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ARTICLE INFO ABSTRACT

Handling Editor: Prof. R. Leach Fringe Projection Profilometry (FPP) is a cost-effective and non-destructive method, typically used for measuring
finer features and reconstructing 3D topography of objects. However, to use the FPP method for measuring the
dynamic topography of powder bed and printed layers during Laser Powder Bed Fusion (LPBF) based additive
manufacturing (AM) process, unique challenges exist due to the varying material properties and ambient con-
ditions in the build chamber. In this work, we aim to enhance the discernibility, accuracy, and resolution of FPP
in the specific application scenario of measuring layer-wise surface topography during LPBF AM by integrating
our recently developed LPBF-specific FPP sensing model that features localized sensor calibration and Fourier
filter-aided unwrapping with an equipment-based High dynamic range (HDR) method and machine learning
(ML) aided FPP data analysis. First, a projector based HDR method is applied to mitigate the shadowing and
intensity saturation problems by projecting sinusoidal fringe patterns of varying intensities. Secondly, a ML
framework is developed to improve the surface topography measurement accuracy (RMSE from 10.57 pm to
7.49 pm or even 4.35 pm for directly measurable points) and enhance resolution that is currently subjected to
hardware limitations (from 38 pm to 5 pm laterally and from 10 pm to 1 pm vertically). Several different types of
candidate neural networks (NNs) are trained and tested using the in-situ FPP measurement data and ex-situ
standard optical microscopy characterization data. Multiple NN-based models are resulted and compared in
terms of their ability to enhance the accuracy and resolution of FPP’s end-result (height measurement). By
selecting the best-performance NN enabled image super resolution model, the proposed ML integrated HDR FPP
method is expected to measure the surface topography of printed layers during LPBF-AM more capably and
efficiently, thus advancing the existing state-of-the-art methods towards the desired online inspection of LPBF
print defects.
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1. Introduction monitored process signatures, for manufacturing quality parts. Among

all the possible process signatures, surface topography provides essential

1.1. Additive manufacturing and in-situ surface measurement

Laser powder bed fusion (LPBF) based additive manufacturing (AM)
processes utilize a laser to sinter or melt thin layers of metal powders for
fabricating products with reduced cost and time. These processes have
applications in various industries including aerospace, medical, and
automobile [1-3]. However, due to certain print defects (such as
porosity, surface bumps and voids), the printed parts are often far from
being qualified for practical use. Comprehensive process control
methods need to be developed and implemented, based on in-situ

* Corresponding author.
E-mail address: xiayun.zhao@pitt.edu (X. Zhao).

https://doi.org/10.1016/j.precisioneng.2023.06.015

information about the surface defects such as powder spatter redeposi-
tion, lack-of-fusion, balling, voids, and bumps at each print layer, which
could be detrimental for part properties. Surface topography in metal
AM is strongly influenced by the print process parameters, as they affect
the heat dissipation rates and thermal gradients during the print. These
variations in the thermal properties cause surface defects, recoater
crash, porosity, among other defects [4-6]. Other factors which affect a
print part’s surface topography include powder reuse, position and
orientation on the build platform (overhang structures tend to have
rougher surfaces), part interaction with the recoater blade [7].
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Numerous methods for evaluating the surface of objects have been
implemented, which include stylus-based approaches such as optical
profilometry systems [8], phase shifting interferometry [9], confocal
microscopy [6], optical coherence tomography (OCT) [10], focus vari-
ation microscopy [7] among others. While all these methods are good
choices for measuring surface properties for AM parts, they are often
limited either by the cost, ease of utilization, in-situ/online process
monitoring, or region of interest (ROI) requirements. For instance, OCT
systems cannot be implemented online easily and have a typical ROI in
the order of 10 x 10 mm which is not optimal for a print process
monitoring for larger build areas. However, the spatial resolution of
OCT is in order of 10’s of microns which is of great interest in charac-
terizing porosity of AM parts. Yet, implementing OTC laser scans across
each layer for in-situ surface measurement during AM is slow. For
example, it took ~20 s to collect OTC data over an area of 4.4 x 4.4 cm?
with a pixel resolution of 100 pm during LPBF, necessitating a pause of
printing between layers [11]. Similarly, focus variation microscopy also
has a good spatial resolution but cannot be implemented for online
monitoring.

Further, most of these methods can only measure offline the surface
topography of a completed part. However, it has to be noted that the
surface quality of the final AM manufactured part quality is dependent
on all the print layers [12], thus making each print layer’s surface
topography monitoring essential for print qualification. To accomplish
this layer-wise surface topography monitoring, researchers started
implementing a structured light projection methodology known as the
Fringe Projection Profilometry (FPP). With a critical review of recent
works on developing FPP for in-situ monitoring of powder bed fusion
(PBF) processes, Dickins et al. [13] pointed out the need for advancing
FPP to reconstruct higher-resolution surface across the entire powder
bed area. They also presented a new FPP method by fusing multi-view
point clouds from four cameras into a single high-density dataset for
achieving higher accuracy and larger surface coverage. But the level of
precision is lower due to the additional errors introduced by the multiple
cameras and associated data fusion. In general, FPP systems typically
consists of a projector and a camera, the projector projects structured
light (such as sinusoidal fringe patterns) onto the target and the camera
captures the reflected light patterns. The reflected light patterns are
encoded with the surface topography information of the target object,
which are evaluated using appropriate algorithms. FPP methods are
well-known for their ability to provide high-resolution and full-field 3D
map of the measured objects in a non-contact manner and within a short
period of time, and thus widely used in diverse fields including human
face recognition [14,15], 3D intra-oral dental profile measurements
[16], and surface roughness measurement [17]. Other in-situ off--
the-shelf profilometers such as Keyence profilometer are also imple-
mented for online surface inspection in LPBF [18]. However, the field of
view of the Keyence profilometer is not specified, and the limited
working distance requires the profilometer to be installed inside the
machine chamber close to the build plate, making it difficult to be
applied to a variety of commercial LPBF printers with constrained space.
Besides, those commercially available profilometers are costly and
involve sophisticated operations that usually interrupt the printing
process.

1.2. Developing fringe projection for laser powder bed fusion process
monitoring

FPP offers a potential approach to realize low-cost, non-contact,
high-performance in-situ surface topography monitoring of AM pro-
cesses [19-22]. However, to use the FPP method for measuring the
dynamic topography of the print layers during LPBF-based metal AM
processes, unique challenges exist mainly because the heterogeneous
material properties between and within powder and print part. For
instance, distinct surface reflectivity across the powder bed tend to cause
shadows and intensity saturation here and there. To mitigate the
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non-homogenous reflectance issues, high dynamic range (HDR)
methods [23-25] are often employed. A comprehensive review about
the HDR methods for FPP is presented in Ref. [26]. In a recent work, Liu
et al. report a successful implementation of an in-situ FPP system inte-
grated with HDR methods and Support Vector Machine (SVM) based
classifier for evaluating the surface morphology of parts (specifically
high reflectance surfaces) printed using electron beam based metal AM
[27]. While this method is promising for electron beam-based metal AM,
there lacks an implementation of FPP integrated with HDR and ML for
LPBF. Furthermore, the reported SVM based surface morphology eval-
uation is still constrained by the camera’s lateral resolution. Another
challenge while implementing FPP for AM is projector-camera nonlin-
earity (gamma correction). This is typically addressed by tuning the
camera orientation angle or employing multiple cameras [28,29]. In our
previous work, we solved the projector-camera nonlinearity issue by
introducing a local correction factor, Cy, [21] which is free of additional
hardware installations. Furthermore, unlike standard gamma correction
which is applied as constant to all pixels, the local correction factor Cy, is
the pixel-wise variable which considers the location effect for FPP.

On the other hand, machine learning (ML) has been increasingly
applied to measure AM surface topography with the development of
neural networks (NNs) for image recognition and reconstruction
[30-34]. In a recent work by Shi et al. [8], authors report a use of a
convolutional autoencoder (CAE) based neural network (NN) integrated
with random forest classification for predicting accurate surface
morphology for parts printed with various process parameters in laser
engineered net shaping AM. The input for the CAE network were noisy
surface profiles of the print parts evaluated using optical profilometry.
However, the application of CNN and deep learning to FPP based surface
topography is emerging. Recently, in Ref. [35] authors introduced a
CNN based surface topography reconstruction method with an in-house
developed 3D structured light scanner setup (similar to a FPP system).
However, the ground truth/“test” point cloud data for the CNN was also
an estimation from the developed 3D scanner setup itself and numeri-
cally simulated images (Gaussian random field) rather than more reli-
able measurement from an ex-situ standard equipment. This type of
training data typically introduces model bias, which is not ideal for part
qualification. The authors report that the developed methodology needs
to be further improved from more accurate measurements of the AM
parts including in-situ, online process monitoring, implementation.
Researchers also implemented NNs for improving the FPP algorithms
such as wrapped phase maps, and phase unwrapping calculations which
then contribute to the improvement of the final target measurement
result, i.e., the surface topography measurements. For instance, in
Ref. [24] Zhang et al. developed a HDR based deep learning network
which specifically focused on the estimation of wrapped phase with
improved accuracy and reduced noise. Spoorthi et al. used a variation of
SegNet framework for phase unwrapping in FPP [36,37] with improved
accuracy as compared to standard phase unwrapping methods such as
quality guided phase unwrapping and least squares based phase
unwrapping. It must be noted that these reported NN frameworks are for
general FPP algorithms, typically used for macroscale objects and were
not tested on FPP for metal AM. The implementation of these NNs is
promising and can aid in the improvement of surface topography mea-
surements in metal AM.

Although implementing ML techniques to improve the FPP meth-
odology show improved accuracy, these methods are limited to the
camera lateral resolutions (sensor pixel size) and optical system’s spatial
frequency response (transfer function) [38]. For this reason, a novel
method is needed to improve the overall resolution of FPP measurement.
Image super resolution (SR) is the process of converting a given
low-resolution (LR) image with coarse details to a corresponding
high-resolution (HR) image with better visual quality and refined details
[39]. Recently, SR has become a topic of great interest in computer
vision due to both of its challenges (e.g., ill-posed inverse problem) and
important applications. Deep learning approaches have ushered in
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enhanced SR performance. The implementation of residual connection
[40] allows to reconstruct more accurate details from LR sample through
training deeper network model. Zhang et al. proposed Residual Dense
Block (RDB) structures to train deep neural networks, which utilize the
hierarchal features from original LR images to retrieve HR images [41].
Apart from utilizing the convolution-like structures to extract and
reconstruct image features, Ho et al. proposed the de-noising diffusion
probabilistic model (DDPM) [42] which is a Markov chain model trained
through sampling from Gaussian noise to match the target HR in finite
time. This model is further improved in Refs. [43,44] by advanced
parameter schedule, the iterative de-noising mechanism, and the
improved U-Net design to learn the noise added in the diffusion process.
While these models show robust performance in SR tasks in the field of
computer vision, there is a lack of developed SR models to advance
optical metrology methods (e.g., FPP) for in-situ monitoring of AM
processes (e.g., LPBF).

1.3. Objective of this work

The objective of this work is to enhance the discernibility, accuracy,
resolution, and robustness of FPP in the specific application scenario of
measuring layer-wise surface topography during LPBF AM processes by
integrating our recently developed LPBF-specific FPP sensing model that
features localized sensor calibration and Fourier filter-aided unwrap-
ping with an equipment-based HDR method and machine learning (ML)
aided FPP data analysis. First, a projector based HDR method is applied
to mitigate the shadowing and intensity saturation problems by pro-
jecting sinusoidal fringe patterns of varying intensities. Secondly, a ML
framework is developed to improve the surface topography measure-
ment accuracy and resolution that is currently subjected to hardware
limitations.

As we demonstrate the potential benefit of applying HDR based FPP
(HDR-FPP) to LPBF monitoring by using a simple two-intensity projec-
tion, our work focuses on improving the end results of FPP measurement
of surface topography using three potential ML models. Overall, in this
work we develop a new framework of ML-aided HDR-FPP method to
address the shortcomings of current LPBF surface topography mea-
surement methods as introduced above. Specifically, a basic HDR-FPP
system is implemented to acquire in situ layer-wise images of powder
bed and printed layer, which are then analyzed for estimating the sur-
face topography and height maps. Different super resolution ML models
including RDB-CNN, DDPM, and DDPM-SR3 are developed to further
enhance the HDR-FPP measured surface map for evaluating the layer-
wise surface topography maps with improved resolution in LPBF pro-
cesses. The resulting surface topography is validated against ex-situ
standard optical profilometry.

The remainder of this paper is divided into the following sections.
Section 2 introduces the HDR-FPP methodology, experimental setup,
and machine learning model specification. Then, results and both
quantitative and qualitative analyses are presented in Section 3. Finally,
conclusion and recommendation for future works are provided in Sec-
tion 4.

2. Methods
2.1. FPP methodology

The basic principle of FPP includes the calculation of the depth or
height of a target object by comparing the phase change between the
original and the distorted phase maps reflected from the reference plane
and the target object respectively. In FPP, typically, sinusoidal fringes
are projected on to the target object surface and the projected intensity
at location x and y is described in Eq. (1), where B(x,y) is the back-
ground ambient light intensity and M is the projector bias.

I(x,y) = B(x,y) + M(x,y)cos (¢p(x,y) +5) @
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Due to the camera-projector nonlinearity issues and their effects on
the obtained results, we demonstrated an improved FPP method by
applying localized intensity correction factor (C,,) in our previous work
[21] as shown in Eq. (2).
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After the intensity correction, the wrapped phase map is calculated
with three-step phase shifting algorithm as presented in Eq. (3), where N
is the total number of phases (N = 3 in this study).
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The wrapped phase map is later unwrapped and compared with the
reference unwrapped phase map to calculate the target height profile.
The similar triangle theorem is used to derive the geometric relationship
between phase value and height. Specific details in mathematical
formulation and implementation procedures of the newly developed
LPBF-specific FPP method can be found in our previous work [21].

@(x,y) =arctan <

2.2. High dynamic range method (HDR) for FPP

The intensity saturation problem cannot be completely solved using
traditional gamma correction and the developed Cy, correction. There-
fore, in this work we implement a projector based HDR method to
further mitigate the intensity saturation issues. In projector based HDR
method, sinusoidal fringes with same phase but different intensities are
projected on the target object, and these images are fused to generate
another image with average intensity features which can eliminate pixel
saturation due to the high reflectance emanating from the printed part.
This can be mathematically written as:

M i
Lsed _% i=1..N @)
i represents the phase shift step and M represents the total number of
various intensities images captured at phase i.

In this work we use two intensity levels, (1) I; = 250 and (2) I; = 160,
which can capture dark and bright parts in the specific LPBF machine
setting with the specific material (Inconel 718). The numerical values of
I; and I, correspond to the luminance or projection intensity and are
chosen based on our experiment observations, which find that the
average of these I and I is suitable to avoid under-/over-exposure most
of the time through the entire multi-layer print across the whole print
area. An illustration of image fusing with a higher and lower intensity
image is shown in Fig. 1. Note that the dynamic scene of LPBF print due
to heterogeneous and changing materials may necessitate the use of
weighed exposures and/or adaptive projections. However, the topic of
optimizing multi-image fusion weights or multiple projections requires
extensive research effort and is beyond the scope of this work which is
focused on exploring ML techniques to enhance HDR-FPP. Besides, only
two constant projections are used in this study since taking more pro-
jections and shots or adjusting projection intensities online would
require a longer period between printing consecutive layers and signif-
icantly interrupt the LPBF process. Nevertheless, the two-projection
scheme can help reduce the measurement error due to LPBF process
noise and camera sensor noise, and be used as a benchmark method to

v

oj=

Image with Dark
Intensity
(160 a.u.)

Image with Bright
Intensity
(250 a.u.)

Image with fused
Intensities

Fig. 1. Schematic of projector based HDR image fusion.
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demonstrate the potential benefit of HDR compared to traditional FPP
(elaborated in Section 3.1).

By substituting the intensity in Eq. (3) with the HDR fused intensities
that are locally calibrated by the corresponding experimentally char-
acterized correction factor Cy,, the final phase shifting formula for
calculating the wrapped phase map is shown in Eq. (5).

N fused :
~Zai=1 I{,mlibmred (X, y) sin (51) 5)
N used
Zi:] i_calibrated (x7 y) cos (51)

After acquiring the wrapped phase map, the unwrapped phase map is
calculated through 2DFFT incorporated phase unwrapping algorithm
[21]. The height calculated directly from our FPP method is the print
part height relative to the powder surface thus measured to be a negative
value due to the powder fusion and solidification shrinkage. The surface
topography in this work is defined to be the distance between the top
surface of the fused part and the build plate. Specifically in a single-layer
print scenario as reported in this work, the surface topography is
calculated by adding the nominal layer thickness (40 pm) to the FPP
acquired height value.

@(x,y) =arctan (

2.3. FPP experimental setup

The developed FPP system consists of a DLP Projector (LightCrafter
4710 EVM G2, Texas Instruments, Dallas, TX) with a resolution of 1920
x 1080 pixels, a 5 MP CMOS camera (Fastec IL5Q, Fastec, San Diego,
CA), and a computer to control the two units. The FPP projector is
mounted on an EOS M290 machine, and the camera is situated outside
the build chamber pointed towards the build plane of the printer as
shown in the Figure below (Fig. 2). Standard pin-hole camera calibration
is applied to retrieve the intrinsic parameters of the camera along with
the rotation and translation matrices for perspective correction, and
details of pin-hole camera model formulation is presented in the Sup-
plemental Information (SI) Section 1 [45]. The printer has a build
chamber of 250 x 250 x 325 mm® and is equipped with a single mode
400 W continuous wave ytterbium fiber laser. Compared to the setup
shown in our previous work [21], the experiment setup presented in this
work adopts the monochrome camera for image acquisition. The camera
choice shifts from colored to monochrome as the monochrome sensor
has high details and sensitivity as opposed to color sensor. Limited by its
color filter array (CFA) design, color sensor captures less details and
more sensitive to intensity saturation [46].

2.4. Experimental test cases

A total of 39 single-layer square blocks (10 mm x 10 mm) were
printed on a 4 x 4-inch build plate (Fig. 3). The layer height for these

Fig. 2. The physical setup of our FPP system.
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Fig. 3. LPBF printed single-layer blocks in our experiment.

scans is set to be 40 pm. As shown in Fig. 3, due to a placement error the
right column of printed samples is print slightly outside the build plate.
The out-of-region prints are not considered for data analysis. Ex-situ
measurements on this build are performed using an optical 3D profil-
ometer (Keyence VR3200, Keyence Corporation of America, IL, USA).
The HDR-FPP method outputs the surface topography with lateral res-
olution of ~38 pm while the ex-situ characterized HR profilometry
surface topography has the lateral resolution of ~5 pm. The details of the
empirical calibration results including both localized K,, and C,, are
presented in the SI Section 2 — Figs. S1 and S2. The unwrapped phase
map extracted from the raw image data are further filter by the masked
(or spatially selective) 2D FFT filter to reduce the sinusoidal artifacts
caused by phase jump which is elucidated in the SI Section 3 - Fig. S3.
The FPP and ex-situ profilometry data from this build are used to train
the machine learning models for the estimation and generation of high-
resolution height maps presented in Section 3.

2.5. Deep learning-based surface topography super resolution

2.5.1. Data preparation for ML models

The surface topography measurement data can take on a variety of
forms such as 3D point cloud and 2D image. Researchers commonly
employ a point cloud to describe a surface topography and align or
compare point clouds of spatial data measured by two equipment (e.g.,
FPP and microscope) using iterative closest point method. However,
unlike images, point clouds don’t have a rigid structure, posing chal-
lenges in deep learning for point clouds which involve huge computa-
tional complexity. It is still difficult to develop effective and efficient
neural networks for large-scale point clouds, while image-based ML
models have been well developed and widely used. Therefore, in this
work we adopt the image form to represent surface topography data
from the in-situ FPP and ex-situ microscope. Specifically, grayscale
images are generated by converting the measured height values into
grayscales with a linear transformation between a custom-defined con-
stant height range [—30 pm, 50 pm] and an 8-bit grayscale range [0,
255]. It is worth pointing out that the conversion between the height
values and integer grayscales will not give rise to a significant loss of
resolution and precision in the case of LPBF layer thickness measure-
ment. To illustrate, in this work, one grayscale level corresponds to [50
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pm — (—30 pm)]/255 ~ 0.314 pm, which is acceptable and definitely can
be improved by using a 12-bit or even 16-bit grayscale images. More-
over, please note that the height range is chosen based on the LPBF
process parameter — layer thickness (40 pm in this study) and can cover
all possible height values during LPBF printing of each layer. The
specified height range also determines the input and output height range
of the upcoming ML models, i.e., the surface height range of the ML
models’ predictions. Users of our approach developed in this work can
select the height range based on their specific LPBF process setting to
generate grayscale images of surface topography, which can be used to
train their own ML models using the same methods and algorithms as
presented in subsequent sections for predicting surface topographies in
their LPBF monitoring applications.

After obtaining the LPBF printed samples’ grayscale images that
encode the corresponding height maps measured by in-situ FPP and ex-
situ microscope, we directly align the in-situ and ex-situ measurement
images by aligning to the same single edge line and assuming that the in-
process part (measured by in-situ) is uniformly scaled to the post-print
part (measured by ex-situ) across the entire surface area. We further
divide the in-situ and ex-situ grayscale images into a grid with the same
number of rows and the same number of columns. Thus, we consider
that each sub-region (i.e., each grid area) in the in-situ image corre-
sponds to a sub-region at the same grid location (same index of grid
column and row) in the ex-situ image. Like any other registration
methods, this method using a single edge to align the two images is also
subjected to alignment errors due to the different resolutions and human
eye error, which is estimated to be +40 pm error in total in case of being
misaligned by one line (i.e., one pixel in FPP camera). This alignment
error can be reduced by improving the optics design or using higher-
resolution camera with smaller pixel size in FPP. Another issue lies in
the assumption of spatially uniform scaling between the in-situ and ex-
situ parts. This assumption might not hold for many reasons including
the LPBF process variation such as stochastic laser fluctuation and
heterogenous material properties as well as nonuniform post-build
cooling and shrinkage effects. However, it is such a realistic mismatch
between in-situ and ex-situ parts that motivates this work to exploit ML
for capturing these hidden or inaccessible cause-and-effect relationships
and predicting the post-build part surface with better accuracy and
prediction by only using in-situ monitored process signatures (e.g., FPP)
without the need for extensive ex-situ characterization.

Overall, to transform the FPP acquired surface topography into in-
puts for SR models, some preprocessing steps are required. In this work,
the FPP measured surface topography of a printed 10 mmx 10 mm
sample block is transformed into a 256 pixels x 256 pixels grayscale
image with a lateral resolution of ~38 pm, and the ex-situ profilometer
measured surface topography transforms into 2048 pixels x 2048 pixels
grayscale image with a lateral resolution of ~5 pm. As shown in Fig. 4,

\

Low Resolution (LR)
Image input to ML
models

Segmented into 256 sub-
images (38 umi/Pixel)

Surface topography um

Segmented into 256 sub-images (5
pmiPixel)

£ High
£ Resolution
(HR)
Image
¢ samples
3 forML
models

Fig. 4. Schematic of the surface measurement data preprocessing (Yellow block
from Fig. 3 used as the example). (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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the surface topography measurements from in-situ FPP and ex-situ op-
tical profilometer are further segmented into 256 sub-images to create a
sufficient dataset for ML training and testing. After image segmentation,
the next task is to map LR to HR using the proposed ML models described
in the following sections. As shown in Fig. 4, after the data pre-
processing, the objective of the work is to find the latent representation
from the low resolution in-situ FPP monitored surface topography which
is embedded in to 16 pixels x 16 pixels grayscale images, and then use
the latent representation to reconstruct the high resolution (256 pixels x
256 pixels) grayscale images acquired from ex-situ profilometer.

A total of 8192 paired LR and HR sub-images are segmented from 32
printed single-layer blocks (Fig. 3). In this work, to avoid the potential
data leakage problem in machine learning model training, three datasets
are prepared by randomly selecting 70% of the segmented images within
each individual block as training set, 10% images within each individual
block as validation set, and the rest 20% images as testing set. The
reason we don’t use whole blocks as training, validation, or testing
samples is that each block sample tends to exhibit some different fea-
tures due to the build location effect and different laser scan strategies.
For example, while printing the 32 blocks, although the scan angle is set
as 67° for all of them, the specific laser stripe overlapping locations and
each scan’s start and end locations are different, leading to different
surface topography as seen in Fig. 3. Therefore, the current dataset split
strategy using segments of each block will allow the models to learn
various possible features from the samples that are printed at different
locations across the build plate under different processing conditions.

2.5.2. RDB-CNN model

Deep convolutional neural network is implemented in this work as a
super resolution model to correlate the in-situ FPP calculated surface
topography and the ex-situ characterized HR surface topography. We
propose to implement CNN with both dense and residual connections
[41,47] which takes the encoded FPP result in gray-scale as input and
optical microscopy measured surface topology encoded in gray-scale as
output. The major advantage of using residual and dense structure-based
(RDB) CNN is that it performs the feature extraction directly from LR
images’ hierarchal features, and the upscale step happens after all the
required feature extraction and fusion is complete. Furthermore, the
RDB utilizes both residual and dense connections which allow features
to flow from blocks to blocks. As shown in Fig. 5, the LR image is first
processed by two convolutional layers with kernel size of 3, padding 1,
and stride 1 to extract features into 64 channels. After the two convo-
lution operations, the extracted feature map is further processed by a
series of individual RDB. Each RDB is composed of stacked convolution
layers with dense connections (Fig. 5). All the layer activation functions
are ReLU. The upscaling layer is implemented based on Efficient
Sub-Pixel Convolutional Neural network (ESPCN) [48] followed by
convolution layer to output desired HR image size. The specific details
related to residual connection and dense connection are included in
Appendix Section (A).

L, loss function is used for calculating loss between target output and
the predicted HR output. The implemented L; loss function is shown in

Residual Connection
g
S
L0)
1 RDB Structures — | S
S5
LR Input Expanded RDB

Structures

Fusion
H
@

Dense connection Residual Connection

Fig. 5. RDN structure for image super resolution.
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Eq. (6).

N

L=3

i=1

Yirve — yprcdiclcd ! (6)

The RDB-CNN model implemented uses the Adam optimization
method [49]. The output from the model is a one channel HR grayscale
image.

As mentioned earlier, 3 x 3 kernal filter is implemented to all the
convolution layers except for the fusion layer (annotated in Fig. 5) which
1 x 1 convolution is used. Three RDBs are implemented inside the RDB
structures while each RDB is constructed with three densely connected
3x 3 convolutional layers for feature extraction, and more details can be
found in Appendix 1. To preserve the sizes of all tensors, zero padding
are automatically enabled. In this specific task of super resolution, no
regularization term is enforced to the loss function and neural network
as all the features reconstructed are from training dataset. The model is
optimized through backpropagation using Adam [49].

2.5.3. Denoising diffusion probabilistic model (DDPM)

The second image super resolution model utilized is DDPM models
which is a model trained based on Bayesian inference and Markov
process. The diffusion probabilistic model (DPM) first diffuses a target
image through adding standard Gaussian noise and constructs a para-
metric model to learn the diffusion process. A transitional Markov pro-
cess is learned by the model through ML for reversing the diffusion to
match the target images. The specific model derivation and hyper pa-
rameters assumption are included in Appendix Section (B). DDPM
models first diffuse the target HR image at training stage (denoted in
probabilistic distribution q in Figure A-2) and learns the noise added at
any given time step during the diffusion process. Then the model per-
forms the reverse process at inference stage (denoted in probabilistic
distribution p in Figure A-2).

L=[f(x, o5, B,) —el} ™

The loss function for the proposed neural network is shown in Eq. (7)
where f(x, o, Y, f,) is the objective function composed of input LR image
x, the diffused image y at the given time step, and hyperparameters. ¢ is
sampled from standard Gaussian distribution through training steps as
the manually added noise. Comparing to other CNN based ML model like
RDN which learns the direct mapping between LR and HR from previous
section, DDPM learns the latent variable (statistical noises) through U-
Net structures to reconstruct HR details.

After training the designed neural networks, the inference process is
proceeded by subtracting the noise from the image, denoted as reverse
process p in Figure A-2. In this work, two variants of DDPM models are
applied to acquire HR surface topography: standard DDPM and DDPM-
SR3. The difference between the two models is that DDPM-SR3 imple-
ments iterative refinement steps in inference step of the model. The
training results are presented in subsequent sections to compare their
performance specifically in reconstructing HR layer-wise surface
topography for additive manufactured part.

3. Results
3.1. HDR FPP results and comparison

Following the experiment setup and the HDR-FPP methodology
(Section 2.3), height maps for all 39 single layer print blocks are
calculated. To elucidate the effectiveness of implementing HDR method
to mitigate the noise and errors caused by high intensity saturation, the
block enclosed in red rectangle shown in Fig. 3 is selected and its surface
topography is obtained using our proposed HDR-FPP method and the
FPP method that we recently improved by introducing Cxy and 2DFFT
[21] which still cannot address the shadowing and over-exposure issues
due to using a single projection intensity (250 a. u.).

Precision Engineering 84 (2023) 1-14

As shown in Fig. 6, the HDR-FPP calculated surface topography
displays less noise compared to the surface topography acquired by the
recently developed FPP [21]. The previous FPP method introduces more
intensity saturation errors that can be discerned visually along the left
bottom stripe. While the qualitative comparison reveals that imple-
menting the HDR-FPP method mitigates the pixel saturation issue, a
quantitative analysis is also conducted between existing FPP, new
HDR-FPP, and ex-situ optical profilometer (HR) by extracting the line
profile 2 mm from the left edge of the block.

As shown in Fig. 7, the extracted line profiles exhibit similar surface
topography trend. Some mismatches exist because the ambient light
condition and gas flow inside the LPBF machine could affect the in-situ
measurements but not the ex-situ characterization. Another primary
reason is that the FPP and HDR-FPP methods both have lower lateral
resolution than the ex-situ profilometer. This issue will be addressed in
the subsequent section. Due to the resolution difference between in-situ
FPP and ex-situ profilometer, the quantitative comparison is performed
by downscaling the ex-situ profilometer measured data through average
filtering. The root mean squared error (RMSE) between the FPP and ex-
situ profilometer is 10.57 pm, and the RMSE between the HDR-FPP and
ex-situ profilometer is 8.9 pm. Quantitatively, the HDR-FPP measures
the layer-wise surface topography more accurately compared to the
existing FPP method. The implementation of projector based HDR
method improves the performance of FPP method and ensures the
applicability for real-time measurement by only projecting two different
levels of intensity. The experimental result from the block printing
experiment also reveals that the projector based HDR method mitigates
the phase error which is primarily dependent on ambient light condi-
tion, fringe density, and sensor noise from camera. The block (enclosed
in blue from Fig. 3) acquired FPP images are subjected to high camera
sensor noise due to loss of focus in certain regions, and its surface
topography shown in Fig. 8 reflects the observable phase errors and
fluctuation which induce the error in height calculation comparing to
the ex-situ profilometer measured surface topography. Visually, the
abnormal fast spatially height variations indicate the high phase error
which is reduced using HDR method.

3.2. Machine learning super resolution model results

The results shown above indicate a need for improving the HDR-FPP
accuracy further to match the ex-situ standard profilometer measure-
ment. In this section we demonstrate a ML enhanced HDR-FPP method
with three ML models - RDN, DDPM, and DDPM-SR3, in order to
improve the acquired HDR-FPP surface topography resolution from ~38
pm to ~5 pm, thus enhancing the HDR-FPP measurement performance.
As elucidated in Section 2.5.1, the 32 sample blocks’ (Fig. 3) surface
topographies encoded grayscale images are segmented into 8192 sub
images (patches) to create a dataset for training, validation, and testing.
The specific super resolution task is to predict HR profilometer mea-
surement (128 pixels x 128 pixels) from input LR FPP measurement (16
pixels x 16 pixels). All the three types of ML models are trained with
supervision to ensure local convergence. For each of the models trained,
the specific iterations with lowest validation loss are used as the trained
model for predicting the surface topography of the completely unseen
sub-images (i.e., segments) in the test set. The training loss and valida-
tion accuracy of the final best model is shown in the Appendix Figure A-
3.

Several sub-image samples from sample block (enclosed in yellow
from Fig. 3) are chosen and the results are presented in Table 1.

The results as presented in Table 1 indicate that DDPM-based
models’ predictions visually agree with the target HR image (ground
truth), while the RDN model, a feature extraction-based CNN model,
could not reconstruct most of the important details. Further, to quantify
the prediction accuracy, two common metrics, Peak Signal-to-Noise
Ratio (PSNR) and Mean Squared Error (MSE), are selected to quanti-
tively evaluate the models. PSNR calculates the ratio of the maximum
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Fig. 6. Our previous FPP method (left) vs current HDR-FPP method (right): surface topography of the red block from Fig. 3. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 7. Extracted line profile from Fig. 6 comparison between FPP, HDR-FPP,
and ex-situ profilometer.

possible grayscale pixel value from LR input image and the MSE.
Further, it can manifest the performance of model in capturing major
local features from the image by focusing on features from maximum
possible grayscale pixel value. The MSE error indicates the average
deviation between predicted results and target HR images and can
provide an estimate of global measurement accuracy accounting for
each pixel’s measurement deviation. Besides, PSNR is an illuminance-
based metric which provides an indication of better visual quality, i.e.,
higher PSNR means the prediction incorporates the primary features of
target HR image. The PSNR is computed using Eq. (8) where Max, is the
maximum possible grayscale pixel value and MSE is the mean squared
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error between predicted HR image and target HR image measured
through ex-situ characterization. In this case, the MSE metric has the
units of grayscale value?.
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PSNR = 10 log,, Wé (8)

As shown in Table 2, the arrow indicates the desired trend of the
metric. Based on the quantitative measurement, DDPM-SR3 outperforms
RDN and DDPM in both scales which proves its validity in reconstructing
HR details in the LPBF printed part scenario. Although MSE metrics tend
to penalize the generated HR details according to Eq. (15), the DDPM-
SR3 model can predict most local features (reflected by the highest
PSNR in Table 1) with best global accuracy (reflected by the lowest MSE
in Table 1), making it advantageous in contrast to the other two models.
Compared to DDPM-SR3, standard DDPM model has a relatively lower
decent performance by the metrics of PSNR but far outperform the RDN
method especially in terms of MSE. It should be noted that RDN per-
forms poorly in this specific super resolution task due to the different
mechanisms of RDN model and DDPM like model. While DDPM like
model is a synthetic/generative model which generates and samples the
details based on the training dataset, RDN purely relies on the LR images
which has no hidden revelation and clues of detailed features that need
to be reconstructed. In this case, the lower resolution surface topography
acquired from FPP has less information in surface textures comparing to
the direct down-scaled high resolution ex-situ measured surface topog-
raphy through average filter.

The work above evaluates our proposed ML models on sub images
that are segments of the target measurand in test dataset. The ultimate
goal of the designed ML frameworks is to predict the surface topography
of a whole block printed by LPBF. To this end, the predicted sub images
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Fig. 8. (a) Surface topographies (blue block from Fig. 3): (a) FPP; (b) HDR-FPP; (c) Ex-situ profilometer measurement. (For interpretation of the references to color in

this figure legend, the reader is referred to the Web version of this article.)



PSNR & MSE on sub-images of 16X16 to 128X128 HDR-FPP measured surface
topography super resolution.

RDN DDPM DDPM-SR3
PSNR (dB) 1 11.23 18.56 22.07
MSE (grayscale?.) | 6756 1058 767
MSE (um2) | 665 104 75

from different models are merged and compared with the HR surface
topography encoded image obtained from the ex-situ standard profil-
ometer. To further decode the predicted grayscale image into surface
topography map with units of micron, the colormap transformation is
adopted to transform the grayscale value from 0 to 255 to —30 ym — 50
um. For this reason, one grayscale value corresponds to 0.313 um. It
should be noted that the ex-situ microscopy implemented in this work
has the vertical resolution of 1 ym, larger than one grayscale represented
height (0.313 pm). This means that encoding the FPP measured height
into a grayscale ranging between 0 and 255 will not affect the best
achievable vertical resolution determined by the labeling data resolu-
tion (i.e., ex-situ microscopy) used in machine learning. It also indicates
that the machine learning aided HDR-FPP method can enhance the
vertical resolution from 10 pm (original HDR-FPP measurement) to 1 pm
(as reported in this work). The decoded surface topography (from
grayscale to height value) from the prediction result of DDPM-SR3
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Table 1
Predicting a test set sample’s surface topography from trained Super Resolution models (The original HDR-FPP measurement
result is shown in the left column to show the effect of ML enhancement on HDR-FPP accuracy).
FPP-HDR RDN DDPM DDPM-SR3 HR Target (Ground
(16X 16 (128 X 128 (128 X 128 (128 X 128 Truth)
pixels) pixels) (128 X 128 pixels)
|
m
|
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Fig. 9. Decoded surface topography of the same block as shown in Fig. 8 from

ML (specifically, DDPM-SR3) model prediction using HDR-FPP measurement
data as input.
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model is shown in Fig. 9, which shows a much better agreement with the
ground truth compared to these non-ML-aided FPP results as shown in
Fig. 8.

Fig. 10 shows our test result of a representative block’s surface
topography (enclosed in red from Fig. 3) from different models. It re-
veals that the DDPM-SR3 outperforms all the other proposed models in
terms of the predicted surface topography’s visual quality. Using the
same quantitative metrics described above, the comparison for merged
surface topography encoded image is shown in Table 3. For the merged
complete surface topography, the DDPM-SR3 and DDPM models do not
exhibit as good performance as shown for the sub image results
(Table 1). This is because the developed sub-models cannot connect the
details between the sequence of sub-images. To fully exploit the po-
tential of the developed DDPM-based model for enhancing HDR-FPP, in
the future, some memory mechanism or attention mechanism (e.g.,
gates operation from (Long short-term memory) LSTM, patch self-
attention from vision transformer) will be developed to store and pass
information between data sequence. Furthermore, it should be noted
that the super resolution models trained in this study are essentially
based on interpolation and sampling, and the reconstructed features are
learnt from the training dataset. This special characteristic makes the
trained models prone to generalization errors especially in this case
where the upscaling factor is 8 times. Mode collapse could also be
induced for samples with similar LR features (smooth texture from FPP
measurements). In the future, more validations work is needed to vali-
date the transferability of these models.

Based on the above analysis, DDPM-SR3 shows dominant advantages
under two common metrics (PSNR & MSE) over all other proposed

(c)
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Table 3

PSNR & MSE analysis for performance of developed models to predict the
merged complete surface topography (The original HDR-FPP measurement
performance is shown on the left column for comparison).

HDR-FPP RDN DDPM DDPM-SR3
(LR) (HR) (HR) (HR)
PSNR (dB) 1 n/a 13.26 18.92 22,27
MSE (grayscale) 589 3068 834 386
l
MSE (um?) | 58.02 302.00 82.11 37.94
RMSE (um) | 7.6 17.4 9.1 6.2

models, and the predicted HR surface topography is also consistent with
the target images. It proves the capability of DDPM-SR3 enhanced HDR-
FPP in reconstructing HR details of surface topography that is not
directly available from the original HDR-FPP measurement data. Shown
in Fig. 11, the same line profile from Fig. 7 is extracted from ML-
enhanced HDR-FPP model with DDPM-SR3 and compared with ex-situ
profilometer measured and HDR-FPP line profiles. It can be observed
that the ML enhanced model not only predicts the line profile with more
points (high resolution), but also achieves better accuracy. Quantita-
tively, the RMSE between the ML-enhanced HDR-FPP model and the ex-
situ profilometer measurement is 7.49 ym which is slightly better than
the 8.90 ym in the HDR-FPP and much better than the 10.57 ym in
existing FPP. It should be noted that the ML-enhanced HDR-FPP pro-
vides higher resolution which translates to more points spatially, and the
ML-enhanced HDR-FPP model can retrieve surface details at 5 pm scale,
much smaller than the resolution (38 ym) in both the existing FPP and

(b)

d

Fig. 10. Representative result of a merged block’s surface topography encoded in grayscale for the printed block (enclosed in red as shown in Fig. 3): (a) RDN, (b)
DDPM, (c) DDPM-SR3, (d) Ex-situ profilometer measurement. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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Fig. 11. Same line profile comparison as Fig. 7, between HDR-FPP, ML
enhanced HDR-FPP, and ex-situ profilometer measured surface topography.

new HDR-FPP. For this reason, the overall RMSE metric for the entire
line profile here may not be treated as the essential comparison as it is
biased when comparing low resolution data to high resolution data. For
this reason, a less biased comparison is conducted by dividing the ML
enhanced HDR-FPP line profile into 1) counterpart points that are
exactly corresponding to the points existing in the HDR-FPP measured
line profile; and 2) reconstructed points that are inferred by machine
learning. Results reflect that when comparing the counterpart points of
the ML enhanced HDR-FPP line profile to the original HDR-FPP, the
RMSE is reduced from 7.49 pm (Section 3.1) to 4.35 pm, while the new
points inferred by the ML models has a RMSE of 9.72 um. By these RMSE
values, we find that the ML enhanced HDR-FPP method not only can
further improves the accuracy of existing HDR-FPP measurement results
(lower resolution points) but also can estimate with decent accuracy the
surface topography at points that cannot directly resolved by original
FPP or HDR-FPP due to the hardware and optical system’s constraints.

Moreover, the single line comparison here does not reveal the per-
formance of the model for the whole block or sub-region. As shown in
Table 3, the ML-enhanced HDR-FPP model outperforms the HDR-FPP
under both metrics considering the whole block scenario. The PSNR is
calculated for each sub-image sample to gain more comprehensive un-
derstanding about the generalizability and generalization errors from
the model. As presented in Fig. 12, the mean PSNR of the DDPM-SR3
model on test dataset of 1638 sub-images is 20.77 with the standard
deviation of 3.24. The distribution has the positive skew toward high
PSNR value, exhibiting the robustness of the model on unseen dataset for
the super resolution task of enhancing FPP measurement.

It should be noted that while the HDR-FPP performs better than

120 T

mean PSNR: 20.77
100 - Standard Deviation: 3.24
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Fig. 12. The distribution of the PSNR of DDPM-SR3 on tested dataset of 1638
sub-images which are completely unseen during the model training
and validation.
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machine learning method such as RDN enhanced and DDPM enhanced
models, the resolution is significant lower in HDR-FPP stance. The MSE
for HDR-FPP is calculated using the down sampled surface topography
from ex-situ profilometer measurement. Furthermore, while RDN per-
forms poorly, it is more computational efficient compared to the DDPM-
like models. One significant issue of the DDPM model is the slow sam-
pling rate at each inference step during reverse-diffusion process. In this
specific application scenario of surface topography super resolution, the
inference time of DDPM models on a Nvidia V100 32 GB GPU node is
around 10 min. For in-situ application, it requires considerable
computational resources. Some implicit diffusion models which can
reduce the computational complexity need to be investigated and
implemented in the future for cost-effective in-situ monitoring
applications.

The DDPM models trained in this work show the applicability in
surface topography simulation and generation. By using the developed
model, one can predict/reconstruct the ~ 5 um lateral resolution surface
topography from the LR FPP acquired surface topography with resolu-
tion ~ 38 ym. This advancement makes the detection of small powder
spatter redeposition and porosity possible. Furthermore, the trained
synthetic/generative models - DDPM and DDPM-SR3 can reproduce
near-realistic surface topography samples for LPBF manufacturing pro-
cess from pure Gaussian Noise. Since ML models or data-driven models
usually require large training datasets and it is always expensive to
conduct empirical study for metal AM studies, generative models such as
the DDPM models trained in this work show their applicability in surface
topography simulation and generation in AM processes. Another po-
tential method is to use GAN (generative adversarial neural network)
[50]. These ML methods open up an avenue to generate synthetic images
which are representative of the manufacturing processes with adequate
details for ML model training to enable more accurate and reliable AM
processes monitoring and qualification.

4. Conclusion

In this work, a new ML enhanced HDR based FPP method is devel-
oped to improve the performance and measurement capability of
existing FPP methods. First, a projector based HDR method is demon-
strated to successfully mitigate the shadowing and pixel intensity satu-
ration problems and improve the overall measurement accuracy by
comparing to the ex-situ high-resolution profilometer characterization
result. The MSE between the HDR-FPP method and the ground truth of
ex-situ profilometer result is 8.90 pm and the ML enhanced HDR-FPP
method achieves a MSE of 4.35 pm for a representative line profile
under the same resolution. Moreover, the developed ML enhanced HDR-
FPP model is capable of reconstructing high-resolution details that is not
available from the original HDR-FPP acquired surface topography with
an appreciable RMSE error of 9.72 pm. The proposed HDR method also
reduces the phase error primarily caused by the camera sensor noise and
ambient light condition. It should be noted that our subsequent work of
ML enhanced HDR-FPP takes the HDR-FPP measurement model output
as an input to a machine learning model for increasing both the lateral
and vertical resolutions which are strictly limited by hardware setup
(camera) for standard FPP methodology.

Specifically, three ML models are developed to further improve the
measurement capability of the HDR-FPP method through resolution
enhancement. Our results show that while traditional convolution
feature extraction-based model (RDN) performs poorly on this specific
task, the new image synthetic/generative models (DDPM, DDPM-SR3)
yield significant improvement. The predictions from these DDPM-
based models show agreeable visual quality. Further quantitative anal-
ysis by using PSNR and MSE metrics also indicate that DDPM-SR3 out-
performs RDN and DDPM. The DDPM-SR3 model can predict high-
resolution details from low-resolution FPP acquired surface topog-
raphy. It is worth noting that the details predicted through DDPM
models are not subjected to FPP hardware achievable resolution. Being a
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synthetic model, DDPM is also capable of generating realistic surface surface topography maps, some attention or memory mechanism will be
topography from Gaussian noise which solves the problem of inadequate incorporated to capture the relation patterns between sub images. Such
dataset in case that repeated experiments are expensive and time ML enhanced HDR-FPP can measure the surface topography of printed
consuming. layers during LPBF-AM more capably and efficiently. Thereafter,

To conclude, the developed ML (DDPM-SR3) enhanced HDR-FPP comprehensive analysis of the measured surface topography will be used
framework can effectively mitigate the shadowing and intensity satu- to detect and extract layer-wise defects such as small bump, powder
ration issues in current FPP methods as well as enhance the measure- spatter, and hole, thus advancing the existing state-of-the-art methods
ment accuracy and resolution. Specifically, the improved accuracy is towards the desired online inspection of LPBF print defects.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.precisioneng.2023.06.015.
Appendix
(A) Residual and Dense layer connection

As proposed in Ref. [40], the residual connection between convolution layers eases the gradient vanishing problem, allowing the development of
deeper neural networks model. Specifically, the residual connection is shown in Figure Al(a). The residual connection outputs the summation between
F(X) and X as the input to next set of layer blocks while the dense blocks concatenate all the previous blocks’ feature maps together (Figure A1(b)).
Supposing the first convolution layer takes the 16*16*64 tensor as the input (kernel size of 3, padding 1, stride 1), the third convolutional layer takes
both the feature map output from first and second convolution layers, forming the input feature map of 16*16*192. By concatenating all previous
layers’ feature maps, the dense blocks have the comprehensive access to the extracted features which make it more robust in fusing hierarchical
features sparse input, LR image in this case.

16*16*128 16*16*192

16*16*64

Layer Blocks

(@) (b)
Figure Al. Residual and Dense connection (B) DDPM model.
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Figure A2. The Diffusion probabilistic model process. The diffusion process is denoted in probabilistic distribution q, and the reverse process to retrieve the target
image is denoted in probabilistic distribution p.

As shown in Figure A2, the objective of the DDPM model is to fit the probabilistic distribution which given lower resolution FPP surface topography
image x, the output high resolution image y, can be sampled through p(y|x). First, the diffusion process is conducted through gradually adding
Gaussian noise to the target image, resulting in the image sampled from Gaussian distribution with 0 mean and variance of 1 at time step T (N(0,10)).
This process can be denoted as q, and based on the assumption of Markov process which claims that the current state at time t only depends on the
previous time step t — 1. The probabilistic distribution of diffusion process at any time step can be calculated (Eq. (9))

T
airlyo) = [T a(vilyi) ©)
t=1

q(yl|y171):N(yl‘\/ay[—Hﬁ[H) 10)

The added Gaussian noises follows the schedule of hyperparameters o, and p, as specified in Eq. (10), and o, is between 0 and 1 with f, = 1 — .
The selection of the noise scheduling is essential for model performance, and linear scheduling is used for this work. Using the above Markov process
distributions, the sampled noise image can be acquired through reparameterization. Specifically, the sample image y, at time step t can be calculated
using the previous time step image sample y, ; with its probabilistic distribution q(y,|y, ;) (Eq. (10)).

Y= \/&IYK—I + \/E;Zl’zl ~ N(07 ﬂ) an
Y =VOY o, + V1 —aZ

= /001y _p + 0 — 01 Z g + /1 — 7,

= Vo1, + /1 — &_1Z,Z is the merged distribution 12)
T

o=]]w (13)
i=1

Vo=V, + /1 - aZ 14)

As shown in Egs. 11-14, the diffusion process can be sampled and characterized through Markov process and reparameterization through
gradually adding Gaussian noise defined by hyperparameters. The diffused image at any time step can be directly acquired using the target image y,.
Using the above derived equations, the posterior probabilistic distribution q(y,_, |y,,y,) is sampled using Eq. (15).

\/(X_‘(l _al—l)‘ \/qt—lﬁt 2 1 76{—1

qalye Yo) ~ Ny [m6°l) p= — + Yo 6 =

I (1)

-l

To reverse the diffusion process to match the target HR images, the denoising neural network is trained which takes the LR image x and the noisy
target image (with added Gaussian noise) y. Based on Eq. (14), y = vy, + v/1 — aie where y, is the noiseless target image and ¢ is noise vector
sampled from standard Gaussian distribution. The objective of reverse process is to train the denoising neural network which gradually learns the
distribution and noise vector.

Various experiments of model trainings are performed. The sample training loss and validation accuracy for the final best model, a DDPM-SR3
model, is shown in Figure A3 below.
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Figure A3. Training loss and validation accuracy for the final chosen DDPM-SR3 model.
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