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Abstract: Integral imaging (Inlm) is useful for passive ranging and 3D visualization of partially-
occluded objects. We consider 3D object localization within a scene and in occlusions. 2D
localization can be achieved using machine learning and non-machine learning-based techniques.
These techniques aim to provide a 2D bounding box around each one of the objects of interest. A
recent study uses InIm for the 3D reconstruction of the scene with occlusions and utilizes mutual
information (MI) between the bounding box in this 3D reconstructed scene and the corresponding
bounding box in the central elemental image to achieve passive depth estimation of partially
occluded objects. Here, we improve upon this InIm method by using Bayesian optimization
to minimize the number of required 3D scene reconstructions. We evaluate the performance
of the proposed approach by analyzing different kernel functions, acquisition functions, and
parameter estimation algorithms for Bayesian optimization-based inference for simultaneous
depth estimation of objects and occlusion. In our optical experiments, mutual-information-based
depth estimation with Bayesian optimization achieves depth estimation with a handful of 3D
reconstructions. To the best of our knowledge, this is the first report to use Bayesian optimization
for mutual information-based InIm depth estimation.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Object localization is the task of locating an instance of a particular object category in an
image. It typically aims to specify a tightly cropped bounding box centered on the object [1].
Two-dimensional (2D) object localization is a slightly simpler problem than object detection. A
target object is known to exist in the query image, and the aim is to locate this object and give its
2D bounding box. The task of object localization is required in many-safety critical systems.
Under this problem statement, traditional methods use object templates from different viewpoints
to find the one which shares the most similarity (in terms of features) with the target image
[2—4]. Recent methods use feedforward deep networks that evaluate a fixed number of object
proposals in a target image [5—7]. There have also been some attempts to use neural networks
for direct three-dimensional (3D) localization instead of 2D in monocular images [8,9]. In this
paper, we use 3D integral imaging (InIlm) for the depth estimation of the object present within
the 2D bounding box obtained via 2D localization. Henceforth, we assume the availability of this
bounding box, and as 2D localization is a simpler problem than detection, we also extend this
assumption in partially occluded environments.

3D Inlm is a prominent technique that works by capturing angular information about the
object scene [10—14]. 3D InIm records multiple 2D elemental images of the scene from diverse
perspectives [15-25]. This is achieved using either a camera array, a single imaging sensor with
a lenslet array, or a single camera mounted on a moving platform. 3D scenes are reconstructed by
integrating the 2D elemental images optically or computationally. Computational reconstruction
is achieved by back-propagating the 2D elemental images through a virtual pinhole array. 3D
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reconstruction can be obtained at any depth within the limits of the depth of field of captured
2D elemental images. Passive depth estimation is one of several applications of Inlm that
has been extensively studied in the literature [26-30]. InIm has also been used in several
occlusion-aware depth estimation problems [31-35]. InIm has several advantages over other
commonly used imaging modalities for imaging in adverse environmental conditions [36,37].
A recent study [38], inspired by [39], uses mutual information as a metric to evaluate the
fidelity of the 3D InIm reconstruction with and without the presence of partial occlusions. This
allows for passive depth estimation of both object and occlusion. This method differs from
others in the sense that it performs computation on the entire 2D bounding box as opposed to
patch-based analysis. The computation of mutual information curve can be broken down into
three parts: Inlm 3D reconstruction, mutual information computation, and mutual information
curve generation. Assuming a patch of size n X m, the combined time complexity of these three
steps is O(l(nm + b%b%))[?)S]. Here, by, and b, are the bin sizes for possible pixel values, and
possible clique potentials (see Sec. 2.3) and [ is the number of 3D reconstructions used to generate
the average MI curve. In this paper, we advance this method by using Bayesian optimization for
sample efficient inference of the objective function. The scope of this manuscript is limited to the
application of Bayesian optimization for minimizing the number of required 3D reconstructions.
We use laboratory experiments to demonstrate the efficacy of this approach. A rigorous study of
its various applications or performance is not considered here. We postulate that our analysis can
be extended to shape-to-focus methods available in the literature [40].

Bayesian optimization is a global optimization scheme for sample efficient optimization of
expensive-to-evaluate objective functions [41-43]. Bayesian optimization iteratively builds a
statistical model of the objective function according to all past observations and selects the next
evaluation by maximizing some acquisition criteria. It has been successful in several domains
including material design [44—46], tuning/calibration [47-49], simulations [50,51], machine
learning [52-54], and reinforcement learning [55]. Several other methods exist for multi-modal
optimization. Some of the commonly used are the gradient descent methods, the quasi-Newton
methods [56,57], and the simplex methods [58]. These require an analytical form of the objective
function and may get trapped in a local optimum. Evolutionary optimization can be used
in domains with no available analytical representation. Some commonly used evolutionary
optimization methods are genetic algorithms [59-61], clonal selection algorithms [62], and
artificial immune networks [63,64]. However, these methods rely on heuristics and require
excessive function evaluations. This prevents their reliable deployment in many applications.

In this paper, the objective functions were obtained by computing the mutual information of
3D Inlm reconstructions. These objective functions have some common underlying structures
which depend on Inlm system parameters. This lends them as good candidates for Bayesian
optimization. We assume these functions to be statistically stationary and their acquisition
process to be corrupted by homoscedastic noise. This paper discusses parameter estimation
for the Gaussian process with a small number of samples. We study different kernel functions,
acquisition functions, and parameter estimation algorithms for Bayesian optimization-based
inference. We evaluate their performance based on errors between the predicted and the true
depth of objects as a function of the number of 3D reconstructions. We also compare a few
methods for finding local optima instead of the global optimum. This allows us to estimate the
depth of both the object and occlusion. For our experiments, we can achieve these objectives
with reasonable accuracy in approximately ten 3D reconstructions, which are approximately half
of that required for mutual information-based depth estimation using spline interpolation. We
also discuss parallelization to further speed up computations.
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2. Integral imaging-based depth estimation

2.1. Integral imaging (Inlm)

InIm is a passive 3D imaging approach that integrates the diverse perspectives of the 2D elemental
images to gain information about the light field. This can be accomplished by a single camera
mounted on translating stage or a camera array [15-25]. Inlm can also use a single imaging sensor
and a lenslet array to capture the light field. 3D reconstruction can be achieved by backpropagating
the rays through a virtual pinhole. The reconstruction can be anywhere within the depth of fields
of the elemental images. InIm records elemental images using multiple parallaxes. This helps
mitigate the effects of partial occlusion. 3D InIm is optimal in the maximum likelihood sense for
read-noise dominant images [11-14]. This enables the 3D reconstructed scenes to have a better
signal-to-noise ratio. An excellent overview of integral imaging research can be found in [65,66].

In our experiments, we use a synthetic aperture integral imaging setup which uses a camera
array or a single camera mounted on a translation stage [67]. The pickup stage of the synthetic
aperture Inlm is shown in Fig. 1(a). Once the 2D elemental images are captured, the 3D
reconstruction of the scene can be achieved computationally as shown in Fig. 1(b). Figure 1(c)
and (d) show the InIm camera pickup and reconstruction process using one image sensor and a
lenslet array.

(b)

Virtual Pinhole

(a) Elemental Images
Camera Array

oo ! 3D Scene

{

Reconstructed
3D Images

3D Scene
Illumination

Il

3D Reconstructed Scene

¥V Lenslet Array Lenslet Array

""""""" © ()

Fig. 1. (a) Synthetic aperture integral imaging (InIm) setup using camera array for
image pickup process. (b) The reconstruction process of the integral imaging setup of
(a). (c) Integral imaging setup using a lenslet array and a single imaging sensor. (d) The
reconstruction process of integral imaging setup of (c).

3D reconstruction is achieved by backpropagating the captured 2D elemental images through a
virtual pinhole. Reconstructed 3D scene intensity I (x, y) is computed as [38]:

X Ly X nxLy,Xp,
Imn(x_m X Px’y_ 'y p})+sl (1)

I

" 0(xy)

m=0 n=0

where (x, y) is the pixel indices, O(x, y) is the number of overlapping pixels in (x, y). I, is
a 2D elemental image, with (m, n) representing its indices, and (M, N) representing the total
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number of elemental images. (cy, ¢y), (px, Py), and (Ly, Ly) represent the sensor size, the pitch
size between cameras, and the resolution of the camera sensor, respectively. f is the focal length
of the camera lens, and z is the reconstruction distance of the 3D object from the camera array. €
is the additive camera noise. Assuming that the incoming rays originate from an object voxel
with approximately similar intensities, 3D reconstruction at the true depth will minimize the
variation of these rays [68].

2.2. Experimental setup

Our experimental synthetic aperture InIm setup uses nine cameras in a 3 X 3 configuration as
shown in Fig. 1. Pitch size of the cameras is 4 cm in both the x and y directions. The objects are
placed at roughly 350 cm from the camera sensor plane and the occlusion is present at roughly
250 cm. We modify these distances to some degree for each scene. The field of view of cameras
at the object plane is roughly 400 cm X 400 cm. Images are recorded using a visible sSCMOS
sensor (Hamamatsu C11440-42U). The focal length of each camera lens is 5 cm and the diameter
is 4 cm giving an F-number of 1.25. The sensor size is 2048 x 2048 pixels with each pixel of
6.5 X 6.5 micrometers. Our experimental dataset consists of 20 different scenes with each scene
containing three distinct objects. Out of these scenes, 12 scenes contain partial occlusion and the
remaining do not. Thus, in total, 36 partially occluded objects and 24 occlusion-free objects
are used to generate experimental results. This dataset will be used to study kernel functions,
acquisition functions, and parameter estimation algorithms (Sec. 3). Similarly, this data set will
also be used to compare the Bayesian optimization inference with the spline-based inference (Sec.
4). Sample 2D elemental image is shown in Fig. 2(a). Its corresponding 3D reconstructions at the
occlusion plane and the object plane are shown in Fig. 2(b) and (c). A few more sample scenes
are shown in Fig. 2(d)-(f). Objects of interest are circumscribed with bounding boxes shown
in red boundaries. As mentioned previously, we assume the availability of these 2D bounding
boxes using any of the contemporary object localization techniques.

2.3. Mutual information

We denote X and Y as two random variables corresponding to input and output variables. In our
case, these variables correspond to two images. The mutual information (MI) between X and Y
can now be defined in terms of the probability density function of the pixel values [69]:

fX}'(gl’ g2)
fi(g)fy(g2)

Here [ is the set of pixel intensity values available in the image. However, pixel-to-pixel
correspondence fails to capture the spatial information that exists in an image. Earlier studies
on image registration using mutual information found that a lack of spatial information results
in poor robustness to experimental factors like noise and misalignment errors [70]. Some
authors tried to mitigate this by incorporating additional information such as gradients with
mutual information [71] or by using higher-order mutual information [72]. However, these
techniques lead to an exponential rise in computational costs and data requirements. In [70] the
authors handle this with dimensionality reduction using either independent component analysis
(ICA) or principal component analysis (PCA). A graphical approach for incorporating spatial
information is discussed in [73] that considers the Ising model. It uses the Gibbs random field
formulation which states that the conditional probabilities of a site’s gray level corresponding
to its neighborhood are proportional to the exponential sum of the potentials of its associated
cliques. Thus, different neighborhood configurations that produce the same potential U(x) can be

MIX;Y) = Zglé] Zgzelf"y(gl’gZ) log @
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Fig. 2. Inlm experiments. (a) Sample 2D central elemental image. (b) Corresponding 3D
reconstruction at the plane of occlusion. (c) Corresponding 3D reconstruction at the plane
of the objects. (d)-(f) Central 2D elemental images corresponding to sample scenes used
in experiments. Objects of interest are circumscribed with bounding boxes shown in red
boundaries.

grouped as a single state a. Mutual information between two images is then given as [73]:

. _ f;Cy(gx’ x5 8y a'y)f;C(a'x)fy(a'y)
MIGGY)= D0y Dt D, D s T (80 08y ) log Folana @ elhlang)

Here [ is the set of pixel intensities. g, and g, are the intensity values of pixels. a, and a, are
the unique states corresponding to different neighborhood configurations that produce the same
potential. This approach was adopted by [38] for 3-bit images with one adjacency neighborhood
used for spatial information. This gives I={0,1,2,3,4,5,6,7} and the number of @ equals nine.
Thus the total combination of the pairs (@, g) is 72. This formulation of mutual information has
been used henceforth.

Two types of normalized mutual information curves are discussed in [38]. First, normalized
mutual information is computed between the bounding box of 3D reconstructed image and
the corresponding bounding box of 2D central elemental image. Second, normalized mutual
information is computed between bounding boxes of two adjacent axially 3D reconstructed
images. Here, we follow the first method to obtain mutual information. Figure 3 presents samples
of mutual information curves obtained by our experimental setup, with and without occlusion.

The peaks in Fig. 3 indicate the presence of either an object or occlusion in the scene.
We use Bayesian optimization to find these peaks while keeping the number of required 3D
reconstructions as low as possible.
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Fig. 3. Passive range estimation using InIm using normalized mutual information (MI).
Sample MI curves vs object reconstruction depths for the scenes in Fig. 2. The object
depth plots are obtained by computing mutual information between bounding boxes in 3D
reconstructed scenes and their corresponding boxes in 2D central elemental images. For
details see Fig. 2 for sample scenes and bounding boxes of objects of interest. Peaks indicate
presence of either an object or occlusion in scenes. Their relative height is determined by
degree or severity of occlusion.

3. Bayesian optimization
3.1. Background

Bayesian optimization emerged from the works of Kushner [74], Zilinskas [75,76], and Mockus
[77,78]. It gained popularity with the development of the Efficient Global Optimization algorithm
[79]. This work was further advanced to study multi-fidelity optimization [80,81], multi-objective
optimization [82—84], and convergence rates [8§5—-88]. Bayesian optimization performs sample-
efficient optimization of expensive non-convex objective functions [43,89]. It is particularly
useful when, as in our case, the objective functions have no closed-form representation and
only a noisy point-based evaluation is possible. Each noisy point-based sample evaluation (or
function evaluation) involves the 3D computational reconstruction of the scene contained within
a bounding box, and the computation of mutual information between the bounding box in this 3D
reconstructed scene and the corresponding bounding box in the 2D central view image.

The optimization problem is to find z* = arg max.czmi(z) , where Z c R? is a compact
set and mi(z) is the objective mutual information curve which is a function of z. It typically
requires that the domain of z i.e. Z € R has dimensions d<20 and the objective function mi
is continuous. This allows for the use of Gaussian process regression [90], which is the most
commonly used surrogate model for Bayesian optimization. For our problem, we do not have
access to derivatives of the objective function. However, if available, they could be incorporated
into Bayesian optimization [91]. Bayesian optimization performs a sequential search, and at every
iteration k selects a new location zx4| to evaluate mi and observe its value. Gaussian process
regression, the most commonly used surrogate model for Bayesian optimization, provides the
posterior distribution according to previous observations. The sequential selection in Bayesian
optimization is achieved through an acquisition function a : Z — R, defined over the posterior of
the Gaussian process.
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3.2. Gaussian process regression

Gaussian process [92,93] is a collection of random variables {MI;;, MI,,, ...} for which any
finite subset has a joint multivariate Gaussian distribution. Thus, for any finite-length vector
z = [7',2%,...,7"]" its corresponding observation values MI, = [MI.;,MI,,...,MI,] are
jointly normally distributed:

MI; ~ N{po(2), k(z,2)} “

Here elements of pg(z) are given by a prior mean function ug(z;), and k is the kernel (or
covariance) function. For k to be a valid kernel k(z, z) needs to be a square, positive-semidefinite
matrix for any z [94]. We obtain the values MI, by noisily observing the function mi(z) at indices
z,i.e. MI, = mi(z) + &, where & ~ N(0, 02) is independent and identically distributed (i.i.d.).
The Gaussian process regression infers the posterior of mi given the observations MI, . The
posterior distribution at some new point z € X is Gaussian with mean and variance [92,93]:

HMIMI, = mi) = po(2) + k(z, 2)(k(z,2) + o, 1)~ (mi — po(2)) (52)
oA (MIMI, = mi) = k(z,2) - k(z,2)(k(z,2) + o21) " k(z, 2) (5b)

The kernel (or covariance) matrix k(z,z) + o2 depends only on the observed values and is
Cholesky factored instead of inverted. The posterior mean is a linear combination of n kernel
functions, each one centered at an observed data point. In absence of observation noise o7,, a
small number should be added to the diagonal of k(z, z) to prevent eigenvalues from being too
close to zero.

3.3. Kernel functions

Gaussian process regression is a non-parametric generalization of the normal linear regression
model MI = ZTw + &, where ¢ ~ N(O, 0'2) is i.i.d. random variable and the likelihood
p(MI|Z,w, 0?) is normal [91]. Non-parametric formalization is achieved by marginalizing the
weights of the likelihood by placing a zero-mean Gaussian prior on the regression coefficients
w ~ N(0, Vy), where V; is some prior covariance matrix. A Gaussian prior, being a conjugate
to the Gaussian likelihood, preserves the Gaussianity of the posterior yielding p(MI|Z, o) ~
N(0, ZVoyZ" + o?) . The generalization of this model comes with the use of non-linear basis
functions @ : Z — R [41]. This allows us to model the objective function mi with a linear
combination mi(z) = ®(z)"w . Under this basis transformation, a slightly different likelihood
is obtained p(MI|Z, o) ~ N(MI|0, ®(Z)Vo®(Z)" + o-*I) . The kernel (or covariance) function
k and the kernel (or covariance) matrix K can now be defined using the positive semi-definite
matrix ®(Z)Vo®(Z)T € R™" as:

Kij = K(zi,3) = D) Vo®(z) = (0(z), D(z)y, ©)

The kernel function k dictates the structure of the response functions that we can fit. For
example, a periodic kernel is good for a periodic response function. Since we assume statistical
stationarity, we only consider stationary shift-invariant kernel functions. We consider four
commonly used kernel functions: squared exponential, Matern 3/2, Matern 5/2, and exponential.

1Gi-2) (@-2z)
ksquared_exponential(zi, Zj|9) = O'fZ €Xp (_E ;21] (7a)
7

2 r
kexponential(zi, ij) =0peXpl—— (7b)

; oy

V3r 3r
Kinaten 3221 3110) = 7 (1 + e -2 70)
gy gy
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kmatern 5/2(Zis Zj|9) = O'fz 1+ —+ —|exp|-—— (7d)
(o] 30 oy

Here, r = /(z; — zj)T(zi — z;) , oy is the signal standard deviation, and o7 is the characteristic
length scale. oy and oy together form the hyperparameter vector of the kernel function, denoted
by 6 . Squared exponential kernels give rise to Gaussian process whose samples are infinitely
differentiable, while those with Matern 3/2, Matern 5/2, and exponential kernels are ones, twice,
and nowhere differentiable respectively. All the discussed kernel functions are differentiable with
their hyperparameters 6 . The marginal likelihood of the data can thus be optimized to obtain a
type II maximum likelihood (type II ML) estimate of kernel parameters.

We evaluate the performance of the kernel functions for our data using two error metrics. First,
we define the squared error (SE) as the total squared error between the predicted posterior mean
Yposterior and the ground truth yg,ou,q €valuated over its entire domain. Second, we define max
point error (MPE) as the Euclidian distance between the position of the global maxima predicted
by the posterior mean and the true global maxima.

Squared error (SE) = / Imiposteri()r(z) - migmund(z)lzdz o Z |mii,P()Sl€Vi1”’ - mii,gr()undlz (3a)
i

Max point error (MPE) = (arg max miposierior(2) — arg max;Miground(2))+ (8b)

We compute these errors for Gaussian process regression on the experimental normalized
mutual information curves. We plot the values of average errors with varying numbers of support
points, that is, number of observations made on the objective function. For each curve and each
number of support points, we iterate 50 times, each time randomly selecting the positions of
support points from the entire domain. Figure 4 shows average errors computed by averaging over
all the curves and all the iterations. Here we assume complete knowledge of the hyperparameters
associated with each curve and each kernel function (hyper parameter estimation is discussed in
Sec. 3.6).

Gaussian process regression errors Gaussian process regression errors

70 50
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Fig. 4. Gaussian process regression errors of normalized mutual information [see Eq. (8)]
for different kernel functions [see Eq. (7)]. (a) Average squared error (SE) with a varying
number of support points. (b) Average max point error (MPE) (in cm) with a varying number
of support points.

In our data, the Matern 3/2 kernel gives the lowest average squared error (SE) and max point
error (MPE) for Gaussian process regression. As such, Matern 3/2 kernel function will be used
henceforth unless mentioned otherwise.
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3.4. Acquisition functions

Bayesian optimization uses acquisition functions to sequentially probe the objective function
to get point estimates. These functions have to balance the tradeoff between the exploration of
search space and the exploitation of current promising areas to be useful. In our case, the optima
of these objective functions correspond to the 3D reconstruction depth that generates the highest
mutual information and indicates the true depth of the objects.

The probability of improvement (PI / max-PI / MPI) criteria, as developed by Kushner [74],
selects the next acquisition point according to its probability of improving upon the best current
observation z"*! = arg max,P[MI, > max,(mi,;) + £(n)] . Since the posterior distribution is
Gaussian, this can be written analytically as:

©))

PI(z.£) = PIML > fiys +£] = 1 — @ (,U(Z) — (Umax +§)) _ M) = (Hmax +€)

o(z) o(2)

Here @ is the standard normal cumulative density function. = indicates that both representations
give the same maxima/minima as ® is a monotonic function. The expected improvement (EI /
max-EI / MEI) criteria, as developed by Mockus [76], chooses the point which gives the lowest
expected loss between the predicted and the true maximum. This means choosing a point that
upon observation would produce the largest maximum posterior mean (also referred to as the
“one-step” method). Its statement and an analytical expression for Gaussian posterior are given
as:

= arg maxE[max i E[M L2 |mi i ] [miin] (10a)

Zn+l

El(z,§) = E[(MI — (pmax + £)),] =
(u(z) = (Hmax + )P (%) +0(2)® (”_(Z)_a(l_l(r;)aX*'E))

Here O is the standard normal probability density function and @ is the normal cumulative
density function. Both of these criteria prefer points with higher posterior mean and variance
although with different tradeoffs. & controls the tradeoff in both these criteria. The probability
of improvement (PI) becomes “greedy” when ¢ is 0. The same cannot be said about expected
improvement (EI). These strategies have been extensively studied in [55,79,95] and recently
convergence rates have been proven for expected improvement [96]. Lia and Robbins [97]
use the upper confidence bound (UCB) to control the exploration and exploitation tradeoff
UCB(z) = u(z) + Bo(z) . This acquisition function works on the principle of selecting an
optimistic point under uncertainty. For every query point z, UCB uses a fixed probability
best-case scenario according to the underlying probabilistic model. The parameter S controls the
exploration-exploitation tradeoff. A high value of 8 enables more exploration while a value of O
leads to full exploitation. This criterion often has a provable cumulative regret bound [41], as
shown recently by Srinivas et.al. [98] by formulating Bayesian optimization as an infinite-armed
bandit problem with correlated arms.

A distinct class of acquisition functions makes entropy-based inferences. The entropy search
(ES) criterion uses information about the location of global maxima [99]. It chooses a point
that maximizes the decrease in differential entropy. The differential entropy of a continuous
distribution p(z) is defined as / p(2)log(p(z))dx . A smaller differential entropy indicates less
uncertainty. The predictive entropy search (PES) criterion seeks the same point but formulates
the entropy reduction objective in terms of mutual information [100].

ES(z) = H(P(z")) — Enix)[H(P(Z"|mi(2)))] (11a)
PES(z) = ES(z) = H(P(mi(z))) — Ex[H(P(mi(z)|z*))] (11b)

Here z* is the location of the global maxima, H(P(z*)) denotes the entropy of the uncertainty
about the position of the global maxima, and H(P(mi(z))) denotes the entropy of the uncertainty

(10b)



Research Article Vol. 31, No. 14/3 Jul 2023/ Optics Express 22872 |
Optics EXPRESS A N \

about the values of the function at z. Theoretically, both (entropy search (ES) and predictive
entropy search (PES)) should yield the same point. However, practical computational techniques
used for approximations yield different results. Equation (11(b)) (predictive entropy search) is
slightly easier to evaluate than Eq. (11(a)) (entropy search). The first term in Eq. (11(b)) (predictive
entropy search) can be computed in closed form. The second term requires approximations,
such as the expectation propagation algorithm [101]. Even then, predictive entropy search
(PES) is expensive to evaluate and thus unsuitable for our problem (and problems involving
real-time execution). Max-value entropy search (MES) [102] tries to mitigate the computational
complexity issue of entropy search (ES) and predictive entropy search (PES) by proposing a
modified criterion. It uses information about the maximum value MI* = mi(z") instead of
information about the location of the maximum value z* .

MES(z) = H(P(mi(z))) = Epr-[H(P(mi(z)|[MI"))] 12)

This is an easier problem to solve. The computation time of sampling the global minimizer
can be further reduced by approximating the black-box function with parabolic form [103].

The marginal distribution of mi(z) for any z is Gaussian, and hence the distribution of MI* can
be viewed as the maximum of an infinite collection of dependent Gaussian random variables.
[102] uses a “mean-field” approximation and considers these infinite Gaussian random variables
as independent and identically distributed. It allows the CDF of MI* to be represented by Gumbel
distribution. This parametric formulation allows the computation of the probability distribution
of MI* with fewer numbers of MI* samples. Henceforth, the max-point entropy search method
will be used with Gumbel approximation for the CDF of MI* (MES-G).

Many of the discussed methods can be classified as “one-stage” methods, as they seek to
obtain a point whose observation could minimize a certain quantity. Similarly, two-stage or
multi-stage methods can be formulated using the principles of dynamic programming. However,
such formulations do not significantly improve the results [89]. A detailed analysis of exploration
and exploitation tradeoffs in these methods is presented in [104].

In this section, we probe the empirical performance of acquisition functions in Bayesian
optimization using the max point error (MPE). From non-entropy-based functions, we select
probability of improvement (PI), expected improvement (EI), and upper confidence bound (UCB)
for evaluation. From entropy-based functions, we select the max-value entropy search with
Gumbell sampling (MES-G) [102] for evaluation. We use Matern 3/2 kernel function and assume
complete knowledge of its hyperparameters for each curve. Figure 5(a)-(c) shows the effect of
the acquisition function hyper-parameter on the average max point error. Figure 5(d) compares
the different acquisition functions using max point error. The best hyper-parameters selected
from Fig. 5(a)-(c) are used in Fig. 5(d). We start the Bayesian optimization with 5 initial function
evaluations and then plot max point error (MPE) for the 10%, 15", and 20" function evaluation
(or the 5™, 10™, and 15" BO iteration).

Max-value entropy search with Gumbell sampling (MES-G) has a better initial convergence
rate than other considered acquisition functions. However, it tends to get stuck in local maxima.
One example of such behavior is shown in Fig. 6(a). Figure 6(b) uses the same objective function
as Fig. 6(a) to compute the percent of misidentification of global maxima by changing the initial
sample locations 1000 times. MES-G’s runtime is comparable to the fastest method expected
improvement (EI) or probability of improvement (PI). MES-G is also much more robust to the
number of y* sampled from the GP posterior to estimate the acquisition function than PES is to
the number of x* sampled [102]. Figure 6(c) shows that MES-G performs competitively even
with as low as 10 samples.
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Fig. 5. Bayesian optimization errors for different acquisition functions (Acq. Functions).
(a)-(c) Average max point error (MPE) curves [see Eq. (8b)] for maximum expected
improvement (MEI) [see Eq. (10b)], maximum probability of improvement (MPI) [see
Eq. (9)], and upper confidence bound (UCB), respectively with varying exploration tradeoft
parameters. (d) Average max point error curves comparing MEI, MPIL, UCB, and max-value
entropy search with Gumbell sampling (MES-G) [see Eq. (12)]. For all these error curves
Bayesian optimization was initialized with 5 initial function evaluations.
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Fig. 6. (a) Sample objective function with the output of the Bayesian optimization at the
10t function evaluation using max-point entropy search acquisition function (MES-G) [see
Eq. (12)]. (b) Misidentification error rate of global maxima on the same objective function as
(a) for max-value entropy search with Gumbell sampling (MES-G) and maximum expected
improvement (MEI) [see Eq. (10b)] acquisition functions at the 15" and 20" function
evaluation. (c) Average max point error [see Eq. (8b)] for Bayesian optimization using
MES-G acquisition function vs. the number of y* sampled from the Gaussian process
posterior. MI: Mutual information, Recon. Depth: Reconstruction depth, Std. Dev.:
Standard deviation.
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3.5. Mean function

We use a constant prior mean for the Gaussian processes. The choice of mean functions affects
the overall fit of the posterior model with the ground truth and the rate of convergence. We
evaluate the goodness of fit of the Gaussian process posterior for four different types of constant
mean functions: minimum, maximum, maximum likelihood, and user-defined. The minimum
constant mean function uses the minimum observed value as the prior mean; the maximum
constant mean function uses the maximum observed value. The maximum likelihood (ML)
constant mean function optimizes the likelihood function to obtain the estimate. The likelihood
function for a Gaussian process with prior mean function yu(z) and kernel £ is:

1 1 N
log p(MI, = mi) = —z(mi — ) K (mi - p) - > log |K| — ) log 2m (13)

Here K = k(z,z) + 021 . In the above equation, z , mi , and N are completely determined by
the data, whereas 0',% , 4, 07, and oy are free model parameters. oy and oy parametrize the kernel
function k . The ML estimate for the prior mean, assuming a constant mean function pu(z) = u is:

. 17K 'mi
u —( e )1 (14)

Figure 7 shows the average squared error (SE) for the Gaussian process regression with
a varying number of support points for different mean functions. Figure 7(a) compares the
minimum, maximum, and maximum likelihood (ML) constant mean functions and Fig. 7(b)
compares several user-defined constant mean functions. We assume complete knowledge of the
kernel (Matern 3/2) hyperparameters.

Gaussian process regression errors Gaussian process regression errors
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Fig. 7. Gaussian process regression errors for different constant mean functions. (a)
Gaussian process regression average squared error (SE) [see Eq. (8a)] with a varying number
of support points for minimum, maximum, and maximum likelihood (ML) constant mean
functions. (b) Same curve as (a) for different user-defined values of constant mean functions.

Maximum likelihood constant mean function gives the lowest squared error compared to other
constant mean functions. We had assumed prior knowledge of kernel hyperparameters. When
kernel hyperparameters do not match, the difference in squared error for different mean functions
grows starker. A detailed analysis of mean functions is given in [105]. They show that the
minimum mean function makes the acquisition function more exploratory while the maximum
mean function makes it more exploitative.

3.6. Parameter estimation

We consider three approaches to estimate kernel hyper-parameters. The first is to find the
maximum likelihood estimate [52,90]. We substitute the Maximum likelihood (ML) estimated
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mean function (Eq. (14)) in the likelihood equation (Eq. (13)). The likelihood function is then
optimized for other free model parameters to get their corresponding maximum likelihood (ML)
estimates. This method can easily fall into traps for a small number of samples [96]. The second
approach imposes a prior on the hyperparameters. This yields the maximum a posteriori (MAP)
estimate [106]. We use a Gaussian prior, although, log-normal or truncated Gaussian priors can
also be used for positive parameters. Figure 8 shows the histogram of the model parameters for
our experimental data set. The noise standard deviation o, depends significantly on the fineness
of the sampling grid used to represent the objective function. The selection of o, prior thus
becomes an engineering choice.

14 - Matern 3/2 kernel 10 Matern 3/2 kernel 10 - Matern 3/2 kernel
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Fig. 8. Histograms of the free model parameters for the experimental data set with Matern
3/2 kernel [see Eq. (7)]. Gaussian fit on these parameters is used as a prior for the maximum
a posteriori (MAP) estimate. The prior mean function is evaluated using the maximum
likelihood (ML) estimate and does not require a prior.

The third approach is a fully Bayesian treatment. It integrates out the hyperparameters using
quadrature or Monte Carlo methods [43,107,108]. Hyperparameters can be marginalized to
obtain the posterior distribution or the acquisition function. The maximum a posteriori (MAP)
approach can be considered an approximation to the Bayesian inference, and the maximum
likelihood approach can be considered an approximation to the maximum a posteriori.

Figure 9(a) uses the max point error (MPE) to compare the maximum likelihood and maximum
a posteriori approaches. We evaluate both these methods for informed and un-informed initial
guesses. Informed guess is set as the average value of the parameters obtained experimentally
(refer to Fig. 8). Un-informed guess is set exp(0) for the characteristic length oy and signal
standard deviation oy , and exp(—1) for the noise standard deviation o, . Five starting samples
(function evaluations) were used for the Bayesian optimization. Figure 9(b) uses the best approach
from Fig. 9(a) to evaluate the effect of the number of starting samples.

Maximum a posteriori (MAP) approach with informed guess gives the lowest max point error
(MPE) for each number of total function evaluations (refer to Fig. 9(a)). The average max point
error difference for maximum a posteriori is small while using informed versus un-informed
initial guesses, and it gets smaller with more function evaluations. Whereas, the average max
point error difference for maximum likelihood is comparatively large while using informed versus
un-informed initial guess. The number of starting samples has a considerable effect on the max
point error for less number of total function evaluations (refer to Fig. 9(b)). This effect gets
muted with more function evaluations. It is a result of the balancing act between the parameter
estimation error and the Bayesian optimization process. Less number of starting samples leads to
more errors in parameter estimation while accommodating more BO iterations for a constant
number of function evaluations. Less number of start samples (two/three) also leads to frequent
failure of the maximum likelihood approach, thereby increasing the performance advantage of
maximum a posteriori even more. Henceforth, we use two starting samples, unless specified
otherwise.
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Fig. 9. Bayesian optimization errors for different parameter estimation algorithms. (a) Max
point error (MPE) [see Eq. (8b)] for maximum likelihood (ML) and maximum a posteriori
(MAP)-based approaches using informed and un-informed initial guess. The MAP with
informed guess provides the lowest max point error (MPE) for each number of total function
evaluations. (b) Max point error for MAP with an informed guess with a varying number of
starting samples.

We incorporate an approximation to the full Bayesian treatment by marginalizing out the
hyperparameters using Laplace approximation. Here we consider only the characteristic length
scale o and the signal standard deviation o, for marginalization. We approximate the posterior
likelihood by a multi-variate (bivariate for our case) Gaussian distribution. This is achieved by
centering the multi-variate Gaussian on the maximum of the posterior likelihood and setting
its covariance matrix equal to the Hessian at that point. Parameters are now sampled from
this Gaussian distribution — 40 samples for our case. We consider two different approaches
to marginalization. First, we marginalize the hyperparameters to get the posterior distribution.
The acquisition function is then used on this posterior distribution to compute the next point
for probing (Laplace — posterior). Second, we marginalize the hyperparameters to directly get
the acquisition function (Laplace — acquisition). In Fig. 10(a) we compare the two Laplace
methods with the best approach from Fig. 9(a). The Laplace — acquisition method gives the
lowest max point error, albeit with only a limited improvement. In Fig. 10(b) we plot the max
point error (MPE) for Laplace — acquisition with a varying number of parameters sampled from
the multi-variate Gaussian. It takes about 20 samples to get the full benefit of the marginalization.
This benefit is also restricted to a smaller number of total function evaluations.

Laplace approximation relies on the goodness of the posterior likelihood and the ability to get
its maximum point. This exposes it to the same concerns as that for the maximum likelihood
(ML) and maximum a posteriori (MAP) methods. However, the failure in Laplace is more severe
than that in ML or MAP. A failure of the ML method is a failure to find the maximum likelihood
point. However, this problem gets compounded in Laplace approximation as the multi-variate
Gaussian fitted on a point that is not the maximum is very ill-conditioned. This results in the
sample parameter values straying far away from their true value. We define a failure if the
Hessian (which is equated to the covariance matrix) is not positive-definite, or if the multi-variate
Gaussian is very ill-conditioned. Figure 10(c) shows the failure rate of the Laplace method as a
function of the number of support points (function evaluations). The same four methods as shown
in Fig. 9(a) are used for the posterior likelihood computation. The maximum a posteriori (MAP)
method gives a zero percent failure rate with both informed and un-informed initial guesses. The
failure percentage with the maximum likelihood (ML) method depends on whether the initial
guess is informed on un-informed. For all the methods, the failure decreases with the number of
support points.
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Fig. 10. Bayesian optimization errors for different parameter estimation algorithms. (a)
Max point error (MPE) [see Eq. (8b)] for the two Laplace-based approaches: Laplace —
posterior and Laplace — acquisition. These methods are compared with the best approach
from Fig. 9(a), i.e. maximum a posteriori (MAP) with an informed initial guess. (b) Max
point error for the Laplace — acquisition method with a varying number of parameter samples
acquired from the multi-variate Gaussian. (c) Failure of the Laplace-based approaches
with a varying number of support points. Both MAP with informed guess and MAP
with un-informed initial guess give a 0 percent failure for each number of support points
considered. ML: Maximum likelihood.

For an added computational cost the marginalization method provides only a limited gain in the
max point error (MPE) compared to the maximum a posteriori (MAP) method with an informed
initial guess. As such, we do not use marginalization in its current form for our problem.

3.7. Local maxima

As can be seen in Fig. 3, partially occluded objects give more than one peak, each corresponding
to either the object or occlusion. In many instances, the peak corresponding to the object is not
the global maxima. It is thus imperative to find all local maxima. For our problem, we define a
local maximum as the peak corresponding to either the object or occlusion.

The posterior of the Gaussian process model, representing the objective function at the next
sampling point z € Z , is Gaussian:

A . .
Pmi = ml(Z)Iml ~ N(ﬂz’ z:Z,Z) (153)

Due to the linear property of the derivative operator, the derivative of the posterior mi’ is
also subject to the Gaussian process model. Thus, at a different sampling point z; € Z , another
posterior can be written as:

A . .
Py = mi’ (z1)mi ~ N(uz,, 2, ) (15b)

The two posteriors mi(z)|mi and mi’(z;)|mi are not independent and identically distributed
(i.i.d.) as they relate to the same objective function mi . These two posteriors are jointly normally
distributed. Their combined mean and covariance matrix is given as [109]:

A T 1.
)2 | = A2 i - () (163)
02%[ D S S S ]=
(16b)
[ Kz2) K(z): K2 k') ]—Ak(z»z)qAT
T , d . d2
A=| k@) Kan | KO200 ad KO250. (60

1
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All other symbols have the same meaning as discussed in sec. 3.2. Equation (16) can be used

to obtain the conditional posterior p,;|pmi , characterized by the conditional mean j and variance

o2 as:

a=p+ 2 zlzzl zl(mi,(zl) - u(z1)) (17a)
IR YD Y Y S (17b)

In [110], the authors set two conditions to guarantee the discovery of a local optimum solution:
the value of the objective function at the test point should be larger than elsewhere nearby, and
the first-order derivative of the objective function should be close to zero. These conditions can
be represented as pi|pmy > € and |p,,7| < € . The authors incorporate these conditions to define
a modified probability of improvement (PI) based acquisition function by first letting z = z; and
then defining the acquisition function as [110]:

PI(Z»é:) _/(sz|sz')d§ fpmt'de =

;/(42()7) [Q (—sl—/lzl(z)) 0 (sz—l,t/tz(z))]
z 71,71

The Q-function represents the tail distribution function of the standard normal distribution.

We compare three approaches for finding local maxima. The first uses the modified probability
of improvement (PI)-based acquisition function [110] as described in Eq. (18). This approach
requires the first and second derivatives of the Gaussian process samples. Till now we had
used the Matern 3/2 kernel function which gives rise to Gaussian process whose samples are
once differentiable. To mitigate this, we switch to the squared exponential kernel for all three
approaches used for finding local maxima. In the second approach, we partition the domain
space into equal-length compartments (three for our case). A new probing point is computed for
each of these partitions by maximizing the acquisition function inside its domain. This method
generates multiple probing points in each Bayesian optimization iteration. Thus, for a fixed
number of function evaluations, this approach requires less number of Bayesian optimization
iterations. The third approach is sometimes referred to as synchronous parallel optimization in
literature. Similar to the second method, this allows obtaining multiple function evaluations in
parallel in the time that would ordinarily be required to obtain just one with sequential evaluation.
Within every Bayesian optimization iteration, we choose the next probing point z',i = 1,2,....n
(n = 3 for our case) sequentially assuming that points 7/, j<i have already been observed, and
have values equal to a constant (expected value mi(z/) of the posterior in our case).

In Fig. 11 we compare the three approaches for finding local maxima. We call these methods
local maxima PI, partition, and parallel respectively. We use three partitions for the second
method and three parallel acquisitions for the third method. We also compare the maximum
expected improvement (MEI) method for finding global maxima as discussed in Sec. 3.4. In all
these methods we use the squared exponential kernel function and the parameters are estimated
using the maximum a posteriori (MAP) approach with informed initial guess. Four function
evaluations are used for starting the Bayesian optimization. We evaluate the performance of these
methods by computing the mean of local max point errors (MPEs) corresponding to each local
maxima (Mean-local MPE / Mean-LMPE). For example, if the ground truth objective function
has two known local maxima of interest, then we consider the two local optima of posterior with
the highest value and compute the mean of their position distances from those in the ground truth.

>, MPE;
i=1:N
N

The partition and parallel methods have almost similar average mean local max point error

(LMPE). They perform similarly to local maxima PI in the initial few iterations of Bayesian

(18)

Mean local max point error (Mean - LMPE) = (19)
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optimization. However, their performance drops slightly as the Bayesian optimization progresses.
These three methods give a significantly smaller average mean local max point errors (LMPE)
compared to the maximum expected improvement (MEI) method used for finding the global
maxima.

Mean local max point errors (LMPE)

50
’E" Algorithms
40+ —— Local maxima PI
é —— Partition
w Parallel
230 — Ml
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o
220+
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<

0
4 6 8 10 12
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Fig. 11. Bayesian optimization errors for different local maxima acquisition functions.
Average mean of local max point errors (Mean-LMPE) [see Eq. (19)] corresponding to each
local maxima is plotted as a function of the number of function evaluations. The curves
are plotted using the squared exponential kernel function along with maximum a posteriori
(MAP) for parameter estimation. PI: Probability of improvement, MEI: Maximum expected
improvement.

4. Results

We compare the discussed Bayesian optimization inference with traditionally used cubic spline
inference. We compare these methods on two different tasks. First, the task of finding global
maxima is evaluated using max point error (MPE). Second, the task of finding local maxima
is evaluated using mean local max point errors (LMPE). For both these tasks we compare
the average and median performances. For the first task with Bayesian optimization, we use
Matern 3/2 kernel, maximum a posteriori-based parameter estimation using informed initial
guess, and the maximum expected improvement (MEI) acquisition function. For the second task
with Bayesian optimization, we use squared exponential kernel, maximum a posteriori-based
parameter estimation using informed initial guess, and the local maxima PI acquisition function.
Figure 12 shows these comparisons using the average and median values. Figure 12(a) shows the
average max point error (MPE) for the first task, and Fig. 12(b) and (c) show the median max
point error. Figure 12(d) shows the average mean local max point errors (LMPE) for the second
task, and Fig. 12(e) and (f) show the median mean local max point errors (LMPE).

Figure 12 shows that the average performance of Bayesian optimization is considerably better
than spline-based inference, and the disparity in the median performance is even higher. Bayesian
optimization achieves an acceptable degree of object depth localization (within 5-10 cm for
objects placed at roughly 350 cm from the camera array) with ten 3D reconstructions or less
(Fig. 12(a) and (d)). Compared to spline-based inference, Bayesian optimization achieves an
acceptable max point error (Fig. 12(b) and (c)) and mean local max point error (Fig. 12(e) and (f))
in approximately half the number of function evaluations. The standard deviation with Bayesian
optimization is also significantly smaller than that with spline-based inference.
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Fig. 12. Bayesian optimization and spline based inference errors for mutual information
based depth estimation. (a) Average max point error (MPE) for Bayesian optimization vs.
cubic spline-based inference. (b) Median MPE for Bayesian optimization. (c) Median MPE
for cubic spline-based inference. (d) Average mean local max point error (mean-LMPE)
for Bayesian optimization vs. cubic spline-based inference. (e) Median mean-LMPE for
Bayesian optimization. (f) Median mean-LMPE for cubic spline-based inference.

5. Conclusions

We have considered object depth estimation under partial occlusion using integral imaging. A
recent study accomplishes this by computing mutual information between the bounding boxes of
the 3D reconstructed scenes and the 2D central elemental image. Mutual information analysis
as a function of reconstruction depth shows that there are prominent peaks at the true depth of
the object and occlusion. To improve upon this method, we have investigated the application
of Bayesian optimization to achieve a reasonable depth estimation of both object and occlusion
with only a few 3D reconstructions. We have studied different kernel functions, acquisition
functions, and parameter estimation algorithms for Bayesian optimization-based inference. We
evaluated their performance based on errors between the predicted and the true depth of objects
as a function of the number of 3D reconstructions. Our preliminary results show that a handful of
3D reconstructions may be sufficient to obtain a reasonably accurate depth estimation of objects.
This number is approximately half of that required for traditionally used spline-based inference.

This manuscript discussed certain aspects of Bayesian optimization like kernel functions,
acquisition functions, and parameter estimation. We also compared a few frameworks for
finding local maxima as opposed to global maximums. However, a rigorous study of its various
applications and performance was not considered here as it is outside the scope of this work.
In the future, we plan to study the performance of this framework in real-world scenarios with
additional environmental degradations such as fog, brownout, and low illumination conditions.
We also plan to study in detail the role of integral imaging system parameters to further enhance
the performance. We postulate that parameters such as the number of cameras and pitch size
can be optimized for different degradations. Lastly, we also plan to extend this methodology to
dynamic object localization and tracking.
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Appendix A
We list all the abbreviations defined in the paper in Table 1.

Table 1. Definitions of commonly used abbreviations in this paper

Abbreviations Definitions Abbreviations Definitions
BO Bayesian optimization MES-G Maximum entropy
search with Gumbell
sampling
ES Entropy search ML Maximum
likelihood
GP Gaussian process MPE Max point error
InIm Integral imaging Max-PI/MPI Maximum
probability of
improvement
LMPE Local max point error PES Predictive entropy
search
MAP Maximum a posteriori SAII Synthetic aperture
integral imaging
Max-EI/MEI  Maximum expected improvement | SE Squared error
MES Maximum entropy search UCB Upper confidence
bound
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