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Abstract

Because many Chemical Engineering phenomena and processes involve distinctive shapes and
structures, fractal dimension (FD) analysis is of great interest to the Chemical Engineering community
due to its utility in providing a statistical index of shape complexity, which not only quantifies image
structure but also helps explain functional properties. Past box counting (BC) methods for estimation of
FDs are inconsistent due to quantization error (QE) introduced from image rotation and translation. In this
work, we propose a systematic and automatic artificial intelligence (AI) framework that consistently

estimates FDs of relevance to different fields of Chemical Engineering without QE by integrating image

* Corresponding author. Phone: (607) 255-1162; Fax: (607) 255-9166; E-mail: fengqi.you@cornell.edu
1



preprocessing, set-covering optimization-based BC, and regression analysis. As a result of the
deterministic optimization technique, FD estimations remain consistent for all images regardless of image
rotation and translation. The results of image datasets obtained from fields such as interfacial science,
biomedical engineering, human anatomy, among others, demonstrate efficient box size specification to
maximize regression effectiveness and FD calculation accuracy for a variety of images. Overall, the
proposed Al framework offers a new means of estimating FD accurately and efficiently for optical images

of interest to the Chemical Engineering community.
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Abbreviations

Sets/Indices
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Parameters

BS
LBI

LBJ

Pw

UBI

UBJ

Set of the row index
Row indices
Set of the column index

Column indices

Integer parameter that represents box sizes in powers of two less than a maximum box size
Integer parameter that represents the lower bound of row index

Integer parameter that represents the lower bound of column index

Integer that denotes the maximum of structure height and width

Number of distinct copies of the measurement object

Integer parameter that denotes the box size index

Scaling ratio whose inverse is proportional to the length of the measurement object
Integer parameter that represents the upper bound of row index

Integer parameter that represents the upper bound of column index

Integer parameters to indicate pixel luminance at the ith row and the jth column of the

image

Binary 0-1 Variables

Yij

Binary variables that represent the Boolean designating the presence of the upper-left

origin of a box at the ith row and the jth column of the image



Variables

d Variable that represents the sum of y;;, which is the minimized box count at a certain BS

FD Variable that represents fractal dimension which is derived from (N and R) or (BS and d)



1. Introduction

1.1 Motivation

Fractal geometry is ubiquitous in nature, as self-similarity is found in almost every natural setting and
scale, from human anatomy to the evolution of earth’s geographical features [1]. Past studies have
investigated the application of fractals to various fields [1, 2], including neuroscience [3], plant biology
[4, 5], and interfacial science [6]. Unlike Euclidean geometry, fractal compositions cannot be defined by
an ideal shape primitive, nor do they easily facilitate quantitative comparison to each other. It is important
to consistently quantify, characterize, and compare the structures of fractal objects, as slightly different
structures can result in tremendously different functions and properties. For instance, a folded protein in
its native state can be safe and fully operational, whereas a small change in protein folding may lead to its
toxicity or change in functionality [7]. While complex protein conformations can be challenging to
compare directly, fractal geometries are a good metric for comparison. One such quantifiable value to
compare fractal geometries is their fractal dimension (FD), which provides a statistical index of geometric
complexity and helps in shape differentiation.

FD analysis has been widely used in shape analysis and pattern recognition of images in Chemical
Engineering-related fields, as many Chemical Engineering products and systems involve distinctive
shapes and structures. Creating an Al framework that automatically estimates FD of an input image would
be helpful for shape differentiation and provide quantitative insights of shape complexity, which can be
applied to various fields such as life science, interfacial phenomena, neuroscience, etc. that are relevant to
Chemical Engineering. Past studies have shown that FD can be used to characterize the shapes of
aggregated proteins [8], crosslinked polymers [9], activated carbon [10, 11], fluidized nanoparticle
agglomerates [12], etc., due to its broad applicability. FD serves as a statistical index to describe the

external roughness of objects, quantifying shape complexity as a ratio of the change in detail to the change
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in scale. Consequently, external shape complexity can be quantified, shapes can be discriminated, and
functional properties can be categorized and better explained [13]. Fig. 1 shows an example of how FD
can be used to compare images of interfacial structures formed by proteins and employed to explain and

classify experimental samples.
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Fig. 1 Fractal dimension quantifies shape complexity as a ratio of the change in detail to the change in
scale and can be used as a metric for shape differentiation or classification purposes, as shown by the

example of interfacial phenomena (Curli vs. Lb protein) images. Curli images represent optical domains



rich in Curli, while Lb images denote domains rich in a lysogeny broth used for the culture of bacteria.
Different regression slopes indicate different fractal dimensions, which further indicates different shape

structures to be classified.

1.2 Preliminaries of FD

The basic equation of calculating FD is presented in Eq. (1).

1

N= RFD

(1)

where N is defined as the number of distinct copies of the measurement object, namely, the red line
segments in Fig. 1. R is the scaling ratio, of which the inverse is proportional to the stick length. The
number of line segments N is represented by the inverse of the scaling factor R raised to FD [14, 15].

Logarithmic transformations are then applied to both sides of Eq. (1), as shown in Eq. (2).

log(N)= log[RlFDj 2)

After Eq. (2) is simplified, FD can be expressed as the ratio of the negative log value of the number of

line segments over the log value of the scaling ratio:

FD =—log(N)/log(R) (3)
In Eq. (3), N can only be theoretically determined if the object exhibits self-similarity. In most image
analysis applications, the value of N is estimated using methods such as box counting (BC) [16]. The BC
method gathers data for N and R, respectively, by subdividing images into unit squares and then

quantifying the relationship between the total number of subdivisions and their length scale.



1.3 Gaps in Knowledge

The conventional BC methods are frequently applied tools for FD estimations, which involve
superimposing grids upon the image and counting the number of grids that contain pixels defining the
perimeter of the image [17]. However, they suffer from an inconsistency in the number of boxes counted
under the same grid size upon rotation and translation of the image, known as quantization error (QE) [18].
As a result, the FD estimations derived from box sizes and box counts are inconsistent. Arbitrary grid
placements can cause FD estimation to vary when conventional BC methods are used. Moreover, FD
estimations are significantly affected by the range, values, and the number of grid sizes, which can be
erratic or lead to invalid regression analysis [19]. It is therefore paramount to not only eliminate QE by
counting boxes consistently but also guarantee valid regression analysis by choosing the appropriate box
size combination. In order to develop a consistent BC method in this study, the BC approach is designed
as a minimization problem, as the fewest box count is obtained each time under a specific box size. In
other words, minimization guarantees consistency and eliminates QE despite image rotation and
translation. In order to choose the appropriate box size combination, various combinations were tested,

and the one with the best regression metrics was selected.
1.4 Contributions of This Work

This work proposes a systematic Al framework for estimating the FD of images in scientific and
engineering fields. The framework has three major steps, namely image preprocessing, set-covering
optimization-based BC, and regression analysis. Image preprocessing is the first step that involves
converting the image from color to binary, formatting it properly, and extracting the perimeter of its largest
domain. The image preprocessing step extracts a body perimeter for set-covering optimization-based BC
analysis. In the set-covering optimization-based BC step, an Integer Linear Programming (ILP) model is

formulated and solved to global optimality to determine the minimum number of boxes fulfilling total
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coverage of the perimeter. The ILP model ensures that each perimeter pixel is covered by at least one box
and minimizes the total number of boxes in its objective. The range and values of the box sizes used
therein are determined by calculating the greatest x-y axis dimension measurement of the body perimeter
extracted from image preprocessing, and they are adjusted by comparing the regression analysis metrics
corresponding to each box size combination. Finally, the last step, regression analysis, requires plotting
regression for logarithmically transformed box sizes and box counts data to obtain FD as the negative
slope. To illustrate the applicability of the proposed framework, we put together a corresponding dataset
comprising images from human anatomy, life science, interfacial science, etc.
The main contributions of this research are presented as follows:

e A novel Al framework that systematically estimates the FD values of structures serving as a
universal metric for shape classification or pattern comparison of images from fields such as
materials science, biomedical engineering, and interfacial science.

e The first BC method to eliminate QE arising from image rotation and translation through global
optimization of minimum box counts by ILP.

e The first BC method that configures itself to select the most appropriate values, range, and the
number of boxes to yield the best regression metrics based upon a dataset.

The rest of this paper is organized as follows. The proposed framework is described in detail in Section
2. The FD estimation results of images from the collected dataset are presented in Section 3. Section 4

concluded the paper.



2. Methods
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Fig. 2 Flowchart of the three steps in the proposed Al framework for evaluation of the FD of the input
image: image preprocessing, set-covering optimization-based box counting, and regression analysis with
logarithmic transformations. Box sizes are specified as powers of 2, and FD is calculated as the negative

slope of the regression line of the logarithmic value of box counts vs. the logarithmic value of box sizes.
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We propose a fully automated Al framework to estimate FD that intelligently connects three major
steps, including image preprocessing, set-covering optimization-based box counting, and regression
analysis with logarithmic transformations. Important information from the previous step is automatically
fed into the next. As shown in Fig. 2, the proposed framework relies on the reproducibility of each major
step to estimate the FD automatically and consistently as a whole. This section presents the three major
steps of the proposed Al framework, namely image preprocessing, set-covering optimization-based box

counting, and regression analysis, in detail.

2.1 Image Preprocessing

The automated image preprocessing step involves three sequentially connected sub-steps: image
conversion from color to binary, image formatting, and perimeter extraction of the largest structure with
the most extended perimeter. Each of these sub-steps makes the image more suitable for interpretation by
the set-covering optimization-based BC step.

2.1.1 Image Conversion from Color to Binary

The first sub-step to make the image algorithmically interpretable is the procedure to convert the image
from color to gray-scale by automatically eliminating the hue and saturation information of each pixel
while preserving their luminance. After the image is converted to gray-scale, additional sub-steps are
automatically implemented to convert the image into strictly binary luminance (black and white, or simply
binary), such that the background has a black appearance. This is done by plotting a histogram of pixel
count versus luminance (i.e., gray level) from a flattening compression of the image into a one-
dimensional array of luminance values (i.e., gray values) inside the framework. For a better understanding
of gray values, some gray pixels and their corresponding gray values are presented in Fig. 3. The gray-

scale image typically has a dark background, so most background pixels will have gray values near 0,

11



corresponding to a dark appearance, out of the range of values between 0 and 255. If an input image has
a light background to begin with, it would be automatically inverted so that the background has a darker
appearance. The high density of dark background pixels appears as a spike in pixel counts in the histogram
just above the 0 gray level. To isolate the geometry of interest from the background, the dark background
pixels are adjusted to exactly the 0 gray level. In order to ensure geometry isolation works best with image
sources of varying brightness and contrast to optimize domain selection protocol under different image
brightness, a threshold value ¢ of a scalar factor greater than the mode gray value of the large background
peak is automatically generated, and then the threshold 7 is funneled to adaptably distinguish between
pixels that should be categorized as background or as relevant geometry (the selection of ¢ values is
discussed in detail in Section 3). All pixels with gray levels less than ¢ are automatically adjusted to a gray
level of 0 (pure black), and all other pixels are adjusted to a gray level of 255 (pure white), representing
the geometry to be analyzed. An adaptive thresholding method is preferred among all image segmentation

methods because of its wide image preprocessing applicability [20], being capable of handling images

captured or generated with varying brightness and contrast levels.

Fig. 3 The left image is a gray-scale micrograph of the optical response of a liquid crystal to the adsorption
of protein at its interface, while the zoomed-in image is presented in the middle. Pixels of the optical

domain are converted to pixel gray values between 0 to 255, where the lower the pixel intensity, the lower
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the pixel gray value. The right image shows the pixel colors of some example boundary pixels with their

gray values.

2.1.2 Image Formatting

After being converted to binary from the previous sub-step, the images require further automated
processing sub-steps to facilitate the set-covering optimization-based BC. The key requisite for the
regression analysis step is that at least three, but more commonly four or five, BC data points are obtained
for regression. Therefore, images of at least 100 pixels, which can accommodate at least three or four box
sizes, are the minimum valid resolution. Any fewer data points for regression analysis would be invalid
and alternative methods to BC should be used to obtain the FD. Image edge paddings are automatically
added by introducing extra pixels surrounding the image when the pertinent geometry has inadequate
space to the image borders. Without this space, an effective solution to the ILP in the optimization-based
BC step will be restricted. The ILP model is formulated in a way such that the upper left corner (top left
pixel) of each box might not lie on the image structure directly, but on the background pixel, while the
whole box still covers some portion of the perimeter. Therefore, sufficient background pixels are needed,
such that box placements are solely restricted by the structure. Padding around the image ensures that all
box sizes proposed can be iterated, and indices are not out of range for the set-covering optimization-
based BC analysis. This sub-step on perimeter extraction is not conducted if there is adequate space
surrounding the structure of interest. The framework would automatically identify if insufficient space is
an issue and decide on whether to format the image by image edge padding.
2.1.3 Perimeter Extraction of the Largest Domain

The final sub-step in image preprocessing is the extraction of the perimeter. The set-covering

optimization-based BC step and the concept of FD itself are concerned with the perimeter of the geometry

involved, so the interior of any structure may be effectively discarded, as is practiced in conventional BC
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methods to estimate FD values [2]. Additionally, this perimeter extraction operation can, for the sake of
automation, remove all geometries except the largest one. This is particularly useful for isolating important
geometries and cleaning up images that may contain artifacts, noise, or small extraneous debris.

For perimeter extraction, pixels are automatically classified into two categories: perimeter pixels and
interior pixels. A perimeter pixel is defined as any foreground pixel adjacent to at least one background
pixel, and an interior pixel is defined as all other foreground pixels with no adjacent background pixel
(grey level of 0). If this is the sole geometry of interest, then interior pixels are all converted to black to
effectively remove the interior, and the image is ready for the set-covering optimization-based BC step;
otherwise, if deemed necessary, all perimeters except that of the largest structure are removed before
proceeding to the next step. Although some other structures are large enough for the analysis as well,
when set-covering optimization-based BC is performed on each of these structures separately, the FDs
estimated for each shape are not significantly different for the dataset used in this study. Most domains
within an image that belong to the same group elicit similar FDs regardless of size. In our FD analysis,
the most representative structure is always selected from various datasets. We found that the largest shape
is a good representation of the whole image because it is big enough to show details of its shape complexity
compared with other smaller shapes. Based on our preliminary observation of domain structures, all of
the optical domains first undergo nucleation with only a few pixels in terms of size, and then propagation
when the size of the optical domain increases into either well-defined ellipsoidal or fibrillar shapes. During
the nucleation step of a structure, when the shape of that structure is not well-developed, we found that
the FDs of these structures are nearly identical. Therefore, selecting the largest structure, which would
typically propagate over a long period, is a better option due to its more thoroughly developed geometric
details. In the Curli and Lb images in Fig. 1, for example, the largest domain was selected for its greater

detail which enabled us to use at least four box sizes.
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To identify the largest structure, the structure sizes are automatically compared simply by the number
of non-perimeter pixels within the structures. To do so, non-perimeter inner pixels are automatically set
to an intermediate gray value, neither 0 nor 255, while the perimeter pixels are maintained at their
luminance of 255 (white), thereby distinguishing interior pixels from perimeter pixels. Each structure is
also distinguished from others by a unique index, which is attached to every interior pixel within each
structure. Once interiors are indexed and distinguished from their perimeters, area sizes are easily
determined by a pixel tally. All structures except the largest one are automatically set to zero gray value,

and only the largest perimeter remains to be subject to BC analysis in the next step.

2.2 Set-Covering Optimization-Based BC

2.2.1 Integer Linear Programming (ILP)

With the perimeter of interest extracted and isolated, an automated step of set-covering optimization-
based BC is performed to estimate the FD, as shown in the second step in Fig. 2. Compared to the
conventional grid counting approach, the proposed method is more systematic and rigorous in minimizing
the QE. Specifically, the proposed algorithm is implemented by automatically creating an ensemble of
boxes that envelops the entire perimeter with the minimum number of boxes possible. The boxes can
overlap if necessary. The minimized number of boxes is obtained by ILP, and the number is independent
of irrelevant conditions that may cause QE.

Before an ILP model is created, a few steps are designed in the framework to determine the given
parameters. First, the smallest conceivable rectangle that covers the whole perimeter is automatically
generated, as shown in the left side image of step 2 in Fig. 2. The coordinates of the four vertices of the
rectangle are set to (LB, LBJ) at the top left, (LBI, UBJ) at the top right, (UBI, LBJ) at the bottom left,
and (UBI, UBJ) at the bottom right. Second, the perimeter width (RANI) and height (RANJ) are

automatically calculated, as shown in Eq. (6) and (7), where the width is the distance between the top left
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vertex and top right vertex, and the height is the distance between the top left vertex and the bottom left
vertex. Third, the smallest box size is automatically set to two, and the largest box size set to the largest
power of two that is smaller than or equal to the maximum of perimeter width or height (M) over two. M
is obtained from Eq. (8) , and the range of box sizes (BS) is shown in Eq. (9). The range selection is
explained in the next sub-step: Box Size Range and Value Selection in Section 2.2.2. As the range is
determined, the framework automatically obtains all the box sizes BS, which are all powers of two and
their indices (PW). Each BS is equal to two to the power of each PW, as shown in Eq. (10). Since the
constraints vary under different box sizes, a unique ILP problem is solved for each box size
correspondingly. The total number of ILP problems created for each image is PW, and we need PW data
points for regression analysis.

In each ILP model, box size BS is given. Indices i and j are in the range of LB/ to UBI and LBJ to UBJ
as shown in Eq. (11) and (12), since the perimeter of interest is within the rectangle. X;; that designate the
pixel gray values, at the ith row and the jth column of the image correspondingly, are given parameters
that can be obtained from the image directly. If X;; is equal to 0, the corresponding pixel is black, and
there is no need to cover it; otherwise, at least one box is needed to cover that pixel since it is part of the
white perimeter. To indicate if boxes are needed to cover pixels at certain locations, we introduce a binary
variable y;;. If a box’s upper-left origin is used at the ith row and the jth column of the image, y;; equals
to one; otherwise, it takes the value of 0 if no box is necessary at that coordinate. The values of y;; are to
be determined by the ILP model.

The objective of each model is to minimize d, which is the total number of boxes to cover the perimeter,
as represented by the sum of all binary variables y;;. A constraint is only added when X;;; is greater than 0.
When X;; is nonzero at the ith row and the jth column of the image, at least one box is needed to cover the

perimeter pixel at that location, which is represented as Eq. (5). Among all the potential boxes that can
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cover the perimeter pixel, as indicated by all the y;; inside the parenthetical summation in Eq. (5), at least
one of them must be used. If a box’s top left pixel at the i th row and the j 'th column lies on the top left
of that perimeter pixel, and the box’s side length BS is big enough, that box can be used to cover the
perimeter pixel.

The ILP model is formulated as follows:

UBI UBJ
min 4=, > ¥, 4)
i=LBI j=LBJ
S.t. i J
X0 D D v, |=L Viieljjel (5)
i'=i—BS+1 j'=j—BS+1
RANI =UBI - LBI (6)
RANJ =UBJ - LBJ (7)
M = maX{RANI,RANJ} (8)
21<ps< M ©)
2
BS=2"" PWeZ" (10)
[ =[LBI,UBI] (11)
J =[LBJ,UBJ] (12)
yi’_/e{O,l},‘v’ieI,jeJ (13)

where X;; is the pixel grey value at the ith row and the jth column of the image, and a binary variable y;;

indicates if a box whose upper-left origin is at the ith row and the jth column of the image is used to cover
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pixels. We optimize the total number of boxes to cover the perimeter, as represented by the summation of
all binary variables y;;. Indices i and j are in the range of LB/ to UBI and LBJ to UBJ. BS are the box sizes,

which are all powers of two and PW are the indices.

2.2.2 Box Size Range and Value Selection

In conventional box counting approaches, box sizes are typically dictated as (1,2,3,4,6,8) [19],
(2,4,8,16) [21], factors of image size [22], (3,9,27,81) [23], or (8,12,16,32) [24], but justifications
supporting such selections are often omitted. However, past studies have reported the use of box sizes of
powers of two [25, 26], or in the range from two to M/2 [27, 28], where M is the image length or the x-y
axis dimension of the geometry of interest. We incorporated lots of image preprocessing and optimization-
based procedures that are formulated based on pixel colors and properties, so it would be appropriate to
have box size as a multiplier of pixel size. For instance, a box with the smallest size two indicates a box
whose size is two by two pixels. In the implementation of set-covering optimization-based BC in the
proposed Al framework, the box sizes are also calculated as powers of two but ranging from two to M/2,
where M is defined as either the height or width of the perimeter, whichever is greater. This selected range
of box sizes eliminates oversized boxes, which entirely envelop the perimeter with just one box. The box
size of one is also eliminated since its box count is just the total number of pixels that constitute the
perimeter. Both of the cases of box size equal to one and box count equal to one are eliminated since these
extreme values are not of great use to the regression analysis, and no optimization is involved in either
case [25, 29]. As FD is defined as the negative log value of the box count over the log value of the box
size, both box counts and box sizes are logarithmically transformed in the regression analysis. In any
regression analysis where one data point is far away from the rest, the regression result would be greatly
affected if an error occurred when obtaining that specific data point. However, when all the data points

are equidistant, the impact of statistical errors on regression slope is minimized. Since regression is most
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effective when each point is equidistant on a log-scale, powers of integer numbers are selected as box
sizes. Moreover, using powers of two can generate more box data than using powers of three or four for
small structures and smaller images. The set of box sizes to be counted for the perimeter is thus enumerated
as powers of two in the range from two to M/2, but if M/2 is not a power of two, the largest box size is set

to the greatest power of two no larger than M/2 [25-28].

2.3 Regression Analysis with Logarithmic Transformations

After BC data are obtained, the FD can be automatically estimated as the negative slope of a regression
analysis with logarithmic transformations of both the box size data BS and the minimized box count data
d, as shown in the third step of Fig. 2. To estimate FD for image analysis using BC, we obtain FD based
on the equation below:

_dlog(d(BS))

FD =
dlog(BS)

: VBSE{2P|1<2PS%,PGZ+} (14)

where FD is defined as an integer variable, whose negative value equals the slope of box count as a
function of the box size. The regression slope indicates the degree of complexity, or negative FD, where

FD falls between one and two [14, 30].

3. Results and Discussion

In this section, we applied the proposed Al framework to obtain the FD estimation results of 10
example images, 40 case study images in the field of interfacial science, and all 167 images in our collected

dataset.
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3.1 FD Estimation Results of 10 Example Images

The FD estimation results of 10 example images in interfacial science, neuroscience, plant science,
etc., are presented in this section. FD serves as a statistical index for purposes of pattern comparison and
shape characterization, which illustrates the effectiveness of the proposed Al framework.

3.1.1 Preprocessed Image Compatibility

Image preprocessing techniques within the Al framework effectively format and accommodate input
images with different resolutions, colorations, and image clutter automatically. During testing, it was
found that the majority of fields of study produce images that have enhanced contrast with higher-
luminance structures of interest on a low-luminance dark background, as shown in images al, a2, bl, b2,
cl, c2 (interfacial phenomena and neuroscience images) of Fig. 4; such input images can be immediately
preprocessed for image conversion from full color (on the left-hand side of Fig. 4) to binary (on the right)
automatically. All images which instead have a low-luminance structure of interest or high-luminance
background (such as images d1, d2, el, e2 in Fig. 4) are automatically inverted before being fed into image
conversion from color to binary. After the image is converted from full color to binary, the diverse range
of image resolutions, as well as image clutter can then be accommodated in the steps detailed in image
formatting and perimeter extraction, and as a result, a comprehensive range of images can be correctly
converted to a single distinct perimeter. This directly results in the relative success and ease of applying
the Al framework across the image dataset. Apart from the need for image inversion to ensure brighter
geometry upon a dark background, the Al framework can be made compatible with and automated for

nearly any type of image — an invaluable utility for many FD estimation contexts.
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Fig. 4 For each pair of images, the left image corresponds to the original source images, while the right

image is the segmented binary image used for testing. al, a2, b1, and b2 are interfacial phenomena images
generated from our high-throughput experiments. cl and ¢2 are human anatomy images [31]. d1 and d2

are plant science images [4]. el and e2 are classic fractal geometries [18, 32].
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3.1.2 Efficient Box Size Specification

The selection of box sizes evaluated in the set-covering optimization-based BC was justified and aptly
designated in this study. All box sizes (integers ranging between one to the longest linear dimension
measurement) were evaluated on the test data (the 10 example images), while their corresponding
minimized box counts were recorded. Sets of box sizes that successfully yield different box counts were
chosen, for instance (2,4,8,16) [21], (divisors of image size) [22], (8,12,16,32) [24], etc., and had their
resultant regressions plotted to compare the R?, MSE, and MAE values. We found that when the set of
box sizes were in powers of two, they would yield the greatest number of equidistant log-log regression
analysis data points below the critical box size, to maintain a high R? value and low MSE and MAE.
Powers of two were chosen based on three criteria. First, logarithmically diverse box sizes minimize
regression data error, including QE. Second, well-distributed datasets reduce the likelihood of repeating
box counts, which otherwise reduce the accuracy of the regression analysis. Third, powers of two enable
more box sizes to be counted before reaching the critical maximum box size, as compared to larger integer

values.

3.1.3 Box Counts Closely Follow Linear Behavior

The set-covering optimization-based BC step produces BC data closely following the linear behavior
that defines FD based on regression analysis. The computational time of ILP optimization and regression
programs implemented in Python 3.8 usually falls between one to four seconds, depending on the image

size and largest perimeter size. Below are some example computational times of interfacial science images.
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Table 1 Computational times to run the proposed Al framework for the interfacial science images

generated from our experiments.

Example images Total program running time Wall time
Interfacial Science 01 (Curli) 3.29s 4.28 s
Interfacial Science 02 (Curli) 2.62s 3.53s
Interfacial Science 03 (Curli) 3.30s 4.12s

Interfacial Science 04 (Lb) 2.11s 291s
Interfacial Science 05 (Lb) 2.23s 3.06s
Interfacial Science 06 (Lb) 2.06 s 2.55s

In most cases where image and perimeter size are large, for each given box size, an ILP problem is
formulated with more than 1000 variables and 100 constraints. Each ILP problem generates a box count
that passes on for regression analysis with logarithmic transformations. When all box counts are obtained,
to quantify the linearity in regression analysis, the R, MSE, and MAE metrics are used to evaluate the
prediction error rates and model performance in regression analysis. The resulting MSE and MAE are
typically small, while R? values always remain greater than 0.99. As shown in Fig. 5, which contains the
regression results of the same segmented binary images presented in Fig. 4, the BC data (log box size and
log box count) strongly follows a linear relationship in each regression analysis. R? values demonstrate
nearly ideal fits in regression models for a highly varied set of images. Apart from the R? value, which is
largely affected by variance, MAE measures the absolute average distance between the real data and the
predicted values. The MAEs of all images shown in Fig. 5 are below 0.05, which indicates the average
magnitude of error from every sample in this dataset is minimal. Besides MAE, which sometimes fails to

highlight major errors in predictions, MSE indicates the quality of the estimator/predictor of the regression
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model. In Fig. 5, all MSEs are smaller than 2x107, testifying to the accuracy of the regressor in each

regression model.
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Fig. 5 Regression analysis with logarithmic transformation shows excellent regression metrics of
segmented binary images presented in Fig. 4. al, a2, bl, and b2 are interfacial phenomena images
generated from our high-throughput experiments. ¢l and c2 are human anatomy images [31]. d1 and d2

are plant science images [4]. el and e2 are classic fractal geometries [18, 32].

3.1.4 Quantization Error Elimination for Accurate FD Estimation

The proposed Al framework eliminates QE to precisely and accurately estimate FD. When each image
in the dataset is rotated, the set-covering optimization-based BC yields essentially identical box count data
regardless of rotation angle, as the box counts are always strictly minimized. The consistency gained from
eliminating QE allows for precise prediction of FD, which can then be determined to be both accurate and
precise by comparing with the Hausdorff-Besicovitch dimension at less than 4% error.

The Hausdorff dimension is another measure of FD [33], alongside the BC interpretation. The
Hausdorff dimension can be used to compare FD values estimated by different methods and is often used
on formulaic fractals since their Hausdorff dimensions are exact values. For example, the Hausdorff
dimension of the Gosper Island contour (image el in Fig. 4) is about 1.13 [34], while the FD estimation
from the Al framework yields 1.11, which differs from the Hausdorff dimension by only 1.68%. The
Hausdorff dimension of the Koch curve or Koch snowflake (image e2 in Fig. 4) is approximately 1.26
[34], and the framework estimates its FD to be 1.21, a 3.97% difference from the Hausdorff dimension.
The FD estimation of the Sierpinski triangle is 1.53 [34], which is 3.16% different from its Hausdorff
dimension of 1.58. Similarly, evaluations and comparisons of FD against the Hausdorff dimension for
fractals such as the Julia Set, the boundary of the terdragon curve, and the boundary of the tame twindragon
curve [35], also result in discrepancies of 4% or lower. The FDs of the dataset tested, including images of

formulaic fractals, are presented in Table S1. These benchmark geometries have low FD estimation errors
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below 4%, particularly when considering the MAE and MSE of most regressions, representing a strong
adherence of the BC method to the mathematically rigorous definition of FD. Based on our Al framework,
the results generated provide accurate FD estimations of deterministic fractals compared to their Hausdorff
dimensions. The FD results can help us visualize what it means for shapes to high or low fractal

dimensions
3.2 FD Estimation Results of 40 Interfacial Science Images

As an example of the framework being able to discriminate FD between similar images, the FD
estimation results of Curli vs. Lb images exhibit a significant difference between their FD values.
3.2.1 Image Classification by FD Analysis

The distributions of FD estimations for interfacial science images (Curli vs. Lb) are shown in Fig. 6.
A parametric method to perform a two-sample #-test, which is appropriate for examining the difference in

means for two populations, is used in this study, and the test results are shown in Table 2.
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Fig. 6 Fractal dimension estimation comparison of Curli and Lb images. Curli structures typically have

fractal dimensions over 1.19 with an average of 1.35, while Lb structures have a broader range of fractal
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dimensions with an average of 1.24. Images that have low FD values (below 1.19) could generally be

characterized as Lb images rather than Curli images.

Table 2 Two-sample #-test for interfacial phenomena Curli and Lb images to determine whether the true

difference in means between these two populations is statistically significant.

Test Statistics Value
t 2.67
df 36.46
p-value 0.011
Alternative Hypothesis:

The true difference in means is not equal to 0.

95% confidence interval [0.027, 0.201]
mean of Curli sample estimate 1.35
mean of Lb sample estimate 1.24

The statistical analysis results demonstrate that we are 95% confident that the true difference in
average FD values between Curli and Lb images is greater than 0.027 while smaller than 0.201, and the
true difference in means is over 98% likely to be nonzero. Experimental protocols can be optimized to

maximize the differences in the FD values between Lb and Curli datasets. In the Curli/Lb example, optical
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signatures of the LC in response to protein aggregates rich in alpha-helices yield elliptical structures with
fractal dimensions close to 1, whereas the LC response to protein aggregates rich in beta sheets yield
branching structures with fractal dimensions around 1.6. Thus, if an LC film is exposed to an unknown
solution comprising either LB or curli, fractal dimension estimations of the LC optical domains generated
by the Al framework can help us determine which solution the LC was exposed to.

As shown in both the boxplot and the violin plot of Fig. 6, the maximum FD estimations in the sample
dataset are approximately the same for Curli and Lb images. However, their minimum FD values and first
quantiles (Q1s), which are the values under which 25% of data points are found when they are arranged
in increasing order, are not the same. The minimum FD estimation for Curli images is 1.19, while a great
number of Lb images have FD estimations between 1.05 and 1.19. Since the sample dataset shows the
absence of Curli images whose FD values fall below 1.19, it is likely that images that do have low FD
values (below 1.19) could be characterized as Lb images rather than Curli images. This is an example of
the capability of the BC method within the Al framework to differentiate between otherwise
indistinguishable images.

3.2.2 Threshold t Selection Affects FD Result

The threshold ¢ used in the image segmentation thresholding step can change the FD result. As
mentioned earlier, in the image preprocessing step where color conversion was performed, the threshold
selection ¢ is automatically generated and not fixed. The value of ¢ is automatically derived from a
histogram of the pixel count at each gray-scale value, where the mode value is used as a benchmark to
gauge the overall luminance of the imaged bodies and for ¢ to be set relative to. Too high a threshold value
breaks the structure domain into multiple pieces, and too low of a threshold fails to eliminate noise from
the image. This effect is shown in the bottom left of Fig. 7. Neither breaking a structure into two pieces

nor keeping debris and noise is advised, so ¢ is chosen to be exactly the mode in the example image.
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Fig. 7 The effect of threshold value ¢ on image preprocessing outputs. Too high a threshold value breaks

a structure into multiple pieces, and too low of a threshold fails to eliminate noise from the image.

Certain categories of images can prove to be more sensitive to this issue than others, such as the
interfacial science images in the case study. In these circumstances, it will likely be necessary to work
with domain experts who are familiar with the true structure of the imaged body, and if such a body had
ought to be interpreted as monolithic or fractured. The importance of background knowledge, such as our
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insights on these Curli and Lb protein aggregates and knowledge of the experimental conditions under
which the images were obtained, cannot be understated. Ideally, for any study of fractal geometry, may it
be image thresholding, clustering, or some other image segmentation method, some familiarity of the
actual geometry represented by the image will always be needed to determine the threshold value ¢
appropriately, being key to the interpretation of the roughness of the perimeter and therefore key to truly

measuring the FD.
3.3 FD Estimation Results of the Entire Dataset of 167 Images

3.3.1 Dataset Description

The Al framework we proposed is data-independent, and it was tested on the image data from both
our own experimental studies and literature relevant to the field of Chemical Engineering that raises the
concept of fractal dimension. The framework is not specifically tailored for the image dataset but is rather
designed independently to be universally applicable to images from multiple disciplines. To show the
general applicability of the Al framework, from as much literature involving the FD concept as we know,
we collected 167 meaningful images for testing, as shown in Table S1. We filtered out the unusable images
from previous publications and made the dataset as diverse as possible to the best of our knowledge. Based
on our FD estimation results of the image dataset, the framework is compatible with many different fractal
geometry representations and can be used for a variety of applications. The framework was validated with
a dataset with 167 images, which are collected from reputable datasets in seven different fields of study

from 12 sources [4, 18, 31, 32, 36-42], demonstrating its robustness and versatility, as shown in Fig. 8.
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Fig. 8 A dataset of 167 images from diverse disciplines [4, 18, 31, 32, 36-42], including human anatomy,
life science, interfacial phenomena, etc., and the percentage of images from each field used in the analysis

presented in this paper.

We used 40 optical images of liquid crystal films with interfaces decorated by proteins, which we
obtained as optical domains with characteristic geometries representative of interfacial science.
Specifically, 20 images were obtained from LC films exhibiting optical domains rich in Curli, amyloid
that forms the main structural unit of bacterial biofilms, and 20 images were obtained from LC films
exhibiting domains rich in a lysogeny broth used for the culture of bacteria (Lb). The ability to distinguish
the LC response to Curli and Lb has the potential to enable early detection of the presence of pathogenic

bacteria.
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Aside from the interfacial science images, 46 human anatomical images, a popular field for FD
estimation applications, were also included in the dataset, such as brain images whose FDs can be
correlated with stages of disease or aging. Among these 46 human anatomical images, 14 were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31]. Among these 14 images in the field
of neuroscience within human anatomy, the patient group’s coronal and axial plane images, as well as the
control group’s coronal and axial plane images, were selected from an FD analysis paper in neuroscience
[31]. An additional eight human anatomical images in a similar fashion were obtained from an FD study
on neuroscience-related diseases [36]. These eight images are axial plane brain images of the left and right
white matter in one human subject with a right-hemisphere lesion [36]. An additional 14 human
anatomical images were obtained from an FD analysis by Wu et al. [37], of which seven of them show
cerebellum white matter structures and the other seven show cerebellum gray matter structures. A
supplementary five human anatomical images depicting brain visualizations of various patients were also
procured [38]. Finally, the remaining six human anatomical images are of benign and malignant cases of
breast cancer [39].

Another major component of the image dataset is a collection of other life science images, mainly
consisting of those from plant biology, 20 of which are related to plant development [4]. Of these 20
images, 16 are specimens of fucus vesiculosus plants arranged in order of complexity, and four images
are outlines of specimens of fucus serratus.

We also included some inorganic matter images in the dataset for this study. A total of 20 images of
material surfaces and textures are sourced from the Brodatz Texture Dataset [40], from which these 20
images were deemed suitable (of the adequate resolution, size, fractal geometry, etc.) to use in this study.

Another inorganic but still extensively naturally occurring fractal image type is landscape geography. Six
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landscape images, in the form of generated environmental topographies from one of the randomized-phase
modes in an inverse Fourier generation method, were also used for BC validation [41].

Moreover, 15 images of simply constructed sample contours of increasing perimeter irregularity were
included in the dataset to validate the Al framework. In a similar vein, to ensure that the Al framework is
still congruent with strictly formulaic fractals of mathematically defined FD, ten images of classical fractal
figures are included, such as contours of the Gosper Island (Limit of the Gosper Curve) [18], Koch Curve
(Koch Snowflake) [32], the boundary of the terdragon curve [42], etc. The diversity of this dataset
provides concrete evidence that the proposed Al framework is a robust yet well-grounded tool that remains
in agreement with the true benchmarks of the FD.

3.3.2 FD Distributions of the Entire Dataset

As shown in Fig. 9 below, all FD values of 167 images fall between one and two, as mentioned earlier
in Section 2. The distributions of FD values between different categories tend to overlap extensively,
indicating that comparison within each category is more meaningful than between different categories.
Given that all FDs fall between one and two, the difference between the maximum FD and the minimum
FD within each group is at least 0.25 and at most 0.55. Most distributions seem to be relatively symmetric,
such as those of interfacial science, life science, material surfaces and textures, and validation geometries.
The distribution of formulaic fractals and geography are asymmetric, most likely since fewer images were
included in the dataset. The input images selected were diverse in sources, yet the analysis methodology
reported in this study suitably handled them all. Compared with methods mentioned in previous studies
[4, 31, 36-39], which did not globally minimize the number of boxes used to cover the structure perimeter,
our method eliminates QE to precisely and accurately estimate FDs, which are not affected by image
rotation or translation. With our set-covering optimization-based BC approach in the Al framework, we

eliminate subjective or user-varying protocols that would affect FD estimations.
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Fig. 9 Fractal dimension results of all seven fields of 167 images. Geography images are shown to have
the lowest average fractal dimension, while material surfaces and textures have the highest average fractal

dimension. All fractal dimension values fall between one and two.

3.3.3 Applicability to Large Dataset Applications

The AI framework lends itself to being fully automated so it can handle large batches of data. As
shown in Fig. 2, the three step framework (image preprocessing, set-covering optimization-based BC, and
regression analysis with logarithmic transformations) for evaluation of FD of input images is visualized,
regarding how the Al framework automatically feeds subsequent information output from one major
algorithmic step to the next. Within each major step, data (images and numerical results) are also processed
and fed from the previous sub-step to the next. Since all procedures in the Al framework are conveniently

connected, the framework can handle large batches of data simply by running the program for each image.
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This may become a particularly valuable trait for any application wherein large sets of diverse image data

must be handled simultaneously.

4. Conclusions

This paper proposed an automatic and systematic Al framework to estimate FD accurately without
QE. The framework was proposed to integrate three major steps, including image preprocessing, set-
covering optimization-based BC, and regression analysis. Each step was also divided into individual sub-
steps, including image conversion from color to binary, image formatting, and perimeter extraction under
image preprocessing. Additional substeps include ILP and box size range and value selection under set-
covering optimization-based BC, and regression analysis with logarithmic transformations to obtain the
final FD value. The framework was constructed to integrate each of the three major steps (and each sub-
step within the corresponding step) systematically such that the resultant data/images/plots can be
automatically formatted for appropriate output/input to the next step. Compared to the conventional
methodologies, the Al framework guarantees consistency in the number of boxes minimized and counted
for a given box size, so FD estimations remain uniform despite any arbitrary image rotation and translation.
In the proposed Al framework, the set-covering optimization-based BC problem was formulated as an
ILP problem to minimize the total number of box counts given each box size, and the box size combination
selected in the end was improved by comparing and finding the ideal regression analysis metrics. Only
one box count value is obtained, via the tailored optimization algorithm, for each box size of a given
feature to guarantee consistency.

The validation dataset included images originating from seven different fields of study, wherein the

FD of each image is estimated accurately enough to provide quantitative evaluation and comparison
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between otherwise indiscernible image sets, attesting to both the framework’s broad compatibility and
discriminating quantification. Furthermore, the Al framework produces box data that very closely follows
the linear behavior that defines FD, facilitating regression analysis, in that the MSE and MAE are typically
negligible while R? values often remain >0.99. This is in part due to how the framework eliminates QE to
precisely and accurately calculate FD, as was verified by the minimal difference (<4%) between the
Hausdorff dimension and FD values of enclosed, formulaically generated true fractals. As a testament to
the framework’s discerning analytical capability, a sample study to discriminate FD between similar
images demonstrated that the FD estimation results of Curli-spiked vs. Lb images exhibit a considerable
difference between their average FD values. Ultimately, the framework can be effectively used on a wide
variety of images to obtain FD estimations in a consistent and uniform way. The proposed Al framework
demonstrates high computational efficiency, robustness in application, flexibility, and versatility for
processing diverse types of images. The method shows a warranted potential to be developed into a 3-
dimensional BC method in which the differential gray-scale can be incorporated. Most of the FD
estimations we obtained fall in the range of 1.0 to 1.8, similar with previous studies’ FD estimations
generated by 2D box counting methods [6, 43, 44]. A future extension of this study can be conducted to
theoretically investigate the reason for an upper bound of 1.8 of FD values of Chemical Engineering-

related structures, but that is beyond the scope of this current paper.
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