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Conventional wisdom in model-based computational imaging 
incorporates physics-based imaging models, noise charac-
teristics, and image priors into a unified Bayesian frame-

work. Rapid advances in deep learning have inspired a new 
generation of data-driven computational imaging systems with 
performances even better than those of their model-based coun-
terparts. However, the design of learning-based algorithms for 
computational imaging often lacks transparency, making it diffi-
cult to optimize the entire imaging system in a complete manner.

In this tutorial, we review the latest advances in deep learn-
ing that combine the strengths of model-based and learning-
based approaches. By unfolding iterative optimization into a 
deep neural network implementation, we can sing an old folk 
song to a fast new tune. The explicit estimation of the uncer-
tainty associated with the estimates allows us to construct a 
new class of uncertainty-driven loss (UDL) functions for deep 
unfolded networks. Using superresolution and depth imaging 
as examples, we demonstrate that the combination of deep neu-
ral networks and uncertainty modeling leads to the so-called 
“Bayesian deep learning” (BDL). Under the framework of 
BDL, we achieve a principled approach to model and estimate 
uncertainty for deep learning-based image reconstruction.

Introduction
One of the enabling technologies in computational imaging 
is image reconstruction, which deals with the reconstruction 
of high-quality images from low-quality observations. Rapid 
advances in image reconstruction have evolved from model-
based approaches [7], [8] to learning-based approaches [6], 
[27] in the past decade. In model-based image reconstruction, 
sparse coding has evolved from early local sparsity models 
(e.g., wavelet-based) to structured sparsity models (e.g., Block-
matching and 3D filtering algorithm and low rank [5]). In 
learning-based image reconstruction, we have witnessed the 
impact of deep convolutional neural network (DCNN)-based 
image denoising [28]; nonlocal recurrent networks [16]; and, 
more recently, deep denoising priors for plug-and-play image 
reconstruction [6], [27]. Despite their outstanding performance, 
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the interpretability of learning-based methods is often not as 
transparent as that of model-based methods. Similar to the po-
tential mismatch between a model and data, the generalization 
property of CNN-based image reconstruction remains poorly 
understood.

The motivation behind this article is mainly twofold. On 
the one hand, instead of mathematically constructing regu-
larization functionals, data-driven sur-
rogate models have been developed to 
incorporate domain-specific knowledge 
contained in physics-driven models [1]. 
Model-driven deep learning architectures, 
including deep unfolding networks (DUNs) 
[9] and plug-and-play image reconstruction 
[27], have found successful applications 
in various inverse problems, from medical 
imaging [11], [21] to image reconstruction 
[6], [27]. Several celebrated convex optimi-
zation algorithms, such as the iterative soft thresholding algo-
rithm (ISTA) and the alternating-direction multiplier method 
(ADMM), have been unfolded into the corresponding neural 
network implementations with improved interpretability, name-
ly, ISTA-net [26] and ADMM-net [22].

On the other hand, uncertainty modeling has started to 
attract attention from the deep learning community in recent 

years [12], as shown in Figure 1. In both paradigms of model-
based and learning-based image reconstruction, uncertainty 
often arises from either insufficient training data (e.g., due 
to cost constraints) or anomalous samples in the testing data 
(e.g., due to noise contamination). Bayesian statistics has 
evolved into a powerful framework for addressing uncer-
tainty-related issues in a principled manner. In Bayesian 

modeling, there are two types of uncer-
tainty to consider in image reconstruction: 
aleatoric uncertainty, which captures the 
noise inherent in observations, and epis-
temic uncertainty, which accounts for the 
uncertainty in the model, regardless of 
whether it is constructed mathematically 
or driven by data [12]. The latter can be 
explained away given enough data, at least 
in theory. However, it remains unclear how 
much data will be enough in practical situ-

ations; moreover, for the class of regression problems, such as 
blind image reconstruction, we have to deal with both uncer-
tainties due to the lack of a priori information about either the 
unknown image or the real-world degradation process.

For the first time, BDL offers a principled framework for 1) 
leveraging the rich literature of regularized image reconstruc-
tion to construct a deep network with better interpretability  
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FIGURE 1. The number of publications on sparse coding and uncertainty modeling, searched from the Web of Science database with the title keywords (a) 
“sparse coding” (or “sparse representation”) and (b) “uncertainty modeling” (or “Bayesian deep learning”).

Rapid advances in deep 
learning have inspired a 
new generation of data-
driven computational 
imaging systems with 
performances even better 
than those of their model-
based counterparts.

Authorized licensed use limited to: West Virginia University. Downloaded on January 11,2023 at 16:06:04 UTC from IEEE Xplore.  Restrictions apply. 



75IEEE SIGNAL PROCESSING MAGAZINE   |   January 2023   |

by deep unfolding and 2) improving the performance of 
CNN-based image reconstruction by taking uncertainties into 
account. The new insights brought about by this tutorial are 
summarized as follows:

■■ We conduct a systematic review of existing DUNs to bridge 
model-based and learning-based computational imaging. 
DUN offers a unified framework for translating various 
sparsity models into deep neural network implementations.

■■ We present a new framework for deep 
uncertainty-aware learning (DUAL) for 
image reconstruction capable of uncer-
tainty modeling. In particular, we show 
how uncertainty modeling can lead to a 
novel design of UDL functions in image 
reconstruction.

■■ By combining DUN with DUAL, we 
advocate a novel approach to developing transparent learn-
ing-based solutions to image reconstruction problems by the 
end-to-end optimization of network parameters. Such a tun-
ing-free property is desirable for task-specific optimization 
in various practical computational imaging applications.

Past: From structured sparsity to DUNs
From 2000 to the present, we can divide the historical develop-
ment of computational imaging techniques into two periods: 
sparsity based (2000–2016) and deep learning (2012–present). 
In this section, we first review the existing work on Bayesian 
formulations of sparse coding and their applications in image 
reconstruction. We then discuss some recent work on deep 
learning-based computational imaging.

Model-based image reconstruction via sparse coding
We start from the Bayesian formulation of sparse coding. Then 
we will take into account the uncertainty related to the mean 
and variance, leading to extensions into nonlocal centralized 
and simultaneous sparse coding, respectively. The key idea of 
sparse coding is to decompose a signal x Rn!  (n is the size of 
an image patch) into the linear combination of basis vectors (as 
well as dictionary elements) Da , where ,D R n Kn K! ##  is 
the dictionary. The coefficients RK!a  satisfy some sparsity 
constraint, e.g., since l0 optimization is computationally pro-
hibitive to solve due to its nonconvexity, one can consider the l1 
counterpart as the surrogate function:

	 .argmin x D 2
2

1a a am= - +
a

� (1)

In addition to convexity, solving the l1-norm minimiza-
tion problem is mathematically equivalent to the maximum 
a posteriori (MAP) probability estimation of a  with an 
identically independent distributed (i.i.d.) Laplacian prior 
( ) .P e1 2i i

i ia i= ; ;a i-  This Bayesian formulation of sparse 
coding allows us to gain a better understanding of the dual-
ity between the probabilistic and deterministic settings. More 
specifically, the regularization parameter, which can be set 
as / ,2i n i

2m v i=  is determined by ,n2v  which denotes the noise 
variance (approximation errors), and ii, the standard deriva-

tion of the signal (sparse coding coefficients ai) [4]. Modeling 
the uncertainty on the mean and variance of sparse coefficients 
has led to two parallel approaches of nonlocal extensions.

Nonlocal centralized sparse representation 
The key idea behind the centralized sparse representation with-
out local locality (NCSR) [5] is to estimate the biased mean of 
the sparse coding coefficients a  by averaging a group of similar 

nonlocal patches; that is, ,k k kb a~R= !X  
where Ω denotes the search window to find 
similar patches, and ~k is the linear weight 
characterizing the similarity between the 
target and reference patches. Then, the 
NCSR model is formulated by the following 
optimization problem:

	 p,argmin x D ii
i

2
2

a a a bm= - + -
a

/ � (2)

where the last term contains a nonlocal estimation of the bi-
ased mean (p can be one or two) for selected exemplar patch-
es. The uncertainty arising from the estimation of the nonlo-
cal mean can be quantified by the error term .e a b= -  In 
[5], we have assumed the independence between b  and e and 
the i.i.d. Laplace distribution for e. It follows that the original 
nonlinear shrinkage operator for a  can be generalized by tak-
ing the biased mean into account [4]. Such a generalization 
allows us to solve (2) by a computationally efficient iterative 
thresholding algorithm.

Connecting the Gaussian scale mixture  
with simultaneous sparse coding
The Gaussian scale mixture (GSM) model has been widely 
adopted to characterize the spatial variability property of im-
ages [3]. The GSM model decomposes the sparse coding coef-
ficients a  into the multiplication of a Gaussian vector b  and 
a hidden scalar multiplier ;i  i.e., ,i i ia i b=  where the coef-
ficient ai is Gaussian with a standard derivation of ii, and ii 
is the positive scaling variable (characterizing variance uncer-
tainty). The GSM prior of a  can be written as

	 ( ) ( ), ( ) ( ) .P P P P P d
i

i i i i i i
0

a a a a i i i= =
3 ^ h% # � (3)

Note that, for most choices of ( ),P ii  it is difficult to compute 
the MAP estimates of ai. However, we can overcome this dif-
ficulty by the joint estimation of ( , );i ia i  that is, for a given ob-
servation ,x D na= +  where ~ ( , ),n N 0 n

2v  we can formulate 
the following joint MAP estimation problem:

	
( , ) ( | , ) ( , )

( | ) ( | ) ( ),
argmax log
argmax log log log

x
x

P P
P P P

a i a i a i

a a i i

=

= + +
� (4)

where ( | )xP a  is the likelihood term characterized by a 
Gaussian function with variance .n

2v  The prior term ( | )P a i  
can be expressed as

Bayesian statistics has 
evolved into a powerful 
framework for addressing 
uncertainty-related issues 
in a principled manner.
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	 ( | ) ( | )
( )

,expP P
2
1

2i
i i

ii i

i i
2

2

a i a i
i r i

a n
= = -

-e o% % � (5)

where μi denotes the biased mean (similar to the weight-
ing coefficient b  in the NCSR model). With a noninforma-
tive prior (as well as Jeffrey’s prior) ( ) ,P 1i i.i i  we can  
rewrite (5) as

	

( ) ( )

( )
,

, argmin log

log

x D
2
1 2

2

, n i
i

i

i i

i i
i

2 2
2

2

2

a i a
v

i r

i

a n
i

= - +

+
-

+

a i
/

/ / � (6)

where we have used ( ) ( ) .P P iii iR=  Noting that Jeffrey’s 
prior is unstable as ,0i "i  we replace log ii  with ( ),log ii e+  
where e is a small positive number for numerical stability. 
This equation can then be further translated into the following 
Bayesian sparse coding problem:

	

( , ) ( )

( )
.

argmin logx D 4
,

n

n
i

i i

i

2
2 2

2
2

2

a i a iv e

v
i

a n

= - + +

+
-

a i

/ � (7)

A key observation behind simultaneous sparse coding (as 
well as structured sparsity) [3] is that, for a collection of similar 
patches, their corresponding sparse coefficients a  should be 
characterized by the same prior—that is, the same n  (mean) 
and i  (variance). Therefore, a matrix extension of (7) can be 
written as

	
( , ) ( )

,

argmin logB X D B

B

4
,B

F n

n F

2 2

2 2

i iv e

v

K

C

= - + +

+ -

i

� (8)

where [ , ..., ]X x xm1=  denotes the collection of m similar 
patches, and A BK=  is the group representation of the GSM 
model with sparse coefficients. Such a structured sparsity ex-
tension of the GSM model allows us to exploit the nonlocal 
similarity in image signals by low-rank methods [3]. In sum-
mary, model-based image reconstruction focuses on the con-
struction of competing image prior models, which is in sharp 
contrast to the more recently developed data-driven proxy 
model for the image prior.

Bayesian image reconstruction via DUNs
In the past five years, DCNN-based approaches to image re-
construction have received increasing attention. Assuming a 
standard degradation mode ,y Ax n= +  where ,x y denotes 
the original/degraded image pair, and A and n denote the deg-
radation model and additive noise, respectively, we can formu-
late the following MAP probability estimation problem:

	 ( | ) ( | ) ( ),argmaxlog argmaxlog logx x y x xyP P P
x x

= = +| � (9)

where ( | )y xP  and ( )xP  denote the likelihood and prior terms, 
respectively, which can be written as

	 ( | ) , ( ) ( ( )),exp expy x y Ax x J xP P1
n
2 2

2
? ?

v
m- - -c m �(10)

where n
2v  is the noise variance, and ( )J x  is the regulariza-

tion function (e.g., sparsity based [13], nonlocal self-similarity 
based [7]). It follows that (10) can be rewritten as

	 ( ) .argminx y Ax xJ
x

2
2

m= - + � (11)

An important new insight behind deep learning-based ap-
proaches is to unfold the iterative optimization algorithm into a 
DCNN-based implementation. Such DUNs consist of multiple 
denoising modules interleaved with back-projection modules 
to ensure observation consistency. Parallel to model-based ap-
proaches, we review the unfolding of two sparse models: de-
noising prior-driven deep neural networks (DPDNNs) [6] and 
deep GSM priors [10].

DPDNNs
Instead of using an explicitly expressed regularizer, denoising-
based image restoration methods [27] use a more complex im-
age prior by decoupling the optimization problem of (11) into 
one subproblem for the data likelihood term and the other for 
the prior term. By introducing an auxiliary variable v, (11) can 
be rewritten as

	 ( , ) ( ), . .  .s targminx v y Ax v x vJ
2
1

,x v
2
2

m= - + = � (12)

This equally constrained optimization problem can be con-
verted into the following unconstrained optimization problem:

	 ( , ) ( ),  argminx v y Ax x v vJ
2
1

,x v
2
2

2
2

h m= - + - + � (13)

which can be solved by alternatively solving two subproblems:

	
,

( ) .

argmin

argmin

x y Ax x v

v x v vJ

2
1( ) ( )

( ) ( )
x

v

t t

t t

1
2
2

2

2

1 1
2

2

h

h m

= - + -

= - +

+

+ + � (14)

The x subproblem is quadratic; therefore, it can be solved in 
closed form by ,x W b( )t 1 1=+ -  where W is a matrix related to 
the degradation matrix A. When the matrix W is large, it is 
generally impossible to compute its inverse. Instead, the clas-
sical conjugate gradient iterative algorithm can be used to cal-
culate x( )t 1+  but requires many iterations to compute .x( )t 1+  
Furthermore, it is difficult to optimize the hyperparameters as-
sociated with model-based iterative reconstruction algorithms.

The DUN [9] has offered a promising new direction for 
both computationally efficient implementation and end-to-end 
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optimization of algorithm parameters. On the one hand, one 
can compute x( )t 1+  with a single step of gradient descent as an 
approximation to the x subproblem,

	
[ ( ) ( )]

,

x Ax y x v

Ax A y v

x A( ) ( ) ( ) ( )

( ) ( )

t t t t t

t t

1 d h

d dh

= - - + -

= + +<

<+

r � (15)

where [( ) ]I A AA 1 dh d= - - <r , and d is the parameter that 
controls the step size. By precomputing ,Ar  the update of 
x( )t  can be computed efficiently. By mimicking the itera-
tive process, updating x( )t 1+  once is sufficient for x( )t  to 
converge to a local optimal solution. On the other hand, the 
v-subproblem is a proximity operator of ( )vJ  calculated at 
a point ,x( )t 1+  whose solution is given by a denoiser; that 
is, ( ) .v xf( ) ( )t t1 1=+ +  Note that various denoising algorithms 
can be used, including those that cannot be explicitly ex-
pressed by the MAP estimator with ( ) .xJ  Through end-to-
end training, both the DCNN-based denoiser f( · ) and other 
network parameters can be jointly optimized, as shown in 
Figure 2. It is easy to see how the three additive terms on the 
right side of (15) are assigned to the three separate channels 
connected by the addition operator (marked with orange) 
in Figure 2.

Deep GSM prior
Parallel to structured sparsity or simultaneous sparse cod-
ing, we have also extended the work on DUNs to the un-
folding of the GSM model in [10], where the variance field 
of the GSM model is estimated along with the unknown 
image. Specifically, in [10], we formulate the hyperspectral 
image (HSI) reconstruction as an MAP estimation prob-
lem. With the observed measurements y, the target HSI x 
can be estimated by maximizing the posterior probability, 
that is,

	 ( ) ( ) ( ),log log logx y y x xp p p; ? ; + � (16)

where ( ), ( )y x xp pand;  denote the likelihood and the prior 
distribution, respectively. For the likelihood term, we use a 
Gaussian function as follows:

	 .expy x
y Ax

p
2
1

2 2
2
2

r v v
= -

-^ eh o � (17)

For the prior term, we propose characterizing each pixel xi  of 
the HSI by a Gaussian distribution with a nonzero mean and 
standard deviation .ii  With a scale prior ( )p ii  and the inde-
pendence assumption between ii  and ,xi  we can model the 
image prior using the following GSM model:

	 ( ) ( ), ( ) ( ) ( ) ,xp p x p x p x p d
i

i i i i i i
0

;i i i= =
3% # � (18)

where ( )p xi i;i  is the Gaussian distribution; i.e., ( )p xi i;i = 
( / ) ( (( ) / )).exp x u1 2 2i i i i

2 2r i i- -

Note that the variance field is embedded in the scale prior 
( ).p ii  Instead of modeling ( )p ii  with an exact prior (e.g., 

Jeffrey’s prior ( ) / ),p 1i ii i=  we have used the following gen-
eral form in [10]: ( ) ( ( )),expp Ji i?i i-  where ( )J ii  is an 
energy function that plays the role of regularization. Since an 
analytical expression of ( )p xi  is often intractable, we resort to 
jointly estimating x and i  by replacing ( )xp  with ( , )xp i  in 
the estimation of MAP. That is,

	
( , ) ( ) ( , )

( ) ( ) ( ).

argmax log log

argmax log log log

x y x x

y x x

p p

p p p
,

,

x

x

;

; ;

i i

i i

= +

= + +
i

i

� (19)

By substituting the likelihood term ( )p xi i;i  and the prior term 
( )p ii  into the MAP estimation, we obtain the following joint 

objective function:

	 ( , ) ( ) ( ).argminx y Ax x u J1 2
,x ii

N

i i2
2 2

2
1

2 2i iv
i

v= - + - +
i =

/ 		
� (20)

Similar to the GSM-simultaneous sparse coding derivation 
[3], this joint optimization problem can be solved by alternat-
ing the optimization of x and .i  With a fixed ,i  we can update 
x by solving the x subproblem:

	 ( ) ,argminx y Ax w x u
x

i
i

N

i i2
2

1

2= - + -
=

/ � (21)

where / ,wi i
2 2v i=  and the mean ui  is updated along 

with x. Similar to the NCSR model [5], we can calculate the 
weighted average of similar patches as the mean estimate 
.ui  Then, the solution to (21) is given by gradient descent as 

the following:

y AT x (0) x (t–1) x (T–1)x (t )
x (T )DCNN

Denoiser
DCNN

Denoiser
DCNN

Denoiser

A A A

δ1η1

δ1

δTηTδtηt

δt δT

υ (1) υ (t ) υ (T )

t  Stage

++

FIGURE 2. The unfolding of image reconstruction based on iterative denoising in a DCNN-based implementation [6].
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	 { ( ) ( )},x x A Ax y w x u2( ) ( ) ( ) ( ) ( ) ( )t t t t t t1 d= - - + -<+ � (22)

where [ , , ] , [ , , ] ,u wu u w wR R( ) ( )t t
N
t N t t

N
t N

1 1f f! != = <<  
and d  is the step size.

For the i  subproblem with fixed x, we translate it into a 
problem of estimating w; that is,

	 ( ) ( ),argminw ww x u J
w

i
i

N

i i
1

2= - +
=

/ � (23)

where ( )wJ  is the regularization term. For some choices, we 
can derive a closed-form solution; for others, we resort to it-
erative algorithms. However, the manual design of a proximal 
operator has its fundamental limitations (e.g., the difficulty of 
parameter tuning). Conceptually similar to DPDNN [6], we 
can estimate w( )t 1+  from x( )t 1+  using a DCNN as a surrogate 
prior. For the purpose of the network design, we bridge the x 
and w subproblems in the following unified framework:

	 { ( ) ( )( )},x x A Ax y x x u2 S( ) ( ) ( ) ( ) ( ) ( )t t t t t t1 d= - - + -<+ � (24)

where ( )S $  represents the function of the DCNN-based mod-
ule to estimate w—that is, the solution to (23). As shown in 
Figure 3, we can construct an end-to-end network with T stages 
corresponding to T iterations to iteratively optimize the unfold-
ed network parameters x and w. The three terms on the right 
side of (24) are mapped to the three channels connected by the 
addition operator (denoted 5  with two minus operators above 
and below) at each stage.

Present: DUAL for Bayesian image reconstruction
DUAL refers to the emerging class of ideas that attempts 
to take both model and data uncertainty into account. The 
uncertainties in the model and the data are also known as 
epistemic and aleatoric uncertainties, respectively, in com-
puter vision [12], and they directly affect the generalizability 
property of DNNs. Recent studies have shown that model-
ing uncertainty can be tackled in a principled manner under 
the BDL framework. This line of research can be interpreted 
as an extension of DUNs because it shows that the classical 
model-based MAP probability estimation, even after taking 
the uncertainty of the data into account, can be unfolded into 
a DCNN-based implementation.

To demonstrate that DUAL offers a unified framework for 
deep learning-based computational imaging, we present its 
applications to two imaging tasks in this section: single-image 
superresolution (SISR) [18] and robust depth completion [30]. 
The unifying theme is that the construction of the uncertainty 
estimation module (UEM) leads to the design of a novel loss 
function that can be incorporated into the training process. 
Such a unified treatment allows us to pursue the end-to-end 
optimization of all components, including both UEMs and 
parameters of DUNs.

DUAL for SISR
There are two classes of uncertainties to consider: aleatoric un-
certainty and epistemic uncertainty. The former captures noise 
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inherent in the observation data, and the latter accounts for the 
uncertainty of the model about its predictions. Following the 
standard notation in the literature of SISR, we use ,y xi i  to 
denote the low-resolution image and the corresponding high-
resolution image, respectively. To quantify the aleatoric un-
certainty, we use ( ),f i$ i  to denote an SISR network and its 
associated aleatoric uncertainty, leading to the following ob-
servation model: ( )  ,x yfi i iie= +  where e  observes the La-
place distribution with zero mean and unit variance. It follows 
from this observation model that

	 ( , )
( )

,expx y
x y

p
f

2
1
 

 i i i
i i

i i 1;i
i i

= -
-c m � (25)

where ( )yf i  and ii  denote the SR image (mean) and the uncer-
tainty (variance), respectively. Then, the log-likelihood func-
tion can be written as

	 ( , )
( )

.ln ln lnx y
x y

p
f

2   i i i
i

i i
i

1;i
i

i=-
-

- - � (26)

DUAL aims to estimate not only the SR image (mean) 
( )yf i  but also the uncertainty (variance) ii  simultaneously. 

As shown in Figure 4, we train two networks with a shared 
backbone to estimate the log variance  lnsi ii=  together with 
( ) .yf i  The maximum likelihood estimation of (26) boils down 

to the minimization of the following UDL function:
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i i i i
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=
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The loss function LUD  includes two terms: the first is associ-
ated with the fidelity term, and the second prevents the net-
work from predicting infinite uncertainty for all pixels. Those 
two terms reach equilibrium, but no prior is imposed on the 
uncertainty estimation.

The limitations of LUD  have been shown experimentally 
in [18]. From (27), we can see that the loss function LUD  has 
incorporated the variance term ( )ii  into the divisor of the dif-
ference term in absolution. However, a pixel with a large vari-
ance (e.g., around edges) will be penalized after the division 
and will have less impact on the overall loss function. Although 
this attenuation of pixels with large uncertainty benefits high-
level vision tasks, low-level vision tasks, such as SISR, are 
different. Since pixels with a large uncertainty carry visually 
important information, they need to be prioritized (instead of 
attenuated) and given larger (instead of smaller) weights. Such 
a new insight inspired us to better prioritize pixels with a large 
uncertainty using a new adaptive weighted loss named UDL 
for SISR.

More specifically, instead of using ( )exp si-  to attenuate 
the importance of pixels with a large uncertainty, one can 
use a monotonically increasing function to prioritize them. 
Linear scaling is a natural option that leads to the following 
loss function:

	   ( ) ,x y
N

fs1  L
i

N

i ii
1

1UDL = -
=

t/ � (28)

where ( )mins s si i i= -t  is a nonnegative linear scaling func-
tion. To prevent the uncertainty value from degenerating into 
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FIGURE 4. The training of an SISR network with loss LUDL  [18]. The training process can be divided into two steps: (a) the first step estimates the un-
certainty ,i  and (b) the second step generates the final mean value ( ).yf  In step 1, shown in (a), the mean value ( )yf  and variance i  are pretrained 
by loss .LESU  During step 2, the mean value network ( )yf  is trained by loss ,LUDL  while the inferring variance network i  is fixed. Conv: convolution; 
ELU: exponential linear unit.
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zeros, the uncertainty estimation result in the first step will be 
passed to the second step as the attention signal (  ) .lns i=  
Note that, in LUDL  loss, the texture and edge pixels with high-
er uncertainty tend to have larger weights than the pixels in 
smooth regions, which matches our intuition of prioritizing 
edges and textures.

To demonstrate the effectiveness of UDL in SISR, we have 
selected three popular SISR techniques, enhanced deep super-
resolution network [15], residual channel attention network [29], 
and DPDNN [6], as well as the gradient scaling attention model 
(GRAM) [14] as a baseline for comparison. To our knowledge, 
GRAM [14] was the only study of data uncertainty in SISR prior 
to the publication of [18]. It shares a similar observation with 
uncertainty modeling, but the strategy of the UDL design dif-
fers from ours. Table 1 compares the peak signal-to-noise ratio 
(PSNR)/structural similarity index (SSIM) results for four dif-
ferent network architectures using different loss functions. UDL 
[18] has consistently achieved a better performance than the 
original models (without uncertainty) and the baseline (GRAM).

DUAL for robust depth completion
Aleatoric uncertainty that captures the noise inherent in the 
observations can be further categorized into two classes: ho-
moscedastic and heteroscedastic. Heteroscedastic uncertainty is 
especially important to the task of depth completion [30] due to 
the physical limitations of lidar sensors—e.g., lidar often scans 
the surrounding environment at equally divided angles, result-
ing in an uneven distribution of depth images. Such an uneven 
distribution leads to varying densities in different areas, which is 
the source of heteroscedastic uncertainty. Conventional depth-
completion methods average the MSE loss across all pixels, ig-
noring the issue of heteroscedastic uncertainty. Low-density ar-
eas (arising from nonuniform sampling) and outliers often cause 
the network to overemphasize these areas (i.e., overfitting).

In one of our most recent works [30], we considered a para-
metric approach to quantifying uncertainty in a depth map by 
its variance field .R  The key idea is to predict an unknown 
dense depth image X from a sparse depth image Y using a deep 
learning network ( ) .YX F=t  Then, the problem of depth com-

pletion can be formulated by maximizing the posterior prob-
ability .X YP ;^ h  After introducing the uncertainty measure 

(vR  for a pixel), we can decompose the joint posterior prob-
ability into the product of marginals,
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where ,x yandi i iv  denote the pixelwise elements of 
, , ,X YandR  respectively. For the likelihood of the un-

certainty map ,p yi i;v^ h , we model it with Jeffrey’s prior 
/P y 1i i i; .v v^ ^h h based on the intuition of the sparsity on 

the uncertainty map. For the likelihood term, ,p x yi i i; v^ h 
can be modeled by a Gaussian distribution observing 

( )~ , :x F y N xi i i iv=t ^ h
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where xit  denotes a pixel of the image .Xt  Therefore, we obtain 
the following MAP estimation problem:
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where ( )logs e2i i i
s2 iv v= =  models uncertainty about .xit

This MAP formulation of uncertainty modeling can be 
translated into the design of a new UDL function as follows:

	 .
N

e x x s1 2L s
i i iUD

2i= - +- t^ ^ h h/ � (32)

From the formula, we observe that the first term will reduce 
the joint loss of pixels with large differences between the pre-
diction and the ground truth .x xi i

2-t^ h  During the optimiza-
tion process, the optimizer may increase the uncertainty values 

Table 1. The average PSNR and SSIM results for bicubic downsampling degradation with a scaling factor of ×4 on five benchmark data sets. 

Model Scale Loss 

Set 5 Set 14 BSD 100 Urban 100 Manga 109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 
EDSR-S ×4 Original 31.61 0.8862 28.22 0.7721 27.3 0.7271 25.25 0.7575 29.31 0.8907

GRAM 31.08 0.8787 27.89 0.767 27.12 0.7229 24.81 0.7429 28.18 0.8762
LUDL  31.9 0.8897 28.37 0.7755 27.4 0.7301 25.54 0.7671 29.77 0.8967

DPDNN ×4 Original 31.72 0.889 28.28 0.773 27.44 0.729 25.53 0.768 — —
GRAM 31.89 0.8913 28.37 0.7772 27.41 0.7314 25.63 0.7708 29.70 0.9003
LUDL  32.2 0.8944 28.6 0.7819 27.56 0.7356 26.09 0.7862 30.38 0.9082

EDSR ×4 Original 32.46 0.8968 28.8 0.7876 27.71 0.742 26.64 0.8033 31.02 0.9148
GRAM 32.32 0.8971 28.73 0.7858 27.66 0.7395 26.35 0.7955 30.73 0.9125
LUDL  32.59 0.8998 28.87 0.7889 27.78 0.7431 26.75 0.8054 31.24 0.9167

RCAN ×4 Original 32.54 0.8986 28.8 0.7869 27.72 0.7418 26.6 0.8026 31.05 0.9156
LUDL  32.65 0.9008 28.89 0.7896 27.81 0.7438 26.84 0.8099 31.29 0.9198

Enhanced deep super-resolution network (EDSR-S) is the EDSR baseline network [15] having 1.5 million parameters. The best performances are shown in bold.
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so much that the penalty term e si-  eventually approaches zero. 
To balance the first term, the second term limits the growth of 
uncertainty si  as a regularization term. As a consequence of 
balancing, the network will control the contribution of high-
uncertainty regions to the joint loss function rather than over-
fitting these regions.

In the DUAL framework, we can observe that regions with 
higher depth values often have higher uncertainty values. A 
new insight brought about by [30] is to use the estimated 
uncertainty map in the first step to guide the depth-comple-
tion refinement procedure in the second step, as shown in 
Figure 5. In other words, with knowledge about the distri-
bution of high-uncertainty regions, one can tailor the pro-
cess of optimization for these special regions to achieve an 
even better completion result. The key idea is to predict the 
refinement map R for X1t  only for pixels that are uncertain in 
the first step. Along this line of reasoning, the loss function 
associated with uncertainty attention residual learning can be 
written as
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where ri  is the pixel of the predicted residual R, and xit  is the 
depth output of the first step. Since optimization of different 
objective metrics often has conflicting objectives for depth 

completion, a mixture of forms L1 and L2 is used to build the 
uncertainty-driven balanced loss function LURB  as follows:
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As reported in [30], we have verified the effectiveness of 
UDL functions on the Karlsruhe Institute of Technology and 
Toyota Technological Institute at Chicago (KITTI) depth-
completion benchmark. As shown in Table 2, ours surpasses 
all other competing methods in mean absolute error (MAE), 
inverse MAE, and  root-mean-square error of the inverse depth 

Uncertainty Attention Residual Learning Network

Multiscale Joint Prediction Model

Residual Learning
Network

I1
Y1

X1

"

I1/2
Y1/2

X1/4

"

I1/4
Y1/4

X1/8

"

I1
Y1

X1/2

"X1/8

" X1/2

"

X1

"

X1/4

"

LUR

LUD0

LUD1

LUD2

LUD3

S1/4

S1/8
S1/2

S1

I1/8
Y1/8

R1

X1

"

Output = R1 +

Completion Block 0Completion Block 1Completion Block 2Completion Block 3

FIGURE 5. The robust completion of depth driven by uncertainty [30]. At the bottom (step 1), we jointly predict uncertainty maps and dense depth images 
using the multiscale joint prediction model. The key idea is to balance the contribution of high-uncertainty regions to the joint loss function. At the top 
(step 2), an uncertainty attention residual learning network is used to refine the prediction for pixels of high uncertainty. The key idea is to predict the 
refinement map only for pixels that are uncertain in the first step.

Table 2. A comparison with other state-of-the-art methods on the 
KITTI test benchmark.

Methods MAE iMAE RMSE iRMSE
NLSPN [19] 199.59 0.84 741.68 1.99 
GuideNet [23] 218.83 0.99 736.24 2.55 
CSPN++ [2] 209.28 0.9 743.69 2.07 
Deep lidar [20] 226.5 1.15 758.38 2.56 
Sparse-to-dense (gd) 249.95 1.21 814.73 2.8 
RGB_guide&certainty 215.02 0.93 772.87 2.19 
UDL [30] (with LURB) 198.09 0.85 751.59 1.98 
UDL [30] (with LUR) 190.88 0.83 795.43 1.98 

Note that uncertainty modeling has led to the best performance in three of the four 
objective metrics. CSPN: convolutional spatial propagation network; gd: grayscale 
depth; iMAE: mean absolute error of the inverse depth; NLSPN: non-local spatial 
propagation networ iRMSE: root-mean-square error of the inverse depth; RGB: red, 
green, blue.
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metrics, demonstrating the superiority of UDL functions. We 
have also reported some qualitative visual comparison results 
on the KITTI depth-completion benchmark test data set in 
[30]. As shown in Figure 6, our results have clear boundaries 
and recover more details than other depth-completion meth-
ods. One salient feature offered by UDL functions is the capa-
bility of recovering fine-detailed structures in depth images 
(e.g., the rearview mirror of the parked car and the vertical 
pole on the street).

Future: BDL for image reconstruction
BDL has emerged as a unified framework for tightly inte-
grating deep learning with Bayesian models. In addition to 
DUN and DUAL, covered in this article, 
we believe that BDL covers a wider range 
of ideas, bridging the conventional wisdom 
of model-based solutions with the new 
trend of data-driven approaches. From the 
deep mean shift prior to posterior sam-
pling, there are plenty of room and oppor-
tunities to take advantage of theoretically 
sound ideas originating from Bayesian inference to shed 
new insight into the new class of deep image priors [24] and 
plug-and-play priors [27]. Looking ahead, we believe that the 
following research directions of BDL deserve a systematic 
study for the next five to ten years: uncertainty-driven kernel 
estimation for blind image reconstruction (low-level vision), 
uncertainty-driven transformers for semantic segmentation 
(middle-level vision), and joint image reconstruction and rec-
ognition (high-level vision).

For low-level vision tasks, modeling real-world degrada-
tion has remained a long-standing open problem. The uncer-
tainty factors associated with real-world image degradation 
are diverse and complex; e.g., the blurring kernel can be 
motion related or out of focus, spatially invariant, or spatially 
varying, and the degradation can be associated with adver-
sarial environmental conditions (e.g., atmospheric turbulence 
or low illumination) or imaging devices (e.g., sensor noise or 
limited spatial resolution). Despite the progress made for iso-

lated scenarios, there is still a unified framework for system-
atically taking into account various unknown factors. 

Several outstanding open problems remain—e.g., how to 
properly address the issue of errors in the kernel estimation 
and noise contamination for blind deconvolution, how to han-
dle spatially varying blur or multiple degradations, and how 
to unify existing research on blind image denoising/deblur-
ring with blind image superresolution. Some promising results 
have been reported for the blind reconstruction of face images; 
much remains to be explored for other image modalities. 

In addition to uncertainty modeling, self-supervised learn-
ing (SSL) [17] has re-emerged as a compelling framework 
for representation learning. Several pioneering studies have 

shown promising results in combining 
SSL with BDL in low-level vision tasks, 
such as compressive sensing and medi-
cal image reconstruction.

For middle-level vision tasks, such as 
semantic segmentation, transformer-based 
approaches (e.g., the shifted window trans-
former) have shown great potential recently. 

An uncertainty-guided transformer was recently developed 
for camouflaged object detection and salient object detection. 
The motivation behind uncertainty-guided transformer rea-
soning (UGTR) [25] is to combine a vision transformer with a 
probabilistic representational model to explicitly reason under 
uncertainties. The key idea is to first learn a conditional distri-
bution over the transformer output to obtain initial estimates 
along with associated uncertainties and then reason over these 
uncertain regions with an attention mechanism to generate 
final predictions. 

Despite the conceptual appeal, the success of UGTR has 
been limited to the task of detecting objects so far. How can 
we combine UDL with transformer models for more general 
vision tasks, such as semantic segmentation? Can we extend 
the framework of UGTR into semantic segmentation from 
multimodal data, such as color and depth? How can we take 
advantage of the vision transformer for efficient uncertainty 
estimation for semantic segmentation in video?

(a) (b) (c) (d)

FIGURE 6. A comparison of visual quality on the KITTI test benchmark: (a) red, green, blue; (b) CSPN++ [2]; NLSPN [19]; and our UDL [30]. Note that, in 
the first row, our UDL method [30] is the only one capable of restoring the rearview mirror hidden in the dark background; in the second and third rows, 
the vertical poles are better recovered by our UDL method [30].

For low-level vision tasks, 
modeling real-world 
degradation has remained 
a long-standing open 
problem.
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The holy grail of computer vision is teaching a computer to 
see like humans. One remarkable capability of human vision 
systems (HVSs) is their robustness and adaptation in challeng-
ing adversary environments (e.g., with occlusion and illumi-
nation variations). Deep uncertainty learning has shown great 
potential to improve the robustness of image recognition by 
feature distillation. However, the problem of robust object rec-
ognition has remained largely unsolved. From generalization 
properties to computational efficiency, there still exists a sig-
nificant gap between the best invention by humans and innova-
tive discovery by nature (i.e., the evolution and development of 
HVSs). To fill in this gap, we still need new inspiration from 
different disciplines. 

How can we solve the problem of image 
reconstruction and object recognition in a 
closed loop under the framework of BDL? 
Can we combine BDL and SSL into a uni-
fied Bayesian SSL paradigm so that UDL 
and contrastive loss can be connected? 
What is the first-order approximation of a 
truly biologically plausible computer vision 
system inspired by the organizational principles underlying 
human visual perception? These important challenges are like-
ly to stimulate further research and attract more young minds 
to work in this exciting and emerging field.

Conclusion
In this article, we have reviewed the history of image recon-
struction from both model-based and learning-based perspec-
tives. From sparse coding to deep learning, Bayesian image re-
construction has evolved into a hybrid framework under which 
optimization-based solution algorithms for assumed degrada-
tion models lead to the principled design of UDL functions in 
deep learning. In addition to interpretability and transparency, 
such a marriage between model-based and learning-based 
paradigms alleviates the burden of handcrafted algorithm 
parameters by end-to-end optimization. If DUNs mark the 
bridge connecting traditional optimization-based solution al-
gorithms with fashionable DCNN-based implementations, 
DUAL is likely to work as a catalyst for uncertainty modeling 
in unfolded network architectures. Future research on BDL for 
image reconstruction will continue to benefit from the fruit-
ful interaction between unfolded network architectures and 
UDL functions.
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