝑟𝐴 Maximum growth rate of population A 0.2 hr-1 

𝑟𝐷 Maximum growth rate of population D 0.22 hr-1 

𝐾𝐴 Maximum carrying capacity of population A 108 cells/ml 

𝐾𝐷 Maximum carrying capacity of population D 3×108 cells/ml 

𝜌𝑇 Inhibition coefficient of T against A 0.003 ml/(µg·hr) 

https://github.com/bmomeni/partner-assisted-artificial-selection
https://doi.org/10.5281/zenodo.8041025


𝑠𝐴 Growth coefficient of A in supporting D 10-7 ml/(cells·hr) 

𝑑𝐷 Detoxification rate of T removal by D 10-8 ml/(cells·hr) 

𝑑𝐸 Detoxification rate of T removal by E 10-8 ml/(U·hr) 

𝜂𝐷 Production rate of enzyme E by D 2.5×10-6 µU/(cells·ml) 

𝛽𝑅 Production rate of resource R by A 0.2 fmole/(cells·hr) 

𝐾𝑅 Monod coefficient for growth of D on R 0.2 µM 

𝛼𝐷 Consumption rate of resource R by D 0.07 fmole/cell 

𝛿𝐸 Decay rate of enzyme E 0.02-0.5 hr-1 

 440 

Table 2. Different random variables and their distributions in a typical artificial selection 441 

simulation. 442 

Random variable Distribution Value 

𝐫𝐀 Skew-normal 𝜇 = 𝑟𝐴; 𝜎 =0.02𝑟𝐴; skew α = -3 

𝐫𝐃 Skew-normal 𝜇 = 𝑟𝐷; 𝜎 =0.02𝑟𝐷; skew α = -3 

𝐊𝐀 Normal 𝜇 = 𝐾𝐴; 𝜎 =0.02𝐾𝐴 

𝐊𝐃 Normal 𝜇 = 𝐾𝐷; 𝜎 =0.02𝐾𝐷 

𝛒𝐓 Normal 𝜇 = 𝜌𝑇; 𝜎 =0.02𝜌𝑇 

𝐬𝐀 Normal 𝜇 = 𝑠𝐴; 𝜎 =0.02𝑠𝐴 

𝐝𝐃 Normal 𝜇 =  𝑑𝐷; 𝜎 = 0.2𝑑𝐷 

 443 
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Supplemental Text and Figures 545 

Estimated time for detoxification 546 

To assess usability, we need to calculate if within the span of our observations there is a significant 547 

drop in the toxin concentration. We limit our discussions to weak detoxification cases here, 548 

because only such cases are relevant for the determination of usability within the observation time 549 

𝑡𝑜𝑏𝑠. Additionally, we assume that D and A (densities of A and D populations, respectively) are 550 

away from their respective carrying capacities in these conditions, and that the growth of D is 551 

limited by the support of A. Thus the equations will be simplified to 552 

𝑑𝐴

𝑑𝑡
≈ (𝑟𝐴 − 𝜌𝑇𝑇)𝐴   (16) 553 

𝑑𝐷

𝑑𝑡
= 𝑠𝐴𝐴𝐷    (17) 554 

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷𝑇    (18) 555 

We further approximate (𝑟𝐴 − 𝜌𝑇𝑇) as (𝑟𝐴 − 𝜌𝑇𝑇0) during this time, with the assumption that the 556 

decrease in 𝑇 is small in cases that are marginally viable. Therefore, 557 

𝐴(𝑡) ≈ 𝐴0exp [(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡] ≈ 𝐴0 [1 + (𝑟𝐴 − 𝜌𝑇𝑇0)𝑡]  (19) 558 

Then 559 

𝑑𝐷

𝑑𝑡
≈ 𝑠𝐴𝐷𝐴0[1 + (𝑟𝐴 − 𝜌𝑇𝑇0)𝑡] 560 

𝑑

𝑑𝑡
ln (𝐷) ≈ 𝑠𝐴𝐴0[1 + (𝑟𝐴 − 𝜌𝑇𝑇0)𝑡] 561 

𝐷(𝑡) ≈ 𝐷0exp [𝑠𝐴𝐴0 (𝑡 +
1

2
(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡2)]   (20) 562 

Since we assume that changes in D are small within the observed time-scale 𝑡𝑜𝑏𝑠, we thus get 563 

𝐷(𝑡) ≈ 𝐷0 [1 + 𝑠𝐴𝐴0 (𝑡 +
1

2
(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡2)]  (21) 564 

Using this estimate, we can calculate T as 565 

1

𝑇

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷0 [1 + 𝑠𝐴𝐴0𝑡 +

1

2
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡2] 566 

𝑑

𝑑𝑡
ln (𝑇) = −𝑑𝐷𝐷0 [1 + 𝑠𝐴𝐴0𝑡 +

1

2
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡2] 567 

𝑇(𝑡) = 𝑇0 exp {−𝑑𝐷𝐷0 [𝑡 +
1

2
𝑠𝐴𝐴0𝑡2 +

1

6
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡3]}  (22) 568 

The threshold for the culture to be functional (i.e. at least 50% detoxification) is 569 



𝑇(𝑡𝑜𝑏𝑠)

𝑇0
= exp {−𝑑𝐷𝐷0 [𝑡𝑜𝑏𝑠 +

1

2
𝑠

𝐴
𝐴0𝑡𝑜𝑏𝑠

2 +
1

6
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡𝑜𝑏𝑠

3]} < 0.5 570 

𝑑𝐷 𝐷0 [𝑡𝑜𝑏𝑠 +
1

2
𝑠𝐴𝐴0𝑡𝑜𝑏𝑠

2 +
1

6
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡𝑜𝑏𝑠

3] > 0.69 571 

1

6
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡𝑜𝑏𝑠

3 +
1

6
𝑠𝐴𝐴0𝑡𝑜𝑏𝑠

2 + 𝑡𝑜𝑏𝑠 −
0.69

𝑑𝐷𝐷0
> 0   (23) 572 

With (𝑟𝐴 − 𝜌𝑇𝑇0) > 0 this third-degree polynomial is monotonic, with a single positive solution 573 

for 𝑡𝑜𝑏𝑠. If (𝑟𝐴 − 𝜌𝑇𝑇0) < 0, the first-order derivative of this third-degree polynomial has one 574 

positive and one negative zeros, and since the value of the function is negative at 𝑡𝑜𝑏𝑠 = 0, again 575 

there will be a single positive solution for 𝑡𝑜𝑏𝑠. 576 

 577 

Conditions for usability 578 

Starting from the equations for ImpInt,  579 

𝑑𝐴

𝑑𝑡
= (𝑟𝐴 − 𝜌𝑇𝑇) (1 −

𝐴

𝐾𝐴(1 − 𝜌𝑇𝑇 𝑟𝐴⁄ )
) 𝐴 580 

𝑑𝐷

𝑑𝑡
= 𝑚𝑖𝑛(𝑟𝐷 , 𝑠𝐴𝐴) (1 −

𝐷

𝐴 𝐾𝐷 𝐾𝐴⁄
) 𝐷 581 

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷𝑇 582 

We focus on conditions that would determine the minimum requirements for usability. We note 583 

that if the observation time is long enough, all cultures will be viable in this formulation (the fixed 584 

point has A and D at their saturation densities and T at zero). A more realistic representation is 585 

obtained if we add an explicit death rate (𝛿) to account for population decline in the absence of 586 

growth. 587 

𝑑𝐴

𝑑𝑡
= (𝑟𝐴 − 𝜌𝑇𝑇) (1 −

𝐴

𝐾𝐴(1−𝜌𝑇𝑇 𝑟𝐴⁄ )
) 𝐴 − 𝛿𝐴   (24) 588 

𝑑𝐷

𝑑𝑡
= 𝑚𝑖𝑛(𝑟𝐷 , 𝑠𝐴𝐴) (1 −

𝐷

𝐴𝐾𝐷 𝐾𝐴⁄
) 𝐷 − 𝛿𝐷   (25) 589 

𝑑𝑇

𝑑𝑡
= −𝑑𝐷𝐷𝑇       (26) 590 

We separate the analysis into three regimes (Fig S10): 591 

(1) 𝑟𝐴 − 𝜌𝑇𝑇0 > 0  and small 𝛿 592 

In this regime, the A population will exponentially increase from the beginning. In turn, 593 

the D population will increase with an increasing rate. From Eq. (23), we find that for 594 

usability, it is sufficient if min {
1

6
𝑠𝐴𝐴0(𝑟𝐴 − 𝜌𝑇𝑇0)𝑡𝑜𝑏𝑠

3,
1

6
𝑠𝐴𝐴0𝑡𝑜𝑏𝑠

2, 𝑡𝑜𝑏𝑠} >
0.69

𝑑𝐷𝐷0
. This 595 

confirms our intuition that usability is achieved if the observation time is large enough, the initial 596 
detoxification by D is fast enough, or A adequately supports the growth of D. 597 



(2) 𝑟𝐴 − 𝜌𝑇𝑇0 > 0  and large 𝛿 598 

In this regime, the A population will slowly grow but the culture is viable only if the growth 599 

can support the growth of D before it goes extinct. The time-scale for decay of D (i.e. 𝛿) 600 

becomes critical in this case and the system is expected to be viable if A grows rapidly 601 

enough within the time span of 𝑡𝑒 = 1 𝛿⁄ ln (𝐷0 𝐷𝑒𝑥𝑡⁄ ), where 𝐷𝑒𝑥𝑡 is the extinction density 602 

for population D. This will be satisfied if 𝑠𝐴𝐴0 exp[(𝑟𝐴 − 𝜌𝑇𝑇 − 𝛿)𝑡𝑒] > 𝛿 or in other 603 

terms when  𝑠𝐴𝐴0 exp [
𝑟𝐴−𝜌𝑇𝑇−𝛿

𝛿
ln (𝐷0 𝐷𝑒𝑥𝑡⁄ )] > 𝛿 604 

(3) 𝑟𝐴 − 𝜌𝑇𝑇0 < 0 605 

In this regime, the A population will decline and can only be rescued if detoxification by 606 

D is rapid enough. The time-scale for decay of A is approximately 1 (𝜌𝑇𝑇0 − 𝑟𝐴 + 𝛿)⁄  and 607 

the system is expected to be viable if either ln(2) 𝑚𝑖𝑛(𝑟𝐷, 𝑠𝐴𝐴)⁄ < 1 (𝜌𝑇𝑇0 − 𝑟𝐴 + 𝛿)⁄  (i.e. 608 

the doubling time of D is short) or 1 𝑑𝐷𝐷0⁄ < 1 (𝜌𝑇𝑇0 − 𝑟𝐴 + 𝛿)⁄  (i.e. detoxification 609 

happens rapidly). 610 

  611 



 612 

Figure S1. Growth rate of detoxifying strains such as Rhodococcus erythropolis is minimally affected 613 
by the presence of aflatoxins, highlighting the challenge of natural selection for improved 614 
detoxification, Related to Figure 1. Different concentrations of AFG2 (dissolved in methanol) are added 615 
to basal Z culture medium (see Materials and Methods, Bacterial growth characterization) inoculated with 616 
R. erythropolis at an initial cell OD of 0.01. Cultures are allowed to grow and the initial growth rate of R. 617 
erythropolis is estimated from the increase in OD over time (as a proxy for cell density). None of the growth 618 
rates at 10, 20, or 50 μg/ml of AFG2 were statistically different from the no-toxin control (t test, p>0.3). For 619 
comparison, the upper limit of practically relevant concentrations of AFG2 (around 1 μg/ml) is marked by 620 
an arrow as a point of reference to show that even at much higher AFG2 concentrations the impact on growth 621 
rate of R. erythropolis populations is minimal.  622 



 623 

Figure S2. The simplified ImpInt model can adequately approximate a more mechanistic model that 624 
explicitly includes the degrading enzyme (ExpEnz), Related to Figure 2. The equations behind ImpInt 625 
and ExpEnz models can be found in the Methods section (Model 1 and Model 2, respectively). The 626 
detoxification rate in ImpInt is adjusted to match the dynamics of T offered by ExpEnz. 627 



 628 

Figure S3. The simplified ImpInt model can adequately approximate a more mechanistic model that 629 
explicitly includes the resource or metabolite that mediates how population A supports population D 630 
(ExpRes), Related to Figure 2. The equations behind ImpInt and ExpRes models can be found in the 631 
Methods section (Model 1 and Model 3, respectively). The detoxification rate in ImpInt is adjusted to match 632 
the dynamics of T offered by ExpRes.  633 

 634 



 635 

Figure S4. When enzyme decay rate is large, a modified implicit model that assumes detoxification 636 
only by growing D cells (ImpLD) can adequately approximate the model that explicitly includes the 637 
degrading enzyme (ExpEnz), Related to Figure 2. The equations behind ImpLD and ExpEnz models can 638 
be found in the Methods section (Model 4 and Model 2, respectively). The detoxification rate in ImpLD is 639 
adjusted to match the dynamics of T offered by ExpEnz. We note that ImpInt no longer matches the 640 
dynamics of T from ExpEnz when the enzyme decay rate is very high.  641 

  642 



 643 

Figure S5. For optimal selection, most, but not all, of the toxin should be degraded at the time of 644 
selection, Related to Figure 5. (A) Detox improvement (defined as the average of detoxification rate at 645 
the end of a round divided by its initial value) is plotted as a function of detoxification time. Error bars 646 
show standard deviations calculated among 50 independent instances. (B) Detox improvement data in (A) 647 
is plotted as a function of the final residual T, showing an optimal performance around 1% residual T at the 648 
end of each round. For each data point, 1000 instances were sampled, with stochastic parameters listed in 649 
Table 2. Initial A and D densities are 105 cells/ml each. In all cases the initial toxin concentration is 10 650 
μg/ml. All relevant parameters are listed in Tables 1 and 2, except KA = 2×107 cells/ml and KD = 6×107 651 
cells/ml. The ImpInt model is used in these simulations. All the parameters match those in Fig 5. 652 

  653 



 654 

Figure S6. Stochasticity in growth rates of A and D as the major contributors to the total cell density 655 
can interfere with detoxification selection, Related to Figure 7. We survey n=3000 simulated instances 656 
with stochastic parameters to evaluate how stochasticity in parameters affects PAAS selection. (A-F) 657 
Scatter-plots show that among different parameters, rA and rD are the most influential in determining the 658 
total cell, and can thus interfere with our ability to select for improved detoxification. Total cell density is 659 
found from simulations at 46 hours. The initial toxin concentration is 10 μg/ml. All relevant parameters are 660 
listed in Table 1 and stochastic properties are listed in Table 2. The ImpInt model is used in these 661 
simulations. 662 

  663 



 664 
Figure S7. Successive rounds of selection can lead to improved detoxification, Related to Discussion. 665 
We survey n=10000 simulated droplets in each cycle, starting from an initial population of A and D with 666 
random properties listed in Tables 1 and 2. Within each cycle, we simulate the growth of culture inside 667 
droplets with an initial toxin concentration T0 = 10 μg/ml. At 48 hours, we select the top 10% of the droplets 668 
that have the highest total populations densities (A+D). From these droplets, evolved D is separated from 669 
A and is mixed with ancestral A to inoculate the next cycle of selection. In (A), the entirety of the process 670 
is schematically shown. In (B), we calculated ‘detox improvement’ (the average of detoxification rates at 671 
the end of a cycle divided by its average value in the ancestral population) over different selection cycles. 672 
We assumed that the properties of D cells are mainly driven by inheritance, but are also affected by random 673 

or induced variations. Mathematically, 𝑥𝑖𝑛𝑜𝑐,𝑖 = ℎ𝑓 ∙ 𝑥𝑓𝑖𝑛𝑎𝑙,𝑖−1 + (1 − ℎ𝑓) ∙ 𝑥𝑖𝑛𝑜𝑐,0, where 𝑥𝑖𝑛𝑜𝑐,𝑖 is the 674 

random variable corresponding to any property of D cells inoculating droplets in the selection cycle i and 675 
𝑥𝑓𝑖𝑛𝑎𝑙,𝑖  is the random variable corresponding to that property after the selection cycle i. We observe that 676 

successive selection shows diminishing returns but still can improve the detoxification. This benefit is 677 
weaker when the inheritance coefficient is smaller. (C) By examining the distribution of different traits of 678 
D over successive cycles, we note that selection for the carrying capacity of D limits the improvement of 679 
detoxification rates. Nevertheless, improvements in growth properties of D (rD and KD) and improvements 680 
in the detox rate (dD) lead to improved overall detoxification performance. The ImpInt model is used in 681 
these simulations.  682 



 683 
Figure S8. When A and D evolve together, selection for A’s resistance to the toxin disrupts the 684 
selections of improved detoxification, Related to Discussion. We survey n=10000 simulated droplets in 685 
each cycle, starting from an initial population of A and D with random properties listed in Tables 1 and 2. 686 
Within each cycle, we simulate the growth of culture inside droplets with an initial toxin concentration T0 687 
= 10 μg/ml. At 48 hours, we select the top 10% of the droplets that have the highest total populations 688 
densities (A+D). From these droplets, evolved D and evolved A cells are used to inoculate the next cycle 689 
of selection. In (A), the entirety of the process is schematically shown. In (B), we calculated ‘detox 690 
improvement’ as well as changes in the population composition at the end of each selection cycle. In these 691 
simulations, ℎ𝑓 = 0.9. We observe that selection for more resistance of A to the toxin (lower 𝜌𝑇) reverts 692 

the improvement in detoxification (higher 𝑑𝐷). (C) By examining the distribution of different traits of D 693 
and A over successive cycles, we note that the lineage with more resistance to the toxin outcompetes and 694 
replaces the lineage with better detoxification rate. The ImpInt model is used in these simulations.  695 



 696 

Figure S9. Tradeoff between traits can interfere with detoxification selection, Related to Limitations 697 
of Study. We survey n=10000 simulated instances to evaluate how tradeoff in parameters affects PAAS 698 
selection. We intentionally introduced tradeoff between KD and dD, in the form of KD = (1-φ)KD0 + φKDm[1-699 
(dD0-dDm)/dDm]. Here KD0 and dD0 are random variables with properties listed in Tables 1 and 2, dDm is the 700 
average value of dD0, and φ is a free parameter that determines the strength of correlation between KD and 701 
dD in each instance. (A) For φ = 0.01, 0.1, and 0.9, describing examples of weak, intermediate, and strong 702 
correlation, respectively, the relation between sampled KD and dD values are shown. (B) Total cell density 703 
is tightly linked to the effectiveness of detoxification in the weak tradeoff case (φ = 0.01, left) but not in 704 
the strong tradeoff case (φ = 0.9, right). (C) Scatter-plot shows a positive correlation between the 705 
detoxification rate and total cell density in the weak tradeoff case (φ = 0.01, left) but the correlation turns 706 
negative when the tradeoff is strong (φ = 0.9, right). (D) Comparing the distributions of the detoxification 707 
rates before selection (top, grey) and after selecting the top 10% instances with the highest total cell 708 
densities (bottom, pink) shows that PAAS favors improved detoxification in the weak tradeoff case (φ = 709 
0.01, left) but not when the tradeoff is strong (φ = 0.9, right). Final T concentrations are from simulations 710 
at 46 hours. The initial toxin concentration is 10 μg/ml. The ImpInt model is used in these simulations. 711 



 712 
Figure S10. Coculture dynamics is insensitive to the initial ratios of A and D population densities, 713 
Related to Limitations of Study. We followed the population dynamics in the two-dimensional space of 714 
A and D densities, starting from a range of initial A and D densities. Overall, the outcomes appear largely 715 

independent of the details of the initial population ratios. (A) With 𝑟𝐴 − 𝜌𝑇𝑇0 > 0 and small death rates of 716 
A and D (here 0.005/hr), the trajectories of the population dynamics are independent of the initial density 717 
of A. Additionally, all cases remain viable. (B) With 𝑟𝐴 − 𝜌𝑇𝑇0 > 0 and at higher death rates of A and D 718 
(here 0.05/hr), lower initial densities of A may not be viable (assuming extinction when density of D reaches 719 
0.1 cells/ml). This is because D goes extinct before A grows enough to support it. (C) With 𝑟𝐴 − 𝜌𝑇𝑇0 < 0, 720 

density of A declines over time and usability is only possible when the population size of D is large enough 721 
to detoxify the culture for A before A goes extinct (not shown here; see “Conditions for Usability”). All 722 

parameters are listed in Table 1, with the exception of 𝜌𝑇 = 0.03 ml/(µg·hr) assigned in part (C). 723 


