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A bstr a ct — B u n dli n g a l a r g e n u m b e r of dist ri b ut e d e n e r g y
r es o u r c es t h r o u g h a l o a d a g g r e g at o r h as b e e n a d v o c at e d as a n
eff e cti v e  m e a ns t o i nt e g r at e s u c h r es o u r c es i nt o  w h ol es al e e n e r g y
m a r k ets.  T o e as e  m a r k et cl e a ri n g, s yst e m o p e r at o rs all o w a g g r e-
g at o rs t o s u b mit bi d di n g  m o d els of si m pl e p r es p e ci fi e d p ol yt o pi c
s h a p es.  A g g r e g at o rs n e e d t o c a r ef ull y d esi g n a n d c o m mit t o
a p ol yt o p e t h at b est c a pt u r es t h ei r e n e r g y fl e xi bilit y al o n g a
d a y- a h e a d s c h e d uli n g h o ri z o n.  T his  w o r k p uts f o rt h a  m o d el-
i nf o r m e d d at a- b as e d o pti m al fl e xi bilit y d esi g n f o r a g g r e g at o rs,
w hi c h d e als  wit h t h e ti m e- c o u pl e d, u n c e rt ai n, a n d n o n- c o n v e x
m o d els of i n di vi d u al l o a ds.  T h e p r o p os e d s ol uti o n fi rst g e n e r at es
ef fi ci e ntl y a l a b el e d d at as et of (i n)-f e asi bl e a g g r e g ati o n s c h e d-
ul es.  T h e f e asi bl e s et of t h e a g g r e g at o r is t h e n a p p r o xi m at e d
b y a n elli ps oi d u p o n t r ai ni n g a c o n v e x q u a d r ati c cl assi fi e r usi n g
t h e l a b el e d d at as et.  T h e elli ps oi d is s u bs e q u e ntl y i n n e r a p p r o xi-
m at e d b y a p ol yt o p e.  Usi n g  F a r k as’ l e m m a, t h e o bt ai n e d p ol yt o p e
is fi n all y i n n e r a p p r o xi m at e d b y t h e p ol yt o pi c s h a p e di ct at e d
b y t h e  m a r k et.  N u m e ri c al t ests s h o w t h e eff e cti v e n ess of t h e
p r o p os e d fl e xi bilit y d esi g n f r a m e w o r k f o r d esi g ni n g t h e f e asi-
bl e s ets of s m all- a n d l a r g e-si z e d a g g r e g at o rs c o o r di n ati n g s ol a r
p h ot o v olt ai cs, t h e r m ost ati c all y- c o nt r oll e d l o a ds, b att e ri es, a n d
el e ct ri c v e hi cl es.  T h e t ests f u rt h e r d e m o nst r at e t h at it is c r u ci al
f o r t h e a g g r e g at o r t o c o nsi d e r ti m e- c o u pli n g a n d u n c e rt ai nti es i n
o pti m al fl e xi bilit y d esi g n.

I n d e x  Ter ms — F e asi bl e s et, a g g r e g at o r, c o n v e x q u a d r ati c cl as-
si fi e r, elli ps oi ds, c o nt ai n m e nt of p ol yt o p es, o pti m al fl e xi bilit y
d esi g n, d a y- a h e a d  m a r k ets, l o a d dis a g g r e g ati o n.

I. I N T R O D U C T I O N

I N  A D DI TI O N t o t h e e xisti n g bi d  m o d els f or g e n er at ors a n d
l o a d s er vi n g e ntiti es, i n d e p e n d e nt s yst e m o p er at ors (I S O)

ar e c urr e ntl y a c c e pti n g n e w bi d  m o d els t o f a cilit at e t h e p ar-
ti ci p ati o n of l o a d a g gr e g at ors [1 ]. Si mil ar t o a b att er y  m o d el,
n e w bi d di n g  m o d els c o ul d c o nsist of u p p er a n d l o w er li mits
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o n p o w er a n d r a m pi n g, b ut als o o n e n er g y t o c a pt ur e st at e- of-
c h ar g e ( S o C)-t y p e of c o nstr ai nts. S u c h b att er y  m o d els c a pt ur e
h o w fl e xi bl e t h e a g gr e g at or c a n b e as a dis p at c h a bl e r es o ur c e
f or t h e I S O i n t h e e n er g y  m ar k et.  O n o n e h a n d, if a n a g gr e-
g at or o v er- esti m at es its fl e xi bilit y a n d t h e n f ails t o  m e et its
s c h e d ul e dis p at c h e d b y t h e I S O, it  will b e p e n ali z e d.  O n t h e
ot h er h a n d, off eri n g  m or e fl e xi bilit y  w h e n p arti ci p ati n g i n t h e
m ar k et c o ul d i n cr e as e t h e fi n a n ci al b e n e fit of t h e a g gr e g at or.
E vi d e ntl y, t h e a g gr e g at or ai ms at off eri n g t h e  m a xi m al fl e xi-
bilit y t h at c a n b e i m pl e m e nt e d.  T o a c hi e v e t his d u al g o al, t h e
a g gr e g at or n e e ds t o c ar ef ull y d esi g n its f e asi bilit y s et t o b e
s u b mitt e d t o t h e I S O.  T his t as k is d e fi n e d as o pti m al fl e xi bilit y
d esi g n ( O F D).

A n a g gr e g at or c o ntr ols a di v ers e s et of d e vi c es s u c h as s ol ar
p h ot o v olt ai cs ( P Vs), b att eri es, el e ctri c v e hi cl es ( E Vs), t h er m o-
st ati c all y c o ntr oll e d l o a ds ( T C Ls), h o m e a p pli a n c es (s u c h as
dis h w as h ers/ dr y ers), a n d p o ol cl e a n ers/ p u m ps [ 2 ].  T h e  O F D
t as k is c h all e n gi n g f or t hr e e r e as o ns t h at st e m fr o m t h e pr o p-
erti es of s u c h d e vi c es or l o a d t y p es. First, d e vi c es s u c h as
E Vs a n d b att eri es e x hi bit ti m e- c o u pli n g n at ur all y,  m e a ni n g
t h at l o a d s c h e d ul es ar e c o nstr ai n e d a cr oss s u c c essi v e c o ntr ol
p eri o ds a n d c a n n ot b e d et er mi n e d i n d e p e n d e ntl y. S e c o n d, t h e
i n ef fi ci e n ci es of  E Vs a n d b att eri es a n d t h e  O N/ O F F c h ar a ct er-
isti cs of  T C Ls l e a d t o n o n- c o n v e x  m o d els.  T hir d,  m ost d e vi c es
o p er at e u n d er ti m e- v ar yi n g e xt er n aliti es, s u c h as s ol ar irr a di-
a n c e f or P Vs; t h e i niti al S o C f or b att eri es; arri v al/ d e p art ur e
ti m es f or  E Vs; a n d a m bi e nt t e m p er at ur e or o c c u p a n c y f or
T C Ls.  T h es e e xt er n aliti es ar e i n h er e ntl y r a n d o m a n d u n c er-
t ai n  w h e n t h e  O F D pr o bl e m is s ol v e d, e. g., at d a y- a h e a d. S u c h
u n c ert ai nt y f urt h er c o m pli c at es  O F D a n d c alls f or st o c h asti c
f or m ul ati o ns.

T h e c urr e nt lit er at ur e i n  O F D c a n b e c at e g ori z e d i n t w o
m ai n gr o u ps.  T h e first gr o u p of r es e ar c h us es g e o m etri c
t e c h ni q u es t o fi n d a p ol yt o p e t h at c a pt ur es t h e a g gr e g at e fl e x-
i bilit y [3 ], [4 ], [5 ], [6 ], [7 ], [8 ], [9 ].  A r e d u c e d- or d er  m o d el
f or a g gr e g at e fl e xi bilit y is d esi g n e d usi n g q u a nti z ati o n i n [3 ],
y et t h e a p pr o a c h a p pli es o nl y t o d e vi c es d es cri b e d b y c o n v e x
li n e ar  m o d els of t h e s a m e s h a p e. St o c h asti c b att er y  m o d els f or
l o a d a g gr e g ati o ns is p ut f ort h i n [4 ], [5 ], t h o u g h a g ai n t h e y
ar e n ot a p pli c a bl e t o n o n- c o n v e x d e vi c e  m o d els. Pr es u mi n g
e xt er n aliti es t o b e d et er mi nisti c all y k n o w n a n d c o nsi d eri n g
o nl y s p e ci fi c t y p es of d e vi c es li k e b att eri es a n d  T C Ls u n d er
a v er a g e d li n e ar  m o d els, r ef er e n c e [ 6 ]  m o d els t h e a g gr e g at e
fl e xi bilit y as t h e  Mi ns k o ws ki s u m of t h e c o n v e x f e asi bl e
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s ets of i n di vi d u al d e vi c es,  w hi c h c a n b e a p pr o xi m at e d usi n g
h o m ot h ets [ 7 ], or z o n ot o p es [8 ].

T h e s e c o n d gr o u p of a p pr o a c h es f or m ul at es  O F D as a
m ulti-l e v el o pti mi z ati o n pr o bl e m [ 1 0 ], [1 1 ], [1 2 ], [1 3 ], [1 4 ].
R ef er e n c e [ 1 0 ]  m o d els a g gr e g ati o n fl e xi bilit y b y a n elli ps oi d t o
b e f o u n d vi a s e mi- d e fi nit e pr o gr a m mi n g [ 1 0 ].  R ef er e n c e [1 1 ]
c o nsi d ers t h e c ost of fl e xi bilit y f or e a c h d e vi c e a n d fi n ds a
fl e xi bilit y c ost  m a p,  w hi c h c a n b e us e d t o fi n d t h e d esir e d
a g gr e g at e fl e xi bilit y r e gi o n.  N o n et h el ess, t h e l att er a p pr o a c h
c a n h a n dl e n eit h er u n c ert ai n e xt er n aliti es n or n o n- c o n v e x
d e vi c e  m o d els.  O F D u n d er li n e ar a n d d et er mi nisti c d e vi c e
m o d els h as b e e n p os e d as a  m ulti-st a g e o pti mi z ati o n t as k
als o i n [ 1 2 ], [1 3 ], [1 4 ], y et fl e xi bilit y li mits ar e pr es u m e d
d e c o u pl e d a cr oss ti m e,  w hi c h  m a y yi el d n o n-i m pl e m e nt a bl e
a g gr e g at or s c h e d ul es b e c a us e d e vi c es c a n n ot r a m p s uf fi ci e ntl y
f ast.  R ef er e n c e [1 4 ] tr e ats dis a g gr e g ati o n as a r a n d o m p oli c y
o v er r a n d o m e xt er n aliti es, b ut als o i g n or es ti m e- c o u pli n g a n d
n o n- c o n v e x d e vi c e  m o d els.

T h e t hr e e af or e m e nti o n e d c h all e n g es  wit h l o a d a g gr e g a-
ti o ns ( n a m el y t h e ti m e- c o u pl e d, n o n- c o n v e x, a n d st o c h as-
ti c n at ur e of d e vi c e  m o d els) h a v e b e e n c o nsi d er e d  w hil e
m o d eli n g t h e eff e ct of a g gr e g ati o ns i n d e m a n d-r es p o ns e pr o-
gr a ms a n d c h a n c e- c o nstr ai n e d o pti m al p o w er fl o w f or m ul a-
ti o ns; s e e [1 5 ], [1 6 ] a n d r ef er e n c es t h er ei n.  N o n et h el ess, t o
t h e b est of o ur k n o wl e d g e, n ot all t hr e e as p e cts h a v e b e e n
c o nsi d er e d si m ult a n e o usl y  w hil e d esi g ni n g t h e f e asi bilit y s et
of a n a g gr e g at or u n d er t h e I S O s p e ci fi c ati o ns.  We p ut f ort h
a d at a- dri v e n  O F D fr a m e w or k t h at a d dr ess es all t hr e e c h al-
l e n g es. I n p arti c ul ar, t h e c o ntri b uti o n of t his  w or k is t hr e ef ol d:
1) D e v el o p a d at a g e n er ati o n fr a m e w or k t h at d e als  wit h ti m e-
c o u pli n g i n fl e xi bilit y d esi g n, n o n- c o n v e x d e vi c e  m o d els, a n d
u n c ert ai n e xt er n aliti es t hr o u g h a c h a n c e- c o nstr ai n e d f or m ul a-
ti o n ( S e cti o n III); 2) Tr ai n a c o n v e x q u a dr ati c cl assi fi er t o
a p pr o xi m at e t h e f e asi bl e s et of t h e a g gr e g at or b y a n elli ps oi d
( S e cti o n I V); 3) I n n er a p pr o xi m at e t h e o bt ai n e d elli ps oi d  wit h
a p ol yt o p e a n d us e t h e g e o m etr y of p ol yt o p es t o r ef or m ul at e
O F D as a li n e ar pr o gr a m ( S e cti o n V ). S e cti o n VI e v al u at es t h e
p erf or m a n c e of t h e pr o p os e d fl e xi bilit y d esi g n s ol uti o n usi n g
t w o a g gr e g at ors of i n cr e asi n g  m o d eli n g c o m pl e xit y.  N u m eri c al
t ests d e m o nstr at e t h at fl e xi bilit y is  w ell- a p pr o xi m at e d b y c o n-
v e x s ets,  w hil e c a pt uri n g ti m e- c o u pli n g a n d u n c ert ai nt y of
d e vi c e  m o d els s e e ms t o b e i m p ort a nt.

R e g ar di n g n ot ati o n , c ol u m n v e ct ors ( m atri c es) ar e d e n ot e d
b y l o w er c as e ( u p p er c as e) b ol df a c e l ett ers; c alli gr a p hi c s y m-
b ols ar e r es er v e d f or s ets.  T h e n -t h el e m e nt of x is d e n ot e d b y
x n . S y m b ol 1 d e n ot es t h e all- o n e v e ct or. I n e q u aliti es b et w e e n
v e ct ors, s u c h as x ≥ y , a p pl y e ntr y- wis e.

II.  P R O B L E M F O R M U L A T I O N

C o nsi d er a n a g gr e g at or p arti ci p ati n g i n a  w h ol es al e el e c-
tri cit y  m ar k et cl e ar e d b y a n i n d e p e n d e nt s yst e m o p er at or
(I S O).  T o s u b mit its e n er g y bi ds f or t h e d a y- a h e a d  m ar k et,
t h e a g gr e g at or h as t o c o m pl y  wit h t h e bi d di n g  m o d el f or vir-
t u al g e n er at ors a n d fl e xi bl e l o a ds s u p p ort e d b y t h e I S O.  We
will h e n c ef ort h r ef er t o t his bi d di n g  m o d el as t h e a g gr e g at or
m o d el .  T o d es cri b e t his  m o d el, c o nsi d er a d a y- a h e a d  m ar k et
or g a ni z e d i n T s c h e d uli n g i nt er v als i n d e x e d b y t, e a c h o n e of

d ur ati o n δ .  T h e a g gr e g at or  m o d el c o nsists of li mits (p
t
, p t) o n

t h e i nst a nt a n e o us p o w er p t pr o vi d e d b y t h e a g gr e g at or t o t h e
gri d d uri n g p eri o d t; a n d r a m pi n g c o nstr ai nts. S u c h c h ar a c-
t eristi cs ar e st a n d ar d f or c o n v e nti o n al  m ar k et p arti ci p a nts.  T o
b ett er f a cilit at e t h e i nt e gr ati o n of l o a d a g gr e g ati o ns, a g gr e g at or
m o d els  m a y als o i n cl u d e t h e i niti al st at e- of- c h ar g e ( S o C) s 0 at
t h e b e gi n ni n g of t h e first p eri o d; as  w ell as li mits {(s t, s t)}

T
t= 1

o n t h e S o C s t at t h e e n d of p eri o d t f or t h e a g gr e g ati o n.  T h e
a g gr e g at or  m o d el is ess e nti all y a b att er y  m o d el a u g m e nt e d b y
r a m pi n g c o nstr ai nts. It c a n b e pr e cis el y e x pr ess e d as:

p
t
≤ p t ≤ p t, t = 1: T ( 1 a)

s t = s t− 1 − p t, t = 1: T ( 1 b)

s t ≤ s t ≤ s t, t = 1: T ( 1 c)

α t ≤ p t+ 1 − p t ≤ α t, t = 1: T − 1 . ( 1 d)

Diff er e nt fr o m t h e bi d di n g  m o d el of c o n v e nti o n al g e n er at ors,
t h e a g gr e g at or  m o d el i m p os es li mits o n S o C vi a t h e a d diti o n al
c o nstr ai nts of ( 1 c ).  M or e o v er, f or c o n v e nti o n al t h er m al g e n-
er at ors, c a p a cit y a n d r a m pi n g li mits ar e k n o w n a n d t y pi c all y
r e m ai n u n c h a n g e d d uri n g n or m al o p er ati o ns.  O n t h e c o ntr ar y,
all li mits i n ( 1 )  m a y b e c h a n gi n g a cr oss ti m e a n d d a y- b y- d a y.
T h e g o al of t his  w or k is e x a ctl y t o fi n d t h es e li mits.

L et v e ct ors (p , p , p ) c oll e ct t h e i nst a nt a n e o us p o w er a n d
its li mits a cr oss all s c h e d uli n g i nt er v als; v e ct ors (s, s) c ol-
l e ct S o C li mits; a n d v e ct ors (α , α ) c oll e ct t h e r a m pi n g
r at es.  T h e a g gr e g at or  m o d el is d es cri b e d b y m o d el v ari a bl es
(p , p , s 0 , s , s , α , α ).  T o s u b mit a bi d t o t h e I S O, t h e a g gr e-
g at or h as t o c ar ef ull y s el e ct t h es e v ari a bl es.  U p o n c oll e cti n g
bi ds fr o m all  m ar k et p arti ci p a nts, t h e I S O cl e ars t h e  m ar k et
t o s atisf y d e m a n d  w hil e e ns uri n g n et w or k a n d r eli a bilit y c o n-
str ai nts.  T h e I S O s u bs e q u e ntl y i nf or ms  m ar k et p arti ci p a nts of
t h eir s c h e d ul es. F or t h e a g gr e g at or of i nt er est, t h e s c h e d ul e
d e ci d e d b y t h e I S O is d e n ot e d b y p ∗ ∈ R T .  T his s c h e d ul e
s atis fi es c o nstr ai nts ( 1 ) b y d esi g n.  A k e y o bj e cti v e f or t h e
a g gr e g at or is t o e ns ur e t h at t h e s c h e d ul e d p ∗ c a n b e a ct u-
all y r e ali z e d, i. e., t h er e e xist d e vi c es  w h os e dis p at c h es a cr oss
t h e s c h e d uli n g h ori z o n s u m u p t o p ∗ . S u c h s c h e d ul e  will b e
h e n c ef ort h t er m e d dis a g gr e g at a bl e or f e asi bl e.

I n ess e n c e, t h e a g gr e g at or  m o d el v ari a bl es d e fi n e t h e f e asi-
bl e s et  w h er ei n t h e a g gr e g at or s c h e d ul e v ari a bl e p ( a n d h e n c e
p ∗ ) c a n li e.  T o e x pr ess t h at s et i n a c o m p a ct f or m, eli mi n at e
t h e S o C v ari a bl es a n d r e writ e (1 ) as t h e p ol yt o p e

P (x ) := {p : G p ≤ x } ( 2)

w h er e v e ct or x d e p e n ds o n t h e a g gr e g at or  m o d el v ari a bl es as

x := p , − p , s − s 0 1 , − s + s 0 1 , α , α ( 3)

a n d t h e (6 T − 2 ) × T m atri x G is d e fi n e d as

G := + I − I + L − L + K − K ( 4)

w h er e I is t h e i d e ntit y  m atri x of si z e T ; m atri x L is a T × T
l o w er tri a n g ul ar  m atri x  wit h all o n es o n its l o w er tri a n g ul ar
p art; a n d K is a (T − 1 ) × T diff er e n c e  m atri x.  M atri x K t a k es
t h e v al u e of − 1 o n its  m ai n di a g o n al; t h e v al u e of + 1 o n t h e
first a b o v e t h e  m ai n di a g o n al; a n d z er o, ot h er wis e.  B e c a us e G
is k n o w n a n d fi x e d, t h e I S O o nl y n e e ds t o k n o w x t o dis p at c h
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Fi g. 1. S ol vi n g t h e  O F D t as k i n f o ur st e ps: S 1) G e n er ati n g a l a b el e d d at as et D of ( n o n)- dis a g gr e g at a bl e a g gr e g at or s c h e d ul es b y s ol vi n g dis a g gr e g ati o n
f or  m ulti pl e i nst a n c es of e xt er n aliti es ω ; S 2) Tr ai ni n g a c o n v e x q u a dr ati c cl assi fi er t o dis c er n dis a g gr e g at a bl e s c h e d ul es a n d o bt ai ni n g elli ps oi d E D ; S 3) I n n er
a p pr o xi m ati n g E D wit h a p ol yt o p e P D ; S 4) Fi n di n g a  m a xi m u m v ol u m e p ol yt o p e P (x ) f or a p ar a m etri c f or m of x t o i n n er a p pr o xi m at e P D .

t h e a g gr e g at or. It is t h er ef or e f air t o s a y t h at x c a pt ur es t h e
a g gr e g at or fl e xi bilit y.

W hil e d esi g ni n g x , t h e a g gr e g at or t ar g ets t w o g o als:
i)  E ns ur e t h at e v er y p ∈ P (x ) c a n b e a ct u all y i m pl e m e nt e d

b y t h e a v ail a bl e r es o ur c es t o a v oi d p e n alti es; a n d
ii)  M a xi mi z e its fl e xi bilit y  w hil e p arti ci p ati n g i n t h e el e c-

tri cit y  m ar k et.
T h e l att er c a n b e  m e as ur e d b y t h e v ol u m e V (x ) of p ol yt o p e
P (x ).  T h e t as k of  m a xi mi zi n g fl e xi bilit y  w hil e g u ar a nt e ei n g
f e asi bl e dis a g gr e g ati o n is h e n c ef ort h t er m e d o pti m al fl e xi bilit y
d esi g n ( O F D), a n d c a n b e p os e d as t h e o pti mi z ati o n

m a x
x

V (x ) ( 5 a)

s.t o P (x ) ⊆ F ( 5 b)

w h er e F is t h e s et of dis a g gr e g at a bl e p ’s.
It is  w ort h str essi n g t h at i n a d diti o n t o P (x ), a n a g gr e g a-

t or  m a y als o  wis h t o o pti mi z e its bi ds.  T h es e  w o ul d b e t h e
( c o n v e x pi e c e- wis e) li n e ar c osts p er s c h e d uli n g p eri o d t. I n
f a ct, t h e c osts a n d f e asi bl e s et s u b mitt e d t o t h e I S O c a n b e
j oi ntl y o pti mi z e d b y p urs ui n g a str at e gi c i n v est m e nt a p pr o a c h;
s e e [ 1 7 ] a n d r ef er e n c es t h er ei n.  D e p e n di n g o n t h e s et u p, str at e-
gi c i n v est m e nt c a n b e q uit e c h all e n gi n g as it is t y pi c all y p os e d
as a bil e v el pr o gr a m o v er  m ulti pl e  m ar k et s c e n ari os.  T his  w or k
d o es n ot c o nsi d er str at e gi c i n v est m e nt alt h o u g h k n o wi n g P (x )
is a pr er e q uisit e f or d esi g ni n g a n o pti m al bi d di n g str at e g y.
N oti c e als o t h at P (x ) m a y n ot n e c ess aril y b e t h e f e asi bl e s et
s u b mitt e d t o t h e I S O.

Pr o bl e m ( 5 ) e nt ails t w o c h all e n g es: First, c o nstr ai nt (5 b )
is a bstr a ct a n d it is n ot o b vi o us h o w it c a n h a n dl e d. S e c o n d,
fi n di n g V (x ) is h ar d i n g e n er al a n d b e ars n o cl os e d-f or m  m at h-
e m ati c al e x pr essi o n.  T o c o p e  wit h t h e first c h all e n g e,  w e t a k e
a d at a- b as e d a p pr o a c h i n v ol vi n g t h e f o ur st e ps as ill ustr at e d
i n Fi g. 1 :
S 1) C o nstr u ct a l a b el e d d at as et D := { (p n , y n )}

N
n = 1 ,  w h er e

l a b el y n = − 1  w h e n p n i s dis a g gr e g at a bl e; a n d y n = + 1,
ot h er wis e ( S e cti o n III a n d t h e  A p p e n di x).

S 2) Us e d at as et D t o a p pr o xi m at e t h e s et F of dis a g gr e g at-
a bl e s c h e d ul es b y a n elli ps oi d E D ( S e cti o n I V).

S 3) Fi n d a p ol yt o p e P D t h at i n n er a p pr o xi m at es E D t o
ar bitr ar y a c c ur a c y ( S e cti o n V-  A ).

S 4) D esi g n a p ar a m etri c f or m f or x a n d d esi g n it s o t h at
P (x ) ⊆ P D ; s e e S e cti o n V- B .

I nt er esti n gl y, st e p S 4) i ntr o d u c es a v ari a bl e t h at is pr o p or-
ti o n al t o t h e v ol u m e of P (x ).  B y  m a xi mi zi n g t his v ari a bl e,  w e
o b vi at e t h e n e e d of h a n dli n g v ol u m e V (x ) e x pli citl y, a n d t h us,
a d dr ess t h e s e c o n d c h all e n g e. St e ps S 1) – S 4) ar e d eli n e at e d i n
t h e n e xt s e cti o ns.

III.  DA T A G E N E R A T I O N

We c o m m e n c e  wit h st e p S 1) of g e n er ati n g t h e l a b el e d
d at as et D .  N ot e t h at D m a y b e a v ail a bl e t o t h e a g gr e g at or
fr o m hist ori c al d at a, i n  w hi c h c as e, st e p S 1) is n ot n e e d e d.
If hist ori c al d at a ar e n ot a v ail a bl e or i ns uf fi ci e nt i n n u m b ers,
t h e a g gr e g at or c a n g e n er at e tr ai ni n g e x a m pl es b y s a m pli n g p ’s
a n d l a b eli n g t h e m.  T his s e cti o n e x pl ai ns h o w p ’s c a n b e s a m-
pl e d a n d l a b el e d ef fi ci e ntl y.  A gi v e n p is dis a g gr e g at a bl e i n a
d et er mi nisti c s e ns e if t h e dis a g gr e g ati o n t as k pr es e nt e d n e xt
yi el ds a z er o o pti m al o bj e cti v e v al u e:

g (p ; ω ) := mi n
{p d }

p −

D

d = 1

p d ( 6 a)

s.t o p d ∈ F d (ω d ), d = 1 : D ( 6 b)

f or a v e ct or n or m · . H er e D is t h e n u m b er of d e vi c es c o n-
tr oll e d b y t h e a g gr e g at or.  E a c h v e ct or p d c oll e cts t h e dis p at c h
d e cisi o ns f or d e vi c e d a cr oss all ti m es.  T h e f e asi bl e s et F d (ω d )
c a pt ur es t h e o p er ati o n al c o nstr ai nts p d s h o ul d s atisf y, i n cl u d-
i n g f or e x a m pl e t e m p er at ur e li mits f or  T C Ls, a p p ar e nt p o w er
c o nstr ai nts f or P Vs, a n d S o C a n d p o w er li mits f or b att eri es.
E a c h s et F d (ω d ) d e p e n ds o n a v e ct or of e xt er n al p ar a m e-
t ers ω d , s u c h as l o c al a m bi e nt t e m p er at ur e f or  T C Ls, s ol ar
irr a di a n c e f or P Vs, i niti al S o C f or b att eri es a n d  E Vs, a n d
arri v al/ d e p art ur e ti m es f or  E Vs.  L et v e ct or ω c o n c at e n at e all
e xt er n aliti es ω d ’s.  T h e c h all e n g es ar e t h at (6 )  m a y n ot b e
c o n v e x a n d ω is r a n d o m.

If s ets F d (ω d ) ar e c o n v e x i n p d , pr o bl e m (6 ) c a n b e r ef or-
m ul at e d as a c o n v e x pr o gr a m [ 1 8 ].  T h at is t h e c as e f or
i n v ert er-i nt erf a c e d d e vi c es or  T C Ls  wit h a v er a g e  m o d els, a n d
e n er g y st or a g e d e vi c es  wit h o ut i n ef fi ci e n ci es.  O n t h e ot h er
h a n d, t h e o p er ati o n of  T C Ls a n d b att eri es  wit h i n ef fi ci e n ci es
i ntr o d u c e n o n- c o n v e x f e asi bl e s ets i n v ol vi n g bi n ar y v ari a bl es,
w hi c h r e n d er ( 6 ) a  mi x e d-i nt e g er pr o gr a m.  R e g ar dl ess c o n v e x
or n ot, pr o bl e m ( 6 ) is a m e n a bl e t o d e c o m p ositi o n t e c h ni q u es
al o n g d e vi c es si mil arl y t o u nit c o m mit m e nt-t y p e of pr o bl e ms
e n c o u nt er e d i n tr a ns missi o n s yst e ms.
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S c h e d ul e p is dis a g gr e g at a bl e f or t h e p arti c ul ar ω o nl y  w h e n
g (p ; ω ) = 0. Si n c e t h e a g gr e g at or d et er mi n es its fl e xi bilit y i n
a d a y- a h e a d s etti n g, v e ct or ω is u n c ert ai n.  T o a c c o u nt f or t his
u n c ert ai nt y, r at h er t h a n s ol vi n g ( 6 ) f or a si n gl e r e ali z ati o n of ω ,
t h e a g gr e g at or  w o ul d li k e t o d et er mi n e if p is dis a g gr e g at a bl e
wit h hi g h pr o b a bilit y o v er r a n d o m ω .  Verif yi n g t his pr o p ert y
m a y e nt ail s ol vi n g a pr o bl e m  wit h c o m pl e x c h a n c e c o nstr ai nts
o v er a p ossi bl y u n k n o w n pr o b a bilit y distri b uti o n of ω ,  w hi c h
c a n b e c o m p ut ati o n all y i ntr a ct a bl e.

T o arri v e at a pr a cti c al s ol uti o n,  w e r es ort t o a s a m pl e
a p pr o xi m ati o n of t h e pr o b a bilit y of p b ei n g dis a g gr e g at a bl e
o v er u n c ert ai n ω ’s. I n d et ail, s u p p os e t h e a g gr e g at or h as a c c ess
t o a c oll e cti o n of e xt er n alit y s c e n ari os. F or e a c h p , o n e r a n-
d o ml y s a m pl es K = 2 5 e xt er n alit y s c e n ari os a n d s ol v es ( 6 )
f or e a c h o n e of t h e m.  T h e s o u g ht pr o b a bilit y of p b ei n g
dis a g gr e g at a bl e c a n b e a p pr o xi m at e d b y t h e s a m pl e st atisti c

c (p ; K ) =
1

K

K

k = 1

I (g (p ; ω k ) = 0 ) ( 7)

w h er e I is t h e i n di c at or f u n cti o n r et ur ni n g o n e  w h e n
g (p ; ω k ) = 0; a n d z er o, ot h er wis e.  T h e r e as o n t o us e o nl y
t h e s c e n ari os i n K r at h er t h a n all s c e n ari os i n R i s t h at
s ol vi n g ( 6 ) f or R s c e n ari os c a n b e c o m p ut ati o n all y d e m a n d-
i n g.  B as e d o n (7 ),  w e c a n n o w d e fi n e  w h e n a s c h e d ul e is
dis a g gr e g at a bl e i n a pr o b a bilisti c s e ns e.

D e fi niti o n 1: S c h e d ul e p is d e e m e d as dis a g gr e g at a bl e (f e a-
si bl e) if c (p ; K ) ≥ 1 − f or a gi v e n s m all ≥ 0; a n d
n o n- dis a g gr e g at a bl e (i nf e asi bl e), ot h er wis e.

T o r e c a p, d at a g e n er ati o n st e p S 1) i n v ol v es s a m pli n g a
p n a n d l a b eli n g it as f e asi bl e ( dis a g gr e g at a bl e) or n ot p er
D e fi niti o n 1 . I n d et ail, l a b eli n g p n e nt ails dr a wi n g K e xt er-
n alit y s c e n ari os ω k , s ol vi n g t h e dis a g gr e g ati o n pr o bl e m (6 )
i n d e p e n d e ntl y f or e a c h ω k t o c o m p ut e g (p n , ; ω k ), a n d c o m-
p uti n g t h e st atisti c c (p n ; K ) fr o m (7 ).  At t h e e n d, s c h e d ul e
p n i s l a b el e d as f e asi bl e if c (p n ; K ) ≥ 1 − f or s a y = 0 .0 5.

F or t h e cl assi fi c ati o n p ur p os es pr o p os e d i n t h e n e xt s e c-
ti o n, d at as et D s h o ul d b e a p pr o xi m at el y b al a n c e d , t h at is
dis a g gr e g at a bl e (f e asi bl e) a n d n o n- dis a g gr e g at a bl e (i nf e asi bl e)
e x a m pl es p n ’s s h o ul d b e si mil ar i n n u m b ers.  T h e  A p p e n di x
d e v el o ps a  m et h o d t h at g e n er at es ef fi ci e ntl y a r o u g hl y b al-
a n c e d d at as et D .  O ur d at as et D s h o ul d b e a p pr o xi m at el y
b al a n c e d f or t hr e e r e as o ns. First, if a cl assi fi er is tr ai n e d  wit h
a n u n b al a n c e d d at as et, it  m a y b e bi as e d t o w ar ds t h e  m aj orit y
cl ass. If f or i nst a n c e, t h e r ati o of i nf e asi bl e-t o-f e asi bl e e x a m-
pl es is 9 0 % t o 1 0 %, a cl assi fi er pr e di cti n g al w a ys i nf e asi bl e
w o ul d h a v e t h e s e e mi n gl y gr e at pr e di cti o n a c c ur a c y of 9 0 %.
S e c o n d, f e asi bl e e x a m pl es ar e e x p e ct e d t o b e s urr o u n d e d b y
i nf e asi bl e e x a m pl es.  T his is b e c a us e t h e s et of f e asi bl e e x a m-
pl es is a nti ci p at e d t o b e a p pr o xi m at e d  w ell b y a c o n v e x s et as
dis c uss e d i n t h e n e xt s e cti o n.  T h er ef or e, i nf e asi bl e e x a m pl es
l yi n g a w a y fr o m t h e d e cisi o n b o u n d ar y  w o ul d n ot r e all y c o n-
tri b ut e t o s h a pi n g t h e cl assi fi c ati o n r ul e.  T hir d, f or a g e n er al
cl assi fi c ati o n t as k i nt e nti o n all y bi asi n g t h e pr o c ess of s a m-
pli n g e x a m pl es  m a y r ais e c o n c er ns of alt eri n g t h e tr u e d at a
distri b uti o n. S u c h c o n c er ns ar e  w ai v e d i n o ur c as e as  w e d e al
wit h a p ur el y g e o m etri c al pr o bl e m  w h er e o n e  w a nts t o s a m-
pl e p oi nts  wit hi n a n d ar o u n d a n a p pr o xi m at el y c o n v e x s et. If

t h e l o c ati o n of t h e s et is n ot k n o w n a pri ori , o n e  m a y st art
s a m pli n g o v er a si g ni fi c a ntl y  wi d er ar e a, b ut t h e n z o o m i nt o
t h e ar e a of i nt er est.

N ot e b y s ol vi n g ( 6 ) f or a p air (p , ω ), n ot o nl y  w e d e ci d e
w h et h er g (p ; ω k ) is z er o;  w e c a n als o c o m p ut e t h e p oi nt

p̂ (ω ) =

D

d = 1

p̂ d (ω ) ( 8)

w h er e { p̂ d (ω )}D
d = 1 i s t h e  mi ni mi z er of (6 ).  Alt h o u g h s c h e d ul e

p̂ (ω ) c a n b e dis a g gr e g at e d i nt o d e vi c e s c h e d ul es f or t his s p e-
ci fi c ω , it is n ot n e c ess aril y dis a g gr e g at a bl e i n t h e stri ct s e ns e
us e d t hr o u g h o ut t his  w or k as it  m a y n ot s atisf y t h e c h a n c e
pr o b a bilit y of c ( p̂ (ω ); K ) ≥ 1 − . S c h e d ul e p̂ (ω ) will b e
us ef ul i n t h e s a m pli n g pr o c ess d es cri b e d i n t h e  A p p e n di x.

As a fi n al r e m ar k, t h e u n c ert ai nt y s c e n ari os us e d t o pr o d u c e
t h e d at as et ar e ass u m e d t o b e s uf fi ci e ntl y r e pr es e nt ati v e of t h e
a ct u al c o n diti o ns t o b e e x p eri e n c e d b y t h e d e vi c e a g gr e g ati o n
o v er t h e d a y- a h e a d h ori z o n.  Ot h er wis e, t h e c o m p ut e d fl e xi bil-
it y s et c a n b e s u b p ar.  T h at is a n i n h er e nt dif fi c ult y  wit h a n y
d a y- a h e a d s c h e d uli n g t as k ( e. g., pr e di cti n g  wi n d f ar m g e n er-
ati o n i n a d a y- a h e a d  m ar k et), a n d g o es b e y o n d t h e s c o p e of
t his  w or k.  O b vi o usl y, t o a c c o u nt f or i n cr e as e d u n c ert ai nt y, a n
a g gr e g at or c o ul d dr a w ω k ’s fr o m a distri b uti o n of l ar g er v ari-
a n c e, b ut t h at tr a d es s af et y f or c o ns er v ati v e n ess i n d et er mi ni n g
t h e fl e xi bilit y s et.  A n i nt er esti n g o p e n q u esti o n is e n d o wi n g
t h e f e asi bl e s et P (x ) wit h pr o b a bilisti c g u ar a nt e es, s o t h at e a c h
x c o m es  wit h a c o n fi d e n c e i nt er v al q u a ntif yi n g t h e c h a n c es of
it b ei n g i nf e asi bl e.  H er e  w e c o nsi d er t h e e asi er pr o bl e m of
fi n di n g a d et er mi nisti c P (x ).

I V.  L E A R N I N G F E A S I B L E A G G R E G A T I O N S F R O M D A T A

T his s e cti o n us es d at as et D t o a p pr o xi m at e F usi n g a c o n-
v e x q u a dr ati c cl assi fi er.  R e c e nt r es e ar c h s h o ws t h at a g gr e g a-
ti o ns of l ar g e n u m b er of d e vi c es  wit h i n di vi d u all y n o n- c o n v e x
f e asi bl e s ets c a n b e cl os el y a p pr o xi m at e d b y a c o n v e x s et;
s e e e. g., [ 9 ] a n d r ef er e n c es t h er ei n.  H o w e v er, e v e n if F is
n o n- c o n v e x, a n I S O  w o ul d o nl y a c c e pt p ol yt o pi c d es cri pti o ns
f or t h e f e asi bl e s et of a n a g gr e g at or t o e as e its s c h e d uli n g
o p er ati o ns; s e e [ 1 ], [9 ].  T h er ef or e, d esi g ni n g a c o n v e x cl as-
si fi er as a first st e p t o b est c a pt ur e F is r e as o n a bl e.  D u e
t o t h e pr es e n c e of u n c ert ai n e xt er n aliti es ω a n d t h e p ossi bl y
n o n- c o n v e x n at ur e of F d ’s, c o m p uti n g a n e x pli cit e x pr es-
si o n f or F is a f or mi d a bl e t as k.  N o n et h el ess,  w e c a n us e
d at a t o a p pr o xi m at e F wit h a c o n v e x s et ˆF . S et ˆF c a n b e
e x pr ess e d as t h e 0-s u bl e v el s et of a c o n v e x f u n cti o n d (p ) as
ˆF := { p : d (p ) ≤ 0 }. F u n cti o n d (p ) a cts as a cl assi fi er t o

d e ci d e if p is dis a g gr e g at a bl e (d (p ) ≤ 0 ) or n ot (d (p ) > 0 ).
Pri or t o l e ar ni n g d (p ) fr o m D , t h e a g gr e g at or n e e ds t o

c h o os e a f u n cti o n al f or m f or d (p ).  A li n e ar cl assi fi er of t h e
f or m d (p ) = w 1 p + w 0 i s t h e si m pl est o pti o n, b ut  m a y h a v e
li mit e d r e pr es e nt ati o n c a p a biliti es.  A  m or e c o m pl e x cl assi fi er
w o ul d b e a c o n v e x q u a dr ati c f u n cti o n. S u c h cl assi fi er h as b e e n
s h o w n t o b e eff e cti v e f or c a pt uri n g c h a n c e c o nstr ai nts [ 1 9 ],
w hi c h  m oti v at e d us t o c h os e t h e s a m e o pti o n as t h e s et F t h at
w e ar e tr yi n g t o c a pt ur e h er e is t h e f e asi bl e s et of a c h a n c e
c o nstr ai nt o n p as  w ell.  W hil e t h er e  m a y b e  m or e s o p histi-
c at e d o pti o ns, s u c h as  m ulti-li n e ar a n d n e ur al n et w or k- b as e d
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cl assi fi ers, t h e y ar e l eft f or f ut ur e r es e ar c h.  We pr o c e e d  wit h
tr ai ni n g t h e c o n v e x q u a dr ati c cl assi fi er

d (p ) := p W 2 p + w 1 p + w 0 ( 9)

w h er e W 2 0 is a s y m m etri c p ositi v e s e mi d e fi nit e  m atri x.
T h e cl assi fi er is li n e ar i n (W 2 , w 1 , w 0 ) a n d c o n v e x q u a dr ati c
i n p . It a p pr o xi m at es F b y t h e elli ps oi d

E D := p : p W 2 p + w 1 p + w 0 ≤ 0 . ( 1 0)

T h e cl assi fi er p ar a m et ers c a n b e l e ar n e d fr o m d at as et D b y
s ol vi n g t h e o pti mi z ati o n

mi n
1

N

N

n = 1

1 − y n d (p n ) +
+ λ W 2

2
F + w 1

2
2 ( 1 1 a)

o v er W 2 0 , w 1 , w 0 ( 1 1 b)

w h er e [ x ]+ := m a x (0 , x ).  A n i d e al cl assi fi er s h o ul d yi el d
d (p n ) < 0 if y n = − 1 (f e asi bl e p n ); a n d d (p n ) ≥ 0 if
y n = + 1 (i nf e asi bl e p n ). I n ot h er  w or ds, a n i d e al cl assi fi er
s h o ul d s atisf y y n d (p n ) ≥ 0 f or all n .  T h er ef or e, a cl assi fi er
s h o ul d b e i d e all y tr ai n e d u p o n  mi ni mi zi n g t h e l oss f u n cti o n

N
n = 1 [ 1 − s g n (y n d (p n ))],  w h er e s g n r et ur ns 1 f or a p osi-

ti v e ar g u m e nt; a n d 0, ot h er wis e.  U nf ort u n at el y, f u n cti o n s g n
is dis c o nti n u o us, a n d t h us, h ar d t o  mi ni mi z e.  T h e st a n d ar d
a p pr o a c h i n cl assi fi c ati o n is t o s urr o g at e t h e af or es ai d l oss
f u n cti o n  wit h t h e s o-t er m e d hi n g e l oss [ 1 − y n d (p n )]+ ,  w hi c h
is c o n v e x; s e e [2 0 , Fi g. 7. 5] f or d et ails.  T o a v oi d o v er fitti n g,
t h e tr ai ni n g pr o bl e m  w o ul d t y pi c all y p e n ali z e l ar g e v al u es f or
t h e cl assi fi er  w ei g hts i n t h e ell 2 - n or m e x cl u di n g t h e i nt er c e pt
w 0 ; s e e [2 0 ,  C h. 7]. P ar a m et er λ > 0 b al a n c es t h e tr a d e- off
b et w e e n t h e hi n g e cl assi fi c ati o n c ost a n d t h e r e g ul ari z ati o n
t er ms; a n d  w as t u n e d usi n g cr oss- v ali d ati o n. Pr o bl e m (1 1 ) c a n
b e r ef or m ul at e d t o a s e mi d e fi nit e pr o gr a m ( S D P).

N ot e t h at E D s er v es o nl y as a s urr o g at e f or F , a n d c a n n ot
b e cl ai m e d t o b e a n i n n er or o ut er a p pr o xi m ati o n of F . T his
is b e c a us e F m a y b e n o n- c o n v e x,  w hil e E D h as b e e n l e ar n e d
fr o m d at a a n d usi n g t h e s a m pl e a p pr o xi m ati o n i n (7 ).  We n e xt
e x pl ai n h o w a n i n n er p ol yt o pi c a p pr o xi m ati o n of E D c a n b e
us e d t o a p pr o xi m at e P (x ) ⊆ F i n (5 b ).

V.  O F  D A S C O N T A I N M E N T  O F P O L Y T O P E S

Si n c e E D s urr o g at es s et F , t h e c o nstr ai nt P (x ) ⊆ F i n (5 b )
c a n b e a p pr o xi m at e d b y

P (x ) ⊆ E D or  m a x
p :G p ≤ x

d (p ) ≤ 0 . ( 1 2)

Pr o bl e m ( 1 2 ) i n v ol v es  m a xi mi zi n g a c o n v e x q u a dr ati c f u n c-
ti o n o v er a p ol yt o p e.  T o b y p ass t his n o n- c o n v e xit y iss u e,  w e
pr o c e e d i n t w o st e ps: First fi n d a p ol yt o p e P D t h at is i ns cri b e d
i n E D , a n d t h e n d esi g n x s o t h at P (x ) ⊂ P D ⊂ E D .

A.  P ol yt o pi c I n n er  A p pr o xi m ati o n of a n  Elli ps oi d

We first a d o pt t h e a p pr o a c h of [ 2 1 ], [2 2 ], a c c or di n g t o  w hi c h
t h e elli ps oi d E r

T := { y ∈ R T : y 2 ≤ r } is a p pr o xi m at e d b y a
p ol yt o p e P δ

T wit hi n a c c ur a c y δ i n t h e s e ns e

E
r /( 1 + δ )
T ⊂ P δ

T ⊂ E r
T . ( 1 3)

P ol yt o p e P δ
T i s d e fi n e d o v er t h e ori gi n al v ari a bl es y a n d a

v e ct or of a u xili ar y v ari a bl es q as

P δ
T := y : E 1 y + E 2 q ≤ d̄ f or s o m e q .

T h e  w a y (E 1 , E 2 , d̄ ) ar e d et er mi n e d is s u m m ari z e d i n [ 2 3 ].
T h e n u m b er of a u xili ar y v ari a bl es i n q a n d t h e n u m b er of
li n e ar c o nstr ai nts i n P δ

T s c al e l o g arit h mi c all y  wit h δ .
Elli ps oi d E D i n (1 0 ) c a n b e c o n v ert e d t o f or m E r

T b y s etti n g

y := W
1 / 2
2 p + W

− 1 / 2
2 w 1 a n d r := w 1 W − 1

2 w 1 − w 0

w h er e W
1 / 2
2 i s t h e  m atri x s q u ar e r o ot of W 2 .  T h e n, elli ps oi d

E D c a n b e i n n er a p pr o xi m at e d b y t h e p ol yt o p e

P D = p : E 1 W
1 / 2
2 p + W

− 1 / 2
2 w 1 + E 2 q ≤ d̄ f or a q .

I n  w or ds, a p oi nt p b el o n gs t o P D if t h er e e xists a q s atisf yi n g
t h e af or es ai d li n e ar i n e q u aliti es. I n ess e n c e, p ol yt o p e P D i s
t h e pr oj e cti o n of a p ol yt o p e i n (p , q ) o nt o t h e s p a c e of t h e
v ari a bl es p al o n e.  B e c a us e s u c h r e pr es e nt ati o n of P D i s n ot
c o n v e ni e nt f or f ut ur e d e v el o p m e nts,  w e n e xt eli mi n at e q . T his
pr oj e cti o n o p er ati o n is i n g e n er al c o m p ut ati o n all y h ar d gi v e n
t h e p ol yt o p e i n (p , q ) is d es cri b e d i n its v ert e x r e pr es e nt ati o n.
N e v ert h el ess, f or  m o d er at e l e n gt hs of p a n d q , o n e c a n us e t h e
F o uri er- M ot z ki n al g orit h m [ 2 4 ].  T his al g orit h m eli mi n at es q
b y g e n er ati n g a d diti o n al li n e ar c o nstr ai nts o n p .  T h e pr oj e cti o n
is e x a ct i n t h e s e ns e t h at o n e e v e nt u all y g ets t h e n e xt e q ui v al e nt
r e pr es e nt ati o n of P D f or gi v e n (E , d ):

P D = {p : E p ≤ d }. ( 1 4)

B.  R ef or m ul ati n g  O F D  Usi n g  F ar k as’ L e m m a

H a vi n g f o u n d a c o n v e ni e nt r e pr es e nt ati o n f or P D ,  w e c a n
n o w a p pr o xi m at e t h e  O F D pr o bl e m i n ( 5 ) as

m a x
x

V (x ) ( 1 5 a)

s.t o P (x ) ⊆ P D . ( 1 5 b)

R e c all V (x ) is t h e v ol u m e of P (x ).  We h a n dl e c o nstr ai nt (1 5 b )
u p o n i n v o ki n g a v ersi o n of F ar k as’ l e m m a o n t h e c o nt ai n m e nt
of p ol yt o p es as pr es e nt e d i n [ 2 5 ], [2 6 ].

L e m m a 1 ( F ar k as’ L e m m a): C o nsi d er t w o n o n- e m pt y p ol y-
h e dr a P (x ) = { p : G p ≤ x } a n d P D := { p : E p ≤ d }. It h ol ds
t h at P (x ) ⊆ P D if a n d o nl y if t h er e e xists  m atri x F ≥ 0
s atisf yi n g F G = E a n d F x ≤ d .

Usi n g  L e m m a 1 , pr o bl e m (1 5 a ) c a n b e r ef or m ul at e d as

m a x
x ,F ≥ 0

V (x ) ( 1 6 a)

s.t o F G = E ( 1 6 b)

F x ≤ d . ( 1 6 c)

D u e t o t h e pr o d u ct F x , pr o bl e m (1 6 ) r e m ai ns n o n- c o n v e x,
w hil e  w e still l a c k a g o o d c h oi c e f or V (x ).

T o r es ol v e t h es e t w o iss u es,  w e r es ort t o a r estri cti o n of ( 1 6 ).
We p ar a m et eri z e t h e s o u g ht v e ct or x as

x =
1

β
( x̄ − G z ) ( 1 7)
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Fi g. 2.  T h e n o n- c o n v e x ori gi n al s et F ; t h e elli ps oi d E D b ei n g a d at a-
b as e d esti m at e of F ; s et P D is t h e i n n er p ol yt o pi c a p pr o xi m ati o n of E D ;
t h e pr ot ot y p e p ol yt o p e P ( x̄ ); a n d t h e s ol uti o n p ol yt o p e P (x ∗ ).  N oti c e t h at
s ets P (x ) ⊆ P D a n d P D ⊂ E D ar e e ns ur e d t o b e c o nt ai n e d i n F ,  w h er e as
E D a n d c o ns e q u e ntl y P ( x̄ ) m a y n ot.  T his is b e c a us e t h e elli ps oi d E D is
c o nstr u ct e d vi a l e ar ni n g fr o m l a b el e d d at a ( cl assi fi c ati o n).

w h er e z a n d β > 0 ar e t o b e d esi g n e d,  w h er e as x̄ i s gi v e n.
A p p ar e ntl y, t h e p ar a m et eri z ati o n  w o ul d h a v e b e e n i n c o ns e-
q u e nti al h a d x̄ b e e n l eft fr e e.  B ut t h e n t h e i n h er e nt c o m p ut a-
ti o n al c o m pl e xit y  w o ul d r e m ai n. F or t his r e as o n, p ar a m et er x̄
( s er vi n g as t h e ‘ c e nt er’ of t h e p ol yt o p e) is fi x e d t o s o m e pri or
g u ess a n d x is c o n fi n e d t o li e i n t h e af fi n e s et x̄ − G z s c al e d
b y β f or (z , β ) t o b e f o u n d.

T h a n ks t o t his f or m, c o nstr ai nt ( 1 6 c ) c a n b e  writt e n as

1

β
F ( x̄ − G z ) ≤ d ⇔ F x̄ ≤ F G z + β d = E z + β d

usi n g t h e k e y o bs er v ati o n t h at F G = E fr o m (1 6 b ).
T o b ett er u n d erst a n d t h e pr o p os e d r estri cti o n, c o nsi d er p ol y-

t o p e P ( x̄ ) := { p : G p ≤ x̄ }.  E vi d e ntl y u n d er t h e r estri cti o n
of ( 1 7 ), if p̄ ∈ P ( x̄ ), t h e n p := ( p̄ − z ) / β ∈ P (x ). T his
m e a ns t h at if  w e t a k e a n y p oi nt i n P ( x̄ ), s hift it b y − z , a n d
s c al e it b y 1 / β ,  w e o bt ai n P (x ). I n ot h er  w or ds, t h e p ol y-
t o p e P (x ) is s el e ct e d t o b e a s hift e d a n d s c al e d v ersi o n of
t h e ‘ pr ot ot y p e’ p ol yt o p e P ( x̄ ); s e e als o Fi g. 2 . T h e s h a p e of
t h e pr ot ot y p e p ol yt o p e d e p e n ds o n x̄ ,  w hil e its s hifti n g a n d
s c ali n g p ar a m et ers c a n b e o pti m all y s el e ct e d.

A d o pti n g t h e r estri cti o n of ( 1 7 ) si m pli fi es t h e t as k of d e ali n g
wit h v ol u m e V (x ).  B e c a us e P (x ) ⊂ R T i s a s hift e d a n d s c al e d
r e pli c a of P ( x̄ ) ⊂ R T , it h ol ds t h at

V (x ) = V ( x̄ ) / β T ( 1 8)

w h er e V ( x̄ ) i s t h e fi x e d v ol u m e of P ( x̄ ).  C o ns e q u e ntl y,
u n d er ( 1 7 ), pr o bl e m (1 6 ) si m pli fi es t o t h e li n e ar pr o gr a m

F ∗ , z ∗ , β ∗ ∈ ar g  mi n
F ≥ 0 ,z , β ≥ 0

β ( 1 9 a)

s.t o F G = E ( 1 9 b)

F x̄ ≤ E z + β d . ( 1 9 c)

T h e fi n al a ns w er t o t h e  O F D pr o bl e m is t h e a g gr e g at or
m o d el G p ≤ x ∗ wit h

x ∗ =
1

β ∗
x̄ − G z ∗ ( 2 0)

T A B L E I
T R A I N I N G R E S U L T S

Fi n all y, f or t h e p ar a m et eri z ati o n i n ( 1 7 ),  w e n e e d a s uit a bl e
c h oi c e f or x̄ .  O n e h e uristi c  w o ul d b e t o fi n d x̄ a s t h e  mi ni m u m-
n or m x f or  w hi c h P ( x̄ ) c o nt ai ns all dis a g gr e g at a bl e s c h e d ul es
i n d at as et D b y s ol vi n g

x̄ = ar g  mi n
x

x 2
2 ( 2 1 a)

s.t o G p n ≤ x , ∀ p n ∈ D wit h y n = − 1 . ( 2 1 b)

H e e d t h at P ( x̄ ) f or t h e af or es ai d c h oi c e of x̄ d o es c o nt ai n all
f e asi bl e p oi nts i n D , b ut it  m a y n ot li e i nsi d e P D a n d  m a y
c o nt ai n i nf e asi bl e p oi nts t o o as ill ustr at e d i n Fi g. 2 .  Ta bl e I
s u m m ari z es t h e st e ps of t h e pr o p os e d  O F D a p pr o a c h.

VI.  N U M E R I C A L T E S T S

A. Si m pl e Ill ustr ati v e  E x a m pl e

T h e pr o p os e d  m et h o d ol o g y  w as first e v al u at e d u n d er a s y n-
t h eti c s et u p,  w hi c h h as b e e n o v ersi m pli fi e d f or t h e p ur p os es
of vis u ali z ati o n a n d dr a wi n g i nt uiti o n.  T his s et u p i n v ol v es
o nl y T = 2 c o ntr ol p eri o ds,  w hil e e xt er n aliti es ar e d et er mi n-
isti c.  M or e o v er, t h e a ct u al f e asi bl e s et F of dis a g gr e g at a bl e
s c h e d ul es is c o n v e x. It i n f a ct  m at c h es t h e a g gr e g at or  m o d el
P (x ) := { p : G p ≤ x } p ost ul at e d b y t h e I S O i n ( 2 ).  T h e a ct u al
x c a n b e c o m p ut e d fr o m ( 3 ) b y s etti n g

p = − p = s = 1 2 , s = 0 2 , s 0 = 0 .5 , a n d α = − α = 1 .

T h e f e asi bl e s et F is s h o w n i n Fi g. 3 a.  N ot e t h at o ut of t h e
6 T − 2 = 1 0 li n e ar i n e q u aliti es i n P (x ), o nl y 6 ar e bi n di n g f or
t h e p arti c ul ar x .  Of c o urs e, t h e a g gr e g at or d o es n ot k n o w t h at
F is a ct u all y P (x ). It c a n o nl y dr a w p oi nts p ∈ R 2 a n d t est
w h et h er t h e y ar e dis a g gr e g at a bl e.  T h e g o al f or t h e a g gr e g at or
is t o fit P (x ) o nt o d at a b y fi n di n g x t o  m a xi mi z e its fl e xi bilit y.

We first f oll o w e d t h e pr o c ess d es cri b e d i n S e cti o n III a n d
t h e  A p p e n di x t o g e n er at e a d at as et D of N = 5 0 0 p oi nts s h o w n
i n Fi g. 3 b.  We s et p ar a m et er κ = 0 .2; s e e t h e  A p p e n di x f or
d et ails.  O bs er v e t h er e ar e p airs of (i n-)f e asi bl e p oi nts l yi n g
cl os e t o t h e b o u n d ar y of F ; i nf e asi bl e p oi nts a w a y fr o m t h e
b o u n d ar y of F ; a n d f e asi bl e p oi nts o n t h e i nt eri or of F . We
t h e n tr ai n e d a cl assi fi er p er (1 1 )  wit h λ = 1 0 − 5 .  T h e o bt ai n e d
elli ps oi d E D i s als o s h o w n o n Fi g. 3 b.  Elli ps oi d E D cl os el y
a p pr o xi m at es F as it a c hi e v es 9 9 .6 8 % a c c ur a c y o n t h e tr ai ni n g
d at a.  We n e xt f oll o w e d t h e st e ps of S e cti o n V-  A wit h δ = 0 .1
a n d first o bt ai n e d t h e p ol yt o p e P D ⊂ E D wit h q ∈ R 2 a n d
t h e n us e d t h e F o uri er- M ot z ki n al g orit h m t o c o n v ert P D t o t h e
f or m of (1 4 ).  We s u bs e q u e ntl y r a n  Al g orit h m 1 a n d o bt ai n e d
t h e s ol uti o n p ol yt o p e P (x ∗ ).  T h e c o nt ai n m e nt of P (x ∗ ) i n P D

i s d e pi ct e d i n Fi g. 3 c.  T his fi g ur e s h o ws t h at t h e r e c o v er e d
p ol yt o p e P (x ∗ ) is v er y cl os e t o t h e ori gi n al f e asi bl e s et F .
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Fi g. 3. ( a) T h e f e asi bl e s et F of a n a g gr e g at or  m at c h es  wit h t h e  m o d el G p ≤ x of ( 2 ) p ost ul at e d b y t h e I S O. ( b) We s a m pl e d N = 5 0 0 l a b el e d d at a p oi nts
(s c h e d ul es) t o tr ai n a c o n v e x q u a dr ati c cl assi fi er a n d o bt ai n e d elli ps oi d E D . ( c) I n n er p ol yt o pi c a p pr o xi m ati o n P D of E D , a n d t h e fi n al s ol uti o n P (x ∗ ).
( d) O pti m al s ol uti o n P (x ∗

r ) if t h e I S O si m pli fi es t h e  m o d el G p ≤ x t o a c c o u nt o nl y f or b o x c o nstr ai nts a n d i g n or e a n y ti m e c o u pli n g.  N oti c e t h at P (x ∗ ) h as
a  m u c h l ar g er v ol u m e t h a n P (x ∗

r ),  w hi c h i n di c at es t h e i m p ort a n c e of  m or e el a b or at e a g gr e g at or  m o d els i n  O F D.

Al g o rit h m 1 O pti m al Fl e xi bilit y  D esi g n ( O F D)

I n p ut: D at as et of ( dis)- a g gr e g at a bl e s c h e d ul es D .
O ut p ut: M a xi m u m- v ol u m e p ol yt o p e P (x ∗ ).

1: Tr ai n q u a dr ati c cl assi fi er d (p ) t o fi n d elli ps oi d E D b y
s ol vi n g ( 1 1 ).

2: Fi n d p ol yt o p e P D ⊂ E D i n t h e (p , q ) r e pr es e nt ati o n as
d es cri b e d i n [ 2 3 ].

3: C o n v ert P D i n t h e f or m of (1 4 ) vi a t h e F o uri er- M ot z ki n
al g orit h m.

4: C o m p ut e x̄ b y s ol vi n g ( 2 1 ).
5: S ol v e ( 1 9 ) a n d c o m p ut e t h e o pti m al x ∗ fr o m (1 7 ).

Pr e vi o us  w or ks c o nsi d er e d o nl y t h e l o w er/ u p p er p o w er
li mits i n (1 a ) [1 8 ].  B y i g n ori n g r a m pi n g a n d S o C li mits,
t h e y h a v e p ost ul at e d a si m pl er a g gr e g at or  m o d el.  T o d e m o n-
str at e t h e eff e ct of si m pl er a g gr e g at or  m o d els,  w e s ol v e d ( 1 9 )
a g ai n b ut t his ti m e  wit h tri e d t o fi n d a p ol yt o p e d e fi n e d b y
t h e si m pl er G = [I − I ] yi el di n g a h y p er-r e ct a n gl e.
Fi g ur e 3 d ill ustr at es t h e r es ults f or t his t est.  T h e v ol u m e
of P (x ∗

r ) i s  m u c h s m all er t h a n t h e v ol u m e of t h e p ol yt o p e
P (x ∗ ) d e pi ct e d i n Fi g. 3 c.  T his d e m o nstr at es t h e i m p ort a n c e
of c o nsi d eri n g ti m e- c o u pli n g a n d its eff e ct o n t h e t ot al v ol u m e
r e c o v er e d.

B.  A  M or e  R e alisti c  A g gr e g at or  M o d el

We als o t est e d a  m or e r e alisti c s etti n g of a n a g gr e g at or c o n-
tr olli n g 2 0 0 l o a ds d es cri b e d b y n o n- c o n v e x  m o d els s u bj e ct
t o r a n d o m e xt er n aliti es.  T his a g gr e g at or c o ntr ols P Vs, b att er-
i es,  E Vs, a n d  T C Ls, 5 0 of e a c h t y p e.  Alt h o u g h t h e  m ar k et
is r a n o n a n h o url y b asis i n d e x e d b y t = 1 , . . . , T , l o a ds ar e
c o ntr oll e d at a fi n er ti m es c al e of 1 5- mi n i nt er v als i n d e x e d b y
τ = 1 , . . . , 4 T .  T his is pr a cti c al f or d e vi c es s u c h as  T C Ls a n d
P Vs. If d

τ d e n ot es t h e k W l o a d c o ns u m e d b y d e vi c e d d uri n g
t h e 1 5- mi n i nt er v al τ , t h e k W l o a d f or t his d e vi c e o v er h o ur
t is

p d
t =

1

4

4

k = 1

d
4 (t− 1 )+ k .

We n e xt d es cri b e t h e  m o d els l o a ds d
τ s h o ul d s atisf y f or e a c h

t y p e of l o a ds.  T h es e  m o d els d et er mi n e t h e d e vi c e f e asi bl e s ets
F d (ω d ) i n (6 ).  T o k e e p t h e n ot ati o n u n cl utt er e d,  w e  will dr o p
s u p ers cri pt d .

P h ot o v olt ai cs w er e  m o d el e d as n e g ati v e l o a ds as

− r τ p̄ ≤ τ ≤ 0 , τ = 1 : 4 T

w h er e p̄ i s t h e P V c a p a cit y a n d r τ t h e e x p e ct e d s ol ar irr a di-
a n c e at i nt er v al τ . P V c a p a citi es  w er e r a n d o ml y s a m pl e d fr o m
r e al d at a fr o m S o ut h er n  C alif or ni a  E dis o n ( S C E) [2 7 ]. S ol ar
irr a di a n c e pr o fil es r τ ar e t h e r a n d o m e xt er n aliti es f or P Vs.  T o
g e n er at e t h e m,  w e us e d 1- mi n irr a di a n c e d at a fr o m [ 2 8 ], p er-
t ur b e d t h e m b y ± 1 0 %  wit h a n or m al distri b uti o n, a n d a v er a g e d
t h e m o v er 1 5- mi n i nt er v als.

B att eri es: We us e d a  m o d el  wit h c h ar gi n g/ dis c h ar gi n g
i n ef fi ci e n ci es d es cri b e d b el o w f or τ = 1 . . . , 4 T :

τ = +
τ − −

τ , 0 ≤ +
τ ≤ b τ p̄ , 0 ≤ −

τ ≤ (1 − b τ ) p̄

s τ = s 0 +
1

4

τ

k = 1

0 .9 +
k − 1 .1 −

k , 0 ≤ s τ ≤ ¯ s

w h er e ( +
τ , −

τ ) ar e t h e ( dis)- c h ar gi n g p o w ers d uri n g i nt er v al τ ,
a n d bi n ar y v ari a bl e b τ i n di c at es  w h et h er t his b att er y is c h ar g-
i n g or dis c h ar gi n g.  T h e bi n ar y v ari a bl e is n e e d e d t o pr o p erl y
c a pt ur e i n ef fi ci e n ci es.  Q u a ntiti es ( p̄ , s̄ ) ar e t h e li mits o n p o w er
a n d S o C o bt ai n e d als o fr o m S C E d at a [ 2 7 ].  T h e i niti al S o C s 0

i s t h e r a n d o m e xt er n alit y f or b att eri es a n d  w as dr a w n i n d e p e n-
d e ntl y a n d u nif or ml y at r a n d o m  wit hi n [ 0 , s̄ ].  T h e 1/ 4 t er m i n
fr o nt of t h e s u m a c c o u nts f or t h e 1 5- mi n i nt er v als.

El e ctri c v e hi cl es w er e  m o d el e d si mil arl y t o b att eri es  wit h
t h e a d diti o n al c o nstr ai nts t h at ( τ , +

τ , −
τ ) ar e z er o f or

i nt er v als τ t h e  E V is n ot a v ail a bl e.  T h e ass u m pti o n h er e is
t h at  E Vs c o m e a n d p ar k at b usi n ess l o c ati o ns.  U p o n arri v al,
e a c h  E V s p e ci fi es a d e p art ur e ti m e a n d t h e n e e d e d S o C
u p o n d e p art ur e.  B as e d o n t h e  m ost c o m m o n  E V  m o d els i n
t h e  U. S  m ar k et,  w e c h os e k W c a p a citi es fr o m t h e s et p̄ ∈
{1 1 , 1 6 .5 , 1 8 , 1 9 .2 , 2 0 , 2 1 .1 , 2 2 } k W, a n d k W h c a p a citi es fr o m
t h e s et s̄ ∈ { 4 2 , 6 0 , 7 0 , 7 5 , 8 5 , 9 0 , 1 0 0 } k W h.  Arri v al/ d e p art ur e
ti m es ar e u n c ert ai nti es a n d  w er e g e n er at e d b y s a m pli n g i n d e-
p e n d e ntl y fr o m a tr u n c at e d  G a ussi a n distri b uti o n b et w e e n
9- 1 0  A M a n d 4- 5 P M, r es p e cti v el y.  T h e r e q u est e d S o C u p o n
d e p art ur e is als o a n ot h er r a n d o m e xt er n alit y a n d  w as dr a w n
u nif or ml y b et w e e n t h e S o C u p o n arri v al a n d t h e S o C c a p a cit y
of e a c h v e hi cl e.

T h er m ost ati c all y c o ntr oll e d l o a ds o b e y e d t h e dis cr et e-ti m e
m o d el ass u mi n g o p er ati o n u n d er t h e c o oli n g  m o d e [ 6 ]:

0 ≤ τ ≤ b τ p̄ , θs − 0 .5 ≤ θ τ ≤ θ s + 0 .5

A ut h ori z e d li c e n s e d u s e li mit e d t o: t o I E E E x pl or e pr o vi d e d b y U ni v er sit y Li br ari e s | Vir gi ni a T e c h. D o w nl o a d e d o n J ul y 2 6, 2 0 2 3 at 1 8: 5 0: 2 7 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Fi g. 4. L eft: S a m pl e d l a b el e d p oi nts of t h e r e alisti c a g gr e g at or a n d t h e tr ai n e d
c o n v e x q u a dr ati c cl assi fi er a n d r es ulti n g elli ps oi d E D f or T = 2. Ri g ht: I n n er
p ol yt o pi c a p pr o xi m ati o n P D of E D , a n d t h e fi n al s ol uti o n P (x ∗ ).

θ τ + 1 = θ τ −
1

4 C

τ

l= 1

P l −
θ a
l

R
.

H er e bi n ar y v ari a bl e b τ i n di c at es  w h et h er t h e  T C L is o n, p̄ i s
t h e fi x e d p o w er c o ns u m e d  w h e n t h e  T C L is o n,  w hil e θ τ a n d
θ a
τ ar e r es p e cti v el y t h e h o us e a n d pr e di ct e d a m bi e nt t e m p er a-

t ur es i n  C el ci us at ti m e τ . P ar a m et ers (C , P , R ) ar e t h e t h er m al
c a p a cit a n c e, r esist a n c e, a n d p o w er tr a nsf er of t h e h o us e.  T h e y
w er e dr a w n u nif or ml y at r a n d o m fr o m [ 1 .5 , 2 .5], [ 3 , 5], a n d
[ 1 5, 3 0], r es p e cti v el y.  T h e t e m p er at ur e s et p oi nt θ s w as dr a w n
u nif or ml y at r a n d o m fr o m [ 2 4 , 2 6].

D at a g e n er ati o n: T o g e n er at e t h e tr ai ni n g d at as et D , w e
s ol v e d t h e dis a g gr e g ati o n pr o bl e m i n ( 6 ) f or T = 8 c o ntr ol
p eri o ds usi n g t h e 1 - n or m i n t h e o bj e cti v e t o arri v e at a n  MI L P.
We f oll o w e d t h e st e ps e x pl ai n e d i n t h e  A p p e n di x  wit h K = 2 5
s c e n ari os of r a n d o m e xt er n aliti es a n d κ = 0 .2.  T h e v al u e of
K = 2 5  m a y s e e m r el ati v el y s m all gr a nt e d t h e di m e nsi o n of ω k

i n cr e as es  wit h t h e n u m b er of d e vi c es D .  N o n et h el ess, s e v er al
e ntri es of ω k m a y b e c orr el at e d d u e t o p att er ns i n d e vi c e a n d
s ol ar pr o fil es.  E v e n f or t h e u n c orr el at e d e ntri es of ω k ( e. g.,
arri v al/ d e p art ur e ti m es a n d S o C f or el e ctri c v e hi cl es), o n e  m a y
n ot n e e d t o s a m pl e a l ar g e n u m b er of u n c ert ai nt y s c e n ari os K
t h a n ks t o a n er g o di cit y ar g u m e nt: S u p p os e  w e ar e i nt er est e d
i n a p arti c ul ar u n c ert ai nt y s c e n ari o ω d = ω̄ f or s o m e d e vi c e
d . Pr o bl e m (6 ) is i n v ari a nt o n  w h et h er s c e n ari o ω̄ a p p e ars
f or d e vi c e d or s o m e ot h er d e vi c e d . As D i n cr e as es, t h e
c h a n c es of e x p eri e n ci n g a s c e n ari o ω̄ i n cr e as e, a n d t h us, t h er e
is n o n e e d f or s a m pli n g  m a n y ω k ’s i n (7 ).  N ot e als o t h at o ur
m et h o d is i n d e p e n d e nt of t h e d at a g e n er ati o n st e p,  w hi c h i n
f a ct c o ul d b e s ki p p e d if a n a g gr e g at or h as hist ori c al d at a. If
n ot, t h e a g gr e g at or c o ul d h a n dl e ( 6 )-(7 )  m or e ef fi ci e ntl y t h a n
w e di d h er e, e. g., b y p ar all eli zi n g t h e K MI L Ps n e e d e d i n ( 7 ),
usi n g s p e ci ali z e d al g orit h ms e x pl oiti n g t h e u nit c o m mit m e nt-
t y p e n at ur e of (6 ), a n d  m o vi n g c o m p ut ati o ns o n t h e cl o u d.

We first t est e d t h e c as e of T = 2 t o vis u ali z e h o w t h e
pr o p os e d  O F D p erf or ms  wit h r e alisti c d at a.  H o w e v er, T = 2
is li miti n g f or c o ntr ol of  E Vs a n d f or t his r e as o n  E Vs  w er e
r e m o v e d fr o m t his p arti c ul ar t est.  We tri e d s ol vi n g t h e  O F D
f or pr o b a bilit y of i nf e asi bilit y = 0 .0 4,  w hi c h r es ult e d i n a
d at as et  wit h N = 5 0 0 p oi nts ( 2 0 0 f e asi bl e a n d 3 0 0 i nf e asi bl e
o n es).  T his d at as et a n d t h e o bt ai n e d elli ps oi d E D ar e s h o w n
i n Fi g ur e 4 (l eft).  T h e o bt ai n e d cl assi fi er h a d a tr ai ni n g a c c u-
r a c y of 9 4.6 8 % a n d a v ali d ati o n a c c ur a c y of 9 3 .7 6 %. Fi g ur e 4
(ri g ht) s h o ws t h e i n n er p ol yt o pi c a p pr o xi m ati o n P D of E D , a n d

T A B L E II
R E S U L T S  O N O P T I M A L F L E X I B I L I T Y D E S I G N ( O F D)

t h e fi n al s ol uti o n P (x ∗ ),  w hi c h d e m o nstr at es t h at t h e o bt ai n e d
P (x ∗ ) cl os el y  m o d els t h e a g gr e g at e fl e xi bilit y.

We c o nti n u e d  wit h t h e c as e of T = 8 a n d i n cl u d e d all 4
d e vi c e t y p es.  We tri e d s ol vi n g t h e  O F D f or diff er e nt v al u es of

∈ { 0 , 0 .0 4 , 0 .0 8 , 0 .1 2 },  w hi c h r es ult e d i n f o ur d at as ets.  E a c h
d at as et c o nsist e d of N = 7 , 2 4 4 p oi nts, e q u all y s plit b et w e e n
f e asi bl e a n d i nf e asi bl e o n es.

We first  w a nt e d t o st u d y  w h et h er s et F is c o n v e x b y e x a m-
i ni n g d at as et D b ei n g a s n a ps h ot of F . If D − i s t h e s u bs et of
D of all f e asi bl e p oi nts,  w e e v al u at e d t w o  m etri cs:

• M 1 :  % of i nf e asi bl e p oi nts i n D f alli n g i n c o n v(D − ).
• M 2 :  % of i nf e asi bl e p oi nts f alli n g i n c o n v(D − ).

M etri c M 1 c a n b e c o m p ut e d e asil y b y s ol vi n g a n  L P f or e a c h
of t h e i nf e asi bl e p oi nts i n D .  N o n et h el ess, t his  m etri c c a n
b e bi as e d if D h as b e e n g e n er at e d p er t h e pr o c ess of t h e
A p p e n di x.  T his is b e c a us e s e v er al i nf e asi bl e p oi nts i n D h a v e
b e e n i nt e nti o n all y s el e ct e d t o li e cl os e t o t h e b o u n d ar y of F ,
s o t h e y h a v e hi g h er c h a n c es of f alli n g i n c o n v (D − ). M etri c
M 2 all e vi at es t his iss u e b ut is h ar d er t o c o m p ut e.  T o a p pr o x-
i m at e M 2 ,  w e s a m pl e d I = 1 0 0 p oi nts u nif or ml y at r a n d o m
fr o m c o n v(D − ) a n d c h e c k e d  w h at p er c e nt a g e of t h e m  w er e
i nf e asi bl e.  H o w e v er l a b eli n g e a c h o n e of t h es e p oi nts e nt ails
s ol vi n g ( 6 ) f or K ti m es.  Ta bl e I s h o ws t h e t w o  m etri cs f or t h e
f o ur d at as ets.  M etri c M 2 i s s m all er t h a n M 1 (i n f a ct z er o), as
e x p e ct e d.  T h e t w o  m etri cs i n di c at e t h at F is d es cri b e d q uit e
a c c ur at el y b y a c o n v e x s et,  w hi c h r es o n at es  wit h t h e a n al yti-
c al fi n di n gs i n [ 9 ].  N o n et h el ess, el e ctri cit y  m ar k ets  m a y  w a nt
t o s urr o g at e F wit h p ol yt o p e G p ≤ x f or a G t h at is c o n-
v e ni e nt f or  m ar k et cl e ari n g pr o c ess es.  We n e xt e v al u at e d o ur
O F D d esi g n u n d er t his r e q uir e m e nt.

F oll o wi n g  Al g. 1 ,  w e first tr ai n e d t h e q u a dr ati c cl assi fi er
b y s ol vi n g ( 1 1 ) usi n g  M O S E K a n d  Y A MI P i n  M A T L A B.  T o
a v oi d o v er fitti n g, d at as et D w as p artiti o n e d r a n d o ml y i nt o a
tr ai ni n g a n d a v ali d ati o n d at as et i n a pr o p orti o n of 8 0 % t o
2 0 %. P ar a m et er λ w as t u n e d t o λ = 1 0 − 6 .  Tr ai ni n g t o o k c o n-
sist e ntl y l ess t h a n 1  mi n.  All t ests  w er e p erf or m e d o n a n I nt el
C or e i 7  @ 3. 4  G H z ( 1 6  G B  R A M) c o m p ut er usi n g  M A T L A B
o n a si n gl e  C P U  wit h o ut a n y p ar all eli z ati o n.  Ta bl e I r e p orts
t h e a c c ur a c y att ai n e d d uri n g tr ai ni n g a n d v ali d ati o n b y c o u nt-
i n g t h e p er c e nt a g e of p oi nts c orr e ctl y l a b el e d b y t h e cl assi fi er.
S u c h hi g h a c c ur a c y s u g g ests t h at F c a n b e  w ell a p pr o xi m at e d
b y t h e l e ar n e d elli ps oi d E D . It c o ul d als o b e ar g u e d t h at t h e
t w o s ets h a v e r o u g hl y si mil ar v ol u m es.  Ta bl e I r e p orts t h e
c o n diti o n n u m b er of W 2 .  H a vi n g a  w ell- c o n diti o n e d W 2 i s
i m p ort a nt i n t h e tr a nsf or m ati o ns of S e cti o n V-  A . T h e v ol u m e
of E D c a n b e c o m p ut e d i n cl os e d f or m a n d is s h o w n i n  Ta bl e II.
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T A B L E III
R A N D O M x̄ F O R = 0 .0 8

Pr o c e e di n g  wit h t h e al g orit h m,  w e a p pr o xi m at e d E D b y a n
i ns cri b e d p ol yt o p e. I n St e p 2, s etti n g δ = 0 .1 yi el d e d 2 3
e xtr a v ari a bl es i n q . I n St e p 3, p ol yt o p e P δ

T w a s c o n v ert e d t o
its P D f or m usi n g t h e F o uri er- M ot z ki n al g orit h m as o utli n e d
i n S e cti o n V-  A .  T h e o bt ai n e d  m atri x E of ( 1 4 ) h a d r o u g hl y
4 .2 · 1 0 5 r o ws. St e ps 2 – 3 t o g et h er t o o k n o  m or e t h a n 5  mi n
p er d at as et.

F or St e p 4,  w e s ol v e d ( 2 1 ) t o o bt ai n t h e r el at e d x̄ p er d at as et,
w hi c h t o o k l ess t h a n 1  mi n. F or St e p 5,  w e s ol v e d t h e  L P
i n (1 9 ) t o o bt ai n t h e fi n al p ol yt o p e P (x ).  Gi v e n t h e l ar g e si z e
of E , s ol vi n g t his  L P t o o k r o u g hl y 4 h o urs p er d at as et.  As
t h er e is n o f or m ul a f or t h e v ol u m e of a g e n er al p ol yt o p e, t h e
v ol u m e of P (x ) w as n u m eri c all y esti m at e d as d et ail e d n e xt.
We first c o nstr u ct e d a h y p er-r e ct a n gl e H = { p : p ≤ p ≤ p̄ }
c o nt ai ni n g P (x ). T h e t-t h e ntr y of p̄ (p ) c a n b e c o m p ut e d b y
m a xi mi zi n g ( mi ni mi zi n g) p t s u bj e ct t o p ∈ P (x ). T h e v ol u m e
of H is T

t= 1 ( p̄ t − p
t
).  We t h e n s a m pl e d 1 06 p oi nts fr o m H a n d

f o u n d t h e r ati o of t h es e p oi nts f alli n g i n P (x ).  T h e esti m at e d
v ol u m e V̂ (P (x )) w as c o m p ut e d b y  m ulti pl yi n g t h e r ati o ti m es
t h e v ol u m e of H .  T h e r es ults ar e pr es e nt e d i n  Ta bl e II. N ot e
t h at x i n n er a n d x o ut er d e n ot e t h e fl e xi bilit y p ar a m et ers c orr e-
s p o n di n g t o P D b ei n g a n i n n er a n d o ut er a p pr o xi m ati o n of
E D , r es p e cti v el y.

We n e xt st u di e d t h e eff e ct of i g n ori n g ti m e- c o u pli n g b y
usi n g t h e r e d u c e d  m atri x G r = [I − I ].  We r a n  Al g. 1 a g ai n
a n d o bt ai n e d a p ol yt o p e G r p ≤ x r w h os e v ol u m e is r e p ort e d
i n  Ta bl e II.  O v ersi m plif yi n g t h e a g gr e g at or  m o d el a p p ar e ntl y
l e d t o  m u c h r e d u c e d fl e xi bilit y.

T o st u d y t h e eff e ct of u n c ert ai nt y,  w e c o n d u ct e d  O F D  wit h
n o c h a n c e pr o b a bilit y ( = 0) ass u mi n g e xt er n aliti es i n ω
ar e s et t o t h eir  m e a n v al u es.  Ta bl e II lists t h e v ol u m e of t h e
c o m p ut e d p ol yt o p e G p ≤ x m ,  w hi c h is si g ni fi c a ntl y l ar g er
t h a n t h at of t h e p ol yt o p e c o m p ut e d c o nsi d eri n g u n c ert ai nt y.
N e v ert h el ess, s u c h fl e xi bilit y q u a nti fi c ati o n  m a y b e  misl e a di n g
as it  m a y n ot b e r e ali z a bl e d uri n g o p er ati o n.

T o e x a mi n e  w h et h er t h e h e uristi c of ( 2 1 ) f or c h o osi n g x̄ i s
eff e cti v e,  w e g e n er at e d 5 r a n d o m v al u es f or x̄ a s

x̄ = x̄ + G p̂

w h er e |·| is t h e el e m e nt- wis e a bs ol ut e v al u e; t h e e ntri es of x̄
ar e dr a w n i n d e p e n d e ntl y fr o m a st a n d ar d n or m al distri b uti o n;
a n d p̂ i s t h e c e nt er of P D .  N oti c e t h at irr es p e cti v e of t h e v al u e
of x̄ , t h e c o m p ut e d x̄ al w a ys r es ults i n a n o n- e m pt y p ol yt o p e
P ( x̄ ) a s it c o nt ai ns at l e ast p̂ .  We t h e n r a n o ur  O F D al g orit h m
f or = 0 .0 8 f or e a c h of fi v e r a n d o ml y dr a w n v al u es of x̄ .
Ta bl e III r e p orts t h e r es ult e d v ol u m es.  R e c all t h at o ur c h oi c e
of x̄ r e s ult e d i n a v ol u m e of V̂ (x i n n er) = 5 .8 4 f or = 0 .0 8,
w hi c h  m or e t h a n t wi c e t h e v ol u m e o bt ai n e d b y t h e c h oi c es of
Ta bl e III.  O pti mi zi n g o v er x̄ i s a n i nt er esti n g, y et c h all e n gi n g
t as k t h at g o es b e y o n d t h e s c o p e of t his  w or k.

VII.  C O N C L U S I O N

I n t his  w or k,  w e h a v e us e d dis a g gr e g ati o n d at a t o c a p-
t ur e t h e ti m e- c o u pl e d fl e xi bilit y of a g gr e g at ors i n pr es e n c e of
r a n d o m e xt er n aliti es a n d n o n- c o n v e xit y i n i n di vi d u al d e vi c e
m o d els.  T h e f e asi bl e s et of a n a g gr e g at or h as b e e n a p pr o x-
i m at e d b y t h e elli ps oi d d es cri b e d b y a c o n v e x q u a dr ati c
cl assi fi er tr ai n e d o v er l a b el e d ( n o n)- dis a g gr e g at a bl e s c h e d ul es.
As o bt ai ni n g s u c h l a b els c a n b e c o m p ut ati o n all y i nt e nsi v e
as it i n v ol v es s ol vi n g  m ulti pl e l ar g e-s c al e  mi x e d-i nt e g er dis-
a g gr e g ati o n pr o gr a ms,  w e h a v e p ut f ort h a n ef fi ci e nt d at a
g e n er ati o n s c h e m e.  T o arri v e fr o m t h e elli ps oi d t o t h e p ol y-
t o pi c s h a p e di ct at e d b y t h e  m ar k et, t h e elli ps oi d is first s af el y
(i n n er) a p pr o xi m at e d b y a g e n er al p ol yt o p e.  T h a n ks t o F ar k as’
l e m m a a n d a v ol u m e ar g u m e nt, t h e g e n er al p ol yt o p e is l at er
a p pr o xi m at e d b y a p ol yt o p e h a vi n g t h e f or m di ct at e d b y t h e
m ar k et.  N u m eri c al t ests c orr o b or at e t h e eff e cti v e n ess of t h e
n o v el  O F D a p pr o a c h as a g gr e g at or’s fl e xi bilit y s e e ms t o b e
w ell s urr o g at e d b y a c o n v e x s et,  m or e d et ail e d p ol yt o p es c a n
b ett er i n n er a p pr o xi m at e t his f e asi bl e s et as e x p e ct e d,  w hil e
t a ki n g i nt o a c c o u nt t h e ti m e- c o u pl e d a n d u n c ert ai n n at ur e of
d e vi c e  m o d els s e e ms t o b e i m p ort a nt.  T h e pr o p os e d  w or k
f or ms t h e s oli d f o u n d ati o n f or e x pl ori n g o p e n pr o bl e ms r el at e d
t o t h e p arti ci p ati o n of a g gr e g at ors i n el e ctri cit y  m ar k ets, s u c h
as c o m p uti n g fl e xi bilit y s ets e n d o w e d  wit h pr o b a bilisti c g u ar-
a nt e es ( c o n fi d e n c e i nt er v als) a n d d esi g ni n g o pti m al bi d di n g
str at e gi es c o nsisti n g of a f e asi bilit y s et al o n g  wit h bi d di n g
c osts.

A P P E N D I X

If p oi nts p n ’s ar e s a m pl e d u nif or ml y at r a n d o m, it is  m u c h
m or e li k el y t o s a m pl e i nf e asi bl e t h a n f e asi bl e o n es.  T h e n t o
cr e at e a b al a n c e d d at as et D , o n e h as t o s a m pl e a l ar g e n u m-
b er of p n ’s.  Al b eit s a m pli n g p oi nts is e as y, l a b eli n g t h e m c a n
b e ti m e c o ns u mi n g. L a b eli n g a p oi nt e nt ails s ol vi n g ( 6 ) f or
K s a m pl es of e xt er n aliti es ω k ’s t o c o m p ut e t h e c h a n c e st atis-
ti c i n (7 ).  We n e xt pr o p os e a n ef fi ci e nt  w a y f or g e n er ati n g a
b al a n c e d D . First, esti m at e a h y p er-r e ct a n gl e H w h er ei n all
f e asi bl e s c h e d ul es c o ul d li e.  T o o bt ai n H , o n e c a n c o m p ut e
t h e  mi ni m u m/ m a xi m u m v al u es t h e s c h e d ul e f or e a c h d e vi c e
p d ∈ F d c a n t a k e p er c o ntr ol i nt er v al. S u m mi n g u p t h es e v al-
u es a cr oss all d e vi c es yi el ds b o u n ds o n t h e a g gr e g at or s c h e d ul e
p .  W hil e s a m pli n g i n H is  m or e ef fi ci e nt t h a n s a m pli n g i n
R T , o bt ai ni n g a b al a n c e d D c a n still b e c h all e n gi n g as t h e
b o u n ds c a n b e l o os e.  M or e o v er, i nf e asi bl e p oi nts t o o f ar fr o m
t h e b o u n d ar y of F m a y n ot b e v er y i nf or m ati v e f or cl assi fi-
c ati o n p ur p os es. I n li g ht of t h es e, o ur g o als ar e: i) t o s a m pl e
i nf e asi bl e p oi nts cl os e t o t h e b o u n d ar y of t h e f e asi bl e s et F ;
a n d ii) f or e a c h i nf e asi bl e p oi nt  w e s a m pl e,  w e als o i d e n-
tif y a f e asi bl e p oi nt.  T h es e g o als c a n b e a c hi e v e d t hr o u g h t h e
f oll o wi n g st e ps:
D 1) S a m pl e a p oi nt p 1 u nif or ml y at r a n d o m  wit hi n h y p er-

r e ct a n gl e H .  M ost li k el y p 1 i s i nf e asi bl e, s o it is assi g n e d
l a b el y 1 = + 1 a n d p air (p 1 , y 1 ) is a p p e n d e d t o D .

D 2) I n t h e pr o c ess of l a b eli n g p 1 ,  w e h a v e als o o bt ai n e d
p oi nts { p̂ (ω k )}

K
k = 1 p er ( 8 ).  A m o n g t h es e p oi nts, s el e ct

t h e o n e t h at li es t h e f urt h est a w a y fr o m p 1 , t h at is t h e
o n e  wit h t h e l ar g est g ( p̂ (ω k ); ω k ).  C all t his p oi nt p 2 a n d

A ut h ori z e d li c e n s e d u s e li mit e d t o: t o I E E E x pl or e pr o vi d e d b y U ni v er sit y Li br ari e s | Vir gi ni a T e c h. D o w nl o a d e d o n J ul y 2 6, 2 0 2 3 at 1 8: 5 0: 2 7 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Fi g. 5.  T o g e n er at e a n e arl y b al a n c e d d at as et D i n a c o m p ut ati o n all y ef fi ci e nt
m a n n er,  w e dr a w a tri pl et of p oi nts (p 1 , p 2 , p 3 ) at a ti m e. P oi nt p 1 is dr a w n
u nif or ml y at r a n d o m a n d is  m ost li k el y i nf e asi bl e.  Al o n g its l a b eli n g pr o c ess
h o w e v er,  w e fi n d p oi nt p 2 t h at is t h e a p pr o xi m at e pr oj e cti o n of p 1 o n f e asi bl e
s et F . P oi nt p 3 is c o nstr u ct e d as a c o n v e x c o m bi n ati o n of (p 1 , p 2 ) l yi n g
cl os er t o p 2 .  Al b eit i nf e asi bl e, p oi nt p 3 li es cl os e t o t h e b o u n d ar y of F .
S a m pli n g s u c h tri pl ets yi el ds a d at as et h a vi n g t wi c e as  m a n y i nf e asi bl e p oi nts
as f e asi bl e o n es.  U p o n t a ki n g c o n v e x c o m bi n ati o ns of e xisti n g p 2 ’s, a d diti o n al
p oi nts l yi n g i n t h e i nt eri or of F c a n b e c o nstr u ct e d.

l a b el it. If p 2 i s f e asi bl e ( m ost li k el y it is), s et y 2 = − 1
a n d a p p e n d p air (p 2 , y 2 ) t o D .

D 3) C o nstr u ct p oi nt p 3 = κ p 1 + (1 − κ ) p 2 f or s a y κ = 0 .2,
a n d l a b el it.  M ost li k el y, p oi nt p 3 i s i nf e asi bl e b ut li es
cl os er t o t h e b o u n d ar y of F t h a n p 1 .  T his is b e c a us e t h e
f e asi bl e p oi nt p 2 i s e x p e ct e d t o b e cl os e t o t h e b o u n d ar y
of F .  A p p e n d p air (p 3 , y 3 ) t o D .

D 4) R e p e at st e ps D 1) – D 3) u ntil D r e a c h es a d esir a bl e si z e.
Fi g ur e 5 d e pi cts t h e tri pl et (p 1 , p 2 , p 3 ) pr es u mi n g p 1 li es

f ar a w a y fr o m t h e b o u n d ar y of F ; p oi nt p 2 li es o n or cl os e t o
t h e b o u n d ar y; a n d p 3 i s i nf e asi bl e b ut cl os e t o t h e b o u n d ar y
of F .  W h e n κ is s el e ct e d cl os er t o z er o, p oi nt p 3 g ets cl os er
t o p 2 .  T his pr o vi d es a  m or e r e fi n e d c h arti n g f or t h e b o u n d ar y
of s et F ass u mi n g l a b els ar e c orr e ct.  N e v ert h el ess, as l a b eli n g
i n v ol v es t h e st o c h asti c a p pr o xi m ati o n of (7 ), o n e  m a y  w a nt t o
l e a v e s o m e a d diti o n al s p a c e b et w e e n p 2 a n d p 3 , b y s el e cti n g
sli g htl y l ar g er v al u es of κ s u c h as κ = 0 .2.  We n e xt c o v er t h e
r e m ai ni n g s p e ci al c as es f or c o m pl et e n ess. If p 1 i s f e asi bl e,
w e c a n si m pl y a d d (p 1 , y 1 ) t o D wit h y 1 = − 1, a n d r e p e at
D 1) . If p 2 i s i nf e asi bl e,  w e c a n r e pl a c e it  wit h t h e p oi nt p̂ (ω k )
o bt ai n e d d uri n g its l a b eli n g t h at li es t h e f urt h est a w a y fr o m p 2 .
Alt h o u g h t h er e is n o a n al yti c al g u ar a nt e e, r e pl a ci n g p 2 wit h
its pr oj e cti o n s e e ms t o b e r e a c hi n g a f e asi bl e p oi nt  wit hi n o n e
or t w o it er ati o ns. Fi n all y, if p 3 i s f e asi bl e, r e p e at D 3) a n d us e
p 3 i nst e a d of p 2 i n t h e c o n v e x c o m bi n ati o n t o fi n d t h e n e w p 3 .

T h e pr e vi o us pr o c ess is e x p e ct e d t o g e n er at e d o u bl e t h e
n u m b er of i nf e asi bl e o v er f e asi bl e p oi nts.  M or e o v er, all f e a-
si bl e p oi nts li e o n or cl os e t o t h e b o u n d ar y of F ,  w hi c h c a n
b e pr o bl e m ati c  w h e n tr ai ni n g a cl assi fi er.  B ot h of t h es e iss u es
c a n b e e asil y r es ol v e d b y g e n er ati n g s o m e f e asi bl e p oi nts t h at
ar e stri ctl y i n t h e i nt eri or of F .  T o t his e n d,  w e als o s a m pl e
r a n d o m p oi nts as t h e c o n v e x c o m bi n ati o n of alr e a d y i d e nti-
fi e d f e asi bl e p oi nts a n d l a b el t h e m usi n g t h e st a n d ar d pr o c ess.
W hil e s u c h c o n v e x c o m bi n ati o ns ar e n ot g u ar a nt e e d t o b e f e a-
si bl e, o ur e x p eri m e nts i n S e cti o n VI s h o w t h at t h e y ar e v er y
li k el y t o b e f e asi bl e.
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