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Members of the alx gene family encode transcription factors that contain a highly conserved
Paired-class, DNA-binding homeodomain, and a C-terminal OAR/Aristaless domain.
Phylogenetic and comparative genomic studies have revealed complex patterns of alx
gene duplications during deuterostome evolution. Remarkably, alx genes have been
implicated in skeletogenesis in both echinoderms and vertebrates. In this review, we provide
an overview of current knowledge concerning alx genes in deuterostomes. We highlight
their evolutionarily conserved role in skeletogenesis and draw parallels and distinctions
between the skeletogenic gene regulatory circuitries of diverse groups within
the superphylum.

Keywords: Alx transcription factors, skeletogenesis, chondrogenesis, osteogenesis, deuterostome evolution,
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INTRODUCTION

Biomineralization, the formation of mineral by living organisms, is an exceptionally widespread
phenomenon and is thought to have evolved independently and rapidly in many different metazoan
phyla through the deployment of a wide range of biomineralization mechanisms and chemistries.
Depending on the type and extent of the mineral components, biomineralized tissues are used
for structural support, resource acquisition, and protection. There are three predominant classes
of biogenic mineral in metazoans: calcium carbonates, calcium phosphates, and silica. The carbonate
and phosphate salts of calcium are widely used as skeletal material by vertebrates and invertebrates,
while silica biomineralization is prevalent in sponges (Wang et al, 2010b). The emergence of
biomineralization during the Cambrian Explosion, followed by evolutionary modifications of these
biomineralization programs, gave rise to the diverse biomineralized structures found in modern
metazoans (Knoll, 2003; Zhuravlev and Wood, 2018).

Within the deuterostome superphylum, only vertebrates and echinoderms produce extensive
biomineralized skeletal structures. The vertebrate endoskeleton consists primarily of the skull,
vertebrae, ribs, and limb bones all of which are composed of matrix proteins (e.g., collagens)
and calcium phosphate crystals. Vertebrate biomineralization is predominantly orchestrated by
chondrogenic cells (chondrocytes) and osteogenic cells (osteoblasts and osteoclasts). The vertebrate
skeleton is formed during early development by cartilage and/or connective tissue membranes,
which are subsequently replaced by bony tissues through the process of ossification. There are
two forms of ossification, endochondral and intramembranous ossification. Endochondral ossification
is associated with the formation of long bones and requires the presence of a hyaline cartilage
template formed by chondrocytes (Mackie et al., 2008). During vertebrate embryonic development,
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chondrocytes are derived from neural crest cells, somitic
mesodermal cells, and lateral plate mesodermal cells (see review
by Hirasawa and Kuratani, 2015). Developmental cues signal
the cartilage matrix to calcify. This prevents the diffusion of
nutrients into the matrix and results in chondrocyte apoptosis,
allowing blood vessels to invade the cartilage cavities. Osteoblasts,
derived from common osteochondroprogenitor or directly from
chondrocytes (Yang et al., 2014), and osteoclasts, derived from
erythron-myeloid progenitors (Jacome-Galarza et al., 2019),
then transform the calcified cartilage into biomineralized bone
(Mackie et al., 2008). During intramembranous ossification,
spongy bones are formed when osteoblasts directly deposit
biomineral on extracellular sheets of mesenchymal connective
tissues (Percival and Richtsmeier, 2013). This process is
commonly involved in the formation of flat bones found in
the skull, mandible, and clavicles. Whether intramembranous
or endochondral ossification arose first during vertebrate
evolution remains unclear (Cervantes-Diaz et al., 2017;
Wood and Nakamura, 2018; Brazeau et al., 2020).

All adult echinoderms produce calcite-based endoskeletons
that consist of the test, teeth, and spines. In most species, the
adult form arises from a swimming, feeding larva via
metamorphosis, and these two life history stages bear little
morphological resemblance to one another. In some echinoderm
clades, specifically echinoids (sea urchins) and ophiuroids (brittle
stars), the feeding larva also possesses an intricate and extensive
calcitic endoskeleton, which is first laid down during embryonic
development and further elaborated after feeding begins. The
founder cells of the embryonic skeletogenic lineage, the large
micromeres, arise early in development and are specified by
a combination of localized maternal factors and unequal cell
division. At the mesenchyme blastula stage, the large micromere
descendants undergo an epithelial-to-mesenchyme transition
(EMT) and ingress into the blastocoel as primary mesenchyme
cells, or PMCs (see reviews by Ettensohn, 2020; McClay et al.,
2020). After ingression, PMCs extend filopodia and migrate
along the blastocoel wall, gradually adopting a ring-like
configuration near the equator of the embryo. As the PMCs
migrate, their filopodia fuse, forming a cable-like cytoplasmic
strand that connects the cells in a syncytial network. Amorphous
calcium carbonate and associated proteins are then secreted
into an intercellular space within the cytoplasmic cable, where
the biomineral matures and grows, eventually producing the
elaborate, branched skeletal elements (spicules) of the larva
(Wilt, 2002; McIntyre et al., 2014; Shashikant et al., 2018).

Due to differences in mechanisms underlying axial patterning,
developmental timing, and embryological structures, it is often
difficult to deduce morphological homology. Although the
biomineralized tissues found in different metazoan phyla are
not considered homologous in the strictest sense, recent comparative
studies have revealed common elements across different
biomineralization systems. This has led to the recognition of a
possible “biomineralization toolkit;” an ancestral gene regulatory
network (GRN) consisting of signaling and gene regulatory
pathways that was independently co-opted and fine-tuned for
biomineralization in diverse animal taxa. One common regulator
of deuterostome skeletogenesis is the Alx transcription factor

family, which has been shown to have an ancient, conserved
role in this process in both vertebrates and echinoderms. In
this review, we examine the current state of knowledge concerning
deuterostome alx genes, with a focus on their role in skeletogenesis.

PHYLOGENETIC DISTRIBUTION OF ALX
GENES IN DEUTEROSTOMES

The alx gene family encodes Paired-class homeodomain
transcription factors that contain a highly conserved DNA-binding
homeodomain and a C-terminal Otp, Aristaless, and Rax (OAR)
domain, features that are shared by many Paired-class
homeodomain proteins. Phylogenetic and comparative genomic
studies have revealed considerable variability in the number of
alx genes in different deuterostomes, pointing to a complex
evolutionary pattern of lineage-specific gene duplication and loss
(Figure 1; adapted from McGonnell et al., 2011; Koga et al., 2016).
Hemichordates possess a single alx gene (Koga et al., 2016)
while echinoderms have two (alxI and alx4; Ettensohn et al., 2003;
Koga et al,, 2016). In contrast, humans and mammals possess
three alx genes (alxI/cartl, alx3, and alx4) that arose through
two duplication events. Through the course of evolution, one
of the paralogues, alx3, was lost from amphibian and reptile
lineages (McGonnell et al., 2011). Additionally, ray-finned fishes
such as zebrafish acquired two paralogues of alx4, designated
alx4a and alx4b, as a result of a separate, whole genome
duplication event (McGonnell et al., 2011). The lancelets have
two alx genes. In Branchiostoma floridae, these two genes (Bf-alx1
and Bf-alx2) are located close to each other in the genome and
have very similar intron-exon organizations. Molecular phylogenetic
analysis of Alx proteins indicate that Bf-Alx1 and Bf-Alx2 form
a monophyletic group, providing further support for the view
that they arose from a lineage-specific gene duplication event
(Figure 1; Koga et al., 2016).

DEVELOPMENTAL EXPRESSION AND
FUNCTION OF ALX GENES IN JAWED
VERTEBRATES

Members of the alx gene family are expressed in several
mesenchymal tissues during the embryogenesis of jawed
vertebrates (gnathostomes), a group that includes most of the
vertebrate species used for developmental studies. These genes
are expressed most prominently in distinct but partially
overlapping patterns in neural crest-derived craniofacial
mesenchyme and in mesenchyme of the limb bud, both of
which are sources of cartilage and bone (Zhao et al., 1994;
Qu et al.,, 1997a; ten Berge et al., 1998; Beverdam and Meijlink,
2001). Other sites of embryonic expression have also been
reported, including the head mesoderm, sclerotome of the
somite (another tissue that produces cartilage and bone), hair
follicles, dental papillae of teeth, and parts of the developing
urogenital system (Zhao et al, 1994; Hudson et al., 1998;
ten Berge et al., 1998; Bothe et al, 2011; Wang et al., 2019).
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FIGURE 1 | Molecular phylogeny of Alx proteins (adapted from McGonnell et al., 2011; Koga et al., 2016). Branch lengths are arbitrary. Sk, Saccoglossus kowalevskii
(acorn worm); Lv, Lytechinus variegatus (euechinoid sea urchin); Hp, Hemicentrotus pulcherrimus (euechinoid sea urchin); Sp, Strongylocentrotus purpuratus (euechinoid
sea urchin); Mr, Metacrinus rotundus (sea lily); Ak, Amphipholis kochii (brittle star); Pm, Patiria miniata (sea star); Ppc, Patiria pectinifera (sea star); Bf, Branchiostoma
floridae (lancelet); Dr, Danio rerio (zebrafish); Xt, Xenopus tropicalis (frog); Ac, Anolis carolinensis (lizard); Hs, Homo sapiens (human); Mm, Mus musculus (mouse).

Xt-Alx1

In the developing head, genes of the alx family are expressed
by neural crest cells, which give rise to cartilages and bones
of the skull, jaw, and middle ear, as well as other derivatives
(see reviews by Santagati and Rijli, 2003; Noden and Trainor,
2005). Consistent with this pattern of expression, perturbations
of alx genes commonly result in severe craniofacial malformations,
including frontonasal dysplasia and the reduction or malformation
of many neural crest-derived skeletal elements (Table 1). In
mice, loss-of-function mutations of alxI/cartl or alx4 also lead
to other cranial abnormalities such as anencephaly and lacrimal
gland aplasia (Zhao et al,, 1996; Garg et al., 2017), although
these effects are likely to be secondary consequences of defects
in neural crest cells, which provide essential signals that regulate
the development of the brain and eye (Zhao et al, 1996;
Bhattacherjee et al., 2009; Le Douarin, 2012; Garg et al., 2017).
While alx3-null mice appear normal, alx3/alx4 double mutant
mice exhibit severe frontonasal dysplasia and cranial skeletal
defects that are more extreme than those observed in alx4
mutant mice, revealing non-equivalent but overlapping functions
of these highly similar proteins (Beverdam et al.,, 2001).

During early zebrafish development, the expression of alxI
alone is detected in migrating neural crest cells, while at later

stages, alxI, alx3, alx4a, and alx4b exhibit overlapping patterns
of expression in the craniofacial mesenchyme (Dee et al., 2013;
Wang et al,, 2019). Alxl is also transiently expressed in the
cranial paraxial mesoderm at early developmental stages (Wang
et al., 2019). Perturbation of Alx1l expression using antisense
morpholino oligonucleotides (MOs) produces severe craniofacial
defects in zebrafish, similar to results seen in the mouse,
inhibition of alx3 alone results in no significant craniofacial
abnormalities (Dee et al,, 2013). In developing frog and chick
embryos, both alxI and alx4 are expressed robustly in the
craniofacial mesenchyme (Bothe and Dietrich, 2006;
McGonnell et al., 2011; Square et al., 2015).

Genes of the alx family are also expressed in the mesodermal
compartment of the limb buds. At early embryonic stages,
these genes are expressed specifically in an anterior, proximal
zone while later in development they are also expressed at the
distal margin (Qu et al., 1997b). The anterior, proximal zone
of expression may include sites where skeletal elements of the
shoulder and pelvic girdles (the scapula and pelvis, respectively)
form, although this has not been shown directly. The skeletal
elements of the limb girdles have complex embryological origins
that are only partially understood. The scapula may arise from

Frontiers in Genetics | www.frontiersin.org

November 2020 | Volume 11 | Article 569314


https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Khor and Ettensohn

Alx Transcription Factors and Skeletogenesis

TABLE 1 | Summary of expression patterns, mutations, perturbations, and diseases associated with alx genes across different deuterostome phyla.

Di /Mutational
Organism | Gene | Expression Pattern Reference Mutation/Perturbation Eflfs:;se utationa Reference
Whole-gene deletion and Frontonagal dysplasia,
) ) characterized by
homozygous homeodomain splice- . . Uzetal., 2010
. . microphthalmia and severe
site mutation (c.531+1G>A) tacial clefi
alx1 n.d. n.d. aclal cletting
Reciprocal translocation t(1;12) Microcephaly, language
(p32.1;021.3) resulting in enhanced | impairment, and mental Liao et al., 2011
gene expression retardation
Nonsense (c.543T>A; p.Y191X),
framesit (c.578_581delCTGA; Frontonasal dysplasia Twigg et al
p.T193RfsX137), and splice-site frontorhin) vsP ) oc?gg ”
(c.595-2A5T) mutations within Y
alxs nd. n.d. homeodomain
Nonsense mutation within
Front | lasi Ullah et al.
homeodomain (c.604C>T; p.Q202X), ron ongsa dysplasia an et
L (frontorhiny) 2018
resulting in premature stop
Deletion and insertion mutation
(c.1080_1089delGACCCGGTGC Mild frontonasal Bertola ot 4l
insCTAAGATCTCAACAGAGATG dysplasia and enlarge 5013 v
GCAACT, p.D326fsX21), resulting in | parietal foramina
frameshift and loss of OAR domain
Human
Deletions (c.385_394del,
c.417_418del), point mutation Enlaraed parictal foramina Mavrogiannis
(c.620C>A), and duplication gedp et al., 2006
(c.456_465dup)
Deletion (c.504delT; p.D169X),
resulting in premature stop and loss ) ) Wuyts et al.,
of homeodomain; point mutation in Enlarged parietal foramina 2000
alx4 n.d. n.d. homeodomain (c.815G>C; p.R272P)
Nonsense mutation (c.793C>T; p. Frontonasal dvsplasia Kayserili et al.,
R265X) vsp 2009
Point mutation (c.653G>A; p.R218Q)
. . - ) ) Valente et al.,
in homeodomain nuclear localization | Enlarged parietal foramina 2004
signal
Deletpn (0.291delq; p.Q98SfsX83) ‘ El-Ruby et al.,
resulting in frameshift and premature | Frontonasal dysplasia 2018
stop
Point mutations (c.19G_T; p.V7F, )
N Y. k et al.
¢.631A>G; p.K211E, c.917C>T; Cr‘;:isggdgggfsis 23?;‘ et
p.P306L) i
Craniofacial region (frontonasal
Beverdam and .
head mesenchyme), lateral plate ) Acrania and Zhao et al.,
alx1 . Meijlink, 2001; Homozygous null mutant
mesoderm, and limb bud anencephaly 1996
Zhao et al., 1994
mesenchyme
Overlapping expression in the
craniofacial region (frontonasal
M
ouse head mesenchyme), lateral plate Quetal., 1997a;
alx3 | mesoderm, and limb bud .
) . Hudson et al., Homozygous double alx3/alx4 Frontonasal dysplasia and Beverdam et al.,
and mesenchyme. alx3 is expressed in )
) ) 1998; ten Berge mutant preaxial polydactyly 2001
alx4 | parts of the developing urogenital
) etal., 1998
system. alx4 is expressed
in hair follicles and dental papillae of
teeth.
alx1, | Overlapping expression in the Knockdown using alx antisense Defective neural crest
alx3, | frontonasal mesenchyme, periocular | | ol 2013 | morpholino oligonucieotidie migration gnd craniofacial | Dee etal., 2013
Zebrafish | alx4a, | mesenchyme, mandible arch, and Wang et al, 2019 malformations
and | the prospective palate. alx7 is ! Knockdown using alx3 antisense - 5 | o0
alx4b | expressed in the head mesoderm. morpholino oligonucleotide No significant effect ce et al,, 2013

(Continued)
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TABLE 1 | Continued

Disease/Mutational

diverticulum

2007

Organism | Gene | Expression Pattern Reference Mutation/Perturbation Effect Reference
Duplication (c.714_734dupTCACCG Breniq ot al
Cattle alx4 n.d. n.d. AGGCCCGCGTGCAG) within the Tibial hemimelia syndrome 201 59 v
homeodomain
In frame deletion of homeodomain Lyons et al
Cat alx1 n.d. n.d. sequences Frontonasal dysplasia zé 16
(c.496_507delCTCTCAGGACTG)
alx1
Frontal mesenchyme near the McGonnell et al.,
Frog and oves 2011 n.d. n.d. n.d.
aa |
akxi Craniofacial region (frontonasal Bothe et al., 2011;
Chicken and head mesenchg me) McGonnell et al., n.d. n.d. n.d.
alx4 Y 2011
Trabecular cartilaginous elements Cattell et al., 2011;
near the eye, upper lip Kuratani et al.,
L / .d. d. .d.
amprey ax mesenchyme and parts of the 2016; Square n n n
branchial basket cartilage etal, 2017
Paraxial mesoderm, pharyngeal Meulemans and
Lancelet alx arch mesoderm, and gut Bronner-Fraser, n.d. n.d. n.d.

Primary mesenchyme cells in

Ettensohn et al.,
2003;

Knockdown using alx7 antisense
morpholino oligonucleotide

Loss of skeletogenic cell
specification

Ettensohn et al.,
2003

alx1 | embryos and juvenile skeletogenic i ivati
[Thin-spined . Gao and Overexpression of Alx1 via mMRNA Ectopic acFlvat|on of the Ettensohn et al.,
) centers in late stage larvae i TSR » skeletogenic program in
sea urchin Davidson, 2008 microinjection into fertilized eggs ) 2003
mesodermal lineage cells
alxd Prlmary. mesenohym§ cells and Rafiq et al., 2012; nd. nd. nd.
coelomic mesoderm in embryos Koga et al., 2016
Pencil alk Skeletogenic mesenchyme lineage | Erkenbrack and Knockdown using alx7 antisense Loss of skeletogenic cell Erkenbrack and
urchin cells Davidson, 2015 morpholino oligonucleotide specification Davidson, 2015
Upregulation of sea star
Sea star alx] Juvenile skeletogenic centers in late | Gao and Overexpression of Alx1 via mRNA orthologues of sea urchin Koga et al.,
stage larvae Davidson, 2008 microinjection into fertilized eggs skeletogenic genes during 2016
embryogenesis
Sea aix] Skeletogenic mesenchyme lineage | McCauley et al., Knockdown using alx7 antisense Loss of skeletogenic cell McCauley et al.,
icucumber cells 2012 morpholino oligonucleotide specification 2012
Skeletogenic mesenchyme lineage | Czarkwiani et al.,
Brittle star | alx7 | cells and adult skeletogenic centers | 2013; Koga et al., n.d. n.d. n.d.
in juveniles 2016
A
wi)?r:? alx Coelomic mesoderm Koga et al., 2016 n.d. n.d. n.d.

n.d., not determined.

three sources: somatic mesoderm of the lateral plate, somite-
derived dermamyotome, and neural crest, while the pelvis likely
arises from somatic mesoderm and sclerotome (Young et al.,
2019). Genetic knockouts in mice have revealed essential and
partially redundant roles for alxI, alx3, and alx4 in the formation
of the superior/anterior portion of the scapula blade (and in
the development of the clavicle) and have shown that alxI
expression in this region is under the direct control of the
transcription factors Emx2 and Pbx1 (Kuijper et al., 2005a,b;
Capellini et al., 2010). Similarly, compound alxI:alx4 and
alx3:alx4 double mutants reveal overlapping roles for these
genes in the formation of the pelvic skeleton (Kuijper et al,
2005b; Young et al., 2019). Unlike the neural crest-derived
skeleton of the head, the scapula and pelvis both form by

endochondral ossification, and defects are observed in both
the cartilaginous and bony compartments of these skeletal
elements when the function of alx family genes is compromised.

A striking developmental consequence of alx4 null mutations
is preaxial polydactyly - the formation of one or more
supernumerary anterior digits (Forsthoefel, 1963; Qu et al., 1997b).
This effect is associated with the formation of an ectopic, anterior
zone of polarizing activity (ZPA) in the limb bud and concomitant,
anterior expression of sonic hedgehog (shh; Chan et al, 1995;
Qu et al, 1997a,b; Takahashi et al, 1998). At relatively late
developmental stages, Shh signaling is required for polydactyly
to develop in alx4-null mutants, but it has been proposed that
alx4 also plays an earlier, Shh-independent role in anterior-
posterior patterning (Kuijper et al., 2005b). The expression domains
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of alx4 and shh during limp outgrowth are established, in part,
by mutual repression (Kuijper et al., 2005b; Matsubara et al., 2017).
Consistent with the results of experimental gene perturbations,
genetic association studies in several vertebrate species have shown
that polymorphisms in alx genes are associated with phenotypic
variations in skeletal development. A genome-wide scan of genetic
diversity between two closely related species of Darwin’s finches
has revealed that polymorphism within the alxI gene is strongly
associated with beak morphology (Lamichhaney et al, 2015).
Linkage analysis and genome-wide association studies have also
identified a small 12 bp deletion in the alxI gene that is associated
with frontonasal dysplasia in Burmese cats (Lyons et al, 2016).
Furthermore, variations in the number of repeats in the coding
region of alx4 are quantitatively associated with polydactyly in
the Great Pyrenees dog breed (Fondon and Garner, 2004), and
a 20 bp duplication in the alx4 gene is linked to congenital tibial
hemimelia (loss or shortening of the tibia) in Gallow cattle (Brenig
et al,, 2015). Taken together, these findings suggest that an ancient
alx gene may have constituted a conserved, core element of the
ancestral vertebrate skeletogenic GRN and that gene duplication
followed by divergence of the paralogs with respect to their
developmental expression and/or biochemical properties has
produced multiple alx family members with overlapping functions.
Considered as a whole, these studies show that members of
the vertebrate alx gene family play a conserved, prominent role
in the development of the cranial and appendicular skeletons.
In contrast, they do not appear to mediate the development of
the sclerotome-derived, axial skeleton of the trunk (the vertebrae
and ribs). Members of the alx gene family may also have other,
less well-characterized, developmental functions, although some
of the effects of mutations in these genes on non-skeletal tissues
are likely to be indirect. In the cranial region, it is well-established
that alx-family genes are expressed robustly and selectively by
neural crest cells (Rice et al., 2003; Dee et al,, 2013; Garg et al.,
2017), a cell population that gives rise to both cartilage and
membranous bone. Expression of alx family genes is not uniform
in all regions of the developing head, however, and it has been
hypothesized that this contributes to a regulatory code that controls
the region-specific identity of the cranial neural crest (Square
etal., 2017). With respect to appendage development, the expression
of alx-related genes is associated with skeleton-forming potential
of mesenchymal cell that will form proximal elements of the
limb girdles (clavicle, scapula, and pelvis; Young et al, 2019).
The embryological origins and the precise developmental fates
of these cells, as well as that of other cells of the developing
limb that express alx-related genes, are not well-characterized.

DEVELOPMENTAL EXPRESSION OF ALX
GENES IN OTHER CHORDATES

In basally-derived (jawless) vertebrates and cephalochordates
(amphioxus), animals that possess only cartilaginous skeletons,
alx-family genes are expressed in patterns consistent with a role
in skeletogenesis. The single lamprey alx gene is expressed at high
levels in the trabecular cartilaginous elements near the eye, in
a region that may be derived from mesoderm or from the cranial

neural crest (Kuratani et al, 2016; Square et al, 2017).
Cephalochordates have stiff, acellular pharyngeal endoskeletons
that contain fibrillar collagen, and the adult form has a cartilaginous
oral skeleton that supports the cirri (Jandzik et al., 2015). Amphioxus
lacks a neural crest, and the embryonic cell lineage that produces the
oral skeleton has not been identified. One study has examined the
expression of alx-related genes in cephalochordates and reported
expression in the somites and right gut diverticulum at neurula/early
larval stages (Meulemans and Bronner-Fraser, 2007). At present,
the function of alx-related genes in jawless vertebrates and
amphioxus has not been explored through gene perturbation studies.

DEVELOPMENTAL EXPRESSION AND
FUNCTION OF ALX GENES IN
ECHINODERMS

In echinoderm clades that form larval skeletons, alxI is one of
the earliest regulatory genes expressed during development, and
it plays a pivotal role in specifying the fate of PMCs, the
embryonic skeletogenic cells (Ettensohn et al., 2003; Erkenbrack
and Davidson, 2015; Dylus et al., 2016; Shashikant et al., 2018).
Transcription of alxl can be detected as early as the 56-cell
stage specifically in the large micromeres (the progenitors of PMCs),
and expression remains restricted to this cell lineage throughout
embryogenesis (Ettensohn et al., 2003). Perturbation of Alx1
expression using MOs inhibits PMC specification while
overexpression of Alxl results in ectopic activation of the
skeletogenic program in other mesodermal lineages. Furthermore,
experimental ablation of PMCs leads to the activation of alxI
and downstream components of the skeletogenic GRN by
non-skeletogenic mesoderm (NSM) cells, which ultimately reform
a larval skeleton (Ettensohn et al., 2007). The ectopic activation
of alx1 is essential for NSM cells to acquire skeletogenic properties,
although this activation occurs by a mechanism distinct from
that which normally operates in the large micromeres (Oliveri
et al,, 2008; Sharma and Ettensohn, 2011; Ettensohn and Adomako-
Ankomah, 2019). Remarkably, the removal of NSM cells via
microsurgical removal of the archenteron as well as PMCs results
in the activation of alxI and formation of a skeleton by presumptive
endoderm cells (Sharma and Ettensohn, 2011).

The role of alxl in the skeletogenic GRN in euechinoid
sea urchins has been especially well-characterized (Figure 2).
Alx1 provides positive inputs into almost half of the ~420
genes that are differentially expressed by PMCs, highlighting
the pivotal role of Alx1 in establishing skeletogenic cell identity
(Rafiq et al., 2014). A recent chromatin immunoprecipitation
sequencing (ChIP-seq) study determined that many of these
genes, including both regulatory (i.e., transcription factor-
encoding) and effector (ie., differentiation) genes, are direct
targets of alxl (Khor et al, 2019). A second transcription
factor, Etsl, collaborates with Alx1 in the co-regulation of a
large fraction of genes differentially expressed by PMCs (Rafiq
et al., 2014), in many cases through a feed-forward mechanism
(i.e., Etsl > Alxl, Ets + Alxl > effector gene; Yamasu and
Wilt, 1999; Amore and Davidson, 2006; Oliveri et al., 2008;
Yajima et al., 2010; Shashikant et al., 2018; Khor et al., 2019).
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Downstream effector genes that are regulated by AlxI include
those that directly mediate biomineralization (e.g., those that
encode secreted spicule matrix proteins that are incorporated
into the biomineral) and those that mediate skeletogenesis through
signaling pathways and morphogenetic cell behaviors (Figure 2).

The alxI gene is also expressed specifically in skeletogenic
cells of cidaroids (pencil urchins) and holothuroids (sea
cucumbers), and is required and for skeletogenesis in these
species (McCauley et al., 2012; Erkenbrack and Davidson, 2015).
The alxI gene is robustly expressed in adult skeletogenic centers,
even in sea stars, which lack a larval skeleton (Gao and
Davidson, 2008; Czarkwiani et al., 2013; Gao et al., 2015).
Comparative studies have revealed many similarities in the
gene regulatory programs of skeletogenic cells in the larva
and adult (Richardson et al., 1989; Gao and Davidson, 2008;
Killian et al., 2010; Czarkwiani et al., 2013; Gao et al., 2015).
Hence, it is widely thought that the larval skeleton arose within
the echinoderms by co-option of an adult skeletogenic program.
Moreover, ectopic expression of sea urchin or sea star alxI

in sea star embryos is sufficient to activate several sea star
orthologs of sea urchin skeletogenic genes (Koga et al., 2016).
These findings confirm the critical role that Alx1l plays in
establishing skeletogenic identity across all echinoderms at all
life history stages, supporting the view that this function was
present in the last common ancestor of echinoderms.
Echinoderms also possess a paralog of alxl, known as alx4.
The two genes are directly adjacent to one another in the sea
urchin genome, suggesting that they arose through gene
duplication. The sister group to echinoderms, the hemichordates,
possess a single alx gene, suggesting that the gene duplication
occurred after the divergence of echinoderms from hemichordates
(Koga et al., 2016). The alx4 gene, like alxI, is expressed by
skeletogenic PMCs, but alx4 is also expressed by presumptive
coelomic pouch cells at the tip of the archenteron (Rafiq et al.,
2012; Koga et al, 2016). The function of alx4 has not been
experimentally determined but it has been proposed to
be involved in coelom development as the single alx gene in
hemichordates is expressed in the coelomic mesoderm. As
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FIGURE 2 | Activation of Alx1 in euechinoids (S. purpuratus) and regulatory inputs into primary mesenchyme cell (PMC) effector genes. Only a small number of
more than 420 effector genes differentially expressed in PMCs (Rafiq et al., 2014) is shown here. A large subset of effector genes receives regulatory inputs from
both Ets1 and Alx1 (Rafiq et al., 2014). Positive regulatory inputs by Ets1 and Alx1 into msp 730, sm50, and vegf-Ig-10 are described in (Oliveri et al., 2008).
Direct targets of the sea urchin Alx1 (Khor et al., 2019) define a genetic subcircuit that impinges on almost all aspect of PMC morphogenesis, including directional
cell migration, extracellular matrix (ECM) remodeling, cell-cell fusion, and biomineralization. Dashed arrows indicate interactions that may be indirect. For additional
information regarding the developmental functions of the specific effector genes shown here, see Shashikant et al. (2018) and references therein.
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adult hemichordates possess only small biomineralized elements
(Cameron and Bishop, 2012), these observations suggest that
alx] gained enhanced skeletogenic function in echinoderms
secondarily. Structure-function analysis of Alxl and Alx4 in
euechinoid sea urchins has revealed that the gene duplication
event permitted the functional specialization of Alx1 through
changes in intron-exon organization and the acquisition of a
novel protein motif known as the D2 domain (Khor and
Ettensohn, 2017). As noted above, a recent genome-wide
ChIP-seq study showed that a large part of the embryonic
skeletogenic GRN of sea urchins is directly regulated by Alx1,
including many morphoeffector genes that are also expressed
in adult skeletogenic centers. Hence, a heterochronic shift in
alx1 expression from adult skeletogenic centers to the embryonic
skeletogenic cells may have been sufficient to co-opt a substantial
subcircuit of biomineralization genes and ultimately transfer
skeletogenesis into the embryo (Khor et al, 2019).

A SUITE OF DEUTEROSTOME
BIOMINERALIZATION EFFECTOR
GENES REGULATED BY ALX17 IN
ECHINODERMS

Studies on vertebrates and echinoderms have identified many
examples of closely related genes that mediate biomineralization
in both taxa, such as collagens and carbonic anhydrases (see
reviews by Veis, 2011; Le Roy et al., 2014). Here, we focus on
effector genes that have been identified as direct targets of
Alx1 in echinoderms (sea urchins) and that have vertebrate
counterparts implicated in chondrogenesis or osteogenesis. Though
much is known about the interactions between regulatory genes
and signaling pathways in vertebrate neural crest and chondrogenic
GRNs (Cole, 2011; Simoes-Costa and Bronner, 2015), direct
transcriptional inputs into biomineralization genes that are the
downstream effectors of these networks have not been elucidated.
Such information will be crucial to definitively assess homology
between echinoderm and vertebrate skeletogenic GRNs.

VEGF AND VEGFR

One of the direct targets of sea urchin alxI in biomineralizing
cells is the vascular endothelial growth factor (VEGF) receptor,
vegfr-Ig-10, one of the two vegfr genes in sea urchins (Duloquin
et al, 2007; Rafiq et al, 2014; Khor et al, 2019). During
embryonic development, vegfr-Ig-10 expression is restricted to
PMCs, while its ligand, vegf3 is expressed in the ectoderm
specifically in the regions that lie adjacent to two ventro-lateral
clusters of PMCs that initiate biomineral formation. MO-based
knockdown of Vegf3 or Vegfr-Ig-10 results in the downregulation
of skeletogenic genes and lack of embryonic skeleton formation,
while ectopic expression of Vegf3 results in supernumerary
skeletal elements and irregular branching (Duloquin et al,
2007; Adomako-Ankomah and Ettensohn, 2013). The vegfr-Ig-
10 gene is also expressed in adult skeletogenic centers, even

in clades that lack a larval skeleton (Gao and Davidson, 2008;
Morino et al., 2012). Other comparative studies in echinoderms
have found a strict correlation between the expression of
vegf3/vegfr-Ig-10 and the formation of an embryonic skeleton
(Duloquin et al., 2007; Morino et al., 2012; Adomako-Ankomah
and Ettensohn, 2013; Erkenbrack and Petsios, 2017; Erkenbrack
and Thompson, 2019). Remarkably, human VEGFA is able to
rescue skeleton formation in sea urchin embryos that lack
endogenous Vegf3 expression (Morgulis et al., 2019).

During vertebrate endochondral ossification, the cartilage
intermediate is replaced by bone in a process that is partly
regulated by the formation of a vascular network (see review
by Green et al, 2015). Chondrocytes stimulate vasculogenesis
through the secretion of VEGF ligands (Carlevaro et al., 2000).
In vitro studies show that VEGF ligands (VEGFA, VEGFB,
and VEGFC) and VEGF receptors (VEGFR2 and VEGFR3)
are expressed by chondrocytes and chondrogenic cells, and
autocrine signaling through this pathway regulates morphogenesis
and differentiation (Carlevaro et al., 2000; Bluteau et al., 2007).
Inhibition of Vegf signaling perturbs ossification and bone
elongation by promoting chondrocyte proliferation rather than
osteoblast differentiation (Gerber et al., 1999; Jacobsen et al.,
2008). Mice with conditional deletion of vegfa in skeletal lineage
cells exhibit thinner bones and decreased skeletal mineralization
(Duan et al,, 2015). Moreover, conditional deletion of vegfr2
results in reduced osteogenic differentiation (Duan et al., 2015).

MMPS AND TIMPS

Another class of effector protein common to echinoderm and
vertebrate biomineralization consists of matrix remodeling proteins
such as matrix metalloproteases (MMPs) and tissue inhibitors
of metalloproteinases (TIMPs). MMPs constitute a class of
enzymes that function in the degradation of extracellular matrix
(ECM) proteins (see review by Rose and Kooyman, 2016). In
sea urchins, chemical inhibition of MMPs reversibly blocks
spiculogenesis by PMCs in vivo and in vitro (Roe et al., 1989;
Ingersoll and Wilt, 1998). In vertebrates, mmp-13 (collagenase-3)
is expressed specifically in chondrocytes (Tuckermann et al.,
2000). Additionally, in vitro studies have shown that silencing
of mmp-2 by siRNA disrupts chondrogenic differentiation of
mesenchymal stem cells while treatment with a MMP-2 activator
stimulates chondrogenesis (Jin et al., 2007). TIMPs have been
reported to be the primary endogenous inhibitors of MMPs
and are involved in regulating the function of MMPs in many
systems (Brew and Nagase, 2010). Overexpression of timp-3 in
mice induces defects in skeletal development and growth (Poulet
et al, 2016). In contrast, knockdown of timp-1 results in
upregulated proliferation of mesenchymal stem cells while delaying
osteogenic differentiation (Liang et al., 2019).

SLC26

Many members of the solute carrier (SLC) family of membrane
transport proteins are differentially expressed in the PMCs
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(Rafiq et al., 2014; Barsi et al., 2015). In addition, Alx1 directly
regulates the expression of several members of the SLC5 and
SLC26 sub-families, including Slc26a5/1 and Slc5a11/2 (Rafiq
et al, 2014; Khor et al.,, 2019). While there are data pointing
to SLCs that are essential for echinoderm skeletogenesis, mainly
Slc4al10 (Hu et al, 2018) and Slc26a2/7 (Piacentino et al,
2016), the functions of the proteins that are directly regulated
by Alx1 have not been tested. In vertebrates, Slc26a2, a sulfate
transporter, has been shown to be highly expressed in developing
and mature cartilage (Haila et al, 2001). Mice homozygous
for mutations in Slc26a2 exhibit chondrodysplasia, a condition
characterized by growth defects and skeletal dysplasia due to
reduced chondrocyte proliferation (Forlino et al., 2005). Similarly,
mutations in human Slc26a2 also results in chondrodysplasia
(Superti-Furga et al., 1996; Jackson et al., 2012).

FAM20C

One of the direct targets of sea urchin Alx1 is fam20C, which
encodes a kinase of the FAM20 (family with sequence
similarity 20) family (Rafiq et al., 2014; Khor et al,, 2019). In
vertebrates, members of this family are highly expressed in
mineralized tissues, such as teeth and bone (Hao et al., 2007;
Wang et al,, 2010a). Fam20C is a secreted kinase responsible
for the phosphorylation of secreted proteins, many of which
are known to be involved in biomineralization (Tagliabracci
et al, 2012). Mutations in the human fam20C gene cause
Raine syndrome, an autosomal recessive disorder characterized
by defects in bone development, including microcephaly, cleft
palate, and osteosclerosis (Simpson et al., 2007; Rafaelsen et al.,
2013; Takeyari et al., 2014; Seidahmed et al., 2015). In vitro
mutational analyses suggest that Fam20C is involved in the
differentiation and mineralization of mouse mesenchymal cells
(Hao et al., 2007; Liu et al, 2017), and fam20C-null mice
exhibit severe biomineralization defects, such as lesions in
bones and teeth (Vogel et al, 2012; Wang et al, 2012;
Du et al, 2015).

OTOPETRIN

Sea urchin Alx1 also provides positive inputs directly into
otop2L, the single sea urchin ortholog of the vertebrate
otopetrin genes (Rafiq et al., 2014; Khor et al., 2019). Otopetrins
are multi-pass transmembrane proteins that function as proton
channels (Saotome et al., 2019). In vertebrates, these proteins
play an essential role in regulating the timing, size, and
shape of the developing otoconia, extracellular calcium
carbonate biominerals that are required for vestibular functions
(Hughes et al., 2004; Sollner et al., 2004; Kim et al., 2010).
During mouse and zebrafish embryogenesis, otopl is highly
expressed in the developing sensory epithelium of the ear
(Hurle et al., 2003; Hughes et al., 2004). In zebrafish, MO-based
knockdown of Otopl results in otolith malformations
(Hughes et al., 2004; Sollner et al., 2004). Moreover, otopl
knockout mice also lack otoconia, a phenotype that has

been attributed to mis-regulation of intracellular calcium
levels (Hughes et al., 2007; Kim et al., 2010). The function
of the echinoderm Otop2L protein has not been examined.

ALX GENES AND THE EVOLUTION OF
DEUTEROSTOME BIOMINERALIZATION

Among present-day deuterostomes, extensive biomineralized
skeletons are found only in echinoderms and vertebrates. It
is inherently difficult to reconstruct the underlying evolutionary
relationships between the skeletogenic programs of these two
groups, which diverged >600 million years ago (Peterson and
Eernisse, 2016). It is widely accepted that the ancestral chordate
possessed only a cartilaginous skeleton (Rychel et al.,, 2006;
Murdock and Donoghue, 2011; Jandzik et al., 2015; Keating
et al,, 2018), strongly supporting the view that biomineralized
skeletons appeared independently in vertebrates and echinoderms,
and therefore, are not homologous in the strictest sense. This
does not, of course, resolve the question of whether common
embryological and/or genetic mechanisms were deployed to
create a biomineralized skeleton in these two groups; i.e.,
whether skeletogenesis in the two clades is an example of
“deep homology” (Shubin et al, 2009). The presence of
collagenous pharyngeal cartilage in both cephalochordates and
hemichordates supports the view that this was an ancestral
feature of deuterostomes that was later lost in echinoderms
(Rychel and Swalla, 2007; Jandzik et al., 2015). Moreover, a
recent analysis of chondrogenesis in protostomes (horseshoe
crabs and cuttlefish) suggests that a more ancient, SoxE and
collagen-based chondrogenic gene network was present in the
last common ancestor of all Bilateria (Tarazona et al., 2016),
providing further support for the view that echinoderm ancestors
at one time also possessed cartilage-forming cells. It should
be noted that although there is no evidence for definitive
cartilage in modern echinoderms, there are mesoderm-derived
populations of mesenchymal cells that produce connective tissue
containing fibrillar collagen (Suzuki et al, 1997; Whittaker
et al.,, 2006; Goh and Holmes, 2017).

The evolutionary relationships among the skeletogenic cell
lineages of vertebrates that express alx-related genes and the
alxI-expressing cells of echinoderms are uncertain. With
respect to echinoderms, considerable evidence supports the
view that alx1 arose very early in echinoderm evolution through
gene duplication, relatively quickly acquired a robust,
biomineralization-related function, and was subsequently
co-opted into the early embryo in echinoderm taxa that possess
larval skeletons (echinoids and ophiuroids; Khor and Ettensohn,
2017; Shashikant et al., 2018). The biomineralizing cells of the
ancestral echinoderm, which were likely of mesodermal origins,
expressed alxl, etsl, erg, vegfr, and other components of a
core skeletogenic program, as well as an assortment of more
rapidly evolving biomineralization effector proteins (Gao and
Davidson, 2008; Dylus et al., 2018; Erkenbrack and Thompson,
2019; Li et al, 2020). To draw inferences concerning the
evolution of alx gene expression and function more deeply
within Ambulacraria (echinoderms and hemichordates), it will
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be important to learn more about the single alx gene of
hemichordates, including its pattern of expression, gene targets,
and role in the formation of the small, calcareous skeletal
elements of adult hemichordates (Cameron and Bishop, 2012)
and to more precisely determine the embryological origins of
the alxI-expressing cells of adult echinoderms, which are more
relevant to the ancestral echinoderm condition than the more
commonly studied larval forms.

In vertebrates, as noted above, the embryonic lineages of
cells in the limbs and limb girdles that express alxI-related
genes have not been mapped precisely, although many of
these cells are presumably derived from the somatic layer of
the lateral plate mesoderm, a major source of limb skeletal
tissue. There is evidence that chondrocytes and osteoblasts
of the limb are derived from a common, mesenchymal precursor
cell and that the specialization of these two cell types depends
upon regulatory functions of sox9 (a member of a small
number of paralogous, soxE-family genes in vertebrates) and
other sox genes in the chondrogenic lineage, and runx2 and
osterix in the osteoblast lineage (Akiyama et al., 2005; Cervantes-
Diaz et al., 2017; Lefebvre, 2019; Marin-Llera et al., 2019).
Because alx-related genes have not been linked directly to
the regulatory network that underlies limb skeletogenesis, and
because Sox and Runx proteins are not currently known to
be associated with skeleton formation in echinoderms, there
is presently no obvious similarity between the GRN circuitry
that controls skeletal development in the vertebrate limb and
the echinoderm skeleton. As noted above, during limb girdle
(scapula) development, alxl is co-regulated by Emx2 and
Pbx1, but the orthologous echinoderm genes have not been
studied in detail.

Perhaps the best-characterized cell population in vertebrates
that employs alx-related genes in biomineralization is the cranial
neural crest. There is agreement that a definitive neural crest
is found only in vertebrates, but the evolutionary history of
this cell population, particularly the origins of the skeletogenic
(cranial) compartment, remains a subject of much debate
(Jandzik et al., 2015; Rothstein et al., 2018; Cheung et al.,
2019; York and McCauley, 2020). Like the program of
skeletogenesis in the limb, the formation of cranial neural
crest-derived cartilage and bone is believed to progress through
the specification of a common osteochondral progenitor, with
important contributions by Sox9 and Runx2 in chondrocyte
and osteoblast differentiation, respectively (Martik and Bronner,
2017; Dash and Trainor, 2020). The regulatory inputs into
alx-family genes in the cranial neural crest are unknown,
however, and only one direct target (fgf10) has been identified
(Garg et al., 2017). Thus, the precise role of alx-related genes
in the dynamic differentiation program of skeletogenic cranial
neural crest cells and their connections to the underlying gene
regulatory circuitry remain to be elucidated.

As noted above, in jawless vertebrates and cephalochordates,
the expression patterns of alx-family genes are consistent with
a possible function in the formation of the cartilaginous,
pharyngeal skeletons of these animals. A detailed comparison
of the expression patterns of alx-family genes in lampreys and
jawed vertebrates has led to the hypothesis that an expansion

of the domain of alx-expressing cells may have supported the
expansion of the cranial skeleton during vertebrate evolution
(Square et al., 2017). With the important caveat that expression
data are sparse in these taxa and function studies are lacking,
these observations are consistent with the hypothesis that
alx-related genes were expressed (at least) in the anterior,
pharyngeal mesoderm of ancient chordates, in cells that produced
pharyngeal cartilage (Kaucka and Adameyko, 2019).

A hypothesis that emerges from these comparative studies
is that a rudimentary, ancestral program of chondrogenesis,
perhaps deployed in mesenchyme cells derived from embryonic
mesoderm, was present in the ancestral deuterostome and
provided a suitable gene regulatory system onto which
biomineralization-promoting circuitry could be layered.
We propose that in echinoderms, gene duplication was followed
by the neo-functionalization of alxl; i.e., the acquisition of a
new role in robustly mediating biomineralization, as reflected
by the direct transcriptional inputs this transcription factor
provides into a large fraction of biomineralization effector genes
(Rafig et al., 2014; Khor et al., 2019). A similar (and presumably
independent) neo-functionalization may have occurred in
vertebrates, but the transcriptional targets of vertebrate alx-family
genes have not been characterized, and therefore, it is not
known whether they include effectors of biomineralization.
It should be noted that possible signals of evolutionary
conservation between echinoderms and vertebrates in this
context would likely be obscured by the well-documented,
rapid evolution of many biomineralization-related proteins
(Kawasaki et al, 2004; Livingston et al., 2006; Marin et al.,
2016; McDougall and Degnan, 2018). Presumably, the
independent duplication of alx-family genes in echinoderms
and vertebrates initially involved the sharing and/or duplication
of cis-regulatory elements among paralogs, as indicated by the
overlapping patterns of expression of paralogous alx-family
genes in both taxa. The recruitment of duplicated, alx-related
genes to a biomineralization-related function would likely have
been facilitated if the ancestral gene was already expressed in
an embryonic tissue that produced an extensive extracellular
matrix, a prerequisite for the assembly and growth of biomineral
(Bolean et al, 2017; Murshed, 2018). In this regard, it will
be valuable to characterize more completely in representative
deuterostomes the cell lineages that express alx-family genes
and to better reconstruct the evolutionary relationships among
those cell lineages.
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