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Abstract—Bundling a large number of distributed energy
resources through a load aggregator has been advocated as an
effective means to integrate such resources into wholesale energy
markets. To ease market clearing, system operators allow aggre-
gators to submit bidding models of simple prespecified polytopic
shapes. Aggregators need to carefully design and commit to
a polytope that best captures their energy flexibility along a
day-ahead scheduling horizon. This work puts forth a model-
informed data-based optimal flexibility design for aggregators,
which deals with the time-coupled, uncertain, and non-convex
models of individual loads. The proposed solution first generates
efficiently a labeled dataset of (in)-feasible aggregation sched-
ules. The feasible set of the aggregator is then approximated
by an ellipsoid upon training a convex quadratic classifier using
the labeled dataset. The ellipsoid is subsequently inner approxi-
mated by a polytope. Using Farkas’ lemma, the obtained polytope
is finally inner approximated by the polytopic shape dictated
by the market. Numerical tests show the effectiveness of the
proposed flexibility design framework for designing the feasi-
ble sets of small- and large-sized aggregators coordinating solar
photovoltaics, thermostatically-controlled loads, batteries, and
electric vehicles. The tests further demonstrate that it is crucial
for the aggregator to consider time-coupling and uncertainties in
optimal flexibility design.

Index Terms—TFeasible set, aggregator, convex quadratic clas-

sifier, ellipsoids, containment of polytopes, optimal flexibility
design, day-ahead markets, load disaggregation.

I. INTRODUCTION

N ADDITION to the existing bid models for generators and
load serving entities, independent system operators (ISO)
are currently accepting new bid models to facilitate the par-
ticipation of load aggregators [1]. Similar to a battery model,
new bidding models could consist of upper and lower limits
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on power and ramping, but also on energy to capture state-of-
charge (SoC)-type of constraints. Such battery models capture
how flexible the aggregator can be as a dispatchable resource
for the ISO in the energy market. On one hand, if an aggre-
gator over-estimates its flexibility and then fails to meet its
schedule dispatched by the ISO, it will be penalized. On the
other hand, offering more flexibility when participating in the
market could increase the financial benefit of the aggregator.
Evidently, the aggregator aims at offering the maximal flexi-
bility that can be implemented. To achieve this dual goal, the
aggregator needs to carefully design its feasibility set to be
submitted to the ISO. This task is defined as optimal flexibility
design (OFD).

An aggregator controls a diverse set of devices such as solar
photovoltaics (PVs), batteries, electric vehicles (EVs), thermo-
statically controlled loads (TCLs), home appliances (such as
dishwashers/dryers), and pool cleaners/pumps [2]. The OFD
task is challenging for three reasons that stem from the prop-
erties of such devices or load types. First, devices such as
EVs and batteries exhibit time-coupling naturally, meaning
that load schedules are constrained across successive control
periods and cannot be determined independently. Second, the
inefficiencies of EVs and batteries and the ON/OFF character-
istics of TCLs lead to non-convex models. Third, most devices
operate under time-varying externalities, such as solar irradi-
ance for PVs; the initial SoC for batteries; arrival/departure
times for EVs; and ambient temperature or occupancy for
TCLs. These externalities are inherently random and uncer-
tain when the OFD problem is solved, e.g., at day-ahead. Such
uncertainty further complicates OFD and calls for stochastic
formulations.

The current literature in OFD can be categorized in two
main groups. The first group of research uses geometric
techniques to find a polytope that captures the aggregate flex-
ibility [3], [4], [5]. [6], [7], [8], [9]. A reduced-order model
for aggregate flexibility is designed using quantization in [3],
yet the approach applies only to devices described by convex
linear models of the same shape. Stochastic battery models for
load aggregations is put forth in [4], [5], though again they
are not applicable to non-convex device models. Presuming
externalities to be deterministically known and considering
only specific types of devices like batteries and TCLs under
averaged linear models, reference [6] models the aggregate
flexibility as the Minskowski sum of the convex feasible
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sets of individual devices, which can be approximated using
homothets [7], or zonotopes [8].

The second group of approaches formulates OFD as a
multi-level optimization problem [10], [11], [12], [13], [14].
Reference [10] models aggregation flexibility by an ellipsoid to
be found via semi-definite programming [10]. Reference [11]
considers the cost of flexibility for each device and finds a
flexibility cost map, which can be used to find the desired
aggregate flexibility region. Nonetheless, the latter approach
can handle neither uncertain externalities nor non-convex
device models. OFD under linear and deterministic device
models has been posed as a multi-stage optimization task
also in [12], [13], [14], yet flexibility limits are presumed
decoupled across time, which may yield non-implementable
aggregator schedules because devices cannot ramp sufficiently
fast. Reference [14] treats disaggregation as a random policy
over random externalities, but also ignores time-coupling and
non-convex device models.

The three aforementioned challenges with load aggrega-
tions (namely the time-coupled, non-convex, and stochas-
tic nature of device models) have been considered while
modeling the effect of aggregations in demand-response pro-
grams and chance-constrained optimal power flow formula-
tions; see [15], [16] and references therein. Nonetheless, to
the best of our knowledge, not all three aspects have been
considered simultaneously while designing the feasibility set
of an aggregator under the ISO specifications. We put forth
a data-driven OFD framework that addresses all three chal-
lenges. In particular, the contribution of this work is threefold:
1) Develop a data generation framework that deals with time-
coupling in flexibility design, non-convex device models, and
uncertain externalities through a chance-constrained formula-
tion (Section III); 2) Train a convex quadratic classifier to
approximate the feasible set of the aggregator by an ellipsoid
(Section IV); 3) Inner approximate the obtained ellipsoid with
a polytope and use the geometry of polytopes to reformulate
OFD as a linear program (Section V). Section VI evaluates the
performance of the proposed flexibility design solution using
two aggregators of increasing modeling complexity. Numerical
tests demonstrate that flexibility is well-approximated by con-
vex sets, while capturing time-coupling and uncertainty of
device models seems to be important.

Regarding notation, column vectors (matrices) are denoted
by lowercase (uppercase) boldface letters; calligraphic sym-
bols are reserved for sets. The n-th element of x is denoted by
X,. Symbol 1 denotes the all-one vector. Inequalities between
vectors, such as x >y, apply entry-wise.

II. PROBLEM FORMULATION

Consider an aggregator participating in a wholesale elec-
tricity market cleared by an independent system operator
(ISO). To submit its energy bids for the day-ahead market,
the aggregator has to comply with the bidding model for vir-
tual generators and flexible loads supported by the ISO. We
will henceforth refer to this bidding model as the aggregator
model. To describe this model, consider a day-ahead market
organized in T scheduling intervals indexed by ¢, each one of
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duration §. The aggregator model consists of limits (E; ,P;) on
the instantaneous power p; provided by the aggregator to the
grid during period f; and ramping constraints. Such charac-
teristics are standard for conventional market participants. To
better facilitate the integration of load aggregations, aggregator
models may also include the initial state-of-charge (SoC) s at
the beginning of the first period; as well as limits {(s,, Ef)}f:l
on the SoC s; at the end of period ¢ for the aggregation. The
aggregator model is essentially a battery model augmented by
ramping constraints. It can be precisely expressed as:

p,<p <P, t=1LT (1a)
S =81 — Apy, t=1:T (1b)

5, <8 <7, t=1:T (lc)
=Pl —pr <0, t=01T-1 (1d)

Different from the bidding model of conventional generators,
the aggregator model imposes limits on SoC via the additional
constraints of (1c). Moreover, for conventional thermal gen-
erators, capacity and ramping limits are known and typically
remain unchanged during normal operations. On the contrary,
all limits in (1) may be changing across time and day-by-day.
The goal of this work is exactly to find these limits.

Let vectors (p, p,p) collect the instantaneous power and
its limits across all scheduling intervals; vectors (s,S) col-
lect SoC limits; and vectors (o, o) collect the ramping
rates. The aggregator model is described by model variables
(p. P, 50. 8, S, &, &). To submit a bid to the ISO, the aggre-
gEtor has to carefully select these variables. Upon collecting
bids from all market participants, the ISO clears the market
to satisfy demand while ensuring network and reliability con-
straints. The ISO subsequently informs market participants of
their schedules. For the aggregator of interest, the schedule
decided by the ISO is denoted by p* € R”. This schedule
satisfies constraints (1) by design. A key objective for the
aggregator is to ensure that the scheduled p* can be actu-
ally realized, i.e., there exist devices whose dispatches across
the scheduling horizon sum up to p*. Such schedule will be
henceforth termed disaggregatable or feasible.

In essence, the aggregator model variables define the feasi-
ble set wherein the aggregator schedule variable p (and hence
p*) can lie. To express that set in a compact form, eliminate
the SoC variables and rewrite (1) as the polytope

P(x)={p:Gp=x} 2
where vector x depends on the aggregator model variables as
X = {ﬁ, —p. 5 —sol, —g—l—sol,E,g] 3)

and the (67 — 2) x T matrix G is defined as
GT = [+IT 1T 4ALT —ALT 4K — KT] ()

where I is the identity matrix of size T; matrix Lisa T x T
lower triangular matrix with all ones on its lower triangular
part; and K is a (T — 1) x T difference matrix. Matrix K takes
the value of —1 on its main diagonal; the value of 41 on the
first above the main diagonal; and zero, otherwise. Because G
is known and fixed, the ISO only needs to know x to dispatch
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Solving the OFD task in four steps: S/) Generating a labeled dataset D of (non)-disaggregatable aggregator schedules by solving disaggregation

for multiple instances of externalities @; $2) Training a convex quadratic classifier to discern disaggregatable schedules and obtaining ellipsoid £p; $3) Inner
approximating £p with a polytope Pp: 54) Finding a maximum volume polytope P(x) for a parametric form of x to inner approximate Pp.

the aggregator. It is therefore fair to say that x captures the
aggregator flexibility.
While designing x, the aggregator targets two goals:
i) Ensure that every p € P(x) can be actually implemented
by the available resources to avoid penalties; and
i) Maximize its flexibility while participating in the elec-
tricity market.
The latter can be measured by the volume V(x) of polytope
P(x). The task of maximizing flexibility while guaranteeing
feasible disaggregation is henceforth termed optimal flexibility
design (OFD), and can be posed as the optimization

max V(x)

s.to P(x) € F

(5a)
(3b)

where F is the set of disaggregatable p’s.

It is worth stressing that in addition to P(x), an aggrega-
tor may also wish to optimize its bids. These would be the
(convex piece-wise) linear costs per scheduling period ¢. In
fact, the costs and feasible set submitted to the ISO can be
jointly optimized by pursuing a strategic investment approach;
see [17] and references therein. Depending on the setup, strate-
gic investment can be quite challenging as it is typically posed
as a bilevel program over multiple market scenarios. This work
does not consider strategic investment although knowing P(x)
is a prerequisite for designing an optimal bidding strategy.
Notice also that 7P(x) may not necessarily be the feasible set
submitted to the ISO.

Problem (5) entails two challenges: First, constraint (5b)
is abstract and it is not obvious how it can handled. Second,
finding V(x) is hard in general and bears no closed-form math-
ematical expression. To cope with the first challenge, we take
a data-based approach involving the four steps as illustrated
in Fig. 1:

§1) Construct a labeled dataset D = {(px, y,,)}Ll, where
label y, = —1 when p,, is disaggregatable; and y,, = +1,
otherwise (Section III and the Appendix).

Use dataset D to approximate the set F of disaggregat-
able schedules by an ellipsoid £p (Section IV).

Find a polytope Pp that inner approximates Ep to
arbitrary accuracy (Section V-A).

Design a parametric form for x and design it so that
P(x) € Pp; see Section V-B.

52)
S3)

S54)

Interestingly, step S4) introduces a variable that is propor-
tional to the volume of P(x). By maximizing this variable, we
obviate the need of handling volume V(x) explicitly, and thus,
address the second challenge. Steps S1)-S4) are delineated in
the next sections.

III. DATA GENERATION

We commence with step SI) of generating the labeled
dataset D. Note that D may be available to the aggregator
from historical data, in which case, step §1) is not needed.
If historical data are not available or insufficient in numbers,
the aggregator can generate training examples by sampling p’s
and labeling them. This section explains how p’s can be sam-
pled and labeled efficiently. A given p is disaggregatable in a
deterministic sense if the disaggregation task presented next
yields a zero optimal objective value:

D
g(p; @) ==min [[p— Y p’| (62)
sto p e Fdw?, d=1:D  (6b)
for a vector norm ||-||. Here D is the number of devices con-

trolled by the aggregator. Each vector p? collects the dispatch
decisions for device d across all times. The feasible set F4 (@)
captures the operational constraints p? should satisfy, includ-
ing for example temperature limits for TCLs, apparent power
constraints for PVs, and SoC and power limits for batteries.
Each set F?(w%) depends on a vector of external parame-
ters wd, such as local ambient temperature for TCLs, solar
irradiance for PVs, initial SoC for batteries and EVs, and
arrival/departure times for EVs. Let vector @ concatenate all
externalities w“’s. The challenges are that (6) may not be
convex and @ is random.

If sets F%(w?) are convex in p?, problem (6) can be refor-
mulated as a convex program [18]. That is the case for
inverter-interfaced devices or TCLs with average models, and
energy storage devices without inefficiencies. On the other
hand, the operation of TCLs and batteries with inefficiencies
introduce non-convex feasible sets involving binary variables,
which render (6) a mixed-integer program. Regardless convex
or not, problem (6) is amenable to decomposition techniques
along devices similarly to unit commitment-type of problems
encountered in transmission systems.
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Schedule p is disaggregatable for the particular @ only when
g(p; @w) = 0. Since the aggregator determines its flexibility in
a day-ahead setting, vector w is uncertain. To account for this
uncertainty, rather than solving (6) for a single realization of @,
the aggregator would like to determine if p is disaggregatable
with high probability over random w. Verifying this property
may entail solving a problem with complex chance constraints
over a possibly unknown probability distribution of @, which
can be computationally intractable.

To arrive at a practical solution, we resort to a sample
approximation of the probability of p being disaggregatable
over uncertain @’s. In detail, suppose the aggregator has access
to a collection of externality scenarios. For each p, one ran-
domly samples K = 25 externality scenarios and solves (6)
for each one of them. The sought probability of p being
disaggregatable can be approximated by the sample statistic

1 K
o; ) = ¢ 2 1e@; @) = 0) (7)
k=1

where [ is the indicator function returning one when
g(p; wi) = 0; and zero, otherwise. The reason to use only
the scenarios in g rather than all scenarios in Qp is that
solving (6) for R scenarios can be computationally demand-
ing. Based on (7), we can now define when a schedule is
disaggregatable in a probabilistic sense.

Definition 1: Schedule p is deemed as disaggregatable (fea-
sible) if c(p; Q) = 1 — € for a given small ¢ > 0; and
non-disaggregatable (infeasible), otherwise.

To recap, data generation step SI) involves sampling a
p» and labeling it as feasible (disaggregatable) or not per
Definition 1. In detail, labeling p, entails drawing K exter-
nality scenarios wj, solving the disaggregation problem (6)
independently for each w; to compute g(p,,; ®i), and com-
puting the statistic c(p,; k) from (7). At the end, schedule
P, is labeled as feasible if c¢(p,; k) = 1 —¢ for say € = 0.05.

For the classification purposes proposed in the next sec-
tion, dataset D should be approximately balanced, that is
disaggregatable (feasible) and non-disaggregatable (infeasible)
examples p,’s should be similar in numbers. The Appendix
develops a method that generates efficiently a roughly bal-
anced dataset D. Our dataset D should be approximately
balanced for three reasons. First, if a classifier is trained with
an unbalanced dataset, it may be biased towards the majority
class. If for instance, the ratio of infeasible-to-feasible exam-
ples is 90% to 10%, a classifier predicting always infeasible
would have the seemingly great prediction accuracy of 90%.
Second, feasible examples are expected to be surrounded by
infeasible examples. This is because the set of feasible exam-
ples is anticipated to be approximated well by a convex set as
discussed in the next section. Therefore, infeasible examples
lying away from the decision boundary would not really con-
tribute to shaping the classification rule. Third, for a general
classification task intentionally biasing the process of sam-
pling examples may raise concerns of altering the true data
distribution. Such concerns are waived in our case as we deal
with a purely geometrical problem where one wants to sam-
ple points within and around an approximately convex set. If
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the location of the set is not known a priori, one may start
sampling over a significantly wider area, but then zoom into
the area of interest.

Note by solving (6) for a pair (p, @), not only we decide
whether g(p; @) is zero; we can also compute the point

D
p@ =) pl@) ®
d=1

where {p¢(@)}5_, is the minimizer of (6). Although schedule
P(@) can be disaggregated into device schedules for this spe-
cific , it is not necessarily disaggregatable in the strict sense
used throughout this work as it may not satisfy the chance
probability of c(p(@); Qk) > 1 — €. Schedule p(w) will be
useful in the sampling process described in the Appendix.

As a final remark, the uncertainty scenarios used to produce
the dataset are assumed to be sufficiently representative of the
actual conditions to be experienced by the device aggregation
over the day-ahead horizon. Otherwise, the computed flexibil-
ity set can be subpar. That is an inherent difficulty with any
day-ahead scheduling task (e.g., predicting wind farm gener-
ation in a day-ahead market), and goes beyond the scope of
this work. Obviously, to account for increased uncertainty, an
aggregator could draw wy’s from a distribution of larger vari-
ance, but that trades safety for conservativeness in determining
the flexibility set. An interesting open question is endowing
the feasible set P(x) with probabilistic guarantees, so that each
x comes with a confidence interval quantifying the chances of
it being infeasible. Here we consider the easier problem of
finding a deterministic P (x).

IV. LEARNING FEASIBLE AGGREGATIONS FROM DATA

This section uses dataset D to approximate J using a con-
vex quadratic classifier. Recent research shows that aggrega-
tions of large number of devices with individually non-convex
feasible sets can be closely approximated by a convex set;
see e.g., [9] and references therein. However, even if F is
non-convex, an ISO would only accept polytopic descriptions
for the feasible set of an aggregator to ease its scheduling
operations; see [1], [9]. Therefore, designing a convex clas-
sifier as a first step to best capture J is reasonable. Due
to the presence of uncertain externalities @ and the possibly
non-convex nature of F?’s, computing an explicit expres-
sion for F is a formidable task. Nonethel§ss, we can use
data to approximate F with a convex set F. Set F can be
expressed as the 0-sublevel set of a convex function d(p) as
F = {p : d(p) < 0}. Function d(p) acts as a classifier to
decide if p is disaggregatable (d(p) < 0) or not (d(p) > 0).

Prior to learning d(p) from D, the aggregator needs to
choose a functional form for d(p). A linear classifier of the
form d(p) = w—]'—p + wy is the simplest option, but may have
limited representation capabilities. A more complex classifier
would be a convex quadratic function. Such classifier has been
shown to be effective for capturing chance constraints [19],
which motivated us to chose the same option as the set F that
we are trying to capture here is the feasible set of a chance
constraint on p as well. While there may be more sophisti-
cated options, such as multi-linear and neural network-based
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classifiers, they are left for future research. We proceed with
training the convex quadratic classifier

d(p) =p Wap+w/p+wo )

where Wy > 0 is a symmetric positive semidefinite matrix.
The classifier is linear in (W;, wj, wp) and convex quadratic
in p. It approximates J by the ellipsoid

Ep = {p :p Wap+w/p+wo< 0]. (10)

The classifier parameters can be learned from dataset D by
solving the optimization
1 N
min 3 [1 = yad@n)], + (W2l + Iwil) (1)
n=1

over Wy =0, wi,wg (11b)

where [x]y = max(0,x). An ideal classifier should yield
dpn) < 0 if y, = —1 (feasible p,); and d(p,) = O if
yn = +1 (infeasible p,). In other words, an ideal classifier
should satisfy y,d(p,) = 0 for all n. Therefore, a classifier
should be ideally trained upon minimizing the loss function
ZHN=1 [1 — sgn(y.d(p,))], where sgn returns 1 for a posi-
tive argument; and O, otherwise. Unfortunately, function sgn
is discontinuous, and thus, hard to minimize. The standard
approach in classification is to surrogate the aforesaid loss
function with the so-termed hinge loss [1 — y,d(p,)]+, which
is convex; see [20, Fig. 7.5] for details. To avoid overfitting,
the training problem would typically penalize large values for
the classifier weights in the ell;-norm excluding the intercept
wp; see [20, Ch. 7]. Parameter A = 0 balances the trade-off
between the hinge classification cost and the regularization
terms; and was tuned using cross-validation. Problem (11) can
be reformulated to a semidefinite program (SDP).

Note that £p serves only as a surrogate for F, and cannot
be claimed to be an inner or outer approximation of F. This
is because J may be non-convex, while £p has been learned
from data and using the sample approximation in (7). We next
explain how an inner polytopic approximation of £p can be
used to approximate P(x) € F in (5b).

V. OFD As CONTAINMENT OF POLYTOPES

Since £p surrogates set F, the constraint P(x) € F in (5b)
can be approximated by

P(x) € &por max d(p) <0. (12)
p:Gp=x

Problem (12) involves maximizing a convex quadratic func-

tion over a polytope. To bypass this non-convexity issue, we

proceed in two steps: First find a polytope Pp that is inscribed

in Ep, and then design x so that P(x) C Pp C Ep.

A. Polytopic Inner Approximation of an Ellipsoid

We first adopt the approach of [21], [22], according to which
the ellipsoid £ == {y € RT : ||y|l2 < r} is approximated by a
polytope 'P% within accuracy § in the sense

U cpi g (13)
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Polytope ’P% is defined over the original variables y and a
vector of auxiliary variables q as

P4 = |y : E1y + E2q < d for some q}.

The way (EI,EQ,EI) are determined is summarized in [23].

The number of auxiliary variables in q and the number of

linear constraints in p?" scale logarithmically with 8.
Ellipsoid £p in (10) can be converted to form £ by setting

y = Wéﬂp + Wz_lﬂwl and r == w;rwz_lwl — Wy
where Wé’r 2 is the matrix square root of W». Then, ellipsoid

&p can be inner approximated by the polytope
Pp = {p : El(Wéﬂp—l—W;]ﬂwl) +E,q <d fora q}.

In words, a point p belongs to Pp if there exists a q satisfying
the aforesaid linear inequalities. In essence, polytope Pp is
the projection of a polytope in (p,q) onto the space of the
variables p alone. Because such representation of Pp is not
convenient for future developments, we next eliminate . This
projection operation is in general computationally hard given
the polytope in (p, q) is described in its vertex representation.
Nevertheless, for moderate lengths of p and q, one can use the
Fourier-Motzkin algorithm [24]. This algorithm eliminates g
by generating additional linear constraints on p. The projection
is exact in the sense that one eventually gets the next equivalent
representation of Pp for given (E, d):

Pp={p:Ep<d}. (14)

B. Reformulating OFD Using Farkas’ Lemma

Having found a convenient representation for Pp, we can
now approximate the OFD problem in (5) as

(15a)
(15b)

max V(x)
X

s.to P(x) € Pp.

Recall V(x) is the volume of P (x). We handle constraint (15b)
upon invoking a version of Farkas’ lemma on the containment
of polytopes as presented in [25], [26].

Lemma 1 (Farkas’ Lemma): Consider two non-empty poly-
hedra P(x) = {p : Gp < x} and Pp := {p : Ep < d}. It holds
that P(x) € Pp if and only if there exists matrix F > 0
satisfying FG = E and Fx < d.

Using Lemma 1, problem (15a) can be reformulated as

max V(x) (16a)

x,F=0
s.to FG=E (16b)
Fx <d. (l6c)

Due to the product Fx, problem (16) remains non-convex,
while we still lack a good choice for V(x).

To resolve these two issues, we resort to a restriction of (16).
We parameterize the sought vector x as

1 _
X=—(X—Gz)

17
B an
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Fig. 2. The non-convex original set J the ellipsoid £p being a data-
based estimate of F; set Pp is the inner polytopic approximation of £p;
the prototype polytope P(X); and the solution polytope P(x*). Notice that
sets P(x) € Pp and Pp C Ep are ensured to be contained in F, whereas
£p and consequently P(x) may not. This is because the ellipsoid &p is
constructed via learning from labeled data (classification).

where z and B > 0 are to be designed, whereas X is given.
Apparently, the parameterization would have been inconse-
quential had X been left free. But then the inherent computa-
tional complexity would remain. For this reason, parameter X
(serving as the ‘center’ of the polytope) is fixed to some prior
guess and x is confined to lie in the affine set X — Gz scaled
by B for (z, 8) to be found.
Thanks to this form, constraint (16c) can be written as

1
EF(;T;—Gz)gd & FXx<FGz+ fd=FEz+ Bd

using the key observation that FG = E from (16b).

To better understand the proposed restriction, consider poly-
tope P(X) := {p : Gp < Xx}. Evidently under the restriction
of (17), if p € P(X), then p = (p — 2)/B € P(x). This
means that if we take any point in P(X), shift it by —z, and
scale it by 1/8, we obtain P(x). In other words, the poly-
tope P(x) is selected to be a shifted and scaled version of
the ‘prototype’ polytope P(X); see also Fig. 2. The shape of
the prototype polytope depends on X, while its shifting and
scaling parameters can be optimally selected.

Adopting the restriction of (17) simplifies the task of dealing
with volume V(x). Because P(x) C R7 is a shifted and scaled
replica of P(X) C RT, it holds that

V(x) = V(x)/pT (18)

where V(X) is the fixed volume of P(X). Consequently,
under (17), problem (16) simplifies to the linear program

F* * * H 1
(F*, 7%, B%) € arg L min (19a)
s.to FG=E (19b)
Fx <Ez+8d. (19¢)

The final answer to the OFD problem is the aggregator
model Gp < x* with

x* = i(JTi — Gz¥)

20
o (20)
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TABLE I
TRAINING RESULTS

Probability of infeasible aggregator schedule €

metric 0] o004] 008] 0.12
convexity metric M 0.028% | 0.145% | 0.183% 0.224%
convexity metric Mz 0.0% 0.0% 0.0% 0.0%
training accuracy 97.5% | 95.2% | 92.5% 91.6%
validation accuracy 98.6% | 94.6% | 92.0% 91.1%
cond. number of W 5.91 5.27 5.05 4.66

Finally, for the parameterization in (17), we need a suitable
choice for x. One heuristic would be to find x as the minimum-
norm X for which P(X) contains all disaggregatable schedules
in dataset D by solving

(21a)
s.to Gpp, =X, VppeD withy, =—1. (21b)

- - 2
% =argmin |x|

Heed that P(X) for the aforesaid choice of X does contain all
feasible points in D, but it may not lie inside Pp and may
contain infeasible points too as illustrated in Fig. 2. Table I
summarizes the steps of the proposed OFD approach.

VI. NUMERICAL TESTS
A. Simple Illustrative Example

The proposed methodology was first evaluated under a syn-
thetic setup, which has been oversimplified for the purposes
of visualization and drawing intuition. This setup involves
only T = 2 control periods, while externalities are determin-
istic. Moreover, the actual feasible set F of disaggregatable
schedules is convex. It in fact matches the aggregator model
P(x) = {p : Gp < x} postulated by the ISO in (2). The actual
X can be computed from (3) by setting

ﬁ:—g:ﬁ: 12, §:02, SO:O_S, andE:_g:]_

The feasible set J is shown in Fig. 3a. Note that out of the
6T —2 = 10 linear inequalities in PP(x), only 6 are binding for
the particular x. Of course, the aggregator does not know that
F is actually P(x). It can only draw points p € R? and test
whether they are disaggregatable. The goal for the aggregator
is to fit P(x) onto data by finding x to maximize its flexibility.
We first followed the process described in Section III and
the Appendix to generate a dataset D of N = 500 points shown
in Fig. 3b. We set parameter x = 0.2; see the Appendix for
details. Observe there are pairs of (in-)feasible points lying
close to the boundary of JF; infeasible points away from the
boundary of F; and feasible points on the interior of J. We
then trained a classifier per (11) with A = 10~>. The obtained
ellipsoid £p is also shown on Fig. 3b. Ellipsoid &£p closely
approximates JF as it achieves 99.68% accuracy on the training
data. We next followed the steps of Section V-A with § = 0.1
and first obtained the polytope Pp C &p with q € R? and
then used the Fourier-Motzkin algorithm to convert Pp to the
form of (14). We subsequently ran Algorithm 1 and obtained
the solution polytope P(x*). The containment of P(x*) in Pp
is depicted in Fig. 3c. This figure shows that the recovered
polytope P(x*) is very close to the original feasible set JF.
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Containment of P(x*) in Pp Containment of P(x}) in Pp
1- . . . . 1- . ¥ . .

P

(a) The feasible set F of an aggregator matches with the model Gp < x of (2) postulated by the ISO. (b) We sampled N = 500 labeled datapoints

(schedules) to train a convex quadratic classifier and obtained ellipsoid £p. (c) Inner polytopic approximation Pp of £p, and the final solution P(x*).
(d) Optimal solution P(x}) if the ISO simplifies the model Gp < x to account only for box constraints and ignore any time coupling. Notice that P(x*) has
a much larger volume than P(x¥), which indicates the importance of more elaborate aggregator models in OFD.

Algorithm 1 Optimal Flexibility Design (OFD)
Input: Dataset of (dis)-aggregatable schedules D.
Output: Maximum-volume polytope P(x*).
1: Train quadratic classifier d(p) to find ellipsoid £p by
solving (11).
2: Find polytope Pp C &p in the (p, q) representation as
described in [23].
3: Convert Pp in the form of (14) via the Fourier-Motzkin
algorithm.
4: Compute X by solving (21).
5: Solve (19) and compute the optimal x* from (17).

Previous works considered only the lower/upper power
limits in (la) [18]. By ignoring ramping and SoC limits,
they have postulated a simpler aggregator model. To demon-
strate the effect of simpler aggregator models, we solved (19)
again but this time with tried to find a polytope defined by
the simpler Gl = [I" —1'] yielding a hyper-rectangle.
Figure 3d illustrates the results for this test. The volume
of P(x}) is much smaller than the volume of the polytope
P(x*) depicted in Fig. 3c. This demonstrates the importance
of considering time-coupling and its effect on the total volume
recovered.

B. A More Realistic Aggregator Model

We also tested a more realistic setting of an aggregator con-
trolling 200 loads described by non-convex models subject
to random externalities. This aggregator controls PVs, batter-
ies, EVs, and TCLs, 50 of each type. Although the market
is ran on an hourly basis indexed by f =1, ..., T, loads are
controlled at a finer timescale of 15-min intervals indexed by
t =1,...,4T. This is practical for devices such as TCLs and
PVs. If Ef denotes the kW load consumed by device d during
the 15-min interval =, the kW load for this device over hour
tis

4
1
d d
Pi =7 2‘34(f_1)+k-
k=1

We next describe the models loads Ef should satisfy for each
type of loads. These models determine the device feasible sets
.Fd(wd) in (6). To keep the notation uncluttered, we will drop
superscript d.

Photovoltaics were modeled as negative loads as

—rep <€ <0, T=1:4T

where p is the PV capacity and r; the expected solar irradi-
ance at interval r. PV capacities were randomly sampled from
real data from Southern California Edison (SCE) [27]. Solar
irradiance profiles r; are the random externalities for PVs. To
generate them, we used 1-min irradiance data from [28], per-
turbed them by +10% with a normal distribution, and averaged
them over 15-min intervals.

Batteries: We used a model with charging/discharging
inefficiencies described below for t =1...,4T:

be=0r—t;, 0<t€f<bp, 0<e€;<(1—b)p
1 T
+ - —
sr:sﬂ+12(0.9£k —1.1¢), 0<s, <5

k=1

where (£, £7) are the (dis)-charging powers during interval 7,
and binary variable b, indicates whether this battery is charg-
ing or discharging. The binary variable is needed to properly
capture inefficiencies. Quantities (p, 5) are the limits on power
and SoC obtained also from SCE data [27]. The initial SoC sg
is the random externality for batteries and was drawn indepen-
dently and uniformly at random within [0, 5]. The 1/4 term in
front of the sum accounts for the 15-min intervals.

Electric vehicles were modeled similarly to batteries with
the additional constraints that (€., E;", £7) are zero for
intervals  the EV is not available. The assumption here is
that EVs come and park at business locations. Upon arrival,
each EV specifies a departure time and the needed SoC
upon departure. Based on the most common EV models in
the U.S market, we chose kW capacities from the set p €
{11,16.5, 18, 19.2, 20, 21.1, 22} kW, and kWh capacities from
the set 5 € {42, 60, 70, 75, 85, 90, 100} kWh. Arrival/departure
times are uncertainties and were generated by sampling inde-
pendently from a truncated Gaussian distribution between
9-10 AM and 4-5 PM, respectively. The requested SoC upon
departure is also another random externality and was drawn
uniformly between the SoC upon arrival and the SoC capacity
of each vehicle.

Thermostatically controlled loads obeyed the discrete-time
model assuming operation under the cooling mode [6]:

0<¢, <b.p, 8, —05<6, <6;+05
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Dataset D and ellipsoid £p Containment of P(x*) in Pp
A P -

Pp

30

Fig. 4. Left: Sampled labeled points of the realistic aggregator and the trained
convex quadratic classifier and resulting ellipsoid £p for T = 2. Right: Inner
polytopic approximation Pp of £p, and the final solution P(x*).

1 < o7
Ori1 =60 — E;(PEI - E)'

Here binary variable b, indicates whether the TCL is on, p is
the fixed power consumed when the TCL is on, while €, and
07 are respectively the house and predicted ambient tempera-
tures in Celcius at time 7. Parameters (C, P, R) are the thermal
capacitance, resistance, and power transfer of the house. They
were drawn uniformly at random from [1.5, 2.5], [3, 5], and
[15, 30], respectively. The temperature setpoint 6; was drawn
uniformly at random from [24, 26].

Data generation: To generate the training dataset D, we
solved the disaggregation problem in (6) for T = 8 control
periods using the £;-norm in the objective to arrive at an MILP.
We followed the steps explained in the Appendix with K = 25
scenarios of random externalities and « = 0.2. The value of
K = 25 may seem relatively small granted the dimension of wy
increases with the number of devices D. Nonetheless, several
entries of wy; may be correlated due to patterns in device and
solar profiles. Even for the uncorrelated entries of wy (e.g.,
arrival/departure times and SoC for electric vehicles), one may
not need to sample a large number of uncertainty scenarios K
thanks to an ergodicity argument: Suppose we are interested
in a particular uncertainty scenario w? = @ for some device
d. Problem (6) is invariant on whether scenario @ appears
for device d or some other device d’. As D increases, the
chances of experiencing a scenario @ increase, and thus, there
is no need for sampling many s in (7). Note also that our
method is independent of the data generation step, which in
fact could be skipped if an aggregator has historical data. If
not, the aggregator could handle (6)-(7) more efficiently than
we did here, e.g., by parallelizing the K MILPs needed in (7),
using specialized algorithms exploiting the unit commitment-
type nature of (6), and moving computations on the cloud.

We first tested the case of T = 2 to visualize how the
proposed OFD performs with realistic data. However, T = 2
is limiting for control of EVs and for this reason EVs were
removed from this particular test. We tried solving the OFD
for probability of infeasibility ¢ = 0.04, which resulted in a
dataset with N = 500 points (200 feasible and 300 infeasible
ones). This dataset and the obtained ellipsoid £p are shown
in Figure 4 (left). The obtained classifier had a training accu-
racy of 94.68% and a validation accuracy of 93.76%. Figure 4
(right) shows the inner polytopic approximation Pp of £p, and
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TABLE II
RESULTS ON OPTIMAL FLEXIBILITY DESIGN (OFD)

Probability of infeasible aggregator schedule e

metric 0] o004] 008] 0.12

% infeasible € P(X) | 13.64% | 19.02% | 21.72% 24.39%
V (Xinner) 3.27 5.53 5.84 6.88

V (Xouter) 7.23 11.86 12.52 21.09
V(xr) 0.35 0.35 0.35 2.68
V(%m) 53.9 - - -

the final solution P(x*), which demonstrates that the obtained
P(x*) closely models the aggregate flexibility.

We continued with the case of T = 8 and included all 4
device types. We tried solving the OFD for different values of
€ € {0,0.04, 0.08, 0.12}, which resulted in four datasets. Each
dataset consisted of N = 7, 244 points, equally split between
feasible and infeasible ones.

We first wanted to study whether set F is convex by exam-
ining dataset D being a snapshot of . If D~ is the subset of
D of all feasible points, we evaluated two metrics:

e Mj: % of infeasible points in D falling in conv(D™).

« Mj: % of infeasible points falling in conv(D™).

Metric M; can be computed easily by solving an LP for each
of the infeasible points in D. Nonetheless, this metric can
be biased if D has been generated per the process of the
Appendix. This is because several infeasible points in D have
been intentionally selected to lie close to the boundary of F,
so they have higher chances of falling in conv(D™). Metric
M, alleviates this issue but is harder to compute. To approx-
imate M>, we sampled / = 100 points uniformly at random
from conv(D~) and checked what percentage of them were
infeasible. However labeling each one of these points entails
solving (6) for K times. Table I shows the two metrics for the
four datasets. Metric M5 is smaller than M; (in fact zero), as
expected. The two metrics indicate that F is described quite
accurately by a convex set, which resonates with the analyti-
cal findings in [9]. Nonetheless, electricity markets may want
to surrogate F with polytope Gp < x for a G that is con-
venient for market clearing processes. We next evaluated our
OFD design under this requirement.

Following Alg. 1, we first trained the quadratic classifier
by solving (11) using MOSEK and YAMIP in MATLAB. To
avoid overfitting, dataset D was partitioned randomly into a
training and a validation dataset in a proportion of 80% to
20%. Parameter A was tuned to A = 10~5. Training took con-
sistently less than 1 min. All tests were performed on an Intel
Core i7 @ 3.4 GHz (16 GB RAM) computer using MATLAB
on a single CPU without any parallelization. Table I reports
the accuracy attained during training and validation by count-
ing the percentage of points correctly labeled by the classifier.
Such high accuracy suggests that F can be well approximated
by the learned ellipsoid £p. It could also be argued that the
two sets have roughly similar volumes. Table I reports the
condition number of W;. Having a well-conditioned W> is
important in the transformations of Section V-A. The volume
of £p can be computed in closed form and is shown in Table IL.

Authorized licensed use limited to: to IEEExplore provided by University Libranes | Virginia Tech. Downloaded on July 26,2023 at 18:50:27 UTC from IEEE Xplore. Restrictions apply.



4580

TABLE III
RANDOM X FOR € = 0.08

index
Volume 1] 2] 3] 4] 5
| V(iner) | 1.09 [ 1.99 [ 1.36 [ 2.09 | 247 |

Proceeding with the algorithm, we approximated £p by an
inscribed polytope. In Step 2, setting § = 0.1 yielded 23
extra variables in q. In Step 3, polytope Pf— was converted to
its Pp form using the Fourier-Motzkin algorithm as outlined
in Section V-A. The obtained matrix E of (14) had roughly
4.2-10° rows. Steps 2-3 together took no more than 5 min
per dataset.

For Step 4, we solved (21) to obtain the related X per dataset,
which took less than 1 min. For Step 5, we solved the LP
in (19) to obtain the final polytope P(x). Given the large size
of E, solving this LP took roughly 4 hours per dataset. As
there is no formula for the volume of a general polytope, the
volume of P(x) was numerically estimated as detailed next.
We first constructed a hyper-rectangle H ={p:p<p =< p}
containing P(x). The t-th entry of p (p) can be camputed by
maximjziHTg (minimizing) p; subject to_p € P(x). The volume
of #is [[,—; (pr—p,). We then sampled 10 points from 7 and
found the ratio of these points falling in P(x). The estimated
volume V(P (x)) was computed by multiplying the ratio times
the volume of H. The results are presented in Table II. Note
that Xjpper and Xouer denote the flexibility parameters corre-
sponding to Pp being an inner and outer approximation of
&p, respectively.

We next studied the effect of ignoring time-coupling by
using the reduced matrix G;'— =[I"T —I"]. We ran Al g. 1 again
and obtained a polytope G,p < X, whose volume is reported
in Table II. Oversimplifying the aggregator model apparently
led to much reduced flexibility.

To study the effect of uncertainty, we conducted OFD with
no chance probability (¢ = 0) assuming externalities in w
are set to their mean values. Table II lists the volume of the
computed polytope Gp < X,,, which is significantly larger
than that of the polytope computed considering uncertainty.
Nevertheless, such flexibility quantification may be misleading
as it may not be realizable during operation.

To examine whether the heuristic of (21) for choosing X is
effective, we generated 5 random values for X as

x=[X|+Gp

where |-| is the element-wise absolute value; the entries of X’
are drawn independently from a standard normal distribution;
and p is the center of Pp. Notice that irrespective of the value
of X/, the computed X always results in a non-empty polytope
‘P(X) as it contains at least p. We then ran our OFD algorithm
for e = 0.08 for each of five randomly drawn values of X.
Table III reports the resulted volumes. Recall that our choice
of X resulted in a volume of 1:’(Jniinm,,r) = 5.84 for € = 0.08,
which more than twice the volume obtained by the choices of
Table III. Optimizing over X is an interesting, yet challenging
task that goes beyond the scope of this work.
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VII. CONCLUSION

In this work, we have used disaggregation data to cap-
ture the time-coupled flexibility of aggregators in presence of
random externalities and non-convexity in individual device
models. The feasible set of an aggregator has been approx-
imated by the ellipsoid described by a convex quadratic
classifier trained over labeled (non)-disaggregatable schedules.
As obtaining such labels can be computationally intensive
as it involves solving multiple large-scale mixed-integer dis-
aggregation programs, we have put forth an efficient data
generation scheme. To arrive from the ellipsoid to the poly-
topic shape dictated by the market, the ellipsoid is first safely
(inner) approximated by a general polytope. Thanks to Farkas’
lemma and a volume argument, the general polytope is later
approximated by a polytope having the form dictated by the
market. Numerical tests corroborate the effectiveness of the
novel OFD approach as aggregator’s flexibility seems to be
well surrogated by a convex set, more detailed polytopes can
better inner approximate this feasible set as expected, while
taking into account the time-coupled and uncertain nature of
device models seems to be important. The proposed work
forms the solid foundation for exploring open problems related
to the participation of aggregators in electricity markets, such
as computing flexibility sets endowed with probabilistic guar-
antees (confidence intervals) and designing optimal bidding
strategies consisting of a feasibility set along with bidding
costs.

APPENDIX

If points p,’s are sampled uniformly at random, it is much
more likely to sample infeasible than feasible ones. Then to
create a balanced dataset D, one has to sample a large num-
ber of p,’s. Albeit sampling points is easy, labeling them can
be time consuming. Labeling a point entails solving (6) for
K samples of externalities @;’s to compute the chance statis-
tic in (7). We next propose an efficient way for generating a
balanced D. First, estimate a hyper-rectangle H wherein all
feasible schedules could lie. To obtain #, one can compute
the minimum/maximum values the schedule for each device
pd € F4 can take per control interval. Summing up these val-
ues across all devices yields bounds on the aggregator schedule
p- While sampling in H is more efficient than sampling in
R”, obtaining a balanced D can still be challenging as the
bounds can be loose. Moreover, infeasible points too far from
the boundary of J may not be very informative for classifi-
cation purposes. In light of these, our goals are: i) to sample
infeasible points close to the boundary of the feasible set J;
and ii) for each infeasible point we sample, we also iden-
tify a feasible point. These goals can be achieved through the
following steps:

D1) Sample a point p; uniformly at random within hyper-
rectangle 7. Most likely py is infeasible, so it is assigned
label y; = +1 and pair (p1, y1) is appended to D.

In the process of labeling p;, we have also obtained
points {f)(wk)}f:] per (8). Among these points, select
the one that lies the furthest away from p;, that is the
one with the largest g(Pp(wy); ). Call this point p, and

D2)
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P1
¢ P3:=kp1+(1—K)p2
e

Fig. 5. To generate a nearly balanced dataset D in a computationally efficient
manner, we draw a triplet of points (py, p2, p3) at a time. Point p; is drawn
uniformly at random and is most likely infeasible. Along its labeling process
however, we find point p that is the approximate projection of p; on feasible
set F. Point p3 is constructed as a convex combination of (pq, p2) lying
closer to py. Albeit infeasible, point p3 lies close to the boundary of F.
Sampling such triplets yields a dataset having twice as many infeasible points
as feasible ones. Upon taking convex combinations of existing p;’s, additional
points lying in the interior of F can be constructed.

label it. If ps is feasible (most likely it is), set y» = —1
and append pair (p2, y2) to D.
Construct point p3 = «pq + (1 — k)p2 for say « = 0.2,
and label it. Most likely, point p3 is infeasible but lies
closer to the boundary of F than p;. This is because the
feasible point p; is expected to be close to the boundary
of F. Append pair (p3,y3) to D.
D4) Repeat steps DI)-D3) until D reaches a desirable size.
Figure 5 depicts the triplet (p1, p2. p3) presuming p; lies
far away from the boundary of J; point p, lies on or close to
the boundary; and p3 is infeasible but close to the boundary
of F. When « is selected closer to zero, point p3 gets closer
to p2. This provides a more refined charting for the boundary
of set J assuming labels are correct. Nevertheless, as labeling
involves the stochastic approximation of (7), one may want to
leave some additional space between p» and p3, by selecting
slightly larger values of « such as x = 0.2. We next cover the
remaining special cases for completeness. If p; is feasible,
we can simply add (p1,y1) to D with y; = —1, and repeat
D1). If p» is infeasible, we can replace it with the point f)(@k)
obtained during its labeling that lies the furthest away from p;.
Although there is no analytical guarantee, replacing p» with
its projection seems to be reaching a feasible point within one
or two iterations. Finally, if p3 is feasible, repeat D3) and use
p3 instead of p» in the convex combination to find the new ps.
The previous process is expected to generate double the
number of infeasible over feasible points. Moreover, all fea-
sible points lie on or close to the boundary of F, which can
be problematic when training a classifier. Both of these issues
can be easily resolved by generating some feasible points that
are strictly in the interior of . To this end, we also sample
random points as the convex combination of already identi-
fied feasible points and label them using the standard process.
While such convex combinations are not guaranteed to be fea-
sible, our experiments in Section VI show that they are very
likely to be feasible.

D3)
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