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A B S T R A C T   

Fringe Projection Profilometry (FPP) is a cost-effective and non-destructive method, typically used for measuring 
finer features and reconstructing 3D topography of objects. However, to use the FPP method for measuring the 
dynamic topography of powder bed and printed layers during Laser Powder Bed Fusion (LPBF) based additive 
manufacturing (AM) process, unique challenges exist due to the varying material properties and ambient con
ditions in the build chamber. In this work, we aim to enhance the discernibility, accuracy, and resolution of FPP 
in the specific application scenario of measuring layer-wise surface topography during LPBF AM by integrating 
our recently developed LPBF-specific FPP sensing model that features localized sensor calibration and Fourier 
filter-aided unwrapping with an equipment-based High dynamic range (HDR) method and machine learning 
(ML) aided FPP data analysis. First, a projector based HDR method is applied to mitigate the shadowing and 
intensity saturation problems by projecting sinusoidal fringe patterns of varying intensities. Secondly, a ML 
framework is developed to improve the surface topography measurement accuracy (RMSE from 10.57 μm to 
7.49 μm or even 4.35 μm for directly measurable points) and enhance resolution that is currently subjected to 
hardware limitations (from 38 μm to 5 μm laterally and from 10 μm to 1 μm vertically). Several different types of 
candidate neural networks (NNs) are trained and tested using the in-situ FPP measurement data and ex-situ 
standard optical microscopy characterization data. Multiple NN-based models are resulted and compared in 
terms of their ability to enhance the accuracy and resolution of FPP’s end-result (height measurement). By 
selecting the best-performance NN enabled image super resolution model, the proposed ML integrated HDR FPP 
method is expected to measure the surface topography of printed layers during LPBF-AM more capably and 
efficiently, thus advancing the existing state-of-the-art methods towards the desired online inspection of LPBF 
print defects.   

1. Introduction 

1.1. Additive manufacturing and in-situ surface measurement 

Laser powder bed fusion (LPBF) based additive manufacturing (AM) 
processes utilize a laser to sinter or melt thin layers of metal powders for 
fabricating products with reduced cost and time. These processes have 
applications in various industries including aerospace, medical, and 
automobile [1–3]. However, due to certain print defects (such as 
porosity, surface bumps and voids), the printed parts are often far from 
being qualified for practical use. Comprehensive process control 
methods need to be developed and implemented, based on in-situ 

monitored process signatures, for manufacturing quality parts. Among 
all the possible process signatures, surface topography provides essential 
information about the surface defects such as powder spatter redeposi
tion, lack-of-fusion, balling, voids, and bumps at each print layer, which 
could be detrimental for part properties. Surface topography in metal 
AM is strongly influenced by the print process parameters, as they affect 
the heat dissipation rates and thermal gradients during the print. These 
variations in the thermal properties cause surface defects, recoater 
crash, porosity, among other defects [4–6]. Other factors which affect a 
print part’s surface topography include powder reuse, position and 
orientation on the build platform (overhang structures tend to have 
rougher surfaces), part interaction with the recoater blade [7]. 
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Numerous methods for evaluating the surface of objects have been 
implemented, which include stylus-based approaches such as optical 
profilometry systems [8], phase shifting interferometry [9], confocal 
microscopy [6], optical coherence tomography (OCT) [10], focus vari
ation microscopy [7] among others. While all these methods are good 
choices for measuring surface properties for AM parts, they are often 
limited either by the cost, ease of utilization, in-situ/online process 
monitoring, or region of interest (ROI) requirements. For instance, OCT 
systems cannot be implemented online easily and have a typical ROI in 
the order of 10 × 10 mm which is not optimal for a print process 
monitoring for larger build areas. However, the spatial resolution of 
OCT is in order of 10’s of microns which is of great interest in charac
terizing porosity of AM parts. Yet, implementing OTC laser scans across 
each layer for in-situ surface measurement during AM is slow. For 
example, it took ~20 s to collect OTC data over an area of 4.4 × 4.4 cm2 

with a pixel resolution of 100 μm during LPBF, necessitating a pause of 
printing between layers [11]. Similarly, focus variation microscopy also 
has a good spatial resolution but cannot be implemented for online 
monitoring. 

Further, most of these methods can only measure offline the surface 
topography of a completed part. However, it has to be noted that the 
surface quality of the final AM manufactured part quality is dependent 
on all the print layers [12], thus making each print layer’s surface 
topography monitoring essential for print qualification. To accomplish 
this layer-wise surface topography monitoring, researchers started 
implementing a structured light projection methodology known as the 
Fringe Projection Profilometry (FPP). With a critical review of recent 
works on developing FPP for in-situ monitoring of powder bed fusion 
(PBF) processes, Dickins et al. [13] pointed out the need for advancing 
FPP to reconstruct higher-resolution surface across the entire powder 
bed area. They also presented a new FPP method by fusing multi-view 
point clouds from four cameras into a single high-density dataset for 
achieving higher accuracy and larger surface coverage. But the level of 
precision is lower due to the additional errors introduced by the multiple 
cameras and associated data fusion. In general, FPP systems typically 
consists of a projector and a camera, the projector projects structured 
light (such as sinusoidal fringe patterns) onto the target and the camera 
captures the reflected light patterns. The reflected light patterns are 
encoded with the surface topography information of the target object, 
which are evaluated using appropriate algorithms. FPP methods are 
well-known for their ability to provide high-resolution and full-field 3D 
map of the measured objects in a non-contact manner and within a short 
period of time, and thus widely used in diverse fields including human 
face recognition [14,15], 3D intra-oral dental profile measurements 
[16], and surface roughness measurement [17]. Other in-situ off-
the-shelf profilometers such as Keyence profilometer are also imple
mented for online surface inspection in LPBF [18]. However, the field of 
view of the Keyence profilometer is not specified, and the limited 
working distance requires the profilometer to be installed inside the 
machine chamber close to the build plate, making it difficult to be 
applied to a variety of commercial LPBF printers with constrained space. 
Besides, those commercially available profilometers are costly and 
involve sophisticated operations that usually interrupt the printing 
process. 

1.2. Developing fringe projection for laser powder bed fusion process 
monitoring 

FPP offers a potential approach to realize low-cost, non-contact, 
high-performance in-situ surface topography monitoring of AM pro
cesses [19–22]. However, to use the FPP method for measuring the 
dynamic topography of the print layers during LPBF-based metal AM 
processes, unique challenges exist mainly because the heterogeneous 
material properties between and within powder and print part. For 
instance, distinct surface reflectivity across the powder bed tend to cause 
shadows and intensity saturation here and there. To mitigate the 

non-homogenous reflectance issues, high dynamic range (HDR) 
methods [23–25] are often employed. A comprehensive review about 
the HDR methods for FPP is presented in Ref. [26]. In a recent work, Liu 
et al. report a successful implementation of an in-situ FPP system inte
grated with HDR methods and Support Vector Machine (SVM) based 
classifier for evaluating the surface morphology of parts (specifically 
high reflectance surfaces) printed using electron beam based metal AM 
[27]. While this method is promising for electron beam-based metal AM, 
there lacks an implementation of FPP integrated with HDR and ML for 
LPBF. Furthermore, the reported SVM based surface morphology eval
uation is still constrained by the camera’s lateral resolution. Another 
challenge while implementing FPP for AM is projector-camera nonlin
earity (gamma correction). This is typically addressed by tuning the 
camera orientation angle or employing multiple cameras [28,29]. In our 
previous work, we solved the projector-camera nonlinearity issue by 
introducing a local correction factor, Cxy [21] which is free of additional 
hardware installations. Furthermore, unlike standard gamma correction 
which is applied as constant to all pixels, the local correction factor Cxy is 
the pixel-wise variable which considers the location effect for FPP. 

On the other hand, machine learning (ML) has been increasingly 
applied to measure AM surface topography with the development of 
neural networks (NNs) for image recognition and reconstruction 
[30–34]. In a recent work by Shi et al. [8], authors report a use of a 
convolutional autoencoder (CAE) based neural network (NN) integrated 
with random forest classification for predicting accurate surface 
morphology for parts printed with various process parameters in laser 
engineered net shaping AM. The input for the CAE network were noisy 
surface profiles of the print parts evaluated using optical profilometry. 
However, the application of CNN and deep learning to FPP based surface 
topography is emerging. Recently, in Ref. [35] authors introduced a 
CNN based surface topography reconstruction method with an in-house 
developed 3D structured light scanner setup (similar to a FPP system). 
However, the ground truth/“test” point cloud data for the CNN was also 
an estimation from the developed 3D scanner setup itself and numeri
cally simulated images (Gaussian random field) rather than more reli
able measurement from an ex-situ standard equipment. This type of 
training data typically introduces model bias, which is not ideal for part 
qualification. The authors report that the developed methodology needs 
to be further improved from more accurate measurements of the AM 
parts including in-situ, online process monitoring, implementation. 
Researchers also implemented NNs for improving the FPP algorithms 
such as wrapped phase maps, and phase unwrapping calculations which 
then contribute to the improvement of the final target measurement 
result, i.e., the surface topography measurements. For instance, in 
Ref. [24] Zhang et al. developed a HDR based deep learning network 
which specifically focused on the estimation of wrapped phase with 
improved accuracy and reduced noise. Spoorthi et al. used a variation of 
SegNet framework for phase unwrapping in FPP [36,37] with improved 
accuracy as compared to standard phase unwrapping methods such as 
quality guided phase unwrapping and least squares based phase 
unwrapping. It must be noted that these reported NN frameworks are for 
general FPP algorithms, typically used for macroscale objects and were 
not tested on FPP for metal AM. The implementation of these NNs is 
promising and can aid in the improvement of surface topography mea
surements in metal AM. 

Although implementing ML techniques to improve the FPP meth
odology show improved accuracy, these methods are limited to the 
camera lateral resolutions (sensor pixel size) and optical system’s spatial 
frequency response (transfer function) [38]. For this reason, a novel 
method is needed to improve the overall resolution of FPP measurement. 
Image super resolution (SR) is the process of converting a given 
low-resolution (LR) image with coarse details to a corresponding 
high-resolution (HR) image with better visual quality and refined details 
[39]. Recently, SR has become a topic of great interest in computer 
vision due to both of its challenges (e.g., ill-posed inverse problem) and 
important applications. Deep learning approaches have ushered in 
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enhanced SR performance. The implementation of residual connection 
[40] allows to reconstruct more accurate details from LR sample through 
training deeper network model. Zhang et al. proposed Residual Dense 
Block (RDB) structures to train deep neural networks, which utilize the 
hierarchal features from original LR images to retrieve HR images [41]. 
Apart from utilizing the convolution-like structures to extract and 
reconstruct image features, Ho et al. proposed the de-noising diffusion 
probabilistic model (DDPM) [42] which is a Markov chain model trained 
through sampling from Gaussian noise to match the target HR in finite 
time. This model is further improved in Refs. [43,44] by advanced 
parameter schedule, the iterative de-noising mechanism, and the 
improved U-Net design to learn the noise added in the diffusion process. 
While these models show robust performance in SR tasks in the field of 
computer vision, there is a lack of developed SR models to advance 
optical metrology methods (e.g., FPP) for in-situ monitoring of AM 
processes (e.g., LPBF). 

1.3. Objective of this work 

The objective of this work is to enhance the discernibility, accuracy, 
resolution, and robustness of FPP in the specific application scenario of 
measuring layer-wise surface topography during LPBF AM processes by 
integrating our recently developed LPBF-specific FPP sensing model that 
features localized sensor calibration and Fourier filter-aided unwrap
ping with an equipment-based HDR method and machine learning (ML) 
aided FPP data analysis. First, a projector based HDR method is applied 
to mitigate the shadowing and intensity saturation problems by pro
jecting sinusoidal fringe patterns of varying intensities. Secondly, a ML 
framework is developed to improve the surface topography measure
ment accuracy and resolution that is currently subjected to hardware 
limitations. 

As we demonstrate the potential benefit of applying HDR based FPP 
(HDR-FPP) to LPBF monitoring by using a simple two-intensity projec
tion, our work focuses on improving the end results of FPP measurement 
of surface topography using three potential ML models. Overall, in this 
work we develop a new framework of ML-aided HDR-FPP method to 
address the shortcomings of current LPBF surface topography mea
surement methods as introduced above. Specifically, a basic HDR-FPP 
system is implemented to acquire in situ layer-wise images of powder 
bed and printed layer, which are then analyzed for estimating the sur
face topography and height maps. Different super resolution ML models 
including RDB-CNN, DDPM, and DDPM-SR3 are developed to further 
enhance the HDR-FPP measured surface map for evaluating the layer- 
wise surface topography maps with improved resolution in LPBF pro
cesses. The resulting surface topography is validated against ex-situ 
standard optical profilometry. 

The remainder of this paper is divided into the following sections. 
Section 2 introduces the HDR-FPP methodology, experimental setup, 
and machine learning model specification. Then, results and both 
quantitative and qualitative analyses are presented in Section 3. Finally, 
conclusion and recommendation for future works are provided in Sec
tion 4. 

2. Methods 

2.1. FPP methodology 

The basic principle of FPP includes the calculation of the depth or 
height of a target object by comparing the phase change between the 
original and the distorted phase maps reflected from the reference plane 
and the target object respectively. In FPP, typically, sinusoidal fringes 
are projected on to the target object surface and the projected intensity 
at location x and y is described in Eq. (1), where B(x, y) is the back
ground ambient light intensity and M is the projector bias. 

I(x, y) = B(x, y) + M(x, y)cos (φ(x, y) + δ) (1) 

Due to the camera-projector nonlinearity issues and their effects on 
the obtained results, we demonstrated an improved FPP method by 
applying localized intensity correction factor (Cxy) in our previous work 
[21] as shown in Eq. (2). 

Icalibrated =
Icamera

Cxy
(2) 

After the intensity correction, the wrapped phase map is calculated 
with three-step phase shifting algorithm as presented in Eq. (3), where N 
is the total number of phases (N = 3 in this study). 

φ(x, y) = arctan

(
−

∑N
i=1Icalibrated

i (x, y)sin (δi)
∑N

i=1Icalibrated
i (x, y)cos (δi)

)

(3) 

The wrapped phase map is later unwrapped and compared with the 
reference unwrapped phase map to calculate the target height profile. 
The similar triangle theorem is used to derive the geometric relationship 
between phase value and height. Specific details in mathematical 
formulation and implementation procedures of the newly developed 
LPBF-specific FPP method can be found in our previous work [21]. 

2.2. High dynamic range method (HDR) for FPP 

The intensity saturation problem cannot be completely solved using 
traditional gamma correction and the developed Cxy correction. There
fore, in this work we implement a projector based HDR method to 
further mitigate the intensity saturation issues. In projector based HDR 
method, sinusoidal fringes with same phase but different intensities are 
projected on the target object, and these images are fused to generate 
another image with average intensity features which can eliminate pixel 
saturation due to the high reflectance emanating from the printed part. 
This can be mathematically written as: 

Ii
fused =

∑M
k=1Ii

k

M
, i = 1…N (4)  

i represents the phase shift step and M represents the total number of 
various intensities images captured at phase i. 

In this work we use two intensity levels, (1) I1 = 250 and (2) I2 = 160, 
which can capture dark and bright parts in the specific LPBF machine 
setting with the specific material (Inconel 718). The numerical values of 
I1 and I2 correspond to the luminance or projection intensity and are 
chosen based on our experiment observations, which find that the 
average of these I1 and I2 is suitable to avoid under-/over-exposure most 
of the time through the entire multi-layer print across the whole print 
area. An illustration of image fusing with a higher and lower intensity 
image is shown in Fig. 1. Note that the dynamic scene of LPBF print due 
to heterogeneous and changing materials may necessitate the use of 
weighed exposures and/or adaptive projections. However, the topic of 
optimizing multi-image fusion weights or multiple projections requires 
extensive research effort and is beyond the scope of this work which is 
focused on exploring ML techniques to enhance HDR-FPP. Besides, only 
two constant projections are used in this study since taking more pro
jections and shots or adjusting projection intensities online would 
require a longer period between printing consecutive layers and signif
icantly interrupt the LPBF process. Nevertheless, the two-projection 
scheme can help reduce the measurement error due to LPBF process 
noise and camera sensor noise, and be used as a benchmark method to 

Fig. 1. Schematic of projector based HDR image fusion.  
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demonstrate the potential benefit of HDR compared to traditional FPP 
(elaborated in Section 3.1). 

By substituting the intensity in Eq. (3) with the HDR fused intensities 
that are locally calibrated by the corresponding experimentally char
acterized correction factor Cxy, the final phase shifting formula for 
calculating the wrapped phase map is shown in Eq. (5). 

φ(x, y) = arctan

(
−

∑N
i=1Ifused

i calibrated(x, y)sin (δi)
∑N

i=1Ifused
i calibrated(x, y)cos (δi)

)

(5) 

After acquiring the wrapped phase map, the unwrapped phase map is 
calculated through 2DFFT incorporated phase unwrapping algorithm 
[21]. The height calculated directly from our FPP method is the print 
part height relative to the powder surface thus measured to be a negative 
value due to the powder fusion and solidification shrinkage. The surface 
topography in this work is defined to be the distance between the top 
surface of the fused part and the build plate. Specifically in a single-layer 
print scenario as reported in this work, the surface topography is 
calculated by adding the nominal layer thickness (40 μm) to the FPP 
acquired height value. 

2.3. FPP experimental setup 

The developed FPP system consists of a DLP Projector (LightCrafter 
4710 EVM G2, Texas Instruments, Dallas, TX) with a resolution of 1920 
× 1080 pixels, a 5 MP CMOS camera (Fastec IL5Q, Fastec, San Diego, 
CA), and a computer to control the two units. The FPP projector is 
mounted on an EOS M290 machine, and the camera is situated outside 
the build chamber pointed towards the build plane of the printer as 
shown in the Figure below (Fig. 2). Standard pin-hole camera calibration 
is applied to retrieve the intrinsic parameters of the camera along with 
the rotation and translation matrices for perspective correction, and 
details of pin-hole camera model formulation is presented in the Sup
plemental Information (SI) Section 1 [45]. The printer has a build 
chamber of 250 × 250 × 325 mm3 and is equipped with a single mode 
400 W continuous wave ytterbium fiber laser. Compared to the setup 
shown in our previous work [21], the experiment setup presented in this 
work adopts the monochrome camera for image acquisition. The camera 
choice shifts from colored to monochrome as the monochrome sensor 
has high details and sensitivity as opposed to color sensor. Limited by its 
color filter array (CFA) design, color sensor captures less details and 
more sensitive to intensity saturation [46]. 

2.4. Experimental test cases 

A total of 39 single-layer square blocks (10 mm × 10 mm) were 
printed on a 4 × 4-inch build plate (Fig. 3). The layer height for these 

scans is set to be 40 μm. As shown in Fig. 3, due to a placement error the 
right column of printed samples is print slightly outside the build plate. 
The out-of-region prints are not considered for data analysis. Ex-situ 
measurements on this build are performed using an optical 3D profil
ometer (Keyence VR3200, Keyence Corporation of America, IL, USA). 
The HDR-FPP method outputs the surface topography with lateral res
olution of ~38 μm while the ex-situ characterized HR profilometry 
surface topography has the lateral resolution of ~5 μm. The details of the 
empirical calibration results including both localized Kxy and Cxy are 
presented in the SI Section 2 – Figs. S1 and S2. The unwrapped phase 
map extracted from the raw image data are further filter by the masked 
(or spatially selective) 2D FFT filter to reduce the sinusoidal artifacts 
caused by phase jump which is elucidated in the SI Section 3 – Fig. S3. 
The FPP and ex-situ profilometry data from this build are used to train 
the machine learning models for the estimation and generation of high- 
resolution height maps presented in Section 3. 

2.5. Deep learning-based surface topography super resolution 

2.5.1. Data preparation for ML models 
The surface topography measurement data can take on a variety of 

forms such as 3D point cloud and 2D image. Researchers commonly 
employ a point cloud to describe a surface topography and align or 
compare point clouds of spatial data measured by two equipment (e.g., 
FPP and microscope) using iterative closest point method. However, 
unlike images, point clouds don’t have a rigid structure, posing chal
lenges in deep learning for point clouds which involve huge computa
tional complexity. It is still difficult to develop effective and efficient 
neural networks for large-scale point clouds, while image-based ML 
models have been well developed and widely used. Therefore, in this 
work we adopt the image form to represent surface topography data 
from the in-situ FPP and ex-situ microscope. Specifically, grayscale 
images are generated by converting the measured height values into 
grayscales with a linear transformation between a custom-defined con
stant height range [−30 μm, 50 μm] and an 8-bit grayscale range [0, 
255]. It is worth pointing out that the conversion between the height 
values and integer grayscales will not give rise to a significant loss of 
resolution and precision in the case of LPBF layer thickness measure
ment. To illustrate, in this work, one grayscale level corresponds to [50 Fig. 2. The physical setup of our FPP system.  

Fig. 3. LPBF printed single-layer blocks in our experiment.  
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μm – (−30 μm)]/255 ≈ 0.314 μm, which is acceptable and definitely can 
be improved by using a 12-bit or even 16-bit grayscale images. More
over, please note that the height range is chosen based on the LPBF 
process parameter – layer thickness (40 μm in this study) and can cover 
all possible height values during LPBF printing of each layer. The 
specified height range also determines the input and output height range 
of the upcoming ML models, i.e., the surface height range of the ML 
models’ predictions. Users of our approach developed in this work can 
select the height range based on their specific LPBF process setting to 
generate grayscale images of surface topography, which can be used to 
train their own ML models using the same methods and algorithms as 
presented in subsequent sections for predicting surface topographies in 
their LPBF monitoring applications. 

After obtaining the LPBF printed samples’ grayscale images that 
encode the corresponding height maps measured by in-situ FPP and ex- 
situ microscope, we directly align the in-situ and ex-situ measurement 
images by aligning to the same single edge line and assuming that the in- 
process part (measured by in-situ) is uniformly scaled to the post-print 
part (measured by ex-situ) across the entire surface area. We further 
divide the in-situ and ex-situ grayscale images into a grid with the same 
number of rows and the same number of columns. Thus, we consider 
that each sub-region (i.e., each grid area) in the in-situ image corre
sponds to a sub-region at the same grid location (same index of grid 
column and row) in the ex-situ image. Like any other registration 
methods, this method using a single edge to align the two images is also 
subjected to alignment errors due to the different resolutions and human 
eye error, which is estimated to be ±40 μm error in total in case of being 
misaligned by one line (i.e., one pixel in FPP camera). This alignment 
error can be reduced by improving the optics design or using higher- 
resolution camera with smaller pixel size in FPP. Another issue lies in 
the assumption of spatially uniform scaling between the in-situ and ex- 
situ parts. This assumption might not hold for many reasons including 
the LPBF process variation such as stochastic laser fluctuation and 
heterogenous material properties as well as nonuniform post-build 
cooling and shrinkage effects. However, it is such a realistic mismatch 
between in-situ and ex-situ parts that motivates this work to exploit ML 
for capturing these hidden or inaccessible cause-and-effect relationships 
and predicting the post-build part surface with better accuracy and 
prediction by only using in-situ monitored process signatures (e.g., FPP) 
without the need for extensive ex-situ characterization. 

Overall, to transform the FPP acquired surface topography into in
puts for SR models, some preprocessing steps are required. In this work, 
the FPP measured surface topography of a printed 10 mm× 10 mm 
sample block is transformed into a 256 pixels × 256 pixels grayscale 
image with a lateral resolution of ~38 μm, and the ex-situ profilometer 
measured surface topography transforms into 2048 pixels × 2048 pixels 
grayscale image with a lateral resolution of ~5 μm. As shown in Fig. 4, 

the surface topography measurements from in-situ FPP and ex-situ op
tical profilometer are further segmented into 256 sub-images to create a 
sufficient dataset for ML training and testing. After image segmentation, 
the next task is to map LR to HR using the proposed ML models described 
in the following sections. As shown in Fig. 4, after the data pre
processing, the objective of the work is to find the latent representation 
from the low resolution in-situ FPP monitored surface topography which 
is embedded in to 16 pixels × 16 pixels grayscale images, and then use 
the latent representation to reconstruct the high resolution (256 pixels ×

256 pixels) grayscale images acquired from ex-situ profilometer. 
A total of 8192 paired LR and HR sub-images are segmented from 32 

printed single-layer blocks (Fig. 3). In this work, to avoid the potential 
data leakage problem in machine learning model training, three datasets 
are prepared by randomly selecting 70% of the segmented images within 
each individual block as training set, 10% images within each individual 
block as validation set, and the rest 20% images as testing set. The 
reason we don’t use whole blocks as training, validation, or testing 
samples is that each block sample tends to exhibit some different fea
tures due to the build location effect and different laser scan strategies. 
For example, while printing the 32 blocks, although the scan angle is set 
as 67◦ for all of them, the specific laser stripe overlapping locations and 
each scan’s start and end locations are different, leading to different 
surface topography as seen in Fig. 3. Therefore, the current dataset split 
strategy using segments of each block will allow the models to learn 
various possible features from the samples that are printed at different 
locations across the build plate under different processing conditions. 

2.5.2. RDB-CNN model 
Deep convolutional neural network is implemented in this work as a 

super resolution model to correlate the in-situ FPP calculated surface 
topography and the ex-situ characterized HR surface topography. We 
propose to implement CNN with both dense and residual connections 
[41,47] which takes the encoded FPP result in gray-scale as input and 
optical microscopy measured surface topology encoded in gray-scale as 
output. The major advantage of using residual and dense structure-based 
(RDB) CNN is that it performs the feature extraction directly from LR 
images’ hierarchal features, and the upscale step happens after all the 
required feature extraction and fusion is complete. Furthermore, the 
RDB utilizes both residual and dense connections which allow features 
to flow from blocks to blocks. As shown in Fig. 5, the LR image is first 
processed by two convolutional layers with kernel size of 3, padding 1, 
and stride 1 to extract features into 64 channels. After the two convo
lution operations, the extracted feature map is further processed by a 
series of individual RDB. Each RDB is composed of stacked convolution 
layers with dense connections (Fig. 5). All the layer activation functions 
are ReLU. The upscaling layer is implemented based on Efficient 
Sub-Pixel Convolutional Neural network (ESPCN) [48] followed by 
convolution layer to output desired HR image size. The specific details 
related to residual connection and dense connection are included in 
Appendix Section (A). 

L1 loss function is used for calculating loss between target output and 
the predicted HR output. The implemented L1 loss function is shown in 

Fig. 4. Schematic of the surface measurement data preprocessing (Yellow block 
from Fig. 3 used as the example). (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) Fig. 5. RDN structure for image super resolution.  
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Eq. (6). 

L1 =
∑N

i=1

⃒
⃒ytrue − ypredicted

⃒
⃒ (6) 

The RDB-CNN model implemented uses the Adam optimization 
method [49]. The output from the model is a one channel HR grayscale 
image. 

As mentioned earlier, 3 × 3 kernal filter is implemented to all the 
convolution layers except for the fusion layer (annotated in Fig. 5) which 
1 × 1 convolution is used. Three RDBs are implemented inside the RDB 
structures while each RDB is constructed with three densely connected 
3× 3 convolutional layers for feature extraction, and more details can be 
found in Appendix 1. To preserve the sizes of all tensors, zero padding 
are automatically enabled. In this specific task of super resolution, no 
regularization term is enforced to the loss function and neural network 
as all the features reconstructed are from training dataset. The model is 
optimized through backpropagation using Adam [49]. 

2.5.3. Denoising diffusion probabilistic model (DDPM) 
The second image super resolution model utilized is DDPM models 

which is a model trained based on Bayesian inference and Markov 
process. The diffusion probabilistic model (DPM) first diffuses a target 
image through adding standard Gaussian noise and constructs a para
metric model to learn the diffusion process. A transitional Markov pro
cess is learned by the model through ML for reversing the diffusion to 
match the target images. The specific model derivation and hyper pa
rameters assumption are included in Appendix Section (B). DDPM 
models first diffuse the target HR image at training stage (denoted in 
probabilistic distribution q in Figure A-2) and learns the noise added at 
any given time step during the diffusion process. Then the model per
forms the reverse process at inference stage (denoted in probabilistic 
distribution p in Figure A-2). 

L = |f(x, αt, ỹ, βt) − ε|
2
1 (7) 

The loss function for the proposed neural network is shown in Eq. (7) 
where f(x, αt, ỹ, βt) is the objective function composed of input LR image 
x, the diffused image ̃y at the given time step, and hyperparameters. ε is 
sampled from standard Gaussian distribution through training steps as 
the manually added noise. Comparing to other CNN based ML model like 
RDN which learns the direct mapping between LR and HR from previous 
section, DDPM learns the latent variable (statistical noises) through U- 
Net structures to reconstruct HR details. 

After training the designed neural networks, the inference process is 
proceeded by subtracting the noise from the image, denoted as reverse 
process p in Figure A-2. In this work, two variants of DDPM models are 
applied to acquire HR surface topography: standard DDPM and DDPM- 
SR3. The difference between the two models is that DDPM-SR3 imple
ments iterative refinement steps in inference step of the model. The 
training results are presented in subsequent sections to compare their 
performance specifically in reconstructing HR layer-wise surface 
topography for additive manufactured part. 

3. Results 

3.1. HDR FPP results and comparison 

Following the experiment setup and the HDR-FPP methodology 
(Section 2.3), height maps for all 39 single layer print blocks are 
calculated. To elucidate the effectiveness of implementing HDR method 
to mitigate the noise and errors caused by high intensity saturation, the 
block enclosed in red rectangle shown in Fig. 3 is selected and its surface 
topography is obtained using our proposed HDR-FPP method and the 
FPP method that we recently improved by introducing Cxy and 2DFFT 
[21] which still cannot address the shadowing and over-exposure issues 
due to using a single projection intensity (250 a. u.). 

As shown in Fig. 6, the HDR-FPP calculated surface topography 
displays less noise compared to the surface topography acquired by the 
recently developed FPP [21]. The previous FPP method introduces more 
intensity saturation errors that can be discerned visually along the left 
bottom stripe. While the qualitative comparison reveals that imple
menting the HDR-FPP method mitigates the pixel saturation issue, a 
quantitative analysis is also conducted between existing FPP, new 
HDR-FPP, and ex-situ optical profilometer (HR) by extracting the line 
profile 2 mm from the left edge of the block. 

As shown in Fig. 7, the extracted line profiles exhibit similar surface 
topography trend. Some mismatches exist because the ambient light 
condition and gas flow inside the LPBF machine could affect the in-situ 
measurements but not the ex-situ characterization. Another primary 
reason is that the FPP and HDR-FPP methods both have lower lateral 
resolution than the ex-situ profilometer. This issue will be addressed in 
the subsequent section. Due to the resolution difference between in-situ 
FPP and ex-situ profilometer, the quantitative comparison is performed 
by downscaling the ex-situ profilometer measured data through average 
filtering. The root mean squared error (RMSE) between the FPP and ex- 
situ profilometer is 10.57 μm, and the RMSE between the HDR-FPP and 
ex-situ profilometer is 8.9 μm. Quantitatively, the HDR-FPP measures 
the layer-wise surface topography more accurately compared to the 
existing FPP method. The implementation of projector based HDR 
method improves the performance of FPP method and ensures the 
applicability for real-time measurement by only projecting two different 
levels of intensity. The experimental result from the block printing 
experiment also reveals that the projector based HDR method mitigates 
the phase error which is primarily dependent on ambient light condi
tion, fringe density, and sensor noise from camera. The block (enclosed 
in blue from Fig. 3) acquired FPP images are subjected to high camera 
sensor noise due to loss of focus in certain regions, and its surface 
topography shown in Fig. 8 reflects the observable phase errors and 
fluctuation which induce the error in height calculation comparing to 
the ex-situ profilometer measured surface topography. Visually, the 
abnormal fast spatially height variations indicate the high phase error 
which is reduced using HDR method. 

3.2. Machine learning super resolution model results 

The results shown above indicate a need for improving the HDR-FPP 
accuracy further to match the ex-situ standard profilometer measure
ment. In this section we demonstrate a ML enhanced HDR-FPP method 
with three ML models - RDN, DDPM, and DDPM-SR3, in order to 
improve the acquired HDR-FPP surface topography resolution from ~38 
μm to ~5 μm, thus enhancing the HDR-FPP measurement performance. 
As elucidated in Section 2.5.1, the 32 sample blocks’ (Fig. 3) surface 
topographies encoded grayscale images are segmented into 8192 sub 
images (patches) to create a dataset for training, validation, and testing. 
The specific super resolution task is to predict HR profilometer mea
surement (128 pixels × 128 pixels) from input LR FPP measurement (16 
pixels × 16 pixels). All the three types of ML models are trained with 
supervision to ensure local convergence. For each of the models trained, 
the specific iterations with lowest validation loss are used as the trained 
model for predicting the surface topography of the completely unseen 
sub-images (i.e., segments) in the test set. The training loss and valida
tion accuracy of the final best model is shown in the Appendix Figure A- 
3. 

Several sub-image samples from sample block (enclosed in yellow 
from Fig. 3) are chosen and the results are presented in Table 1. 

The results as presented in Table 1 indicate that DDPM-based 
models’ predictions visually agree with the target HR image (ground 
truth), while the RDN model, a feature extraction-based CNN model, 
could not reconstruct most of the important details. Further, to quantify 
the prediction accuracy, two common metrics, Peak Signal-to-Noise 
Ratio (PSNR) and Mean Squared Error (MSE), are selected to quanti
tively evaluate the models. PSNR calculates the ratio of the maximum 
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possible grayscale pixel value from LR input image and the MSE. 
Further, it can manifest the performance of model in capturing major 
local features from the image by focusing on features from maximum 
possible grayscale pixel value. The MSE error indicates the average 
deviation between predicted results and target HR images and can 
provide an estimate of global measurement accuracy accounting for 
each pixel’s measurement deviation. Besides, PSNR is an illuminance- 
based metric which provides an indication of better visual quality, i.e., 
higher PSNR means the prediction incorporates the primary features of 
target HR image. The PSNR is computed using Eq. (8) where Maxg is the 
maximum possible grayscale pixel value and MSE is the mean squared 

error between predicted HR image and target HR image measured 
through ex-situ characterization. In this case, the MSE metric has the 
units of grayscale value2. 

PSNR = 10 log10

(
Max2

g

MSE

)

(8) 

As shown in Table 2, the arrow indicates the desired trend of the 
metric. Based on the quantitative measurement, DDPM-SR3 outperforms 
RDN and DDPM in both scales which proves its validity in reconstructing 
HR details in the LPBF printed part scenario. Although MSE metrics tend 
to penalize the generated HR details according to Eq. (15), the DDPM- 
SR3 model can predict most local features (reflected by the highest 
PSNR in Table 1) with best global accuracy (reflected by the lowest MSE 
in Table 1), making it advantageous in contrast to the other two models. 
Compared to DDPM-SR3, standard DDPM model has a relatively lower 
decent performance by the metrics of PSNR but far outperform the RDN 
method especially in terms of MSE. It should be noted that RDN per
forms poorly in this specific super resolution task due to the different 
mechanisms of RDN model and DDPM like model. While DDPM like 
model is a synthetic/generative model which generates and samples the 
details based on the training dataset, RDN purely relies on the LR images 
which has no hidden revelation and clues of detailed features that need 
to be reconstructed. In this case, the lower resolution surface topography 
acquired from FPP has less information in surface textures comparing to 
the direct down-scaled high resolution ex-situ measured surface topog
raphy through average filter. 

The work above evaluates our proposed ML models on sub images 
that are segments of the target measurand in test dataset. The ultimate 
goal of the designed ML frameworks is to predict the surface topography 
of a whole block printed by LPBF. To this end, the predicted sub images 

Fig. 6. Our previous FPP method (left) vs current HDR-FPP method (right): surface topography of the red block from Fig. 3. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Extracted line profile from Fig. 6 comparison between FPP, HDR-FPP, 
and ex-situ profilometer. 

Fig. 8. (a) Surface topographies (blue block from Fig. 3): (a) FPP; (b) HDR-FPP; (c) Ex-situ profilometer measurement. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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from different models are merged and compared with the HR surface 
topography encoded image obtained from the ex-situ standard profil
ometer. To further decode the predicted grayscale image into surface 
topography map with units of micron, the colormap transformation is 
adopted to transform the grayscale value from 0 to 255 to −30 μm – 50 
μm. For this reason, one grayscale value corresponds to 0.313 μm. It 
should be noted that the ex-situ microscopy implemented in this work 
has the vertical resolution of 1 μm, larger than one grayscale represented 
height (0.313 μm). This means that encoding the FPP measured height 
into a grayscale ranging between 0 and 255 will not affect the best 
achievable vertical resolution determined by the labeling data resolu
tion (i.e., ex-situ microscopy) used in machine learning. It also indicates 
that the machine learning aided HDR-FPP method can enhance the 
vertical resolution from 10 μm (original HDR-FPP measurement) to 1 μm 
(as reported in this work). The decoded surface topography (from 
grayscale to height value) from the prediction result of DDPM-SR3 

Table 1 
Predicting a test set sample’s surface topography from trained Super Resolution models (The original HDR-FPP measurement 
result is shown in the left column to show the effect of ML enhancement on HDR-FPP accuracy). 

Table 2 
PSNR & MSE on sub-images of 16X16 to 128X128 HDR-FPP measured surface 
topography super resolution.   

RDN DDPM DDPM-SR3 

PSNR (dB) ↑  11.23 18.56 22.07 
MSE (grayscale2.) ↓ 6756 1058 767 
MSE (μm2) ↓ 665 104 75  

Fig. 9. Decoded surface topography of the same block as shown in Fig. 8 from 
ML (specifically, DDPM-SR3) model prediction using HDR-FPP measurement 
data as input. 
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model is shown in Fig. 9, which shows a much better agreement with the 
ground truth compared to these non-ML-aided FPP results as shown in 
Fig. 8. 

Fig. 10 shows our test result of a representative block’s surface 
topography (enclosed in red from Fig. 3) from different models. It re
veals that the DDPM-SR3 outperforms all the other proposed models in 
terms of the predicted surface topography’s visual quality. Using the 
same quantitative metrics described above, the comparison for merged 
surface topography encoded image is shown in Table 3. For the merged 
complete surface topography, the DDPM-SR3 and DDPM models do not 
exhibit as good performance as shown for the sub image results 
(Table 1). This is because the developed sub-models cannot connect the 
details between the sequence of sub-images. To fully exploit the po
tential of the developed DDPM-based model for enhancing HDR-FPP, in 
the future, some memory mechanism or attention mechanism (e.g., 
gates operation from (Long short-term memory) LSTM, patch self- 
attention from vision transformer) will be developed to store and pass 
information between data sequence. Furthermore, it should be noted 
that the super resolution models trained in this study are essentially 
based on interpolation and sampling, and the reconstructed features are 
learnt from the training dataset. This special characteristic makes the 
trained models prone to generalization errors especially in this case 
where the upscaling factor is 8 times. Mode collapse could also be 
induced for samples with similar LR features (smooth texture from FPP 
measurements). In the future, more validations work is needed to vali
date the transferability of these models. 

Based on the above analysis, DDPM-SR3 shows dominant advantages 
under two common metrics (PSNR & MSE) over all other proposed 

models, and the predicted HR surface topography is also consistent with 
the target images. It proves the capability of DDPM-SR3 enhanced HDR- 
FPP in reconstructing HR details of surface topography that is not 
directly available from the original HDR-FPP measurement data. Shown 
in Fig. 11, the same line profile from Fig. 7 is extracted from ML- 
enhanced HDR-FPP model with DDPM-SR3 and compared with ex-situ 
profilometer measured and HDR-FPP line profiles. It can be observed 
that the ML enhanced model not only predicts the line profile with more 
points (high resolution), but also achieves better accuracy. Quantita
tively, the RMSE between the ML-enhanced HDR-FPP model and the ex- 
situ profilometer measurement is 7.49 μm which is slightly better than 
the 8.90 μm in the HDR-FPP and much better than the 10.57 μm in 
existing FPP. It should be noted that the ML-enhanced HDR-FPP pro
vides higher resolution which translates to more points spatially, and the 
ML-enhanced HDR-FPP model can retrieve surface details at 5 μm scale, 
much smaller than the resolution (38 μm) in both the existing FPP and 

Fig. 10. Representative result of a merged block’s surface topography encoded in grayscale for the printed block (enclosed in red as shown in Fig. 3): (a) RDN, (b) 
DDPM, (c) DDPM-SR3, (d) Ex-situ profilometer measurement. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 3 
PSNR & MSE analysis for performance of developed models to predict the 
merged complete surface topography (The original HDR-FPP measurement 
performance is shown on the left column for comparison).   

HDR-FPP 
(LR) 

RDN 
(HR) 

DDPM 
(HR) 

DDPM-SR3 
(HR) 

PSNR (dB) ↑ n/a 13.26 18.92 22.27 
MSE (grayscale) 

↓ 
589 3068 834 386 

MSE (μm2) ↓ 58.02 302.00 82.11 37.94 
RMSE (μm) ↓ 7.6 17.4 9.1 6.2  
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new HDR-FPP. For this reason, the overall RMSE metric for the entire 
line profile here may not be treated as the essential comparison as it is 
biased when comparing low resolution data to high resolution data. For 
this reason, a less biased comparison is conducted by dividing the ML 
enhanced HDR-FPP line profile into 1) counterpart points that are 
exactly corresponding to the points existing in the HDR-FPP measured 
line profile; and 2) reconstructed points that are inferred by machine 
learning. Results reflect that when comparing the counterpart points of 
the ML enhanced HDR-FPP line profile to the original HDR-FPP, the 
RMSE is reduced from 7.49 μm (Section 3.1) to 4.35 μm, while the new 
points inferred by the ML models has a RMSE of 9.72 μm. By these RMSE 
values, we find that the ML enhanced HDR-FPP method not only can 
further improves the accuracy of existing HDR-FPP measurement results 
(lower resolution points) but also can estimate with decent accuracy the 
surface topography at points that cannot directly resolved by original 
FPP or HDR-FPP due to the hardware and optical system’s constraints. 

Moreover, the single line comparison here does not reveal the per
formance of the model for the whole block or sub-region. As shown in 
Table 3, the ML-enhanced HDR-FPP model outperforms the HDR-FPP 
under both metrics considering the whole block scenario. The PSNR is 
calculated for each sub-image sample to gain more comprehensive un
derstanding about the generalizability and generalization errors from 
the model. As presented in Fig. 12, the mean PSNR of the DDPM-SR3 
model on test dataset of 1638 sub-images is 20.77 with the standard 
deviation of 3.24. The distribution has the positive skew toward high 
PSNR value, exhibiting the robustness of the model on unseen dataset for 
the super resolution task of enhancing FPP measurement. 

It should be noted that while the HDR-FPP performs better than 

machine learning method such as RDN enhanced and DDPM enhanced 
models, the resolution is significant lower in HDR-FPP stance. The MSE 
for HDR-FPP is calculated using the down sampled surface topography 
from ex-situ profilometer measurement. Furthermore, while RDN per
forms poorly, it is more computational efficient compared to the DDPM- 
like models. One significant issue of the DDPM model is the slow sam
pling rate at each inference step during reverse-diffusion process. In this 
specific application scenario of surface topography super resolution, the 
inference time of DDPM models on a Nvidia V100 32 GB GPU node is 
around 10 min. For in-situ application, it requires considerable 
computational resources. Some implicit diffusion models which can 
reduce the computational complexity need to be investigated and 
implemented in the future for cost-effective in-situ monitoring 
applications. 

The DDPM models trained in this work show the applicability in 
surface topography simulation and generation. By using the developed 
model, one can predict/reconstruct the ~ 5 μm lateral resolution surface 
topography from the LR FPP acquired surface topography with resolu
tion ~ 38 μm. This advancement makes the detection of small powder 
spatter redeposition and porosity possible. Furthermore, the trained 
synthetic/generative models - DDPM and DDPM-SR3 can reproduce 
near-realistic surface topography samples for LPBF manufacturing pro
cess from pure Gaussian Noise. Since ML models or data-driven models 
usually require large training datasets and it is always expensive to 
conduct empirical study for metal AM studies, generative models such as 
the DDPM models trained in this work show their applicability in surface 
topography simulation and generation in AM processes. Another po
tential method is to use GAN (generative adversarial neural network) 
[50]. These ML methods open up an avenue to generate synthetic images 
which are representative of the manufacturing processes with adequate 
details for ML model training to enable more accurate and reliable AM 
processes monitoring and qualification. 

4. Conclusion 

In this work, a new ML enhanced HDR based FPP method is devel
oped to improve the performance and measurement capability of 
existing FPP methods. First, a projector based HDR method is demon
strated to successfully mitigate the shadowing and pixel intensity satu
ration problems and improve the overall measurement accuracy by 
comparing to the ex-situ high-resolution profilometer characterization 
result. The MSE between the HDR-FPP method and the ground truth of 
ex-situ profilometer result is 8.90 μm and the ML enhanced HDR-FPP 
method achieves a MSE of 4.35 μm for a representative line profile 
under the same resolution. Moreover, the developed ML enhanced HDR- 
FPP model is capable of reconstructing high-resolution details that is not 
available from the original HDR-FPP acquired surface topography with 
an appreciable RMSE error of 9.72 μm. The proposed HDR method also 
reduces the phase error primarily caused by the camera sensor noise and 
ambient light condition. It should be noted that our subsequent work of 
ML enhanced HDR-FPP takes the HDR-FPP measurement model output 
as an input to a machine learning model for increasing both the lateral 
and vertical resolutions which are strictly limited by hardware setup 
(camera) for standard FPP methodology. 

Specifically, three ML models are developed to further improve the 
measurement capability of the HDR-FPP method through resolution 
enhancement. Our results show that while traditional convolution 
feature extraction-based model (RDN) performs poorly on this specific 
task, the new image synthetic/generative models (DDPM, DDPM-SR3) 
yield significant improvement. The predictions from these DDPM- 
based models show agreeable visual quality. Further quantitative anal
ysis by using PSNR and MSE metrics also indicate that DDPM-SR3 out
performs RDN and DDPM. The DDPM-SR3 model can predict high- 
resolution details from low-resolution FPP acquired surface topog
raphy. It is worth noting that the details predicted through DDPM 
models are not subjected to FPP hardware achievable resolution. Being a 

Fig. 11. Same line profile comparison as Fig. 7, between HDR-FPP, ML 
enhanced HDR-FPP, and ex-situ profilometer measured surface topography. 

Fig. 12. The distribution of the PSNR of DDPM-SR3 on tested dataset of 1638 
sub-images which are completely unseen during the model training 
and validation. 
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synthetic model, DDPM is also capable of generating realistic surface 
topography from Gaussian noise which solves the problem of inadequate 
dataset in case that repeated experiments are expensive and time 
consuming. 

To conclude, the developed ML (DDPM-SR3) enhanced HDR-FPP 
framework can effectively mitigate the shadowing and intensity satu
ration issues in current FPP methods as well as enhance the measure
ment accuracy and resolution. Specifically, the improved accuracy is 
reflected by our results as listed below.  

1) The RMSE value for a sample line profile is reduced from 10.57 μm 
(existing FPP method) to 8.90 μm (our DDPM-SR3 enhanced HDR- 
FPP method) for an entire line including the reconstructed points 
and 4.35 μm for the FPP directly measured points.  

2) The RMSE value for a reconstructed or predicted segment of the same 
sample line profile, which cannot be directly measured by existing 
FPP or the HDR-FPP, reaches a RMSE of 9.72 μm. This is better than 
existing FPP (10.57 μm) and comparable to our HDR-FPP (8.90 μm).  

3) The MSE value for an entire block sample is reduced from 58.02 μm2 

to 37.94 μm2, and the corresponding RMSE value for measuring the 
block is reduced from 7.6 μm to 6.2 μm. 

Meanwhile, the enhanced resolution is reflected by the following 
outcome from our method, i.e., ML (DDPM-SR3) enhanced HDR-FPP.  

1) Better resolved details and features that are not visually observable 
in conventional FPP results.  

2) Lateral resolution enhanced from ~38 μm to ~5 μm.  
3) Vertical resolution enhanced from ~10 μm to 1 μm (promoted by 

machine learning of the high-resolution ex-situ microscope mea
surement data). 

The work also shows the potential of applying novel super resolution 
computer vision models, especially generative models, to monitor LPBF 
process and other AM processes. In the future, more sophisticated HDR- 
FPP methods can be explored such as hybrid-quality-guided phase 
fusion model [51]. To improve the ML performance while merging large 

surface topography maps, some attention or memory mechanism will be 
incorporated to capture the relation patterns between sub images. Such 
ML enhanced HDR-FPP can measure the surface topography of printed 
layers during LPBF-AM more capably and efficiently. Thereafter, 
comprehensive analysis of the measured surface topography will be used 
to detect and extract layer-wise defects such as small bump, powder 
spatter, and hole, thus advancing the existing state-of-the-art methods 
towards the desired online inspection of LPBF print defects. 
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Appendix 

(A) Residual and Dense layer connection 

As proposed in Ref. [40], the residual connection between convolution layers eases the gradient vanishing problem, allowing the development of 
deeper neural networks model. Specifically, the residual connection is shown in Figure A1(a). The residual connection outputs the summation between 
F(X) and X as the input to next set of layer blocks while the dense blocks concatenate all the previous blocks’ feature maps together (Figure A1(b)). 
Supposing the first convolution layer takes the 16*16*64 tensor as the input (kernel size of 3, padding 1, stride 1), the third convolutional layer takes 
both the feature map output from first and second convolution layers, forming the input feature map of 16*16*192. By concatenating all previous 
layers’ feature maps, the dense blocks have the comprehensive access to the extracted features which make it more robust in fusing hierarchical 
features sparse input, LR image in this case.

Figure A1. Residual and Dense connection (B) DDPM model.   
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Figure A2. The Diffusion probabilistic model process. The diffusion process is denoted in probabilistic distribution q, and the reverse process to retrieve the target 
image is denoted in probabilistic distribution p. 

As shown in Figure A2, the objective of the DDPM model is to fit the probabilistic distribution which given lower resolution FPP surface topography 
image x, the output high resolution image y0 can be sampled through p(y|x). First, the diffusion process is conducted through gradually adding 
Gaussian noise to the target image, resulting in the image sampled from Gaussian distribution with 0 mean and variance of 1 at time step T (N(0,I)). 
This process can be denoted as q, and based on the assumption of Markov process which claims that the current state at time t only depends on the 
previous time step t − 1. The probabilistic distribution of diffusion process at any time step can be calculated (Eq. (9)) 

q(y1:T|y0) =
∏T

t=1
q(yt|yt−1) (9)  

q(yt|yt−1) = N(yt|
̅̅̅̅
αt

√
yt−1, βtI) (10) 

The added Gaussian noises follows the schedule of hyperparameters αt and βt as specified in Eq. (10), and αt is between 0 and 1 with βt = 1 − αt. 
The selection of the noise scheduling is essential for model performance, and linear scheduling is used for this work. Using the above Markov process 
distributions, the sampled noise image can be acquired through reparameterization. Specifically, the sample image yt at time step t can be calculated 
using the previous time step image sample yt−1 with its probabilistic distribution q(yt|yt−1) (Eq. (10)). 

yt =
̅̅̅̅
αt

√
yt−1 +

̅̅̅̅
βt

√
Zt, Zt ∼ N(0, I) (11)  

yt =
̅̅̅̅
αt

√
yt−2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
Zt−1  

=
̅̅̅̅̅̅̅̅̅̅̅̅
αtαt−1

√
yt−2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αt − αtαt−1

√
Zt−1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
Zt  

=
̅̅̅̅̅̅̅̅̅̅̅̅
αtαt−1

√
yt−2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αtαt−1

√
Z, Z is the merged distribution (12)  

αt =
∏T

i=1
αi (13)  

yt =
̅̅̅̅
αt

√
y0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
Z (14) 

As shown in Eqs. 11–14, the diffusion process can be sampled and characterized through Markov process and reparameterization through 
gradually adding Gaussian noise defined by hyperparameters. The diffused image at any time step can be directly acquired using the target image y0. 
Using the above derived equations, the posterior probabilistic distribution q(yt−1

⃒
⃒yt, y0) is sampled using Eq. (15). 

q(yt−1|yt, y0) ∼ N
(
yt−1

⃒
⃒μ, σ2I

)
μ =

̅̅̅̅αt
√

(1 − αt−1)

1 − αt
yt +

̅̅̅̅̅̅̅̅
αt−1

√
βt

1 − αt
y0 σ2 =

1 − αt−1

1 − αt
βt (15) 

To reverse the diffusion process to match the target HR images, the denoising neural network is trained which takes the LR image x and the noisy 
target image (with added Gaussian noise) ỹ. Based on Eq. (14), ỹ =

̅̅̅̅
αt

√
y0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − αt

√
ε where y0 is the noiseless target image and ε is noise vector 

sampled from standard Gaussian distribution. The objective of reverse process is to train the denoising neural network which gradually learns the 
distribution and noise vector. 

Various experiments of model trainings are performed. The sample training loss and validation accuracy for the final best model, a DDPM-SR3 
model, is shown in Figure A3 below. 
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Figure A3. Training loss and validation accuracy for the final chosen DDPM-SR3 model.  
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