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Abstract 

Because many Chemical Engineering phenomena and processes involve distinctive shapes and 

structures, fractal dimension (FD) analysis is of great interest to the Chemical Engineering community 

due to its utility in providing a statistical index of shape complexity, which not only quantifies image 

structure but also helps explain functional properties. Past box counting (BC) methods for estimation of 

FDs are inconsistent due to quantization error (QE) introduced from image rotation and translation. In this 

work, we propose a systematic and automatic artificial intelligence (AI) framework that consistently 

estimates FDs of relevance to different fields of Chemical Engineering without QE by integrating image 
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preprocessing, set-covering optimization-based BC, and regression analysis. As a result of the 

deterministic optimization technique, FD estimations remain consistent for all images regardless of image 

rotation and translation. The results of image datasets obtained from fields such as interfacial science, 

biomedical engineering, human anatomy, among others, demonstrate efficient box size specification to 

maximize regression effectiveness and FD calculation accuracy for a variety of images. Overall, the 

proposed AI framework offers a new means of estimating FD accurately and efficiently for optical images 

of interest to the Chemical Engineering community. 

 

Keywords: Fractal Dimension, Box Counting, Integer Linear Program, Regression Analysis, Optical 

Images 
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Abbreviations 

Sets/Indices 

I Set of the row index 

i,i’ Row indices 

J Set of the column index 

j,j’ Column indices 

Parameters 

BS Integer parameter that represents box sizes in powers of two less than a maximum box size 

LBI Integer parameter that represents the lower bound of row index 

LBJ Integer parameter that represents the lower bound of column index 

M  Integer that denotes the maximum of structure height and width 

N  Number of distinct copies of the measurement object 

PW Integer parameter that denotes the box size index 

R  Scaling ratio whose inverse is proportional to the length of the measurement object  

UBI Integer parameter that represents the upper bound of row index 

UBJ Integer parameter that represents the upper bound of column index  

Xi,j Integer parameters to indicate pixel luminance at the ith row and the jth column of the 

image 

Binary 0-1 Variables 

yi,j  Binary variables that represent the Boolean designating the presence of the upper-left 

origin of a box at the ith row and the jth column of the image 
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Variables 

d Variable that represents the sum of yi,j, which is the minimized box count at a certain BS 

FD Variable that represents fractal dimension which is derived from (N and R) or (BS and d) 
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1. Introduction 

1.1 Motivation 

Fractal geometry is ubiquitous in nature, as self-similarity is found in almost every natural setting and 

scale, from human anatomy to the evolution of earth’s geographical features [1]. Past studies have 

investigated the application of fractals to various fields [1, 2], including neuroscience [3], plant biology 

[4, 5], and interfacial science [6]. Unlike Euclidean geometry, fractal compositions cannot be defined by 

an ideal shape primitive, nor do they easily facilitate quantitative comparison to each other. It is important 

to consistently quantify, characterize, and compare the structures of fractal objects, as slightly different 

structures can result in tremendously different functions and properties. For instance, a folded protein in 

its native state can be safe and fully operational, whereas a small change in protein folding may lead to its 

toxicity or change in functionality [7]. While complex protein conformations can be challenging to 

compare directly, fractal geometries are a good metric for comparison. One such quantifiable value to 

compare fractal geometries is their fractal dimension (FD), which provides a statistical index of geometric 

complexity and helps in shape differentiation. 

FD analysis has been widely used in shape analysis and pattern recognition of images in Chemical 

Engineering-related fields, as many Chemical Engineering products and systems involve distinctive 

shapes and structures. Creating an AI framework that automatically estimates FD of an input image would 

be helpful for shape differentiation and provide quantitative insights of shape complexity, which can be 

applied to various fields such as life science, interfacial phenomena, neuroscience, etc. that are relevant to 

Chemical Engineering. Past studies have shown that FD can be used to characterize the shapes of 

aggregated proteins [8], crosslinked polymers [9], activated carbon [10, 11], fluidized nanoparticle 

agglomerates [12], etc., due to its broad applicability. FD serves as a statistical index to describe the 

external roughness of objects, quantifying shape complexity as a ratio of the change in detail to the change 
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in scale. Consequently, external shape complexity can be quantified, shapes can be discriminated, and 

functional properties can be categorized and better explained [13]. Fig. 1 shows an example of how FD 

can be used to compare images of interfacial structures formed by proteins and employed to explain and 

classify experimental samples. 

 

Fig. 1 Fractal dimension quantifies shape complexity as a ratio of the change in detail to the change in 

scale and can be used as a metric for shape differentiation or classification purposes, as shown by the 

example of interfacial phenomena (Curli vs. Lb protein) images. Curli images represent optical domains 
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rich in Curli, while Lb images denote domains rich in a lysogeny broth used for the culture of bacteria. 

Different regression slopes indicate different fractal dimensions, which further indicates different shape 

structures to be classified. 

1.2 Preliminaries of FD 

The basic equation of calculating FD is presented in Eq. (1).  

1
FDN

R
=    (1) 

where N is defined as the number of distinct copies of the measurement object, namely, the red line 

segments in Fig. 1. R is the scaling ratio, of which the inverse is proportional to the stick length. The 

number of line segments N is represented by the inverse of the scaling factor R raised to FD [14, 15]. 

Logarithmic transformations are then applied to both sides of Eq. (1), as shown in Eq. (2). 

( ) 1log log FDN
R

 =  
 

    (2) 

After Eq. (2) is simplified, FD can be expressed as the ratio of the negative log value of the number of 

line segments over the log value of the scaling ratio: 

( ) ( )log / logFD N R= −   (3) 

In Eq. (3), N can only be theoretically determined if the object exhibits self-similarity. In most image 

analysis applications, the value of N is estimated using methods such as box counting (BC) [16]. The BC 

method gathers data for N and R, respectively, by subdividing images into unit squares and then 

quantifying the relationship between the total number of subdivisions and their length scale. 
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1.3 Gaps in Knowledge 

The conventional BC methods are frequently applied tools for FD estimations, which involve 

superimposing grids upon the image and counting the number of grids that contain pixels defining the 

perimeter of the image [17]. However, they suffer from an inconsistency in the number of boxes counted 

under the same grid size upon rotation and translation of the image, known as quantization error (QE) [18]. 

As a result, the FD estimations derived from box sizes and box counts are inconsistent. Arbitrary grid 

placements can cause FD estimation to vary when conventional BC methods are used. Moreover, FD 

estimations are significantly affected by the range, values, and the number of grid sizes, which can be 

erratic or lead to invalid regression analysis [19]. It is therefore paramount to not only eliminate QE by 

counting boxes consistently but also guarantee valid regression analysis by choosing the appropriate box 

size combination. In order to develop a consistent BC method in this study, the BC approach is designed 

as a minimization problem, as the fewest box count is obtained each time under a specific box size. In 

other words, minimization guarantees consistency and eliminates QE despite image rotation and 

translation. In order to choose the appropriate box size combination, various combinations were tested, 

and the one with the best regression metrics was selected. 

1.4 Contributions of This Work  

This work proposes a systematic AI framework for estimating the FD of images in scientific and 

engineering fields. The framework has three major steps, namely image preprocessing, set-covering 

optimization-based BC, and regression analysis. Image preprocessing is the first step that involves 

converting the image from color to binary, formatting it properly, and extracting the perimeter of its largest 

domain. The image preprocessing step extracts a body perimeter for set-covering optimization-based BC 

analysis. In the set-covering optimization-based BC step, an Integer Linear Programming (ILP) model is 

formulated and solved to global optimality to determine the minimum number of boxes fulfilling total 
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coverage of the perimeter. The ILP model ensures that each perimeter pixel is covered by at least one box 

and minimizes the total number of boxes in its objective. The range and values of the box sizes used 

therein are determined by calculating the greatest x-y axis dimension measurement of the body perimeter 

extracted from image preprocessing, and they are adjusted by comparing the regression analysis metrics 

corresponding to each box size combination. Finally, the last step, regression analysis, requires plotting 

regression for logarithmically transformed box sizes and box counts data to obtain FD as the negative 

slope. To illustrate the applicability of the proposed framework, we put together a corresponding dataset 

comprising images from human anatomy, life science, interfacial science, etc.  

The main contributions of this research are presented as follows: 

• A novel AI framework that systematically estimates the FD values of structures serving as a 

universal metric for shape classification or pattern comparison of images from fields such as 

materials science, biomedical engineering, and interfacial science. 

• The first BC method to eliminate QE arising from image rotation and translation through global 

optimization of minimum box counts by ILP. 

• The first BC method that configures itself to select the most appropriate values, range, and the 

number of boxes to yield the best regression metrics based upon a dataset. 

The rest of this paper is organized as follows. The proposed framework is described in detail in Section 

2. The FD estimation results of images from the collected dataset are presented in Section 3. Section 4 

concluded the paper.  
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2. Methods 

 

Fig. 2 Flowchart of the three steps in the proposed AI framework for evaluation of the FD of the input 

image: image preprocessing, set-covering optimization-based box counting, and regression analysis with 

logarithmic transformations. Box sizes are specified as powers of 2, and FD is calculated as the negative 

slope of the regression line of the logarithmic value of box counts vs. the logarithmic value of box sizes. 
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We propose a fully automated AI framework to estimate FD that intelligently connects three major 

steps, including image preprocessing, set-covering optimization-based box counting, and regression 

analysis with logarithmic transformations. Important information from the previous step is automatically 

fed into the next. As shown in Fig. 2, the proposed framework relies on the reproducibility of each major 

step to estimate the FD automatically and consistently as a whole. This section presents the three major 

steps of the proposed AI framework, namely image preprocessing, set-covering optimization-based box 

counting, and regression analysis, in detail.  

2.1 Image Preprocessing  

The automated image preprocessing step involves three sequentially connected sub-steps: image 

conversion from color to binary, image formatting, and perimeter extraction of the largest structure with 

the most extended perimeter. Each of these sub-steps makes the image more suitable for interpretation by 

the set-covering optimization-based BC step.  

2.1.1 Image Conversion from Color to Binary 

The first sub-step to make the image algorithmically interpretable is the procedure to convert the image 

from color to gray-scale by automatically eliminating the hue and saturation information of each pixel 

while preserving their luminance. After the image is converted to gray-scale, additional sub-steps are 

automatically implemented to convert the image into strictly binary luminance (black and white, or simply 

binary), such that the background has a black appearance. This is done by plotting a histogram of pixel 

count versus luminance (i.e., gray level) from a flattening compression of the image into a one-

dimensional array of luminance values (i.e., gray values) inside the framework. For a better understanding 

of gray values, some gray pixels and their corresponding gray values are presented in Fig. 3. The gray-

scale image typically has a dark background, so most background pixels will have gray values near 0, 
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corresponding to a dark appearance, out of the range of values between 0 and 255. If an input image has 

a light background to begin with, it would be automatically inverted so that the background has a darker 

appearance. The high density of dark background pixels appears as a spike in pixel counts in the histogram 

just above the 0 gray level. To isolate the geometry of interest from the background, the dark background 

pixels are adjusted to exactly the 0 gray level. In order to ensure geometry isolation works best with image 

sources of varying brightness and contrast to optimize domain selection protocol under different image 

brightness, a threshold value t of a scalar factor greater than the mode gray value of the large background 

peak is automatically generated, and then the threshold t is funneled to adaptably distinguish between 

pixels that should be categorized as background or as relevant geometry (the selection of t values is 

discussed in detail in Section 3). All pixels with gray levels less than t are automatically adjusted to a gray 

level of 0 (pure black), and all other pixels are adjusted to a gray level of 255 (pure white), representing 

the geometry to be analyzed. An adaptive thresholding method is preferred among all image segmentation 

methods because of its wide image preprocessing applicability [20], being capable of handling images 

captured or generated with varying brightness and contrast levels.  

 

Fig. 3 The left image is a gray-scale micrograph of the optical response of a liquid crystal to the adsorption 

of protein at its interface, while the zoomed-in image is presented in the middle. Pixels of the optical 

domain are converted to pixel gray values between 0 to 255, where the lower the pixel intensity, the lower 
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the pixel gray value. The right image shows the pixel colors of some example boundary pixels with their 

gray values. 

2.1.2 Image Formatting 

After being converted to binary from the previous sub-step, the images require further automated 

processing sub-steps to facilitate the set-covering optimization-based BC. The key requisite for the 

regression analysis step is that at least three, but more commonly four or five, BC data points are obtained 

for regression. Therefore, images of at least 100 pixels, which can accommodate at least three or four box 

sizes, are the minimum valid resolution. Any fewer data points for regression analysis would be invalid 

and alternative methods to BC should be used to obtain the FD. Image edge paddings are automatically 

added by introducing extra pixels surrounding the image when the pertinent geometry has inadequate 

space to the image borders. Without this space, an effective solution to the ILP in the optimization-based 

BC step will be restricted. The ILP model is formulated in a way such that the upper left corner (top left 

pixel) of each box might not lie on the image structure directly, but on the background pixel, while the 

whole box still covers some portion of the perimeter. Therefore, sufficient background pixels are needed, 

such that box placements are solely restricted by the structure. Padding around the image ensures that all 

box sizes proposed can be iterated, and indices are not out of range for the set-covering optimization-

based BC analysis. This sub-step on perimeter extraction is not conducted if there is adequate space 

surrounding the structure of interest. The framework would automatically identify if insufficient space is 

an issue and decide on whether to format the image by image edge padding. 

2.1.3 Perimeter Extraction of the Largest Domain 

The final sub-step in image preprocessing is the extraction of the perimeter. The set-covering 

optimization-based BC step and the concept of FD itself are concerned with the perimeter of the geometry 

involved, so the interior of any structure may be effectively discarded, as is practiced in conventional BC 
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methods to estimate FD values [2]. Additionally, this perimeter extraction operation can, for the sake of 

automation, remove all geometries except the largest one. This is particularly useful for isolating important 

geometries and cleaning up images that may contain artifacts, noise, or small extraneous debris.  

For perimeter extraction, pixels are automatically classified into two categories: perimeter pixels and 

interior pixels. A perimeter pixel is defined as any foreground pixel adjacent to at least one background 

pixel, and an interior pixel is defined as all other foreground pixels with no adjacent background pixel 

(grey level of 0). If this is the sole geometry of interest, then interior pixels are all converted to black to 

effectively remove the interior, and the image is ready for the set-covering optimization-based BC step; 

otherwise, if deemed necessary, all perimeters except that of the largest structure are removed before 

proceeding to the next step. Although some other structures are large enough for the analysis as well, 

when set-covering optimization-based BC is performed on each of these structures separately, the FDs 

estimated for each shape are not significantly different for the dataset used in this study. Most domains 

within an image that belong to the same group elicit similar FDs regardless of size. In our FD analysis, 

the most representative structure is always selected from various datasets. We found that the largest shape 

is a good representation of the whole image because it is big enough to show details of its shape complexity 

compared with other smaller shapes. Based on our preliminary observation of domain structures, all of 

the optical domains first undergo nucleation with only a few pixels in terms of size, and then propagation 

when the size of the optical domain increases into either well-defined ellipsoidal or fibrillar shapes. During 

the nucleation step of a structure, when the shape of that structure is not well-developed, we found that 

the FDs of these structures are nearly identical. Therefore, selecting the largest structure, which would 

typically propagate over a long period, is a better option due to its more thoroughly developed geometric 

details. In the Curli and Lb images in Fig. 1, for example, the largest domain was selected for its greater 

detail which enabled us to use at least four box sizes.  
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To identify the largest structure, the structure sizes are automatically compared simply by the number 

of non-perimeter pixels within the structures. To do so, non-perimeter inner pixels are automatically set 

to an intermediate gray value, neither 0 nor 255, while the perimeter pixels are maintained at their 

luminance of 255 (white), thereby distinguishing interior pixels from perimeter pixels. Each structure is 

also distinguished from others by a unique index, which is attached to every interior pixel within each 

structure. Once interiors are indexed and distinguished from their perimeters, area sizes are easily 

determined by a pixel tally. All structures except the largest one are automatically set to zero gray value, 

and only the largest perimeter remains to be subject to BC analysis in the next step. 

2.2 Set-Covering Optimization-Based BC  

2.2.1 Integer Linear Programming (ILP) 

With the perimeter of interest extracted and isolated, an automated step of set-covering optimization-

based BC is performed to estimate the FD, as shown in the second step in Fig. 2. Compared to the 

conventional grid counting approach, the proposed method is more systematic and rigorous in minimizing 

the QE. Specifically, the proposed algorithm is implemented by automatically creating an ensemble of 

boxes that envelops the entire perimeter with the minimum number of boxes possible. The boxes can 

overlap if necessary. The minimized number of boxes is obtained by ILP, and the number is independent 

of irrelevant conditions that may cause QE.  

Before an ILP model is created, a few steps are designed in the framework to determine the given 

parameters. First, the smallest conceivable rectangle that covers the whole perimeter is automatically 

generated, as shown in the left side image of step 2 in Fig. 2. The coordinates of the four vertices of the 

rectangle are set to (LBI, LBJ) at the top left, (LBI, UBJ) at the top right, (UBI, LBJ) at the bottom left, 

and (UBI, UBJ) at the bottom right. Second, the perimeter width (RANI) and height (RANJ) are 

automatically calculated, as shown in Eq. (6) and (7), where the width is the distance between the top left 
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vertex and top right vertex, and the height is the distance between the top left vertex and the bottom left 

vertex. Third, the smallest box size is automatically set to two, and the largest box size set to the largest 

power of two that is smaller than or equal to the maximum of perimeter width or height (M) over two. M 

is obtained from Eq. (8) , and the range of box sizes (BS) is shown in Eq. (9). The range selection is 

explained in the next sub-step: Box Size Range and Value Selection in Section 2.2.2. As the range is 

determined, the framework automatically obtains all the box sizes BS, which are all powers of two and 

their indices (PW). Each BS is equal to two to the power of each PW, as shown in Eq. (10). Since the 

constraints vary under different box sizes, a unique ILP problem is solved for each box size 

correspondingly. The total number of ILP problems created for each image is PW, and we need PW data 

points for regression analysis.  

In each ILP model, box size BS is given. Indices i and j are in the range of LBI to UBI and LBJ to UBJ  

as shown in Eq. (11) and (12), since the perimeter of interest is within the rectangle. Xi,j that designate the 

pixel gray values, at the ith row and the jth column of the image correspondingly, are given parameters 

that can be obtained from the image directly. If Xi,j is equal to 0, the corresponding pixel is black, and 

there is no need to cover it; otherwise, at least one box is needed to cover that pixel since it is part of the 

white perimeter. To indicate if boxes are needed to cover pixels at certain locations, we introduce a binary 

variable yi,j. If a box’s upper-left origin is used at the ith row and the jth column of the image, yi,j equals 

to one; otherwise, it takes the value of 0 if no box is necessary at that coordinate. The values of yi,j are to 

be determined by the ILP model. 

The objective of each model is to minimize d, which is the total number of boxes to cover the perimeter, 

as represented by the sum of all binary variables yi,j. A constraint is only added when Xi,j is greater than 0. 

When Xi,j is nonzero at the ith row and the jth column of the image, at least one box is needed to cover the 

perimeter pixel at that location, which is represented as Eq. (5). Among all the potential boxes that can 
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cover the perimeter pixel, as indicated by all the yi’,j’ inside the parenthetical summation in Eq. (5), at least 

one of them must be used. If a box’s top left pixel at the i’th row and the j’th column lies on the top left 

of that perimeter pixel, and the box’s side length BS is big enough, that box can be used to cover the 

perimeter pixel.  

The ILP model is formulated as follows: 

min ,

UBI UBJ

i j
i LBI j LBJ

d y
= =

= ∑ ∑  (4) 

s.t. 
, ,

1 1
 1,   , , ,

ji

i j i j
i i BS j j BS

X y i i I j j J′ ′
′ ′= − + = − +

 
′ ′≥ ∀ ∈ ∈ 

 
∑ ∑  (5) 

RANI UBI LBI= −  (6) 

RANJ UBJ LBJ= −  (7) 

{ }max ,M RANI RANJ=  (8) 

2
2
MBS≤ ≤  (9) 

2 ,PWBS PW Z += ∈  (10) 

[ , ]I LBI UBI=  (11) 

[ , ]J LBJ UBJ=  (12) 

{ }, 0,1 , ,i jy i I j J∈ ∀ ∈ ∈  (13) 

  

where Xi,j is the pixel grey value at the ith row and the jth column of the image, and a binary variable yi,j 

indicates if a box whose upper-left origin is at the ith row and the jth column of the image is used to cover 
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pixels. We optimize the total number of boxes to cover the perimeter, as represented by the summation of 

all binary variables yi,j. Indices i and j are in the range of LBI to UBI and LBJ to UBJ. BS are the box sizes, 

which are all powers of two and PW are the indices. 

2.2.2 Box Size Range and Value Selection 

In conventional box counting approaches, box sizes are typically dictated as (1,2,3,4,6,8) [19], 

(2,4,8,16) [21], factors of image size [22], (3,9,27,81) [23], or (8,12,16,32) [24], but justifications 

supporting such selections are often omitted. However, past studies have reported the use of box sizes of 

powers of two [25, 26], or in the range from two to M/2 [27, 28], where M is the image length or the x-y 

axis dimension of the geometry of interest. We incorporated lots of image preprocessing and optimization-

based procedures that are formulated based on pixel colors and properties, so it would be appropriate to 

have box size as a multiplier of pixel size. For instance, a box with the smallest size two indicates a box 

whose size is two by two pixels. In the implementation of set-covering optimization-based BC in the 

proposed AI framework, the box sizes are also calculated as powers of two but ranging from two to M/2, 

where M is defined as either the height or width of the perimeter, whichever is greater. This selected range 

of box sizes eliminates oversized boxes, which entirely envelop the perimeter with just one box. The box 

size of one is also eliminated since its box count is just the total number of pixels that constitute the 

perimeter. Both of the cases of box size equal to one and box count equal to one are eliminated since these 

extreme values are not of great use to the regression analysis, and no optimization is involved in either 

case [25, 29]. As FD is defined as the negative log value of the box count over the log value of the box 

size, both box counts and box sizes are logarithmically transformed in the regression analysis. In any 

regression analysis where one data point is far away from the rest, the regression result would be greatly 

affected if an error occurred when obtaining that specific data point. However, when all the data points 

are equidistant, the impact of statistical errors on regression slope is minimized. Since regression is most 
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effective when each point is equidistant on a log-scale, powers of integer numbers are selected as box 

sizes. Moreover, using powers of two can generate more box data than using powers of three or four for 

small structures and smaller images. The set of box sizes to be counted for the perimeter is thus enumerated 

as powers of two in the range from two to M/2, but if M/2 is not a power of two, the largest box size is set 

to the greatest power of two no larger than M/2 [25-28]. 

2.3 Regression Analysis with Logarithmic Transformations 

After BC data are obtained, the FD can be automatically estimated as the negative slope of a regression 

analysis with logarithmic transformations of both the box size data BS and the minimized box count data 

d, as shown in the third step of Fig. 2. To estimate FD for image analysis using BC, we obtain FD based 

on the equation below: 

( )
( )

log ( )
2 |1 2 ,,

log 2
P PS

d d BS MFD P Z
d BS

B + = − ∈ < ≤ ∈


∀ 


   (14) 

where FD is defined as an integer variable, whose negative value equals the slope of box count as a 

function of the box size. The regression slope indicates the degree of complexity, or negative FD, where 

FD falls between one and two [14, 30]. 

3. Results and Discussion  

In this section, we applied the proposed AI framework to obtain the FD estimation results of 10 

example images, 40 case study images in the field of interfacial science, and all 167 images in our collected 

dataset. 
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3.1 FD Estimation Results of 10 Example Images 

The FD estimation results of 10 example images in interfacial science, neuroscience, plant science, 

etc., are presented in this section. FD serves as a statistical index for purposes of pattern comparison and 

shape characterization, which illustrates the effectiveness of the proposed AI framework. 

3.1.1 Preprocessed Image Compatibility 

Image preprocessing techniques within the AI framework effectively format and accommodate input 

images with different resolutions, colorations, and image clutter automatically. During testing, it was 

found that the majority of fields of study produce images that have enhanced contrast with higher-

luminance structures of interest on a low-luminance dark background, as shown in images a1, a2, b1, b2, 

c1, c2 (interfacial phenomena and neuroscience images) of Fig. 4; such input images can be immediately 

preprocessed for image conversion from full color (on the left-hand side of Fig. 4) to binary (on the right) 

automatically. All images which instead have a low-luminance structure of interest or high-luminance 

background (such as images d1, d2, e1, e2 in Fig. 4) are automatically inverted before being fed into image 

conversion from color to binary. After the image is converted from full color to binary, the diverse range 

of image resolutions, as well as image clutter can then be accommodated in the steps detailed in image 

formatting and perimeter extraction, and as a result, a comprehensive range of images can be correctly 

converted to a single distinct perimeter. This directly results in the relative success and ease of applying 

the AI framework across the image dataset. Apart from the need for image inversion to ensure brighter 

geometry upon a dark background, the AI framework can be made compatible with and automated for 

nearly any type of image – an invaluable utility for many FD estimation contexts. 
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Fig. 4 For each pair of images, the left image corresponds to the original source images, while the right 

image is the segmented binary image used for testing. a1, a2, b1, and b2 are interfacial phenomena images 

generated from our high-throughput experiments. c1 and c2 are human anatomy images [31]. d1 and d2 

are plant science images [4].  e1 and e2 are classic fractal geometries [18, 32]. 
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3.1.2 Efficient Box Size Specification 

The selection of box sizes evaluated in the set-covering optimization-based BC was justified and aptly 

designated in this study. All box sizes (integers ranging between one to the longest linear dimension 

measurement) were evaluated on the test data (the 10 example images), while their corresponding 

minimized box counts were recorded. Sets of box sizes that successfully yield different box counts were 

chosen, for instance (2,4,8,16) [21], (divisors of image size) [22], (8,12,16,32) [24], etc., and had their 

resultant regressions plotted to compare the R2, MSE, and MAE values. We found that when the set of 

box sizes were in powers of two, they would yield the greatest number of equidistant log-log regression 

analysis data points below the critical box size, to maintain a high R2 value and low MSE and MAE. 

Powers of two were chosen based on three criteria. First, logarithmically diverse box sizes minimize 

regression data error, including QE. Second, well-distributed datasets reduce the likelihood of repeating 

box counts, which otherwise reduce the accuracy of the regression analysis. Third, powers of two enable 

more box sizes to be counted before reaching the critical maximum box size, as compared to larger integer 

values. 

 

3.1.3 Box Counts Closely Follow Linear Behavior  

The set-covering optimization-based BC step produces BC data closely following the linear behavior 

that defines FD based on regression analysis. The computational time of ILP optimization and regression 

programs implemented in Python 3.8 usually falls between one to four seconds, depending on the image 

size and largest perimeter size.  Below are some example computational times of interfacial science images. 
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Table 1 Computational times to run the proposed AI framework for the interfacial science images 

generated from our experiments. 

Example images Total program running time Wall time 

Interfacial Science 01 (Curli) 3.29 s 4.28 s 

Interfacial Science 02 (Curli) 2.62 s 3.53 s 

Interfacial Science 03 (Curli) 3.30 s 4.12 s 

Interfacial Science 04 (Lb) 2.11 s 2.91 s 

Interfacial Science 05 (Lb) 2.23 s 3.06 s 

Interfacial Science 06 (Lb) 2.06 s 2.55 s 

 

 In most cases where image and perimeter size are large, for each given box size, an ILP problem is 

formulated with more than 1000 variables and 100 constraints. Each ILP problem generates a box count 

that passes on for regression analysis with logarithmic transformations. When all box counts are obtained, 

to quantify the linearity in regression analysis, the R2, MSE, and MAE metrics are used to evaluate the 

prediction error rates and model performance in regression analysis. The resulting MSE and MAE are 

typically small, while R2 values always remain greater than 0.99. As shown in Fig. 5, which contains the 

regression results of the same segmented binary images presented in Fig. 4, the BC data (log box size and 

log box count) strongly follows a linear relationship in each regression analysis. R2 values demonstrate 

nearly ideal fits in regression models for a highly varied set of images. Apart from the R2 value, which is 

largely affected by variance, MAE measures the absolute average distance between the real data and the 

predicted values. The MAEs of all images shown in Fig. 5 are below 0.05, which indicates the average 

magnitude of error from every sample in this dataset is minimal. Besides MAE, which sometimes fails to 

highlight major errors in predictions, MSE indicates the quality of the estimator/predictor of the regression 
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model. In Fig. 5, all MSEs are smaller than 2×10-3, testifying to the accuracy of the regressor in each 

regression model.  
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Fig. 5 Regression analysis with logarithmic transformation shows excellent regression metrics of 

segmented binary images presented in Fig. 4. a1, a2, b1, and b2 are interfacial phenomena images 

generated from our high-throughput experiments. c1 and c2 are human anatomy images [31]. d1 and d2 

are plant science images [4]. e1 and e2 are classic fractal geometries [18, 32]. 

3.1.4 Quantization Error Elimination for Accurate FD Estimation 

The proposed AI framework eliminates QE to precisely and accurately estimate FD. When each image 

in the dataset is rotated, the set-covering optimization-based BC yields essentially identical box count data 

regardless of rotation angle, as the box counts are always strictly minimized. The consistency gained from 

eliminating QE allows for precise prediction of FD, which can then be determined to be both accurate and 

precise by comparing with the Hausdorff-Besicovitch dimension at less than 4% error. 

The Hausdorff dimension is another measure of FD [33], alongside the BC interpretation. The 

Hausdorff dimension can be used to compare FD values estimated by different methods and is often used 

on formulaic fractals since their Hausdorff dimensions are exact values. For example, the Hausdorff 

dimension of the Gosper Island contour (image e1 in Fig. 4) is about 1.13 [34], while the FD estimation 

from the AI framework yields 1.11, which differs from the Hausdorff dimension by only 1.68%. The 

Hausdorff dimension of the Koch curve or Koch snowflake (image e2 in Fig. 4) is approximately 1.26 

[34], and the framework estimates its FD to be 1.21, a 3.97% difference from the Hausdorff dimension. 

The FD estimation of the Sierpinski triangle is 1.53 [34], which is 3.16% different from its Hausdorff 

dimension of 1.58. Similarly, evaluations and comparisons of FD against the Hausdorff dimension for 

fractals such as the Julia Set, the boundary of the terdragon curve, and the boundary of the tame twindragon 

curve [35], also result in discrepancies of 4% or lower. The FDs of the dataset tested, including images of 

formulaic fractals, are presented in Table S1. These benchmark geometries have low FD estimation errors 
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below 4%, particularly when considering the MAE and MSE of most regressions, representing a strong 

adherence of the BC method to the mathematically rigorous definition of FD. Based on our AI framework, 

the results generated provide accurate FD estimations of deterministic fractals compared to their Hausdorff 

dimensions. The FD results can help us visualize what it means for shapes to high or low fractal 

dimensions 

3.2 FD Estimation Results of 40 Interfacial Science Images 

As an example of the framework being able to discriminate FD between similar images, the FD 

estimation results of Curli vs. Lb images exhibit a significant difference between their FD values.  

3.2.1 Image Classification by FD Analysis 

The distributions of FD estimations for interfacial science images (Curli vs. Lb) are shown in Fig. 6. 

A parametric method to perform a two-sample t-test, which is appropriate for examining the difference in 

means for two populations, is used in this study, and the test results are shown in Table 2. 

 

 

Fig. 6 Fractal dimension estimation comparison of Curli and Lb images. Curli structures typically have 

fractal dimensions over 1.19 with an average of 1.35, while Lb structures have a broader range of fractal 
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dimensions with an average of 1.24. Images that have low FD values (below 1.19) could generally be 

characterized as Lb images rather than Curli images. 

 

Table 2 Two-sample t-test for interfacial phenomena Curli and Lb images to determine whether the true 

difference in means between these two populations is statistically significant. 

Test Statistics Value 

t 2.67 

df 36.46 

p-value 0.011 

 
Alternative Hypothesis: 

The true difference in means is not equal to 0. 

95% confidence interval [0.027, 0.201] 

mean of Curli sample estimate 1.35 

mean of Lb sample estimate 1.24 

 

The statistical analysis results demonstrate that we are 95% confident that the true difference in 

average FD values between Curli and Lb images is greater than 0.027 while smaller than 0.201, and the 

true difference in means is over 98% likely to be nonzero. Experimental protocols can be optimized to 

maximize the differences in the FD values between Lb and Curli datasets. In the Curli/Lb example, optical 
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signatures of the LC in response to protein aggregates rich in alpha-helices yield elliptical structures with 

fractal dimensions close to 1, whereas the LC response to protein aggregates rich in beta sheets yield 

branching structures with fractal dimensions around 1.6. Thus, if an LC film is exposed to an unknown 

solution comprising either LB or curli, fractal dimension estimations of the LC optical domains generated 

by the AI framework can help us determine which solution the LC was exposed to. 

As shown in both the boxplot and the violin plot of Fig. 6, the maximum FD estimations in the sample 

dataset are approximately the same for Curli and Lb images. However, their minimum FD values and first 

quantiles (Q1s), which are the values under which 25% of data points are found when they are arranged 

in increasing order, are not the same. The minimum FD estimation for Curli images is 1.19, while a great 

number of Lb images have FD estimations between 1.05 and 1.19. Since the sample dataset shows the 

absence of Curli images whose FD values fall below 1.19, it is likely that images that do have low FD 

values (below 1.19) could be characterized as Lb images rather than Curli images. This is an example of 

the capability of the BC method within the AI framework to differentiate between otherwise 

indistinguishable images. 

3.2.2 Threshold t Selection Affects FD Result 

The threshold t used in the image segmentation thresholding step can change the FD result. As 

mentioned earlier, in the image preprocessing step where color conversion was performed, the threshold 

selection t is automatically generated and not fixed. The value of t is automatically derived from a 

histogram of the pixel count at each gray-scale value, where the mode value is used as a benchmark to 

gauge the overall luminance of the imaged bodies and for t to be set relative to. Too high a threshold value 

breaks the structure domain into multiple pieces, and too low of a threshold fails to eliminate noise from 

the image. This effect is shown in the bottom left of Fig. 7. Neither breaking a structure into two pieces 

nor keeping debris and noise is advised, so t is chosen to be exactly the mode in the example image. 
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Fig. 7 The effect of threshold value t on image preprocessing outputs. Too high a threshold value breaks 

a structure into multiple pieces, and too low of a threshold fails to eliminate noise from the image. 

Certain categories of images can prove to be more sensitive to this issue than others, such as the 

interfacial science images in the case study. In these circumstances, it will likely be necessary to work 

with domain experts who are familiar with the true structure of the imaged body, and if such a body had 

ought to be interpreted as monolithic or fractured. The importance of background knowledge, such as our 
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insights on these Curli and Lb protein aggregates and knowledge of the experimental conditions under 

which the images were obtained, cannot be understated. Ideally, for any study of fractal geometry, may it 

be image thresholding, clustering, or some other image segmentation method, some familiarity of the 

actual geometry represented by the image will always be needed to determine the threshold value t 

appropriately, being key to the interpretation of the roughness of the perimeter and therefore key to truly 

measuring the FD. 

3.3 FD Estimation Results of the Entire Dataset of 167 Images 

3.3.1 Dataset Description  

The AI framework we proposed is data-independent, and it was tested on the image data from both 

our own experimental studies and literature relevant to the field of Chemical Engineering that raises the 

concept of fractal dimension. The framework is not specifically tailored for the image dataset but is rather 

designed independently to be universally applicable to images from multiple disciplines. To show the 

general applicability of the AI framework, from as much literature involving the FD concept as we know, 

we collected 167 meaningful images for testing, as shown in Table S1. We filtered out the unusable images 

from previous publications and made the dataset as diverse as possible to the best of our knowledge. Based 

on our FD estimation results of the image dataset, the framework is compatible with many different fractal 

geometry representations and can be used for a variety of applications. The framework was validated with 

a dataset with 167 images, which are collected from reputable datasets in seven different fields of study 

from 12 sources [4, 18, 31, 32, 36-42], demonstrating its robustness and versatility, as shown in Fig. 8.  
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Fig. 8 A dataset of 167 images from diverse disciplines [4, 18, 31, 32, 36-42], including human anatomy, 

life science, interfacial phenomena, etc., and the percentage of images from each field used in the analysis 

presented in this paper. 

We used 40 optical images of liquid crystal films with interfaces decorated by proteins, which we 

obtained as optical domains with characteristic geometries representative of interfacial science. 

Specifically, 20 images were obtained from LC films exhibiting optical domains rich in Curli, amyloid 

that forms the main structural unit of bacterial biofilms, and 20 images were obtained from LC films 

exhibiting domains rich in a lysogeny broth used for the culture of bacteria (Lb).  The ability to distinguish 

the LC response to Curli and Lb has the potential to enable early detection of the presence of pathogenic 

bacteria.   
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Aside from the interfacial science images, 46 human anatomical images, a popular field for FD 

estimation applications, were also included in the dataset, such as brain images whose FDs can be 

correlated with stages of disease or aging. Among these 46 human anatomical images, 14 were obtained 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31]. Among these 14 images in the field 

of neuroscience within human anatomy, the patient group’s coronal and axial plane images, as well as the 

control group’s coronal and axial plane images, were selected from an FD analysis paper in neuroscience 

[31].  An additional eight human anatomical images in a similar fashion were obtained from an FD study 

on neuroscience-related diseases [36]. These eight images are axial plane brain images of the left and right 

white matter in one human subject with a right-hemisphere lesion [36]. An additional 14 human 

anatomical images were obtained from an FD analysis by Wu et al. [37], of which seven of them show 

cerebellum white matter structures and the other seven show cerebellum gray matter structures. A 

supplementary five human anatomical images depicting brain visualizations of various patients were also 

procured [38]. Finally, the remaining six human anatomical images are of benign and malignant cases of 

breast cancer [39]. 

Another major component of the image dataset is a collection of other life science images, mainly 

consisting of those from plant biology, 20 of which are related to plant development [4]. Of these 20 

images, 16 are specimens of fucus vesiculosus plants arranged in order of complexity, and four images 

are outlines of specimens of fucus serratus.  

We also included some inorganic matter images in the dataset for this study. A total of 20 images of 

material surfaces and textures are sourced from the Brodatz Texture Dataset [40], from which these 20 

images were deemed suitable (of the adequate resolution, size, fractal geometry, etc.) to use in this study. 

Another inorganic but still extensively naturally occurring fractal image type is landscape geography. Six 
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landscape images, in the form of generated environmental topographies from one of the randomized-phase 

modes in an inverse Fourier generation method, were also used for BC validation [41].  

Moreover, 15 images of simply constructed sample contours of increasing perimeter irregularity were 

included in the dataset to validate the AI framework. In a similar vein, to ensure that the AI framework is 

still congruent with strictly formulaic fractals of mathematically defined FD, ten images of classical fractal 

figures are included, such as contours of the Gosper Island (Limit of the Gosper Curve) [18], Koch Curve 

(Koch Snowflake) [32], the boundary of the terdragon curve [42], etc. The diversity of this dataset 

provides concrete evidence that the proposed AI framework is a robust yet well-grounded tool that remains 

in agreement with the true benchmarks of the FD.  

3.3.2 FD Distributions of the Entire Dataset 

As shown in Fig. 9 below, all FD values of 167 images fall between one and two, as mentioned earlier 

in Section 2. The distributions of FD values between different categories tend to overlap extensively, 

indicating that comparison within each category is more meaningful than between different categories. 

Given that all FDs fall between one and two, the difference between the maximum FD and the minimum 

FD within each group is at least 0.25 and at most 0.55. Most distributions seem to be relatively symmetric, 

such as those of interfacial science, life science, material surfaces and textures, and validation geometries. 

The distribution of formulaic fractals and geography are asymmetric, most likely since fewer images were 

included in the dataset. The input images selected were diverse in sources, yet the analysis methodology 

reported in this study suitably handled them all. Compared with methods mentioned in previous studies 

[4, 31, 36-39], which did not globally minimize the number of boxes used to cover the structure perimeter, 

our method eliminates QE to precisely and accurately estimate FDs, which are not affected by image 

rotation or translation. With our set-covering optimization-based BC approach in the AI framework, we 

eliminate subjective or user-varying protocols that would affect FD estimations. 
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Fig. 9 Fractal dimension results of all seven fields of 167 images. Geography images are shown to have 

the lowest average fractal dimension, while material surfaces and textures have the highest average fractal 

dimension. All fractal dimension values fall between one and two. 

3.3.3 Applicability to Large Dataset Applications 

The AI framework lends itself to being fully automated so it can handle large batches of data. As 

shown in Fig. 2, the three step framework (image preprocessing, set-covering optimization-based BC, and 

regression analysis with logarithmic transformations) for evaluation of FD of input images is visualized, 

regarding how the AI framework automatically feeds subsequent information output from one major 

algorithmic step to the next. Within each major step, data (images and numerical results) are also processed 

and fed from the previous sub-step to the next. Since all procedures in the AI framework are conveniently 

connected, the framework can handle large batches of data simply by running the program for each image. 
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This may become a particularly valuable trait for any application wherein large sets of diverse image data 

must be handled simultaneously. 

 

4. Conclusions 

This paper proposed an automatic and systematic AI framework to estimate FD accurately without 

QE. The framework was proposed to integrate three major steps, including image preprocessing, set-

covering optimization-based BC, and regression analysis. Each step was also divided into individual sub-

steps, including image conversion from color to binary, image formatting, and perimeter extraction under 

image preprocessing. Additional substeps include ILP and box size range and value selection under set-

covering optimization-based BC, and regression analysis with logarithmic transformations to obtain the 

final FD value. The framework was constructed to integrate each of the three major steps (and each sub-

step within the corresponding step) systematically such that the resultant data/images/plots can be 

automatically formatted for appropriate output/input to the next step. Compared to the conventional 

methodologies, the AI framework guarantees consistency in the number of boxes minimized and counted 

for a given box size, so FD estimations remain uniform despite any arbitrary image rotation and translation. 

In the proposed AI framework, the set-covering optimization-based BC problem was formulated as an 

ILP problem to minimize the total number of box counts given each box size, and the box size combination 

selected in the end was improved by comparing and finding the ideal regression analysis metrics. Only 

one box count value is obtained, via the tailored optimization algorithm, for each box size of a given 

feature to guarantee consistency. 

The validation dataset included images originating from seven different fields of study, wherein the 

FD of each image is estimated accurately enough to provide quantitative evaluation and comparison 
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between otherwise indiscernible image sets, attesting to both the framework’s broad compatibility and 

discriminating quantification. Furthermore, the AI framework produces box data that very closely follows 

the linear behavior that defines FD, facilitating regression analysis, in that the MSE and MAE are typically 

negligible while R2 values often remain >0.99. This is in part due to how the framework eliminates QE to 

precisely and accurately calculate FD, as was verified by the minimal difference (<4%) between the 

Hausdorff dimension and FD values of enclosed, formulaically generated true fractals. As a testament to 

the framework’s discerning analytical capability, a sample study to discriminate FD between similar 

images demonstrated that the FD estimation results of Curli-spiked vs. Lb images exhibit a considerable 

difference between their average FD values. Ultimately, the framework can be effectively used on a wide 

variety of images to obtain FD estimations in a consistent and uniform way. The proposed AI framework 

demonstrates high computational efficiency, robustness in application, flexibility, and versatility for 

processing diverse types of images. The method shows a warranted potential to be developed into a 3-

dimensional BC method in which the differential gray-scale can be incorporated. Most of the FD 

estimations we obtained fall in the range of 1.0 to 1.8, similar with previous studies’ FD estimations 

generated by 2D box counting methods [6, 43, 44]. A future extension of this study can be conducted to 

theoretically investigate the reason for an upper bound of 1.8 of FD values of Chemical Engineering-

related structures, but that is beyond the scope of this current paper. 
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