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Abstract—Crowdsourcing data from connected and automated
vehicles (CAVs) is a cost-efficient way to achieve high-definition
maps with up-to-date transient road information. Achieving
the map with deterministic latency performance is, however,
challenging due to the unpredictable resource competition and
distributional resource demands. In this paper, we propose
CoMap, a new crowdsourcing high definition (HD) map to
minimize the monetary cost of network resource usage while
satisfying the percentile requirement of end-to-end latency. We
design a novel CROP algorithm to learn the resource demands
of CAV offloading, optimize offloading decisions, and proactively
allocate temporal network resources in a fully distributed man-
ner. In particular, we create a prediction model to estimate the
uncertainty of resource demands based on Bayesian neural net-
works and develop a utilization balancing scheme to resolve the
imbalanced resource utilization in individual infrastructures. We
evaluate the performance of CoMap with extensive simulations
in an automotive edge computing network simulator. The results
show that CoMap reduces up to 80.4% average resource usage
as compared to existing solutions.

Index Terms—Crowdsourcing HD Map, Automotive Edge
Computing, Vehicular Offloading, Resource Allocation

I. INTRODUCTION

Advanced driving assistance systems (ADAS) and au-

tonomous driving will substantially benefit from high-

definition (HD) maps in terms of precise relocalization and

perception. HD maps are developed by using a variety of

sensors, e.g., camera and LiDAR, to achieve highly accurate

representation of road components, e.g., lanes, traffic signs,

and interactions. In general, the data in HD maps are in three

categories including stationary data, e.g., roadside buildings,

dynamic data [1], e.g., temporary constructions and accidents,

and transient data [2] such as moving vehicles and pedestrians.

To build HD maps, current strategies mainly count on special-

ized collection fleets to traverse the road grid, which is cost-

inefficient and latency-intolerable for updating the dynamic

and transient data in large geographic areas.

Crowdsourcing is the alternative approach, which crowd-

sources the needed data from connected and automated ve-

hicles (CAVs) [3] with a variety of onboard sensors. By

exploiting advanced wireless and edge computing technolo-

gies [4], e.g., 5G and beyond, the crowdsourced data can

be transmitted and offloaded to pervasive edge servers for

collaborative processing. To initialize the service of crowd-

sourcing HD maps, the service provider makes the agreement

with the infrastructure providers (e.g., AT&T and AWS) to

obtain the exclusive usage of certain network resources, e.g.,

wireless bandwidth in base stations and multiple edge servers,

for avoiding unpredictable resource competition from other

network users, e.g., mobile phones and IoT devices. Due to

the tremendous data size of real-time raw sensor data, e.g.,

RGB-D images, state-of-the-art works [1], [2], [3] focus on

adaptive offloading after partial local processing in CAVs

for balancing the network resource usage and computation

acceleration. In particular, the transient data in HD maps need

deterministic offloading performance, e.g., pth percentile of

end-to-end latency. For example, cooperative perception [?]

requires that multi-viewed images are captured and processed

in very close time stamps.

Existing works [3], [5], [6], including model-based and

model-free approaches, mostly focus on optimizing the av-

erage performance for vehicular offloading, e.g., latency and

resource usage. However, we observe that, although the

average performance can be achieved, its variance can be

substantially large due to the distributional resource demand

of individual offloading and changing network dynamics, e.g.,

radio channels. In HD maps, the transient data needs to

be updated under a consistent latency, e.g., 90th percentile

latency should be less than 100 milliseconds. The outdated

data may provide very limited information regarding current

surroundings, e.g., the location of CAVs may change in tens

of meters if the latency reaches 500ms or more. Therefore,

it is imperative to investigate new approaches to achieve

deterministic performance for crowdsourcing HD maps.

In this paper, we propose CoMap, a new crowdsourcing

HD map via vehicular offloading from CAVs to edge servers

with deterministic latency performance. The fundamental idea

is to optimize the offloading decision and proactively allocate

temporal network resources for individual CAV offloading1.

The objective is to minimize the monetary cost incurred by

temporal network resource usage while satisfying the per-

centile latency requirement of CAV offloading. We formulate

the optimization problem to seek the optimal offloading deci-

sion and temporal radio and computation resource allocation

for individual offloading. To tackle the distributional resource

demand of offloading, we create a probabilistic prediction

model to learn its uncertainty and generate predictive demands

based on Bayesian neural networks. Then, we design a novel

CROP algorithm to effectively address the problem under

predictive resource demands, in which we design a new

utilization balancing scheme to balance the excessive resource

demand of CAVs in individual infrastructures.

The contributions of this paper are summarized as follows:

• We propose a new crowdsourcing HD map, CoMap, via

vehicular offloading from CAVs to edge servers with

1The precise resource allocation to particular network users may be
accomplished via network slicing techniques [7].
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deterministic latency performance.

• We design a new probabilistic prediction model to predict

the resource demand of individual offloading.

• We design a new CROP algorithm to minimize the

monetary cost while maintaining the percentile latency

requirement of offloading.

• We evaluate CoMap in an automotive edge computing

network simulator, where results show that CoMap sig-

nificantly outperforms existing solutions.

II. SYSTEM OVERVIEW

The data plane of CoMap is composed of four modules.

The raw RGB-D images captured from CAV sensors are fed

into the object detection module, e.g., the YOLO framework,

which detects the interested objects, e.g., cars and pedestri-

ans, and generates their bounding boxes. Next, the feature

extraction module (e.g., ORB [8]) extracts the visual features

from the cropped images of detected objects and generates the

concise feature representation. Then, the extracted features of

objects are used to match with the local or global dataset

for identifying their historical trajectory. Finally, the new

updates of CoMap, e.g., point cloud and object location, are

broadcasted to all CAVs.

The control plane of CoMap is composed of three modules.

The prediction module estimates the uncertainty of radio

and computation resource demand of offloading in individual

CAVs, based on the current observable network states (See

Section IV-B). The optimization module determines the of-

floading decision and temporal resource allocation for individ-

ual offloading, based on the estimated uncertainty of resource

demands (See Section IV-C). In individual infrastructures, the

balancing module adjusts and balances the pre-determined

resource allocation of offloading to avoid excessive resource

usage (See Section IV-D).

III. SYSTEM MODEL

We consider an automotive edge computing network with

multiple cellular base stations (BSs) and edge servers that

are distributed in the given geographical area. Denote N as

the set of CAVs that is connected to the proximal BS and

server. To crowdsource the HD map, all CAVs asynchronously

offload their data to the edge server according to the of-

floading decision a ∈ [0, 1]. Each vehicular offloading will

experience four phases, i.e., local vehicle processing, uplink

wireless transmission, edge server computation, and downlink

broadcasting. For instance, the offloading decision a = 0.2
indicates the first 20% computation workload will be executed

in the CAV and the remaining 80% computation workload will

be processed in the edge server. As the first 20% computation

completes, the generated intermediate data will be transmitted

to its associated edge server via the mobile network. We

denote the set of offloading decisions as A = {At, ∀t}, where

At = {atn, ∀n ∈ N}. Without loss of generality, we consider

that individual CAVs can decide their offloading decision only

after the completion of their last offloading to avoid excessive

on-the-fly offloading.

End-to-End Latency. As offloadings span a certain time

period to complete multiple sequential phases, it is impossible

to derive an exact and precise formulation of end-to-end

latency. This can be attributed to the distributional resource

demands of individual offloading and changing network and

computing dynamics, e.g., radio channel quality may be

varying during the uplink transmission phase. However, we

observe that existing formulations still achieve comparative

accuracy under the deterministic resource demands and mild

network dynamics [5]. Denote f(an), g(an), and h(an) as

the local computation complexity2, uplink transmission data

size, and server computation complexity of the nth CAV’s

offloading. Then, we formulate the end-to-end latency as

Ln = f(an)/Fn + g(an)/(xn · En) + h(an)/yn +Dn, (1)

where Fn and Dn are the computation capacity and static

broadcast latency3, respectively. Here, we denote the wireless

bandwidth and computation resource allocation as xn and

yn, respectively. X = {xt
n, ∀n, t} and Y = {ytn, ∀n, t} are

the collection of all resource allocations in all time slots. In

particular, we introduce En as the spectral efficiency of the

wireless transmission of the nth CAV, which is related to the

quality of its radio channel. Besides, we denote L = {Ln, ∀n}
as the collection of end-to-end latency of all offloadings.

Problem. To accomplish real-time CoMap, the objective is

to minimize the monetary cost incurred by temporal network

resource usage, while satisfying the minimum percentile end-

to-end latency of offloading in all CAVs. Given a time period

T , we formulate the problem P0 as

P0 : min
A,X ,Y

∑T

t=0

∑N

n=0

(

xt
n/B + η · ytn/G

)

(2)

s.t. Pr (L ≤ H) ≥ p, (3)

0 ≤
∑

n∈N
xt
n ≤ B, ∀t (4)

0 ≤
∑

n∈N
ytn ≤ G, ∀t (5)

0 ≤ an ≤ 1, ∀n, t (6)

where B and G are the total wireless bandwidth and computa-

tion capacity of the edge server, respectively. Besides, H is the

latency requirement of individual offloading, and p ∈ [0, 1] is

the required probability of satisfied offloading. The parameter

η is introduced to balance the radio and computation resource

usage in the objective function of monetary cost. The con-

straint in Eq. 4, Eq. 5, and Eq. 6 define the optimization space

for the uplink radio resource, computation resource and the

offloading decision at any time, respectively. Note that, the

resource allocation xt
n, y

t
n, ∀t of individual offloading are not

with a particular time, but span a certain time period. For

example, xt
n = 1MHz, ∀t ∈ [123, 126] indicates that there is

1MHz wireless bandwidth reserved for this CAV only from

time t = 123 until t = 126.

Challenges. The problem P0 is challenging to be resolved

2The computation capacity and complexity may be measured by using the
metric of GFLOPS and GFLOP, respectively.

3In mobile networks, the downlink throughput is usually much greater than
that of uplink, which may be attributed to the high transmission power budget
of base stations. Considering processed results [2] are commonly with limited
data size, we approximate the broadcasting latency as a static value.

2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

3253
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:18:12 UTC from IEEE Xplore.  Restrictions apply. 



in multiple aspects. First, the problem is with central op-

timization for all CAVs, which incurs extra communication

overhead and delay when transmitting the state of CAVs and

deriving the optimal global solution. In particular, the central

optimization usually needs to be executed only for individual

offloading, as the other asynchronous offloading may not

be finished yet. Second, the distributional resource demands

result in a non-deterministic mathematical expression of the

end-to-end latency in Eq. 1. As a result, existing off-the-

shelf optimization methods, e.g., gradient descents, cannot be

applied to solve the problem directly. Third, the optimization

variables span the time period and are highly dimensional,

which further complicates the problem-solving consequently.

IV. THE CROP ALGORITHM

In this section, we propose a new collaborative distributed

offloading and computation (CROP) algorithm to effectively

resolve the problem P0. First, we reduce the problem into

independent offloading problems in individual CAVs in a

fully distributed manner, which alleviates the communication

overhead and delay in central optimization. Second, we create

a prediction model to learn and predict the distribution of

resource demands of individual offloading by using Bayesian

neural networks. Third, we design a new method to derive the

optimal offloading decision and temporal resource allocation

while maintaining the percentile latency requirement. Fourth,

we design a utilization balancing scheme in individual infras-

tructures to balance its temporal resource utilization under its

instantaneous capacity.

A. Reduced Individualized Problem

In problem P0, the correlation among offloadings in CAVs

lie in the constraint of resource capacity in Eq. 4 and Eq. 5.

Hence, we propose to decouple the problem in terms of

offloading in individual CAVs, and we express the reduced

problem P1 in the nth CAV as

P1 : min
An,Xn,Yn

∑T

t=0
(xt

n/B + η · ytn/G) (7)

s.t. Pr (Ln ≤ H) ≥ p, (8)

0 ≤ xt
n ≤ B, ∀t (9)

0 ≤ ytn ≤ G, ∀t (10)

0 ≤ an ≤ 1, ∀n, t (11)

where we rewrite the constraint in Eq. (8) to assure the

percentile latency of offloading in this CAV. The rationale

behind this is that, if we can assure the percentile latency

of this CAV’s offloading, the requirement Pr (L ≤ H) for

all CAVs can also be statistically satisfied. In addition, we

reduce the constraint of resource capacity into Eq. (9) and

Eq. (10), which allows individual CAV to allocate resources

independently without the need for other CAVs’ information.

The instantaneous constraint of resources will be enforced in

the following Sec. IV-D.

B. Probabilistic Demand Prediction

The problem P1 is non-deterministic as the resource de-

mands (f, g, h) are distributional in individual CAV’s offload-

ings. Hence, we design a new prediction model to learn and

predict the resource demands when optimizing the reduced

problem P1 in individual CAVs.

Although the Gaussian process (GP) [9] has demonstrated

great potential in approximating a variety of black-box func-

tions, its computation complexity O(n3), where n is the

dimension of collections, leads to poor scalability. As the

offloading of CAVs is usually complete in sub-seconds, the

accumulated transitions can reach up to tens of thousands, if

not more. As a result, the training time of the GP model gradu-

ally increases under ever-increasing transitions, which fails to

achieve real-time decision-making for individual offloading.

Therefore, we design to learn and predict distributional re-

source demands based on Bayesian neural networks (BNNs),

which can scale to accommodate a large number of transi-

tions [10]. Conventional deep neural networks (DNNs) are

trained to optimize the fixed neural weights and generate the

mean-value predictions by using a variety of loss functions,

e.g., cross-entropy and mean square error (MSE). In contrast,

BNNs introduce stochastic components, e.g., neural weights

and activation functions, into DNN architectures for quanti-

fying the uncertainty of unknown functions. For example, the

fixed neural weights can be replaced by distributions, which

are sampled to be deterministic during the inference.

Different from conventional DNNs, the objective of the

BNN training is to find the maximum a posteriori (MAP)

weights denoted as w
∗ = argmax

w

logP (w|D). The neural

weights of the BNN are denoted as w and D is the accu-

mulative collection of transitions. According to the Bayes’

rule, the calculation of the posterior P (w|D) requires the

prior P (w) and likelihood P (D|w), which can hardly be

practical under large multi-layer DNNs. Thus, we resort to

the variational inference [11], which aims to approximate the

complex posterior with a simpler and more tractable varia-

tional approximation, e.g., Gaussian distribution. In particular,

the posterior P (w|D) is approximated by minimizing the KL-

divergence between the true Bayesian posterior on the weights

KL [q(w|θ)||P (w|D)], where q(w|θ) is Gaussian distribution

with the parameter θ. Therefore, we can formulate the BNN

training that finds the optimal parameter θ∗

θ∗ = argmin
θ

KL [q(w|θ)||P (w)]− Eq(w|θ) [logP (D|w)].

(12)

Although the minimization of the above function is difficult,

if not impossible, we can exploit the Bayes-by-Backprop [11]

with the re-parameterization trick to approximate the loss

Loss ≈
N
∑

i=1

log q(wi|θ)− logP (wi)− logP (D|wi), (13)

where w
i denotes the Monte Carlo sample under the varia-

tional posterior q(wi|θ).
Then, we create BNNs to learn and predict the resource

demands f, g, h based on the experimental measurements. In

particular, we design the state space4 as the combination of

[offloading decision, CAV id, CAV location, sensor rotation].

4The state space is designed to concisely represent the local observable
state from the perspective of individual CAVs. More representative states
may be incorporated if applicable.
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Here, the offloading decision determines the partition of com-

putation and thus significantly affects the resource demands in

either CAV or edge server. The id is the unique identification

of the CAV, which helps to identify the particular CAV and

potential vehicular properties related to resource demands,

e.g., image resolutions. The CAV location and sensor rotation

specify the location and view angle of the sensor, which pro-

vides the environmental context, e.g., buildings and walkways.

C. Proactive Predictive Optimization

As a CAV initializes its offloading, the trained BNNs will

be invoked to predict the distribution of the resource demands

(f, g, h). We observe that the resource demands appear in the

numerators of the uplink and computation latency (Eq. 1),

which implies that the percentile of resource demands is

directly related to that of the end-to-end latency (Eq. 8).

Thus, we propose to convert the constraint in Eq. 8 from

a probabilistic form into a deterministic form as follows.

Given our prediction model generates Gaussian distributions,

we calculate the corresponding percentile of the prediction

and use percentiles as the deterministic resource demands. For

example, given the predicted mean µ and std σ for resource

demands (f, g, h), their 90th and 99th percentiles are µ+1.28σ
and µ+2.33σ, respectively. Therefore, the constraint in Eq. 8

is rewritten as the deterministic pth percentile latency, denoted

as L̂n < H . We calculate L̂n by replacing f, g, h in Eq. 1 with

their pth percentiles (denoted as f̂ , ĝ, ĥ).

Next, we focus on solving the problem P1 under deter-

ministic resource demands. As the partition of computation

usually with a limited number of discrete values in practical

systems [2], we propose to exhaustively search for the optimal

offloading decision. Hence, we further reduce the problem P1

from three kinds of optimization variables into two kinds of

continuous variables (Xn,Yn). Then, we solve it by using the

Lagrangian primal-dual method [12], where Lagrangian is

L(x, y, λ) = xt
n/B + η · ytn/G− λ

(

L̂n −H
)

, (14)

where the latency constraint is incorporated by introducing a

non-negative multiplier λ. The problem can be addressed by

alternatively solving the primal problem expressed as

x∗, y∗ = arg min
x,y∈(9),(10)

L(x, y, λ), (15)

and the dual problem λ∗ = argmin
λ≥0

L(x, y, λ) that can be

solved by using the sub-gradient descent [12].

We observe that the primal problem in Eq. 15 is convex

with respect to resource allocations. Hence, with the Karush-

Kuhn-Tucker (KKT) condition, we obtain the optimal resource

allocation under the multiplier λ as

x∗ =
√

(λ · ĝ)/(B · E), y∗ =

√

(λ · ĥ)/G, (16)

where ĝ, ĥ are the percentile of uplink data size and compu-

tation complexity under the given offloading decision.

As the Lagrangian primal-dual method converges, we ob-

tain the optimal resource allocation under different offloading

decisions. Then, we select the optimal offloading decision with

the minimum monetary cost.

Finally, we need to derive the temporal allocation over a

time period based on the optimal solution a∗, x∗, y∗. First, we

calculate the start and end time of the offloading in all phases,

according to the percentile latency L̂n. Second, we allocate

the same radio and computation resource allocation only when

the offloading is expected to be wireless transmission and edge

computation phase, respectively.

D. Resource Utilization Balancing

In CoMap, the asynchronous offloadings usually lead to

temporal overlaps in different phases. As resource alloca-

tions are independently optimized in individual CAVs, the

aggregated resources may exceed the overall capacity in

individual infrastructures, i.e., total wireless bandwidth B and

computation capacity G. The excessive resource allocations

cannot be fulfilled by infrastructures, which results in delays

in completing these offloadings.

To address this issue, we design a utilization balancing

scheme in individual infrastructures to balance the temporal

resource utilization among all CAVs. This is based on the

observation that the offloading can always be completed

as long as the accumulated resource allocation exceeds its

computation complexity. For instance, given the computation

resource allocation is ytn = 1, t ∈ [123, 126], the nth CAV’s

offloading may be completed in a single time slot, e.g.,

t = 125 if y125n = 4.

Specifically, as every resource allocation is received by the

infrastructure, we balance the resource utilization as follows.

First, we calculate the average utilization, including the new

resource allocation, in the time period of this offloading.

Second, we remove the time slots whose allocated resources

exceed the average utilization, because these time slots are

already saturated. Third, we re-calculate the average resource

utilization on the remaining time slots of this offloading.

Fourth, we deduct the already allocated resources from the

average resource utilization, and the outcome will be clipped

to be non-negative and selected as the allocated resource for

this offloading. This method is inspired by the water-filling

algorithm to balance the utilization of resources.

V. PERFORMANCE EVALUATION

Network Simulator. We develop an automotive edge

computing network simulator including the component of a

server computation, an uplink wireless transmission, a down-

link broadcasting, and vehicular computations for individual

CAVs. The simulator is designed to be time-driven, in other

words, all the components are looped and their parameters are

updated every simulation time step.

To simulate the end-to-end communication and computa-

tion of CAV offloading, we create a task class in Python

and traverse tasks in these consequential components. The

offloading is completed only if its task finishes in the down-

link broadcast component. A task includes all the offloading

parameters, such as remaining local and server computation

complexity, and the remaining wireless transmission size. The

offloading parameters are determined via sampling from the

experimental measurements. We adopt a 5G simulator [13] in

the wireless transmission component, where the radio channel

is urban micro (UMi - Street Canyon) and the trajectory of
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CAVs are based on the V2X-Sim dataset [14]. We build the

vehicular and server computation component by using a single

FIFO service queue. In each simulation time step (e.g., 1

ms), the parameters in tasks are updated according to the

allocated resources in different components. For example, the

achievable data rate of CAVs is calculated in the wireless

communication module, and the remaining transmission size

is deducted accordingly. If there are no allocated resources in

a time step, a minimum resource will be assigned, e.g., 50kHz

wireless bandwidth and 0.1 GFLOPS computation capacity.

Parameters. We conduct extensive experiments to profile

the resource demands of vehicular offloading in CoMap.

We adopt the V2X-Sim dataset [14], which includes 100

CAVs at 100 frames with a variety of sensor data such as

RGB image, depth, and LiDAR. The dataset is obtained via

CARLA-SUMO co-simulation in the default scenarios in the

CARLA simulator. We develop the data plane of CoMap

with YOLOv5m object detector, ORB feature extraction, and

brutal-force feature matching. The offloading decision can be

selected from [0.0, 0.33, 0.66, 1.0], which correspond to the

partition after the raw data retrieval, object detection, feature

extraction, and feature matching, respectively. The profiling

is conducted on an Intel i7 desktop with 16G RAM and

1TB M.2. SSD. Without loss of generality, we consider this

desktop has the same computation capacity as CAVs, and

the edge computation capacity is 100x than that of CAVs5.

The average transmission data size are g(0) = 992.06Kbits,

g(0.33) = 337.43Kbits, g(0.66) = 9.56Kbits, and g(1) =
9.56Kbits. The average local computation complexity are

h(0) = 0GFLOP , h(0.33) = 3.74GFLOP , h(0.66) =
4.10GFLOP , and h(1) = 8.21GFLOP , where the com-

putation capacity of CAV F is normalized as 1GFLOPS, for

the sake of simplicity. Other parameters are listed as η = 1,

5We aim to reduce the monetary cost incurred by resource usage, the large
computation capacity of edge server is mainly to accommodate more CAVs,
rather than achieving 100x acceleration for individual offloadings.

B = 10MHz, E = 8bps/Hz, H = 100ms, and p = 90th

percentile. The default number of CAVs is 50.

We compare CoMap with the following algorithms:

• Baseline: The Baseline completes all the computation

components onboard in CAVs, while using the minimum

resource allocation for individual offloading throughout

the following one second.

• Equality: The Equality shares all network resources

equally to all CAVs for all time slots, where offloading

decisions are exhaustively searched to minimize the

percentile latency requirement.

• Deterministic: The Deterministic [5] regresses the dis-

tributional resource demands via polynomial regression

with respect to offloading decisions. It generates the

mean-value prediction of resource demands, which are

used to optimize the offloading decision and resource

allocations accordingly.

Latency Performance. Fig. 1 shows the cumulative proba-

bility of end-to-end latency of vehicular offloading under dif-

ferent algorithms. We observe that CoMap and Equality meet

the probabilistic latency requirement P (L < 100ms) >= 0.9,

while Baseline and Deterministic fail. Note that there are

nearly 20% latencies located in the range of [95ms, 100ms] in

CoMap, which is intentionally optimized in the CROP algo-

rithm to meet the latency with the minimum resource usage.

As Deterministic relies on the regressed model with only mean

value predictions, the percentile latency requirement cannot

be effectively satisfied. This result justifies the necessity of

probabilistic prediction of resource demands in optimizing

resource allocations under changing network dynamics.

Utilization Performance. Equality achieves the best la-

tency performance in all algorithms, which is attributed to

its very high resource utilization as shown in Fig. 2 and

Fig. 3. In particular, we observe that Deterministic tends

to choose the offloading decision as 1, which completes all

the components in CAVs and requires fewer resources in

both wireless communication and edge computation. Fig. 4
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Fig. 7: Convergence of CoMap

is the scatter plot of the average resource usage and 90th

percentile latency achieved by all algorithms. We can see that

CoMap obtains the best overall performance, i.e., reducing

the monetary cost incurred by resource usage while almost

exactly matching the percentile latency requirement.

Scalability Performance. Fig. 5 and Fig. 6 show the

latency and resource usage of algorithms under different

numbers of CAVs. As more CAVs are in the network, the

overlaps among vehicular offloadings become more intensive

and the potential of excessive resource allocation may be more

frequent. Hence, we observe that the 90th percentile latency

performance of most algorithms are deteriorated, even if their

resource usage is increased. In contrast, CoMap can maintain

its latency performance with the increased average usage of

network resources. In particular, CoMap reduces 70.2% and

80.4% average resource usage than Equality under 10 and

30 CAVs, respectively. This result validates the scalability of

CoMap to tackle changing network traffic dynamics.

Convergence Performance. In Fig. 7, we show an exem-

plary snapshot regarding the convergence of CoMap. In the

CROP algorithm, it uses the Lagrangian primal-dual method

to iteratively search for the optimal allocation of radio and

computation resources. We see that the CROP algorithm

converges in several iterations, where the duplicated curves are

obtained from different offloading decisions. This result shows

that the CROP algorithm achieves a fast convergence rate,

which maintains low computation complexity in executing the

algorithm at runtime in individual CAVs.

VI. RELATED WORK

Computation offloading [15], [16] has been extensively

investigated to exploit the powerful edge server to accelerate

the computation of mobile devices, e.g., smartphones and

vehicles. The optimization problems are formulated under a

variety of network settings, e.g., snapshot-based [15], [17] and

Markov decision process [18], and diverse objective functions,

e.g., latency, energy consumption, and system costs. For

instance, Zhao et. al [17] optimized the computation offload-

ing and resource allocation for achieving Nash equilibrium

(NE) via game theory. Existing solutions can be generally

categorized into model-based (e.g., convex optimization [16])

and model-free (e.g., deep reinforcement learning [19]). For

example, Liu et. al [18] proposed a Q-learning and a DRL-

based method to address the offloading problem, which max-

imizes the long-term communication and computation utility

under the constraint of task latency. While most existing works

focus on optimizing the average performance, we aim to

satisfy the percentile latency requirements. Besides, we are

the first to proactively allocate network resources to vehicular

offloading, where the resource allocations are temporal and

span certain time periods.

VII. CONCLUSION

In this paper, we designed a new crowdsourcing HD map

in automotive edge computing. We proposed the CROP algo-

rithm to optimize CoMap by determining the optimal vehic-

ular offloading decision and temporal radio and computation

resource allocations. We evaluated the performance of CoMap

via extensive network simulations, where the results validate

the efficacy of CoMap over existing solutions.
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