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From structured sparsity to uncertainty estimation

onventional wisdom in model-based computational imaging
incorporates physics-based imaging models, noise charac-
teristics, and image priors into a unified Bayesian frame-
work. Rapid advances in deep learning have inspired a new
generation of data-driven computational imaging systems with
performances even better than those of their model-based coun-
terparts. However, the design of learning-based algorithms for
computational imaging often lacks transparency, making it diffi-
cult to optimize the entire imaging system in a complete manner.
In this tutorial, we review the latest advances in deep learn-
ing that combine the strengths of model-based and learning-
based approaches. By unfolding iterative optimization into a
deep neural network implementation, we can sing an old folk
song to a fast new tune. The explicit estimation of the uncer-
tainty associated with the estimates allows us to construct a
new class of uncertainty-driven loss (UDL) functions for deep
unfolded networks. Using superresolution and depth imaging
as examples, we demonstrate that the combination of deep neu-
ral networks and uncertainty modeling leads to the so-called
“Bayesian deep learning” (BDL). Under the framework of
BDL, we achieve a principled approach to model and estimate
uncertainty for deep learning-based image reconstruction.

Introduction
One of the enabling technologies in computational imaging
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is image reconstruction, which deals with the reconstruction
of high-quality images from low-quality observations. Rapid
advances in image reconstruction have evolved from model-
based approaches [7], [8] to learning-based approaches [6],
[27] in the past decade. In model-based image reconstruction,
sparse coding has evolved from early local sparsity models
(e.g., wavelet-based) to structured sparsity models (e.g., Block-
matching and 3D filtering algorithm and low rank [5]). In
learning-based image reconstruction, we have witnessed the
impact of deep convolutional neural network (DCNN)-based
image denoising [28]; nonlocal recurrent networks [16]; and,
Digital Object Identifier 10.1109/MSP.2022.3176421 fmore recen.tly, deep den01sm.g priors for plug—and—play 1mage
Date of current version: 29 December 2022 reconstruction [6], [27]. Despite their outstanding performance,
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the interpretability of learning-based methods is often not as
transparent as that of model-based methods. Similar to the po-
tential mismatch between a model and data, the generalization
property of CNN-based image reconstruction remains poorly
understood.

The motivation behind this article is mainly twofold. On
the one hand, instead of mathematically constructing regu-
larization functionals, data-driven sur-

years [12], as shown in Figure 1. In both paradigms of model-
based and learning-based image reconstruction, uncertainty
often arises from either insufficient training data (e.g., due
to cost constraints) or anomalous samples in the testing data
(e.g., due to noise contamination). Bayesian statistics has
evolved into a powerful framework for addressing uncer-
tainty-related issues in a principled manner. In Bayesian

modeling, there are two types of uncer-

rogate models have been developed to Rapid advances in teep tainty to consider in image reconstruction:

incorporate domain-specific knowledge learning have inspired a aleatoric uncertainty, which captures the

contained in physics-driven models [1]. new generation of data- noise inherent in observations, and epis-

Model-driven deep learning architectures, driven computational temic uncertainty, which accounts for the

including deep unfolding networks (DUNs) - _ _ uncertainty in the model, regardless of
imaging systems with

[9] and plug-and-play image reconstruction
[27], have found successful applications
in various inverse problems, from medical
imaging [11], [21] to image reconstruction
[6], [27]. Several celebrated convex optimi-
zation algorithms, such as the iterative soft thresholding algo-
rithm (ISTA) and the alternating-direction multiplier method
(ADMM), have been unfolded into the corresponding neural
network implementations with improved interpretability, name-
ly, ISTA-net [26] and ADMM-net [22].

On the other hand, uncertainty modeling has started to
attract attention from the deep learning community in recent
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whether it is constructed mathematically
or driven by data [12]. The latter can be
explained away given enough data, at least
in theory. However, it remains unclear how
much data will be enough in practical situ-
ations; moreover, for the class of regression problems, such as
blind image reconstruction, we have to deal with both uncer-
tainties due to the lack of a priori information about either the
unknown image or the real-world degradation process.

For the first time, BDL offers a principled framework for 1)
leveraging the rich literature of regularized image reconstruc-
tion to construct a deep network with better interpretability
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FIGURE 1. The number of publications on sparse coding and uncertainty modeling, searched from the Web of Science database with the title keywords (a)
“sparse coding” (or “sparse representation”) and (b) “uncertainty modeling” (or “Bayesian deep learning”).
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by deep unfolding and 2) improving the performance of

CNN-based image reconstruction by taking uncertainties into

account. The new insights brought about by this tutorial are

summarized as follows:

m We conduct a systematic review of existing DUNSs to bridge
model-based and learning-based computational imaging.
DUN offers a unified framework for translating various
sparsity models into deep neural network implementations.

m We present a new framework for deep
uncertainty-aware learning (DUAL) for
image reconstruction capable of uncer-
tainty modeling. In particular, we show
how uncertainty modeling can lead to a
novel design of UDL functions in image
reconstruction.

m By combining DUN with DUAL, we
advocate a novel approach to developing transparent learn-
ing-based solutions to image reconstruction problems by the
end-to-end optimization of network parameters. Such a tun-
ing-free property is desirable for task-specific optimization
in various practical computational imaging applications.

Past: From structured sparsity to DUNs

From 2000 to the present, we can divide the historical develop-
ment of computational imaging techniques into two periods:
sparsity based (2000-2016) and deep learning (2012—present).
In this section, we first review the existing work on Bayesian
formulations of sparse coding and their applications in image
reconstruction. We then discuss some recent work on deep
learning-based computational imaging.

Model-based image reconstruction via sparse coding

We start from the Bayesian formulation of sparse coding. Then
we will take into account the uncertainty related to the mean
and variance, leading to extensions into nonlocal centralized
and simultaneous sparse coding, respectively. The key idea of
sparse coding is to decompose a signal x € R" (n is the size of
an image patch) into the linear combination of basis vectors (as
well as dictionary elements) Do, where D € R n<K is
the dictionary. The coefficients o € R¥ satisfy some sparsity
constraint, e.g., since /, optimization is computationally pro-
hibitive to solve due to its nonconvexity, one can consider the /;
counterpart as the surrogate function:

o = argmin| x — Da H§+/1||(x||1. (1)

In addition to convexity, solving the /;-norm minimiza-
tion problem is mathematically equivalent to the maximum
a posteriori (MAP) probability estimation of o with an
identically independent distributed (i.i.d.) Laplacian prior
Pa=1 / 20, 7%/ This Bayesian formulation of sparse
coding allows us to gain a better understanding of the dual-
ity between the probabilistic and deterministic settings. More
specifically, the regularization parameter, which can be set
as Ai =202/6,, is determined by o2, which denotes the noise
variance (approximation errors), and 0, the standard deriva-

Bayesian statistics has
evolved into a powerful
framework for addressing
uncertainty-related issues
in a principled manner.

tion of the signal (sparse coding coefficients ;) [4]. Modeling
the uncertainty on the mean and variance of sparse coefficients
has led to two parallel approaches of nonlocal extensions.

Nonlocal centralized sparse representation

The key idea behind the centralized sparse representation with-
out local locality (NCSR) [5] is to estimate the biased mean of
the sparse coding coefficients o by averaging a group of similar
nonlocal patches; that is, 8= Xicq k0,
where () denotes the search window to find
similar patches, and @ is the linear weight
characterizing the similarity between the
target and reference patches. Then, the
NCSR model is formulated by the following
optimization problem:

o= arg;nin |x - Da | + AZH ai— Bil, 2

where the last term contains a nonlocal estimation of the bi-
ased mean (p can be one or two) for selected exemplar patch-
es. The uncertainty arising from the estimation of the nonlo-
cal mean can be quantified by the error term e=oa — . In
[5], we have assumed the independence between f and e and
the i.i.d. Laplace distribution for e. It follows that the original
nonlinear shrinkage operator for o can be generalized by tak-
ing the biased mean into account [4]. Such a generalization
allows us to solve (2) by a computationally efficient iterative
thresholding algorithm.

Connecfing the Gaussian scale mixiure

with simultaneous sparse coding

The Gaussian scale mixture (GSM) model has been widely
adopted to characterize the spatial variability property of im-
ages [3]. The GSM model decomposes the sparse coding coef-
ficients o into the multiplication of a Gaussian vector 8 and
a hidden scalar multiplier 0; i.e., a; = 0;3;, where the coef-
ficient ; is Gaussian with a standard derivation of 6,, and 6,
is the positive scaling variable (characterizing variance uncer-
tainty). The GSM prior of o can be written as

P@=[]P@). P@)= [~ Pla|e)p@ide. ()

Note that, for most choices of P(6;), it is difficult to compute
the MAP estimates of &;. However, we can overcome this dif-
ficulty by the joint estimation of (o;,6;); that is, for a given ob-
servation x = Do + n, where n~ N(0, 0'%), we can formulate
the following joint MAP estimation problem:

(o, 0) = argmax log P (x | o, ©) P (x, ) 4
= argmax log P(x | o) +log P(oc 1 ©) +1og P(0), @)
where P(x|a) is the likelihood term characterized by a
Gaussian function with variance oz. The prior term P (o |0)
can be expressed as

IEEE SIGNAL PROCESSING MAGAZINE | January 2023 |

75

Authorized licensed use limited to: West Virginia University. Downloaded on January 11,2023 at 16:06:04 UTC from IEEE Xplore. Restrictions apply.



76

02
P(a|e)=HP(a,»|ei)=H6Eexp(—(a’zef’) ) ®)

where u; denotes the biased mean (similar to the weight-
ing coefficient B in the NCSR model). With a noninforma-
tive prior (as well as Jeffrey’s prior) P(6;) = 1 / 0;, we can
rewrite (5) as

1
202

(o, ) = argmin
o0

| x = Do [+ X 10g (6: vV 27)

)2
+ZM+Zlog9i, (6)

26?

i

where we have used P(0)=X,;P(0;). Noting that Jeffrey’s
prior is unstable as 6; — 0, we replace log6; with log(6; + €),
where € is a small positive number for numerical stability.
This equation can then be further translated into the following
Bayesian sparse coding problem:

(o, 0)= argminH x — Do Hi +407log (0 + €)
o, 0

— )2
iy e

i

0

A key observation behind simultaneous sparse coding (as
well as structured sparsity) [3] is that, for a collection of similar
patches, their corresponding sparse coefficients o should be
characterized by the same prior—that is, the same g (mean)
and O (variance). Therefore, a matrix extension of (7) can be
written as

(B, 0) = argmin| X — DAB [ + 4021og (0 + €)
B,6

+o2|B-T, @®)

where X =|[x1,...,xn] denotes the collection of m similar
patches, and A = AB is the group representation of the GSM
model with sparse coefficients. Such a structured sparsity ex-
tension of the GSM model allows us to exploit the nonlocal
similarity in image signals by low-rank methods [3]. In sum-
mary, model-based image reconstruction focuses on the con-
struction of competing image prior models, which is in sharp
contrast to the more recently developed data-driven proxy
model for the image prior.

Bayesian image reconstruction via DUNs

In the past five years, DCNN-based approaches to image re-
construction have received increasing attention. Assuming a
standard degradation mode y = Ax +n, where x,y denotes
the original/degraded image pair, and A and n denote the deg-
radation model and additive noise, respectively, we can formu-
late the following MAP probability estimation problem:

X = argmaxlog P (x | y) = argmaxlog P(y | x) + log P(x), (9)

where P(y | x) and P (x) denote the likelihood and prior terms,
respectively, which can be written as

P(ylx) o exp(—ﬁlly — Ax Ii),P(x> oc exp(—AJ (x)), (10)

where o3 is the noise variance, and J(x) is the regulariza-
tion function (e.g., sparsity based [13], nonlocal self-similarity
based [7]). It follows that (10) can be rewritten as

X = argmin ||y—Ax H;—l—/’LJ(x). (11)

An important new insight behind deep learning-based ap-
proaches is to unfold the iterative optimization algorithm into a
DCNN-based implementation. Such DUNSs consist of multiple
denoising modules interleaved with back-projection modules
to ensure observation consistency. Parallel to model-based ap-
proaches, we review the unfolding of two sparse models: de-
noising prior-driven deep neural networks (DPDNNG) [6] and
deep GSM priors [10].

DPDNNs

Instead of using an explicitly expressed regularizer, denoising-
based image restoration methods [27] use a more complex im-
age prior by decoupling the optimization problem of (11) into
one subproblem for the data likelihood term and the other for
the prior term. By introducing an auxiliary variable v, (11) can
be rewritten as

(x,v)= argmin%H y—Ax H; +AJ(v),s.t. x=v. (12)

This equally constrained optimization problem can be con-
verted into the following unconstrained optimization problem:

() = argmin |y —Ax [+l x —v [+ 700, (13)

which can be solved by alternatively solving two subproblems:

2
X}

(1)

xh = argmin%”y —Ax i+ UH x—v
X

P = argminﬂH XDy Hz +AJ(v). (14)

The x subproblem is quadratic; therefore, it can be solved in
closed form by x"Y =Wp, where W is a matrix related to
the degradation matrix A. When the matrix W is large, it is
generally impossible to compute its inverse. Instead, the clas-
sical conjugate gradient iterative algorithm can be used to cal-
culate x“*" but requires many iterations to compute x“*".
Furthermore, it is difficult to optimize the hyperparameters as-
sociated with model-based iterative reconstruction algorithms.

The DUN [9] has offered a promising new direction for
both computationally efficient implementation and end-to-end
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optimization of algorithm parameters. On the one hand, one
can compute x“*" with a single step of gradient descent as an
approximation to the x subproblem,

xV =y —5[ATAxY — y) + " —v)]

=Ax"+ ATy +5mv?, (15)

where A =[(1—8n)I —8ATA], and § is the parameter that
controls the step size. By precomputing A, the update of
x® can be computed efficiently. By mimicking the itera-
tive process, updating x“*" once is sufficient for x to
converge to a local optimal solution. On the other hand, the
v-subproblem is a proximity operator of J(v) calculated at
a point x“*Y, whose solution is given by a denoiser; that
is, v**Y = f(x"*"). Note that various denoising algorithms
can be used, including those that cannot be explicitly ex-
pressed by the MAP estimator with J(x). Through end-to-
end training, both the DCNN-based denoiser f( -) and other
network parameters can be jointly optimized, as shown in
Figure 2. It is easy to see how the three additive terms on the
right side of (15) are assigned to the three separate channels
connected by the addition operator (marked with orange)
in Figure 2.

Deep GSM prior
Parallel to structured sparsity or simultaneous sparse cod-
ing, we have also extended the work on DUNSs to the un-
folding of the GSM model in [10], where the variance field
of the GSM model is estimated along with the unknown
image. Specifically, in [10], we formulate the hyperspectral
image (HSI) reconstruction as an MAP estimation prob-
lem. With the observed measurements y, the target HSI x
can be estimated by maximizing the posterior probability,
that is,

logp(x|y) oc logp(y|x) +logp (x), (16)
where p(y|x),and p(x) denote the likelihood and the prior
distribution, respectively. For the likelihood term, we use a
Gaussian function as follows:

For the prior term, we propose characterizing each pixel x; of
the HSI by a Gaussian distribution with a nonzero mean and
standard deviation 6;. With a scale prior p(6;) and the inde-
pendence assumption between 6; and x;, we can model the
image prior using the following GSM model:

p@=I1p@, pe)= [~ pwilosp@©)der  (18)

where p(x;|6;) is the Gaussian distribution; i.e., p(xi|6:) =
(17427 0 exp (— ((xi — ui) 2/267)).

Note that the variance field is embedded in the scale prior
p(6;). Instead of modeling p(6;) with an exact prior (e.g.,
Jeffrey’s prior p(6:) = 1/6:), we have used the following gen-
eral form in [10]: p(6:) cc exp(—J(6:)), where J(6;) is an
energy function that plays the role of regularization. Since an
analytical expression of p(x;) is often intractable, we resort to
jointly estimating x and @ by replacing p(x) with p(x, 6) in
the estimation of MAP. That is,

(x,0) = argmaxlogp(y|x) +logp(x, 6)
x,0
= argmaxlogp(y|x) +logp(x|6) +1logp(6). (19)
x,0

By substituting the likelihood term p(x;|6;) and the prior term
p(6;) into the MAP estimation, we obtain the following joint
objective function:

N
(x,0) = argmin” y—Ax H; +0? Z #()Ci —u)?+20%J(0).
x,0 i=1Yi
(20)

Similar to the GSM-simultaneous sparse coding derivation
[3], this joint optimization problem can be solved by alternat-
ing the optimization of x and 6. With a fixed 6, we can update
x by solving the x subproblem:

N
x = argmin| y — Ax [} + > wiCxi— u)?, (21
X

i=1

where w; = 0%/67, and the mean u; is updated along
with x. Similar to the NCSR model [5], we can calculate the
weighted average of similar patches as the mean estimate

2 . . .
1 | y—Ax u;. Then, the solution to (21) is given by gradient descent as
p<y|x>=—exp<—’—2”2. (17 o ey e
V2no 20 the following:
;... :—_—_-_--—_——_—_——_——_—__E—I...
Sy : om, : 57,
y—» AT x(O)' DCNN 0(1) P 000 Lx_(t_1) DCNN U(') + X(t) Eoooxi_” DCNN v(T) + > x(T)
Denoiser | s, : Denoiser 5 T I Denoiser 5y
= ' i - T
—> A 4T i > : ——> A
I t Stage,

FIGURE 2. The unfolding of image reconstruction based on iterative denoising in a DCNN-based implementation [6].
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FIGURE 3. The general network architecture of the deep GSM prior [10].

XD =x0 25 (AT AxO —y) + wO x© —u®)),  (22)

where u® = [ul, ..., ulh]T € RY, w?” = [wi, ..., wi]T € RY,
and § is the step size.

For the 6 subproblem with fixed x, we translate it into a
problem of estimating w; that is,

N

w = argmin Z wilxi —u)®+J(w), (23)

wooi=1

where J(w) is the regularization term. For some choices, we
can derive a closed-form solution; for others, we resort to it-
erative algorithms. However, the manual design of a proximal
operator has its fundamental limitations (e.g., the difficulty of
parameter tuning). Conceptually similar to DPDNN [6], we
@+ using a DCNN as a surrogate
prior. For the purpose of the network design, we bridge the x

can estimate w“*" from x
and w subproblems in the following unified framework:
x=x0-25{ATAx" —y) + S " —u)}, (24)

where S(-) represents the function of the DCNN-based mod-
ule to estimate w—that is, the solution to (23). As shown in
Figure 3, we can construct an end-to-end network with T'stages
corresponding to 7 iterations to iteratively optimize the unfold-
ed network parameters x and w. The three terms on the right
side of (24) are mapped to the three channels connected by the
addition operator (denoted @ with two minus operators above
and below) at each stage.

Present: DUAL for Bayesian image reconstruction
DUAL refers to the emerging class of ideas that attempts
to take both model and data uncertainty into account. The
uncertainties in the model and the data are also known as
epistemic and aleatoric uncertainties, respectively, in com-
puter vision [12], and they directly affect the generalizability
property of DNNs. Recent studies have shown that model-
ing uncertainty can be tackled in a principled manner under
the BDL framework. This line of research can be interpreted
as an extension of DUNs because it shows that the classical
model-based MAP probability estimation, even after taking
the uncertainty of the data into account, can be unfolded into
a DCNN-based implementation.

To demonstrate that DUAL offers a unified framework for
deep learning-based computational imaging, we present its
applications to two imaging tasks in this section: single-image
superresolution (SISR) [18] and robust depth completion [30].
The unifying theme is that the construction of the uncertainty
estimation module (UEM) leads to the design of a novel loss
function that can be incorporated into the training process.
Such a unified treatment allows us to pursue the end-to-end
optimization of all components, including both UEMs and
parameters of DUNs.

DUAL for SISR

There are two classes of uncertainties to consider: aleatoric un-
certainty and epistemic uncertainty. The former captures noise
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inherent in the observation data, and the latter accounts for the
uncertainty of the model about its predictions. Following the
standard notation in the literature of SISR, we use y;, x; to
denote the low-resolution image and the corresponding high-
resolution image, respectively. To quantify the aleatoric un-
certainty, we use f(-), 0; to denote an SISR network and its
associated aleatoric uncertainty, leading to the following ob-
servation model: x; = f(y;) + €0;, where € observes the La-
place distribution with zero mean and unit variance. It follows
from this observation model that

1 (_Hm—é@ L )

p(xi,0i]y:) =30, P (25)

where f(y:) and 6; denote the SR image (mean) and the uncer-
tainty (variance), respectively. Then, the log-likelihood func-
tion can be written as

—In6i—In2  (26)

In p(xi. 0] y) :_w

DUAL aims to estimate not only the SR image (mean)
f(y:) but also the uncertainty (variance) 6; simultaneously.
As shown in Figure 4, we train two networks with a shared
backbone to estimate the log variance s; = In 0; together with
f(»i). The maximum likelihood estimation of (26) boils down
to the minimization of the following UDL function:

The loss function Lup includes two terms: the first is associ-
ated with the fidelity term, and the second prevents the net-
work from predicting infinite uncertainty for all pixels. Those
two terms reach equilibrium, but no prior is imposed on the
uncertainty estimation.

The limitations of Lup have been shown experimentally
in [18]. From (27), we can see that the loss function Lup has
incorporated the variance term (0;) into the divisor of the dif-
ference term in absolution. However, a pixel with a large vari-
ance (e.g., around edges) will be penalized after the division
and will have less impact on the overall loss function. Although
this attenuation of pixels with large uncertainty benefits high-
level vision tasks, low-level vision tasks, such as SISR, are
different. Since pixels with a large uncertainty carry visually
important information, they need to be prioritized (instead of
attenuated) and given larger (instead of smaller) weights. Such
a new insight inspired us to better prioritize pixels with a large
uncertainty using a new adaptive weighted loss named UDL
for SISR.

More specifically, instead of using exp(—s;) to attenuate
the importance of pixels with a large uncertainty, one can
use a monotonically increasing function to prioritize them.
Linear scaling is a natural option that leads to the following
loss function:

N
Lo =~ 2 5 [xi= ol (28)
i=1

N . . . - .
Lup = % > exp(—si) || xi—f(y) Hl +5i. 27 where §; =s;—min(s;) is a nonnegative linear scaling func-
i=1 tion. To prevent the uncertainty value from degenerating into
Step 1 E’ <
Q
2 2 F)
12 \
z z z 2 >
_— —
8§78 8 8 esu
D
y s
Backbone Network ) g- z 0
s < s
22 |18
)
(@)
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I 8 8 55 m— | oot
o Z
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FIGURE 4. The training of an SISR network with loss L. [18]. The training process can be divided into two steps: (a) the first step estimates the un-
certainty O, and (b) the second step generates the final mean value f(y). Instep 1, shown in (a), the mean value f(y) and variance O are pretrained
by loss Lesu. During step 2, the mean value network f(y) is trained by loss Lun, While the inferring variance network © is fixed. Conv: convolution;

ELU: exponential linear unit.
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zeros, the uncertainty estimation result in the first step will be
passed to the second step as the attention signal (s =1n ).
Note that, in LupL loss, the texture and edge pixels with high-
er uncertainty tend to have larger weights than the pixels in
smooth regions, which matches our intuition of prioritizing
edges and textures.

To demonstrate the effectiveness of UDL in SISR, we have
selected three popular SISR techniques, enhanced deep super-
resolution network [15], residual channel attention network [29],
and DPDNN [6], as well as the gradient scaling attention model
(GRAM) [14] as a baseline for comparison. To our knowledge,
GRAM [14] was the only study of data uncertainty in SISR prior
to the publication of [18]. It shares a similar observation with
uncertainty modeling, but the strategy of the UDL design dif-
fers from ours. Table 1 compares the peak signal-to-noise ratio
(PSNR)/structural similarity index (SSIM) results for four dif-
ferent network architectures using different loss functions. UDL
[18] has consistently achieved a better performance than the
original models (without uncertainty) and the baseline (GRAM).

DUAL for robust depth completion

Aleatoric uncertainty that captures the noise inherent in the
observations can be further categorized into two classes: ho-
moscedastic and heteroscedastic. Heteroscedastic uncertainty is
especially important to the task of depth completion [30] due to
the physical limitations of lidar sensors—e.g., lidar often scans
the surrounding environment at equally divided angles, result-
ing in an uneven distribution of depth images. Such an uneven
distribution leads to varying densities in different areas, which is
the source of heteroscedastic uncertainty. Conventional depth-
completion methods average the MSE loss across all pixels, ig-
noring the issue of heteroscedastic uncertainty. Low-density ar-
eas (arising from nonuniform sampling) and outliers often cause
the network to overemphasize these areas (i.e., overfitting).

In one of our most recent works [30], we considered a para-
metric approach to quantifying uncertainty in a depth map by
its variance field X. The key idea is to predict an unknown
dense depth image X from a sparse depth image Y using a deep
learning network X = F(Y). Then, the problem of depth com-

pletion can be formulated by maximizing the posterior prob-
ability P(X | Y). After introducing the uncertainty measure
X (o for a pixel), we can decompose the joint posterior prob-
ability into the product of marginals,

P(X,ZL|Y)=P(ZL|Y)P(X|L,Y)

=[1p(oilyp(xilony, &
where x;, o; and y; denote the pixelwise elements of
X, X,and Y, respectively. For the likelihood of the un-
certainty map p(oi|yi),, we model it with Jeffrey’s prior
P(oi|yi) =~ (1/c;) based on the intuition of the sparsity on
the uncertainty map. For the likelihood term, p(xi|oi,yi)
can be modeled by a Gaussian distribution observing
Xi= F(yi) ~N(x,-,0',-):

p(xiloiyi) = (30)
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1
ex
V2moi p(
where &: denotes a pixel of the image X. Therefore, we obtain
the following MAP estimation problem:

max Y (logp(oi| yi) +logp(xi| o3,y:))
— )
= argmaxz<—2log6,-—x—zlog2ﬂ>
5 o2

Xi,Oi
[N VA
= argmin2(4log o+ (x,zx,))
Xi,0i Oi
= argmin X (¢™" (X — xi)’ + 2s:),

XiySi

3D

where s; = 2logo; (67 = ¢*) models uncertainty about ;.
This MAP formulation of uncertainty modeling can be
translated into the design of a new UDL function as follows:
Lup = #Z(eﬂ"()}i —xi )+ 2si). (32)
From the formula, we observe that the first term will reduce
the joint loss of pixels with large differences between the pre-

diction and the ground truth (x; — x;)*. During the optimiza-
tion process, the optimizer may increase the uncertainty values

Table 1. The average PSNR and SSIM results for bicubic downsampling degradation with a scaling factor of x4 on five benchmark data sets.

80

Set5 Set 14 BSD 100 Urban 100 Manga 109
Model Scale  Loss PSNR SSIM PSNR PSNR SSIM PSNR SSIM PSNR SSIM
EDSR-S x4 Original 31.61 0.8862  28.22 07721 273 0.7271 2525 0.7575  29.31 0.8907
GRAM 31.08 0.8787  27.89 0.767 27.12 0.7229  24.81 0.7429  28.18 0.8762
Lo 31.9 0.8897 28.37 0.7755 27.4 0.7301 25.54 0.7671 29.77  0.8967
DPDNN x4 Original 31.72 0.889 28.28 0.773 27.44 0.729 25.53 0.768 — -
GRAM 31.89 0.8913 2837 0.7772 2741 0.7314  25.63 0.7708  29.70 0.9003
Lo 32.2 0.8944 28.6 0.7819 27.56 0.7356 26.09 0.7862 30.38 0.9082
EDSR x4 Original 32.46 0.8968  28.8 0.7876 2771 0.742 26.64 0.8033  31.02 0.9148
GRAM 32.32 0.8971 2873 0.7858  27.66 0.7395 2635 0.7955  30.73 0.9125
Lo 32.59 0.8998 28.87 0.7889 27.78 0.7431 26.75 0.8054 31.24 0.9167
RCAN x4 Original 32.54 0.8986 28.8 0.7869  27.72 0.7418  26.6 0.8026  31.05 0.9156
Lo 32.65 0.9008 28.89 0.7896 27.81 0.7438 26.84 0.8099 31.29 0.9198

Enhanced deep super-resolution network (EDSR-S) is the EDSR baseline network [15] having 1.5 million parameters. The best performances are shown in bold.
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FIGURE 5. The robust completion of depth driven by uncertainty [30]. At the bottom (step 1), we jointly predict uncertainty maps and dense depth images
using the multiscale joint prediction model. The key idea is to balance the contribution of high-uncertainty regions to the joint loss function. At the top
(step 2), an uncertainty attention residual learning network is used to refine the prediction for pixels of high uncertainty. The key idea is to predict the

refinement map only for pixels that are uncertain in the first step.

—5i

so much that the penalty term e~ eventually approaches zero.
To balance the first term, the second term limits the growth of
uncertainty s; as a regularization term. As a consequence of
balancing, the network will control the contribution of high-
uncertainty regions to the joint loss function rather than over-
fitting these regions.

In the DUAL framework, we can observe that regions with
higher depth values often have higher uncertainty values. A
new insight brought about by [30] is to use the estimated
uncertainty map in the first step to guide the depth-comple-
tion refinement procedure in the second step, as shown in
Figure 5. In other words, with knowledge about the distri-
bution of high-uncertainty regions, one can tailor the pro-
cess of optimization for these special regions to achieve an
even better completion result. The key idea is to predict the
refinement map R for X; only for pixels that are uncertain in
the first step. Along this line of reasoning, the loss function
associated with uncertainty attention residual learning can be
written as

Lur = %Zs,"(x,‘ —Xi)—ri

Lir= ﬁz si((xi—

il

x)—ri) (33)

where r; is the pixel of the predicted residual R, and X; is the
depth output of the first step. Since optimization of different
objective metrics often has conflicting objectives for depth

completion, a mixture of forms L; and L, is used to build the
uncertainty-driven balanced loss function Lurs as follows:

Lur,
%(LUR + Lir). else (34

Nepoch is even

LURB =

As reported in [30], we have verified the effectiveness of
UDL functions on the Karlsruhe Institute of Technology and
Toyota Technological Institute at Chicago (KITTI) depth-
completion benchmark. As shown in Table 2, ours surpasses
all other competing methods in mean absolute error (MAE),
inverse MAE, and root-mean-square error of the inverse depth

Table 2. A comparison with other state-of-the-art methods on the
KITTI test benchmark

Methods MAE iMAE RMSE iRMSE
NLSPN [19] 199.59 0.84 741.68 1.99
GuideNet [23] 218.83 0.99 736.24 2.55
CSPN++ [2] 209.28 0.9 743.69 2.07
Deep lidar [20] 226.5 1.15 758.38 2.56
Sparse-to-dense (gd) 249.95 1.21 814.73 2.8
RGB_guide&certainty 215.02 0.93 772.87 2.19
UDL [30] {with Lyge) 19809 085 75159  1.98
UDL [30] with L) 190.88 0.83 79543  1.98

Note that uncertainty modeling has led to the best performance in three of the four
objective metrics. CSPN: convolutional spatial propagation network; gd: grayscale
depth; iIMAE: mean absolute error of the inverse depth; NLSPN: non-local spatial
propagation nefwor iRMSE: rootmean-square error of the inverse depth; RGB: red,
green, blue.
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metrics, demonstrating the superiority of UDL functions. We
have also reported some qualitative visual comparison results
on the KITTI depth-completion benchmark test data set in
[30]. As shown in Figure 6, our results have clear boundaries
and recover more details than other depth-completion meth-
ods. One salient feature offered by UDL functions is the capa-
bility of recovering fine-detailed structures in depth images
(e.g., the rearview mirror of the parked car and the vertical
pole on the street).

Future: BDL for image reconstruction
BDL has emerged as a unified framework for tightly inte-
grating deep learning with Bayesian models. In addition to
DUN and DUAL, covered in this article,
we believe that BDL covers a wider range
of ideas, bridging the conventional wisdom

For low-level vision tasks,

lated scenarios, there is still a unified framework for system-
atically taking into account various unknown factors.

Several outstanding open problems remain—e.g., how to
properly address the issue of errors in the kernel estimation
and noise contamination for blind deconvolution, how to han-
dle spatially varying blur or multiple degradations, and how
to unify existing research on blind image denoising/deblur-
ring with blind image superresolution. Some promising results
have been reported for the blind reconstruction of face images;
much remains to be explored for other image modalities.

In addition to uncertainty modeling, self-supervised learn-
ing (SSL) [17] has re-emerged as a compelling framework
for representation learning. Several pioneering studies have
shown promising results in combining
SSL with BDL in low-level vision tasks,
such as compressive sensing and medi-

. . modeling real-world . .
of model-based solutions with the new B . cal image reconstruction.
trend of data-driven approaches. From the degradation !Ias remained For middle-level vision tasks, such as
deep mean shift prior to posterior sam- a long-standing open semantic segmentation, transformer-based
pling, there are plenty of room and oppor- prohlem. approaches (e.g., the shifted window trans-

tunities to take advantage of theoretically

sound ideas originating from Bayesian inference to shed
new insight into the new class of deep image priors [24] and
plug-and-play priors [27]. Looking ahead, we believe that the
following research directions of BDL deserve a systematic
study for the next five to ten years: uncertainty-driven kernel
estimation for blind image reconstruction (low-level vision),
uncertainty-driven transformers for semantic segmentation
(middle-level vision), and joint image reconstruction and rec-
ognition (high-level vision).

For low-level vision tasks, modeling real-world degrada-
tion has remained a long-standing open problem. The uncer-
tainty factors associated with real-world image degradation
are diverse and complex; e.g., the blurring kernel can be
motion related or out of focus, spatially invariant, or spatially
varying, and the degradation can be associated with adver-
sarial environmental conditions (e.g., atmospheric turbulence
or low illumination) or imaging devices (e.g., sensor noise or
limited spatial resolution). Despite the progress made for iso-

former) have shown great potential recently.
An uncertainty-guided transformer was recently developed
for camouflaged object detection and salient object detection.
The motivation behind uncertainty-guided transformer rea-
soning (UGTR) [25] is to combine a vision transformer with a
probabilistic representational model to explicitly reason under
uncertainties. The key idea is to first learn a conditional distri-
bution over the transformer output to obtain initial estimates
along with associated uncertainties and then reason over these
uncertain regions with an attention mechanism to generate
final predictions.

Despite the conceptual appeal, the success of UGTR has
been limited to the task of detecting objects so far. How can
we combine UDL with transformer models for more general
vision tasks, such as semantic segmentation? Can we extend
the framework of UGTR into semantic segmentation from
multimodal data, such as color and depth? How can we take
advantage of the vision transformer for efficient uncertainty
estimation for semantic segmentation in video?

(a) (b)

(c) (d)

FIGURE 6. A comparison of visual quality on the KITTI test benchmark: (a) red, green, blue; (b) CSPN++ [2]; NLSPN [19]; and our UDL [30]. Note that, in
the first row, our UDL method [30] is the only one capable of restoring the rearview mirror hidden in the dark background; in the second and third rows,

the vertical poles are better recovered by our UDL method [30].
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The holy grail of computer vision is teaching a computer to
see like humans. One remarkable capability of human vision
systems (HVSs) is their robustness and adaptation in challeng-
ing adversary environments (e.g., with occlusion and illumi-
nation variations). Deep uncertainty learning has shown great
potential to improve the robustness of image recognition by
feature distillation. However, the problem of robust object rec-
ognition has remained largely unsolved. From generalization
properties to computational efficiency, there still exists a sig-
nificant gap between the best invention by humans and innova-
tive discovery by nature (i.e., the evolution and development of
HVSs). To fill in this gap, we still need new inspiration from
different disciplines.

How can we solve the problem of image

University of Science and Technology, Wuhan, China, in 2004
and his Ph.D. degree in circuits and systems from Xidian
University, Xi’an, China, in 2010. He was a visiting student at
Microsoft Research Asia, Beijing, China, in 2006. From 2009
to 2010, he was a research assistant with the Department of
Computing, Hong Kong Polytechnic University, Hong Kong.
In 2010, he joined the School of Artificial Intelligence, Xidian
University, Xi’an, 710071, China, as a lecturer, and he has
been a professor there since 2016. He was a recipient of the
Best Paper Award at the 2010 SPIE Visual Communication
and Image Processing. He is currently serving as an associate
editor of /IEEE Transactions on Image Processing. His
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What is the first-order approximation of a
truly biologically plausible computer vision
system inspired by the organizational principles underlying
human visual perception? These important challenges are like-
ly to stimulate further research and attract more young minds
to work in this exciting and emerging field.

Conclusion

In this article, we have reviewed the history of image recon-
struction from both model-based and learning-based perspec-
tives. From sparse coding to deep learning, Bayesian image re-
construction has evolved into a hybrid framework under which
optimization-based solution algorithms for assumed degrada-
tion models lead to the principled design of UDL functions in
deep learning. In addition to interpretability and transparency,
such a marriage between model-based and learning-based
paradigms alleviates the burden of handcrafted algorithm
parameters by end-to-end optimization. If DUNs mark the
bridge connecting traditional optimization-based solution al-
gorithms with fashionable DCNN-based implementations,
DUAL is likely to work as a catalyst for uncertainty modeling
in unfolded network architectures. Future research on BDL for
image reconstruction will continue to benefit from the fruit-
ful interaction between unfolded network architectures and
UDL functions.

Acknowledgments

This work was supported in part by the National Key R&D
Program of China under grant 2018AAA0101400 and the
Natural Science Foundation of China under grants 61991451,
61632019, 61621005, and 61836008. Xin Li’s work is partially
supported by the National Science Foundation under grants
OAC-1839909 and I1S-1951504.

Authors
Weisheng Dong (wsdong@mail.xidian.edu.cn) received his
B.S. degree in electronic engineering from the Huazhong

such as color and depth?

From September 2011 to March 2013, he
was a research assistant at Nanyang
Technological University, Singapore. From August 2013 to
August 2014, he was a postdoctoral research fellow at
Nanyang Technological University. From July 2013 to June
2015, he was a lecturer at Xidian University. Since July 2015,
he has been an associate professor with the School of
Artificial Intelligence, Xidian University, Xi’an, 710071,
China. He served as the special section chair for IEEE Visual
Communications and Image Processing 2017 and section
chair/organizer/technical program committee member for
IEEE International Conference on Multimedia and Expo
2014-2015, Advances in Multimedia Information Processing
2015-2016, IEEE International Conference on Image
Processing 2015, and the International Conference on
Quality of Multimedia Experience 2016. He was awarded the
best student paper of IEEE International Symposium on
Circuits and Systems 2013. His research interests include
visual perceptual modeling, saliency estimation, quality eval-
uation, and just-noticeable-difference estimation. He is a
Member of IEEE.

Leida Li (1dli@xidian.edu.cn) received his B.S. and
Ph.D. degrees from Xidian University, Xi’an, China, in
2004 and 2009, respectively. From 2014 to 2015, he was a
visiting research fellow with the Rapid-Rich Object Search
Laboratory, School of Electrical and Electronic Engineer-
ing, Nanyang Technological University, Singapore, where
he was a senior research fellow from 2016 to 2017. He is
currently a professor with the School of Artificial Intelli-
gence, Xidian University, Xi’an, 710071, China. He was a
senior program committee member for International Joint
Conference on Artificial Intelligence 2019-2020; session
chair for ACM International Conference on Multimedia Re-
trieval 2019 and PCM 2015; and TPC for the American As-
sociation for Artificial Intelligence 2019 conference,
Association for Computing Machinery International
Conference on Multimedia (ACM-MM) 2019-2020, ACM

IEEE SIGNAL PROCESSING MAGAZINE | January 2023 | 83

Authorized licensed use limited to: West Virginia University. Downloaded on January 11,2023 at 16:06:04 UTC from IEEE Xplore. Restrictions apply.



84

MM-Asia 2019, the International Conference on Affective
Computing and Intelligent Interaction 2019, and the Pacific-
Rim Conference on Multimedia 2016. He is an associate ed-
itor for the Journal of Visual Communication and Image
Representation and the European Association for Signal
Processing Journal on Image and Video Processing. His re-
search interests include multimedia quality assessment, af-
fective computing, information hiding, and image forensics.
He is a Member of IEEE.

Guangming Shi (gmshi @mail.xidian.edu.cn) received his
B.S. degree in automatic control in 1985, his M.S. degree in
computer control in 1988, and his Ph.D. degree in electronic
information technology in 2002, all from Xidian University.
Since 2003, he has been a professor with the School of
Electronic Engineering at Xidian University and, since 2004,
the head of the National Instruction Base of Electricians and
Electronics. Presently, he is the deputy director of the School
of Artificial Intelligence, Xidian University, Xi’an, 710071,
China, and the academic leader in the subject of circuits and
systems. His research interests include compressed sensing,
the theory and design of multirate filter banks, image denois-
ing, low-bit-rate image/video coding, and the implementation
of algorithms for intelligent signal processing (using digital
signal processing and field-programmable gate arrays). He has
authored or coauthored more than 60 research papers. He is a
Fellow of IEEE.

Xin Li (xin.li@ieee.org) received his B.S. degree (highest
Hons.) in electronic engineering and information science from
the University of Science and Technology of China, Hefei,
China, in 1996 and his Ph.D. degree in electrical engineering
from Princeton University, Princeton, New Jersey, USA, in
2000. He was a member of technical staff with Sharp
Laboratories of America, Camas, Washington, USA, from
August 2000 to December 2002. Since January 2003, he has
been a faculty member with Lane Department of Computer
Science and Electrical Engineering, West Virginia University,
Morgantown, West Virginia, 26506-6109, USA. He was elect-
ed a Fellow of IEEE in 2017.

References

[1] S. Arridge, P. Maass, O. Oktem, and C.-B. Schonlieb, “Solving inverse prob-
lems using data-driven models,” Acta Numerica, vol. 28, pp. 1-174, 2019, doi:
10.1017/S0962492919000059.

[2] X. Cheng, P. Wang, C. Guan, and R. Yang, “CSPN++: Learning context and
resource aware convolutional spatial propagation networks for depth completion,” in
Proc. AAAI Conf. Artif. Intell., 2020, pp. 10,615-10,622, doi: 10.1609/aaai.
v34i07.6635.

[3] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep
convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2,
pp. 295-307, 2015, doi: 10.1109/TPAMI.2015.2439281.

[4] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising via dic-
tionary learning and structural clustering,” in Proc. CVPR, 2011, pp. 457-464.

[5] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral variance
estimation: A low-rank approach,” IEEE Trans. Image Process., vol. 22, no. 2, pp.
700-711, 2012, doi: 10.1109/T1P.2012.2221729.

[6] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising prior driven

deep neural network for image restoration,” IEEE Trans. PAMI, vol. 41, no. 10, pp.
2305-2318, 2019, doi: 10.1109/TPAMI.2018.2873610.

[7] W. Dong, L. Zhang, R. Lukac, and G. Shi, “Sparse representation based image
interpolation with nonlocal autoregressive modeling,” IEEE Trans. Image Process.,
vol. 22, no. 4, pp. 13821394, 2013, doi: 10.1109/TIP.2012.2231086.

[8] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized sparse represen-
tation for image restoration,” IEEE Trans. Image Process., vol. 22, no. 4, pp. 1620—
1630, 2013, doi: 10.1109/TTP.2012.2235847.

[9] J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-based
inspiration of novel deep architectures,” 2014, arXiv:1409.2574.

[10] T. Huang, W. Dong, X. Yuan, J. Wu, and G. Shi, “Deep Gaussian scale mixture
prior for spectral compressive imaging,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recogn., 2021, pp. 16,216-16,225.

[11] E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network using
directional wavelets for low-dose X-ray CT reconstruction,” Med. Phys., vol. 44, no.
10, pp. €360—e375, 2017, doi: 10.1002/mp.12344.

[12] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep learn-
ing for computer vision?” 2017, arXiv preprint:1703.04977.

[13] K. I. Kim and K. Younghee, “Single-image super-resolution using sparse
regression and natural image prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
32, no. 6, pp. 1127-1133, 2010, doi: 10.1109/TPAMI.2010.25.

[14] C. Lee and K-S. Chung, “Gram: Gradient rescaling attention model for data
uncertainty estimation in single image super resolution,” in Proc. 18th IEEE Int.
Conf. Mach Learn Appl. (ICMLA), 2019, pp. 8-13.

[15] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual net-
works for single image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recogn. Workshops (CVPRW), 2017, pp. 1132-1140, doi: 10.1109/
CVPRW.2017.151.

[16] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-local recurrent net-
work for image restoration,” in Proc. Adv. Neural Inform. Process. Syst., 2018, vol.
2018, pp. 1673-1682.

[17]1 X. Liu et al., ““Self-supervised learning: Generative or contrastive,” IEEE Trans.
Knowl. Data Eng., early access, 2021, doi: 10.1109/TKDE.2021.3090866.

[18] Q. Ning, W. Dong, L. Xin, W. Jinjian, and G. Shi, “Uncertainty-driven loss for
single image super-resolution,” in Proc. 35th Conf. Neural Inf. Process. Syst., 2021.
[Online]. Available: https://papers.nips.cc/paper/2021/hash/88a199611ac2b85
bd3f76e8ee7e55650-Abstract.html

[19] J. Park, K. Joo, Z. Hu, C.-K. Liu, and I. S. Kweon, “Non-local spatial propaga-
tion network for depth completion,” in Proc. Eur. Conf. Comput. Vis., 2020, pp.
120-136.

[20] J. Qiu et al., “DeepLiDAR: Deep surface normal guided depth prediction for
outdoor scene from sparse lidar data and single color image,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recogn., 2019, pp. 3313-3322, doi: 10.1109/
CVPR.2019.00343.

[21] S. Ravishankar, J. Chul Ye, and J. A. Fessler, “Image reconstruction: From
sparsity to data-adaptive methods and machine learning,” Proc. IEEE, vol. 108, no.
1, pp. 86-109, 2019, doi: 10.1109/JPROC.2019.2936204.

[22] J. Sun et al., “Deep ADMM-NET for compressive sensing MRI,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 10—18.

[23] J. Tang, E-P. Tian, W. Feng, J. Li, and P. Tan, “Learning guided convolutional
network for depth completion,” IEEE Trans. Image Process., vol. 30, pp. 1116—
1129, Aug. 2019, doi: 10.1109/TTP.2020.3040528.

[24] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recogn., 2018, pp. 9446-9454.

[25] F. Yang et al., “Uncertainty-guided transformer reasoning for camouflaged
object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 4146—
4155, doi: 10.1109/ICCV48922.2021.00411.

[26] J. Zhang and B. Ghanem, “ISTA-NET: Interpretable optimization-inspired deep
network for image compressive sensing,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recogn., 2018, pp. 1828-1837, doi: 10.1109/CVPR.2018.00196.

[27] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-
play image restoration with deep denoiser prior,” IEEE Trans. Pattern Anal. Mach.
Intell., early access, 2021, doi: 10.1109/TPAMI.2021.3088914.

[28] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans. Image
Process., vol. 26, no. 7, pp. 3142-3155, 2017, doi: 10.1109/TIP.2017.2662206.

[29] Y. Zhang, L. Kunpeng, L. Kai, W. Lichen, Z. Bineng, and F. Yun, “Image
super-resolution using very deep residual channel attention networks,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 286-301.

[30] Y. Zhu, W. Dong, L. Li, J. Wu, X. Li, and G. Shi, “Robust depth completion
with uncertainty-driven loss functions,” in Proc. 36th AAAI Artif. Intell. Conf.
(AAAI2022). m

IEEE SIGNAL PROCESSING MAGAZINE | January 2023 |

Authorized licensed use limited to: West Virginia University. Downloaded on January 11,2023 at 16:06:04 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1017/S0962492919000059
http://dx.doi.org/10.1609/aaai.v34i07.6635
http://dx.doi.org/10.1609/aaai.v34i07.6635
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TIP.2012.2221729
http://dx.doi.org/10.1109/TPAMI.2018.2873610
http://dx.doi.org/10.1109/TIP.2012.2231086
http://dx.doi.org/10.1109/TIP.2012.2235847
http://dx.doi.org/10.1002/mp.12344
http://dx.doi.org/10.1109/CVPRW.2017.151
http://dx.doi.org/10.1109/CVPRW.2017.151
http://dx.doi.org/10.1109/TKDE.2021.3090866
http://dx.doi.org/10.1109/JPROC.2019.2936204
http://dx.doi.org/10.1109/TIP.2020.3040528
http://dx.doi.org/10.1109/TPAMI.2021.3088914
http://dx.doi.org/10.1109/TIP.2017.2662206

	073_40msp01-dong-3176421

