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Abstract—Crowdsourcing data from connected and automated
vehicles (CAVs) is a cost-efficient way to achieve high-definition
maps with up-to-date transient road information. Achieving
the map with deterministic latency performance is, however,
challenging due to the unpredictable resource competition and
distributional resource demands. In this paper, we propose
CoMap, a new crowdsourcing high definition (HD) map to
minimize the monetary cost of network resource usage while
satisfying the percentile requirement of end-to-end latency. We
design a novel CROP algorithm to learn the resource demands
of CAV offloading, optimize offloading decisions, and proactively
allocate temporal network resources in a fully distributed man-
ner. In particular, we create a prediction model to estimate the
uncertainty of resource demands based on Bayesian neural net-
works and develop a utilization balancing scheme to resolve the
imbalanced resource utilization in individual infrastructures. We
evaluate the performance of CoMap with extensive simulations
in an automotive edge computing network simulator. The results
show that CoMap reduces up to 80.4% average resource usage
as compared to existing solutions.

Index Terms—Crowdsourcing HD Map, Automotive Edge
Computing, Vehicular Offloading, Resource Allocation

I. INTRODUCTION

Advanced driving assistance systems (ADAS) and au-
tonomous driving will substantially benefit from high-
definition (HD) maps in terms of precise relocalization and
perception. HD maps are developed by using a variety of
sensors, e.g., camera and LiDAR, to achieve highly accurate
representation of road components, e.g., lanes, traffic signs,
and interactions. In general, the data in HD maps are in three
categories including stationary data, e.g., roadside buildings,
dynamic data [1], e.g., temporary constructions and accidents,
and transient data [2] such as moving vehicles and pedestrians.
To build HD maps, current strategies mainly count on special-
ized collection fleets to traverse the road grid, which is cost-
inefficient and latency-intolerable for updating the dynamic
and transient data in large geographic areas.

Crowdsourcing is the alternative approach, which crowd-
sources the needed data from connected and automated ve-
hicles (CAVs) [3] with a variety of onboard sensors. By
exploiting advanced wireless and edge computing technolo-
gies [4], e.g., 5G and beyond, the crowdsourced data can
be transmitted and offloaded to pervasive edge servers for
collaborative processing. To initialize the service of crowd-
sourcing HD maps, the service provider makes the agreement
with the infrastructure providers (e.g., AT&T and AWS) to
obtain the exclusive usage of certain network resources, e.g.,
wireless bandwidth in base stations and multiple edge servers,
for avoiding unpredictable resource competition from other
network users, e.g., mobile phones and IoT devices. Due to
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the tremendous data size of real-time raw sensor data, e.g.,
RGB-D images, state-of-the-art works [1], [2], [3] focus on
adaptive offloading after partial local processing in CAVs
for balancing the network resource usage and computation
acceleration. In particular, the transient data in HD maps need
deterministic offloading performance, e.g., pth percentile of
end-to-end latency. For example, cooperative perception [?]
requires that multi-viewed images are captured and processed
in very close time stamps.

Existing works [3], [5], [6], including model-based and
model-free approaches, mostly focus on optimizing the av-
erage performance for vehicular offloading, e.g., latency and
resource usage. However, we observe that, although the
average performance can be achieved, its variance can be
substantially large due to the distributional resource demand
of individual offloading and changing network dynamics, e.g.,
radio channels. In HD maps, the transient data needs to
be updated under a consistent latency, e.g., 90th percentile
latency should be less than 100 milliseconds. The outdated
data may provide very limited information regarding current
surroundings, e.g., the location of CAVs may change in tens
of meters if the latency reaches 500ms or more. Therefore,
it is imperative to investigate new approaches to achieve
deterministic performance for crowdsourcing HD maps.

In this paper, we propose CoMap, a new crowdsourcing
HD map via vehicular offloading from CAVs to edge servers
with deterministic latency performance. The fundamental idea
is to optimize the offloading decision and proactively allocate
temporal network resources for individual CAV offloading’.
The objective is to minimize the monetary cost incurred by
temporal network resource usage while satisfying the per-
centile latency requirement of CAV offloading. We formulate
the optimization problem to seek the optimal offloading deci-
sion and temporal radio and computation resource allocation
for individual offloading. To tackle the distributional resource
demand of offloading, we create a probabilistic prediction
model to learn its uncertainty and generate predictive demands
based on Bayesian neural networks. Then, we design a novel
CROP algorithm to effectively address the problem under
predictive resource demands, in which we design a new
utilization balancing scheme to balance the excessive resource
demand of CAVs in individual infrastructures.

The contributions of this paper are summarized as follows:

« We propose a new crowdsourcing HD map, CoMap, via
vehicular offloading from CAVs to edge servers with

'The precise resource allocation to particular network users may be
accomplished via network slicing techniques [7].
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deterministic latency performance.

« We design a new probabilistic prediction model to predict
the resource demand of individual offloading.

o We design a new CROP algorithm to minimize the
monetary cost while maintaining the percentile latency
requirement of offloading.

o« We evaluate CoMap in an automotive edge computing
network simulator, where results show that CoMap sig-
nificantly outperforms existing solutions.

II. SYSTEM OVERVIEW

The data plane of CoMap is composed of four modules.
The raw RGB-D images captured from CAV sensors are fed
into the object detection module, e.g., the YOLO framework,
which detects the interested objects, e.g., cars and pedestri-
ans, and generates their bounding boxes. Next, the feature
extraction module (e.g., ORB [8]) extracts the visual features
from the cropped images of detected objects and generates the
concise feature representation. Then, the extracted features of
objects are used to match with the local or global dataset
for identifying their historical trajectory. Finally, the new
updates of CoMap, e.g., point cloud and object location, are
broadcasted to all CAVs.

The control plane of CoMap is composed of three modules.
The prediction module estimates the uncertainty of radio
and computation resource demand of offloading in individual
CAVs, based on the current observable network states (See
Section IV-B). The optimization module determines the of-
floading decision and temporal resource allocation for individ-
ual offloading, based on the estimated uncertainty of resource
demands (See Section IV-C). In individual infrastructures, the
balancing module adjusts and balances the pre-determined
resource allocation of offloading to avoid excessive resource
usage (See Section IV-D).

III. SYSTEM MODEL

We consider an automotive edge computing network with
multiple cellular base stations (BSs) and edge servers that
are distributed in the given geographical area. Denote A as
the set of CAVs that is connected to the proximal BS and
server. To crowdsource the HD map, all CAVs asynchronously
offload their data to the edge server according to the of-
floading decision a € [0, 1]. Each vehicular offloading will
experience four phases, i.e., local vehicle processing, uplink
wireless transmission, edge server computation, and downlink
broadcasting. For instance, the offloading decision ¢ = 0.2
indicates the first 20% computation workload will be executed
in the CAV and the remaining 80% computation workload will
be processed in the edge server. As the first 20% computation
completes, the generated intermediate data will be transmitted
to its associated edge server via the mobile network. We
denote the set of offloading decisions as A = { A%, Vt}, where
At = {a!,,Vn € N'}. Without loss of generality, we consider
that individual CAVs can decide their offloading decision only
after the completion of their last offloading to avoid excessive
on-the-fly offloading.

End-to-End Latency. As offloadings span a certain time
period to complete multiple sequential phases, it is impossible
to derive an exact and precise formulation of end-to-end
latency. This can be attributed to the distributional resource
demands of individual offloading and changing network and
computing dynamics, e.g., radio channel quality may be
varying during the uplink transmission phase. However, we
observe that existing formulations still achieve comparative
accuracy under the deterministic resource demands and mild
network dynamics [5]. Denote f(a,), g(an), and h(a,) as
the local computation complexity?, uplink transmission data
size, and server computation complexity of the nth CAV’s
offloading. Then, we formulate the end-to-end latency as

Ln = f(an)/Fn+ g(an)/(@n - En) + h(an)/yn + Dn, (1)
where F,, and D, are the computation capacity and static
broadcast latency?, respectively. Here, we denote the wireless
bandwidth and computation resource allocation as x, and
Yn, respectively. X = {z! Vn,t} and Y = {y,,Vn,t} are
the collection of all resource allocations in all time slots. In
particular, we introduce FE,, as the spectral efficiency of the
wireless transmission of the nth CAV, which is related to the
quality of its radio channel. Besides, we denote £ = {L,,,Vn}
as the collection of end-to-end latency of all offloadings.

Problem. To accomplish real-time CoMap, the objective is
to minimize the monetary cost incurred by temporal network
resource usage, while satisfying the minimum percentile end-
to-end latency of offloading in all CAVs. Given a time period
T, we formulate the problem P as

. . T N . .
Fo: AXy Zt:o ano (2t /B+n-yL/G) (2)
st. Pr(L<H)>p, 3)

t <
0= Zne/\f T, < B,V 4)

< t <
= Zne/\f Un < G,V )
0§an§17vn,t (6)

where B and G are the total wireless bandwidth and computa-
tion capacity of the edge server, respectively. Besides, H is the
latency requirement of individual offloading, and p € [0, 1] is
the required probability of satisfied offloading. The parameter
7 is introduced to balance the radio and computation resource
usage in the objective function of monetary cost. The con-
straint in Eq. 4, Eq. 5, and Eq. 6 define the optimization space
for the uplink radio resource, computation resource and the
offloading decision at any time, respectively. Note that, the
resource allocation z?,, y! , Vt of individual offloading are not
with a particular time, but span a certain time period. For
example, rt, = 1M Hz,Vt € [123,126] indicates that there is
IMHz wireless bandwidth reserved for this CAV only from
time ¢t = 123 until ¢ = 126.

Challenges. The problem Py is challenging to be resolved

2The computation capacity and complexity may be measured by using the
metric of GFLOPS and GFLOP, respectively.

3In mobile networks, the downlink throughput is usually much greater than
that of uplink, which may be attributed to the high transmission power budget
of base stations. Considering processed results [2] are commonly with limited
data size, we approximate the broadcasting latency as a static value.
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in multiple aspects. First, the problem is with central op-
timization for all CAVs, which incurs extra communication
overhead and delay when transmitting the state of CAVs and
deriving the optimal global solution. In particular, the central
optimization usually needs to be executed only for individual
offloading, as the other asynchronous offloading may not
be finished yet. Second, the distributional resource demands
result in a non-deterministic mathematical expression of the
end-to-end latency in Eq. 1. As a result, existing off-the-
shelf optimization methods, e.g., gradient descents, cannot be
applied to solve the problem directly. Third, the optimization
variables span the time period and are highly dimensional,
which further complicates the problem-solving consequently.

IV. THE CROP ALGORITHM

In this section, we propose a new collaborative distributed
offloading and computation (CROP) algorithm to effectively
resolve the problen? Py. First, we reduce the problem into
independent offloading problems in individual CAVs in a
fully distributed manner, which alleviates the communication
overhead and delay in central optimization. Second, we create
a prediction model to learn and predict the distribution of
resource demands of individual offloading by using Bayesian
neural networks. Third, we design a new method to derive the
optimal offloading decision and temporal resource allocation
while maintaining the percentile latency requirement. Fourth,
we design a utilization balancing scheme in individual infras-
tructures to balance its temporal resource utilization under its
instantaneous capacity.

A. Reduced Individualized Problem

In problem Py, the correlation among offloadings in CAV's
lie in the constraint of resource capacity in Eq. 4 and Eq. 5.
Hence, we propose to decouple the problem in terms of
offloading in individual CAVs, and we express the reduced
problem P; in the nth CAV as

Pis min Y Gh/B4u-ul/G) ()
s.it. Pr(L,<H)>p, (8)

0<al < B,Vt )

0<y, <GVt (10)

0<a, <1,Vn,t (11)
where we rewrite the constraint in Eq. (8) to assure the
percentile latency of offloading in this CAV. The rationale
behind this is that, if we can assure the percentile latency
of this CAV’s offloading, the requirement Pr (L < H) for
all CAVs can also be statistically satisfied. In addition, we
reduce the constraint of resource capacity into Eq. (9) and
Eq. (10), which allows individual CAV to allocate resources
independently without the need for other CAVs’ information.
The instantaneous constraint of resources will be enforced in
the following Sec. IV-D.

B. Probabilistic Demand Prediction

The problem P; is non-deterministic as the resource de-
mands (f, g, h) are distributional in individual CAV’s offload-
ings. Hence, we design a new prediction model to learn and

predict the resource demands when optimizing the reduced
problem P; in individual CAVs.

Although the Gaussian process (GP) [9] has demonstrated
great potential in approximating a variety of black-box func-
tions, its computation complexity O(n?), where n is the
dimension of collections, leads to poor scalability. As the
offloading of CAVs is usually complete in sub-seconds, the
accumulated transitions can reach up to tens of thousands, if
not more. As a result, the training time of the GP model gradu-
ally increases under ever-increasing transitions, which fails to
achieve real-time decision-making for individual offloading.

Therefore, we design to learn and predict distributional re-
source demands based on Bayesian neural networks (BNNs),
which can scale to accommodate a large number of transi-
tions [10]. Conventional deep neural networks (DNNs) are
trained to optimize the fixed neural weights and generate the
mean-value predictions by using a variety of loss functions,
e.g., cross-entropy and mean square error (MSE). In contrast,
BNNSs introduce stochastic components, e.g., neural weights
and activation functions, into DNN architectures for quanti-
fying the uncertainty of unknown functions. For example, the
fixed neural weights can be replaced by distributions, which
are sampled to be deterministic during the inference.

Different from conventional DNNSs, the objective of the
BNN training is to find the maximum a posteriori (MAP)
weights denoted as w* = argmax log P(w|D). The neural
weights of the BNN are denoted as w and D is the accu-
mulative collection of transitions. According to the Bayes’
rule, the calculation of the posterior P(w|D) requires the
prior P(w) and likelihood P(D|w), which can hardly be
practical under large multi-layer DNNs. Thus, we resort to
the variational inference [11], which aims to approximate the
complex posterior with a simpler and more tractable varia-
tional approximation, e.g., Gaussian distribution. In particular,
the posterior P(w|D) is approximated by minimizing the KL-
divergence between the true Bayesian posterior on the weights
KL [q(w|9)||P(w|D)], where q(w|6) is Gaussian distribution
with the parameter 6. Therefore, we can formulate the BNN
training that finds the optimal parameter 6*

0" = argmin KL [g(w]0)|[P(w)] — Eyquio) [log P(DIw)].
(12)
Although the minimization of the above function is difficult,
if not impossible, we can exploit the Bayes-by-Backprop [11]
with the re-parameterization trick to approximate the loss

N
Loss =~ Zlogq(wi\G) —log P(w') — log P(D|w"), (13)
i=1

where w! denotes the Monte Carlo sample under the varia-
tional posterior g(w?|@).

Then, we create BNNs to learn and predict the resource
demands f, g, h based on the experimental measurements. In
particular, we design the state space* as the combination of
[offloading decision, CAV id, CAV location, sensor rotation)].

4The state space is designed to concisely represent the local observable
state from the perspective of individual CAVs. More representative states
may be incorporated if applicable.
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Here, the offloading decision determines the partition of com-
putation and thus significantly affects the resource demands in
either CAV or edge server. The id is the unique identification
of the CAV, which helps to identify the particular CAV and
potential vehicular properties related to resource demands,
e.g., image resolutions. The CAV location and sensor rotation
specify the location and view angle of the sensor, which pro-
vides the environmental context, e.g., buildings and walkways.

C. Proactive Predictive Optimization

As a CAV initializes its offloading, the trained BNNs will
be invoked to predict the distribution of the resource demands
(f,g,h). We observe that the resource demands appear in the
numerators of the uplink and computation latency (Eq. 1),
which implies that the percentile of resource demands is
directly related to that of the end-to-end latency (Eq. 8).
Thus, we propose to convert the constraint in Eq. 8 from
a probabilistic form into a deterministic form as follows.
Given our prediction model generates Gaussian distributions,
we calculate the corresponding percentile of the prediction
and use percentiles as the deterministic resource demands. For
example, given the predicted mean p and std o for resource
demands (f, g, k), their 90th and 99th percentiles are pu+1.28¢0
and p+ 2.330, respectively. Therefore, the constraint in Eq. 8
is rewritten as the deterministic pth percentile latency, denoted
as L,, < H. We calculate L, by replacing f, g, h in Eq. 1 with
their pth percentiles (denoted as f , 0, fz).

Next, we focus on solving the problem P; under deter-
ministic resource demands. As the partition of computation
usually with a limited number of discrete values in practical
systems [2], we propose to exhaustively search for the optimal
offloading decision. Hence, we further reduce the problem P4
from three kinds of optimization variables into two kinds of
continuous variables (X),, Y, ). Then, we solve it by using the

Lagrangian primal-dual method [12], where Lagrangian is
Ly N) = ol /B4y, /G- A (L= H),  (14)
where the latency constraint is incorporated by introducing a
non-negative multiplier A\. The problem can be addressed by
alternatively solving the primal problem expressed as
vhy =arg  min o L(2,y,4),
and the dual problem \* = arg r)\nil&ﬁ(x,y,)\) that can be

15)

solved by using the sub-gradient descent [12].

We observe that the primal problem in Eq. 15 is convex
with respect to resource allocations. Hence, with the Karush-
Kuhn-Tucker (KKT) condition, we obtain the optimal resource
allocation under the multiplier \ as

@ =V(\-9)/(B-E), y =1(\-h)/G, (16)

where g, h are the percentile of uplink data size and compu-
tation complexity under the given offloading decision.

As the Lagrangian primal-dual method converges, we ob-
tain the optimal resource allocation under different offloading
decisions. Then, we select the optimal offloading decision with
the minimum monetary cost.

Finally, we need to derive the temporal allocation over a
time period based on the optimal solution a*, x*, y*. First, we

calculate the start and end time of the offloading in all phases,
according to the percentile latency L,. Second, we allocate
the same radio and computation resource allocation only when
the offloading is expected to be wireless transmission and edge
computation phase, respectively.

D. Resource Utilization Balancing

In CoMap, the asynchronous offloadings usually lead to
temporal overlaps in different phases. As resource alloca-
tions are independently optimized in individual CAVs, the
aggregated resources may exceed the overall capacity in
individual infrastructures, i.e., total wireless bandwidth B and
computation capacity G. The excessive resource allocations
cannot be fulfilled by infrastructures, which results in delays
in completing these offloadings.

To address this issue, we design a utilization balancing
scheme in individual infrastructures to balance the temporal
resource utilization among all CAVs. This is based on the
observation that the offloading can always be completed
as long as the accumulated resource allocation exceeds its
computation complexity. For instance, given the computation
resource allocation is y!, = 1,¢ € [123,126], the nth CAV’s
offloading may be completed in a single time slot, e.g.,
t=125if y.?® = 4.

Specifically, as every resource allocation is received by the
infrastructure, we balance the resource utilization as follows.
First, we calculate the average utilization, including the new
resource allocation, in the time period of this offloading.
Second, we remove the time slots whose allocated resources
exceed the average utilization, because these time slots are
already saturated. Third, we re-calculate the average resource
utilization on the remaining time slots of this offloading.
Fourth, we deduct the already allocated resources from the
average resource utilization, and the outcome will be clipped
to be non-negative and selected as the allocated resource for
this offloading. This method is inspired by the water-filling
algorithm to balance the utilization of resources.

V. PERFORMANCE EVALUATION

Network Simulator. We develop an automotive edge
computing network simulator including the component of a
server computation, an uplink wireless transmission, a down-
link broadcasting, and vehicular computations for individual
CAVs. The simulator is designed to be time-driven, in other
words, all the components are looped and their parameters are
updated every simulation time step.

To simulate the end-to-end communication and computa-
tion of CAV offloading, we create a fask class in Python
and traverse fasks in these consequential components. The
offloading is completed only if its task finishes in the down-
link broadcast component. A task includes all the offloading
parameters, such as remaining local and server computation
complexity, and the remaining wireless transmission size. The
offloading parameters are determined via sampling from the
experimental measurements. We adopt a 5G simulator [13] in
the wireless transmission component, where the radio channel
is urban micro (UMi - Street Canyon) and the trajectory of
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CAVs are based on the V2X-Sim dataset [14]. We build the
vehicular and server computation component by using a single
FIFO service queue. In each simulation time step (e.g., 1
ms), the parameters in tasks are updated according to the
allocated resources in different components. For example, the
achievable data rate of CAVs is calculated in the wireless
communication module, and the remaining transmission size
is deducted accordingly. If there are no allocated resources in
a time step, a minimum resource will be assigned, e.g., S0kHz
wireless bandwidth and 0.1 GFLOPS computation capacity.

Parameters. We conduct extensive experiments to profile
the resource demands of vehicular offloading in CoMap.
We adopt the V2X-Sim dataset [14], which includes 100
CAVs at 100 frames with a variety of sensor data such as
RGB image, depth, and LiDAR. The dataset is obtained via
CARLA-SUMO co-simulation in the default scenarios in the
CARLA simulator. We develop the data plane of CoMap
with YOLOv5m object detector, ORB feature extraction, and
brutal-force feature matching. The offloading decision can be
selected from [0.0, 0.33, 0.66, 1.0], which correspond to the
partition after the raw data retrieval, object detection, feature
extraction, and feature matching, respectively. The profiling
is conducted on an Intel i7 desktop with 16G RAM and
ITB M.2. SSD. Without loss of generality, we consider this
desktop has the same computation capacity as CAVs, and
the edge computation capacity is 100x than that of CAVs>.
The average transmission data size are g(0) = 992.06 K bits,
9(0.33) = 337.43Kbits, g(0.66) = 9.56Kbits, and g(1) =
9.56 Kbits. The average local computation complexity are
h(0) = O0GFLOP, h(0.33) = 3.74GFLOP, h(0.66) =
4.10GFLOP, and h(1) = 8.21GFLOP, where the com-
putation capacity of CAV F' is normalized as 1GFLOPS, for
the sake of simplicity. Other parameters are listed as n = 1,

SWe aim to reduce the monetary cost incurred by resource usage, the large
computation capacity of edge server is mainly to accommodate more CAVs,
rather than achieving 100x acceleration for individual offloadings.

Number of CAVs

Fig. 5: Latency under different traffic

Number of CAVs

Fig. 6: Usage under different traffic

B =10MHz, E = 8bps/Hz, H = 100ms, and p = 90th
percentile. The default number of CAVs is 50.

We compare CoMap with the following algorithms:

o Baseline: The Baseline completes all the computation
components onboard in CAVs, while using the minimum
resource allocation for individual offloading throughout
the following one second.

e Equality: The Equality shares all network resources
equally to all CAVs for all time slots, where offloading
decisions are exhaustively searched to minimize the
percentile latency requirement.

o Deterministic: The Deterministic [5] regresses the dis-
tributional resource demands via polynomial regression
with respect to offloading decisions. It generates the
mean-value prediction of resource demands, which are
used to optimize the offloading decision and resource
allocations accordingly.

Latency Performance. Fig. 1 shows the cumulative proba-
bility of end-to-end latency of vehicular offloading under dif-
ferent algorithms. We observe that CoMap and Equality meet
the probabilistic latency requirement P(£ < 100ms) >= 0.9,
while Baseline and Deterministic fail. Note that there are
nearly 20% latencies located in the range of [95ms, 100ms] in
CoMap, which is intentionally optimized in the CROP algo-
rithm to meet the latency with the minimum resource usage.
As Deterministic relies on the regressed model with only mean
value predictions, the percentile latency requirement cannot
be effectively satisfied. This result justifies the necessity of
probabilistic prediction of resource demands in optimizing
resource allocations under changing network dynamics.

Utilization Performance. Equality achieves the best la-
tency performance in all algorithms, which is attributed to
its very high resource utilization as shown in Fig. 2 and
Fig. 3. In particular, we observe that Deterministic tends
to choose the offloading decision as 1, which completes all
the components in CAVs and requires fewer resources in
both wireless communication and edge computation. Fig. 4

3256

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:18:12 UTC from |IEEE Xplore. Restrictions apply.



2023 IEEE International Conference on Communications (ICC): Next-Generation Networking and Internet Symposium

------- Radio resource allocation
—---- Compute resource allocation
6 —— Lagrangian multiplier

0 10 20 30 40 50
Number of iterations

Fig. 7: Convergence of CoMap

is the scatter plot of the average resource usage and 90th
percentile latency achieved by all algorithms. We can see that
CoMap obtains the best overall performance, i.e., reducing
the monetary cost incurred by resource usage while almost
exactly matching the percentile latency requirement.

Scalability Performance. Fig. 5 and Fig. 6 show the
latency and resource usage of algorithms under different
numbers of CAVs. As more CAVs are in the network, the
overlaps among vehicular offloadings become more intensive
and the potential of excessive resource allocation may be more
frequent. Hence, we observe that the 90th percentile latency
performance of most algorithms are deteriorated, even if their
resource usage is increased. In contrast, CoMap can maintain
its latency performance with the increased average usage of
network resources. In particular, CoMap reduces 70.2% and
80.4% average resource usage than Equality under 10 and
30 CAVs, respectively. This result validates the scalability of
CoMap to tackle changing network traffic dynamics.

Convergence Performance. In Fig. 7, we show an exem-
plary snapshot regarding the convergence of CoMap. In the
CROP algorithm, it uses the Lagrangian primal-dual method
to iteratively search for the optimal allocation of radio and
computation resources. We see that the CROP algorithm
converges in several iterations, where the duplicated curves are
obtained from different offloading decisions. This result shows
that the CROP algorithm achieves a fast convergence rate,
which maintains low computation complexity in executing the
algorithm at runtime in individual CAVs.

VI. RELATED WORK

Computation offloading [15], [16] has been extensively
investigated to exploit the powerful edge server to accelerate
the computation of mobile devices, e.g., smartphones and
vehicles. The optimization problems are formulated under a
variety of network settings, e.g., snapshot-based [15], [17] and
Markov decision process [18], and diverse objective functions,
e.g., latency, energy consumption, and system costs. For
instance, Zhao et. al [17] optimized the computation offload-
ing and resource allocation for achieving Nash equilibrium
(NE) via game theory. Existing solutions can be generally
categorized into model-based (e.g., convex optimization [16])
and model-free (e.g., deep reinforcement learning [19]). For
example, Liu et. al [18] proposed a Q-learning and a DRL-
based method to address the offloading problem, which max-
imizes the long-term communication and computation utility
under the constraint of task latency. While most existing works
focus on optimizing the average performance, we aim to
satisfy the percentile latency requirements. Besides, we are

the first to proactively allocate network resources to vehicular
offloading, where the resource allocations are temporal and
span certain time periods.

VII. CONCLUSION

In this paper, we designed a new crowdsourcing HD map
in automotive edge computing. We proposed the CROP algo-
rithm to optimize CoMap by determining the optimal vehic-
ular offloading decision and temporal radio and computation
resource allocations. We evaluated the performance of CoMap
via extensive network simulations, where the results validate
the efficacy of CoMap over existing solutions.
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