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One-shot Quantum State Redistribution and
Quantum Markov Chains

Anurag Anshu, Shima Bab Hadiashar, Rahul Jain, Ashwin Nayak, Dave Touchette

Abstract—We revisit the task of quantum state redistribution
in the one-shot setting, and design a protocol for this task
with communication cost in terms of a measure of distance
from quantum Markov chains. More precisely, the distance is
defined in terms of quantum max-relative entropy and quantum
hypothesis testing entropy.

Our result is the first to operationally connect quantum
state redistribution and quantum Markov chains, and can be
interpreted as an operational interpretation for a possible one-
shot analogue of quantum conditional mutual information. The
communication cost of our protocol is lower than all previously
known ones and asymptotically achieves the well-known rate
of quantum conditional mutual information. Thus, our work
takes a step towards an optimal characterization of the resources
required for one-shot quantum state redistribution, an important
open problem in quantum Shannon theory.

I. INTRODUCTION

A. Background and result

THE connection between conditional mutual information
and Markov chains has led to a rich body of results

in classical computer science and information theory. It is
well known that for any tripartite distribution PRBC over
registers RBC, the conditional mutual information

I(R : C |B)P = min
QRBC ∈ MCR−B−C

D
(
PRBC

∥∥QRBC) ,
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where MCR−B−C is the set of Markov distributions Q, i.e.,
those that satisfy I(R : C |B)Q = 0, and D(·‖·) is the
relative entropy function. In fact, one can choose a distri-
bution Q achieving the minimum above with QRB = PRB

and QBC = PBC . In the quantum case, the above identity
fails drastically. For an example presented in ref. [2] (see also
ref. [3, Section VI]), the right-hand side is a constant, whereas
the left-hand side approaches zero as the system size increases.
Given this, it is natural to ask if there is an extension of the
classical identity to the quantum case. This has been shown to
be true in a sense that for any tripartite quantum state ψRBC ,
it holds that

I(R : C |B)ψ = min
σRBC∈QMCR−B−C

(
D
(
ψRBC‖σRBC

)
− D

(
ψBC‖σBC

))
, (I.1)

where QMCR−B−C is the set of quantum states σ satisfying
I(R : C |B)σ = 0, ψRB = σRB [4]. (For completeness,
we provide a proof in Section II-B, Lemma II.9.) The dif-
ference between the quantum and the classical expressions
can now be understood as follows. For the classical case,
the closest Markov chain Q to a distribution P (in relative
entropy) satisfies the aforementioned relations QRB = PRB

and QBC = PBC . Thus, the second relative entropy term in
Eq. (I.1) vanishes. In the quantum case, due to monogamy of
entanglement we cannot in general ensure that σBC = ψBC .
Thus, the quantum relative entropy distance to quantum
Markov chains can be bounded away from the quantum
conditional mutual information.

In this work, we prove a one-shot analogue of Eq. (I.1).
This is achieved in an operational manner, by showing that
a one-shot analogue of the right-hand side in Eq. (I.1) is the
achievable communication cost of the quantum state redistri-
bution of |ψ〉RABC , a purification of ψRBC . In the task of
quantum state redistribution, the pure quantum state |ψ〉RABC
is known to two parties, Alice and Bob, and is shared between
Alice (who has registers AC), Bob (who has B), and a
reference party, Ref (who has R). Additionally, Alice and
Bob may share an arbitrary pure entangled state. The goal
is to transmit the content of register C to Bob using a
communication protocol involving only Alice and Bob, in
such a way that all correlations, including those with Ref,
are approximately preserved. (See Figure 1 for an illustration
of state redistribution.) Given a quantum state φRBC , we
identify a natural subset of Markov extensions of φRB , which
we denote by MEε,φR−B−C and define formally at the end of
Section II-B, in Eq. II.6. We establish the following result
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in terms of the max-relative entropy (Dmax) and ε-hypothesis
testing relative entropy (Dε

H) functions.

|ψ〉RABC φRABC ≈ε |ψ〉RABC

R

A

C

B

R

A

C

B

referee

Alice
Bob Alice Bob

referee

Fig. 1. An illustration of quantum state redistribution.

Theorem I.1. For any ε ∈ (0, 1/100) and pure quantum state
|ψ〉RABC , the quantum communication cost of redistributing
the register C from Alice (who initially holds AC) to Bob
(who initially holds B) with error 10

√
ε is at most

1

2
min

ψ′∈Bε(ψRBC)
min

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC

∥∥σRBC)
− Dε

H

(
ψ′BC

∥∥σBC)]+ O

(
log

1

ε

)
.

The difference between minimizing over the set ME
ε2/4,ψ′

R−B−C
versus QMCR−B−C is best understood from the definitions in
Section II-A; we give a brief explanation of the difference
and why the set ME

ε2/4,ψ′

R−B−C is considered in Section I-B. We
believe the above result can be stated in terms of a minimiza-
tion over all of QMCR−B−C . In the above bound, there is an
additional minimization over the set Bε(ψRBC), which is an ε-
neighbourhood of ψ (see Section II-A for a formal definition).
Considering ε perturbations of the state in question may result
in significantly lower communication, at the cost of increasing
the error in the output state by at most ε. This also allows
us to achieve the optimal rate in the asymptotic i.i.d. setting.
The information-theoretic quantities appearing in the above
bound arise from two subroutines on which the underlying
protocol is based — Coherent Rejection Sampling (building
on the Convex-Split Lemma) and Position-Based Decoding.
Smooth max-relative entropy and smooth hypothesis testing
relative entropy, respectively, are precisely the quantities which
appear in the analysis of these subroutines.

The protocol that achieves the bound in Theorem I.1 is
reversible. So, in order to redistribute C from Alice to Bob,
Alice and Bob can instead run the time-reversal of the protocol
in which register C is initially with Bob and he wants to send
it to Alice. This implies the following corollary.

Corollary I.2. For any pure quantum state |ψ〉RABC , the
quantum communication cost of redistributing the register C
from Alice (who initially holds AC) to Bob (who initially holds
B) with error 10

√
ε is at most the minimum of

1

2
inf

ψ′∈Bε(ψRBC)
inf

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
− Dε

H

(
ψ′BC‖σBC

)]
+ O

(
log

1

ε

)

and
1

2
inf

ψ′∈Bε(ψRAC)
inf

σRAC∈ME
ε2/4,ψ′
R−A−C

[
Dmax

(
ψ′RAC‖σRAC

)
− Dε

H

(
ψ′AC‖σAC

)]
+ O

(
log

1

ε

)
.

Connections between quantum Markov chains and special
cases of quantum state redistribution have been made, possibly
implicitly, in several previous works. An example is in the
compression of mixed states; see, e.g., [5, Section VIII.E].
However, as far as we know, Theorem I.1 is the first result that
operationally connects the cost of quantum state redistribution
in its most general form to a measure of distance from quantum
Markov chains (even in the asymptotic i.i.d. setting). The
best previously known achievable one-shot bound for the
communication cost of state redistribution, namely,

1

2
inf
σC

inf
ψ′∈Bε(ψRBC)

(
Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
−Dε2

H

(
ψ′BC‖ψ′B ⊗ σC

))
+ log

1

ε2
, (I.2)

when the state |ψ〉RABC is redistributed with error O(ε) was
due to Anshu, Jain, and Warsi [6]. Note that σC := ψ′C is a
nearly optimal solution for Eq. (I.2) as discussed in ref. [7],
and the product state ψ′RB ⊗ ψ′C is a Markov state in the
set ME

ε2/4,ψ′

R−B−C . So, the bound in Theorem I.1 is smaller than
that in Eq. (I.2) in the sense that the minimization is over
a larger set. In the special case where ψRBC is a quantum
Markov chain, our protocol has near-zero communication. This
feature is not present in other protocols and their commu-
nication may be as large as (1/2) log |C|. Moreover, in the
case that register A, or B, or both A and B are trivial, our
bound reduces to 1

2 Iεmax(R : C). The three cases correspond
to state splitting, state merging, and compression without side-
information, respectively, for which this bound is known to be
the optimal communication cost in the one-shot case.

B. Techniques

The protocol we design is most easily understood by con-
sidering a folklore protocol for redistributing quantum Markov
states. In the case that ψRBC is a Markov state, its purifi-
cation |ψ〉RABC can be transformed through local isometry
operators V1 : A→ ARJ ′AC and V2 : B → BRJBC into the
following:

(V1 ⊗ V2) |ψ〉RABC =
∑
j

√
p(j) |ψj〉RA

RBR ⊗ |jj〉JJ
′

⊗ |ψj〉A
CBCC

. (I.3)

The existence of isometries V1 and V2 is a consequence
of the special structure of quantum Markov states proved
by Hayden, Josza, Petz, and Winter [8]. Note that after the
above transformation, conditioned on registers J and J ′, sys-
tems RARBR are decoupled from systems ACCBC . So using
the embezzling technique due to van Dam and Hayden [9],
conditioned on J and J ′, Alice and Bob can first embezzle-
out systems ACCBC and then embezzle-in the same systems
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Fig. 2. An illustration of the zero-cost protocol for redistributing Markov
states. Left: RegistersRARBRJJ ′ACCBC are in the state given in Eq. (I.3)
and registers E and E′ contain Alice and Bob’s shares of an embezzling
state, respectively. Middle: Using embezzling registers, Alice and Bob have
jointly “embezzled out” registers ACCBC via local unitary operations. I.e.,
they reverse the process of generating the state in registers ACCBC via
embezzlement. Right: Using embezzling registers, conditioned on J and J ′,
Alice and Bob embezzle |ψj〉A

CCBC such that registers C and BC are with
Bob and register AC is with Alice. This step also only involves local unitary
operations without any communication.

but now with system C on Bob’s side such that at the end
the global state is close to the state in Eq. (I.3). This protocol
incurs no communication; see Fig. 2 for an illustration.

The protocol we design (for redistributing an arbitrary state)
is a more sophisticated version of the above protocol. The key
technique underlying this protocol is a reduction procedure
using embezzling quantum states, that allows us to use a
protocol due to Anshu, Jain, and Warsi [6] as a subroutine.
Let σRBC be a quantum Markov extension of ψRB . The
reduction procedure is a method which decouples C from RB
when applied to σRBC , while preserving ψRB when applied
to ψRBC . Preserving ψRB ensures that the reduction proce-
dure can be implemented via local operations by Alice and
Bob, without the need for any communication. Once we have
a state σRBC such that σRB = ψRB and σRBC = σRB⊗σC ,
with the max-relative entropy and smooth hypothesis-testing
relative entropy expressions as in Eq. (I.2) close to those with
the original states, state redistribution with the AJW protocol
gives us the claimed result. Note that the reduction procedure,
and in general our protocol, works for any quantum Markov
extension σRBC of ψRB . However, in order to prove the
closeness of hypothesis-testing entropy, we need to addition-
ally assume that σRBC is in ME

ε2/4,ψ′

R−B−C . (See Eq. (III.17) in
Claim III.2 for a formal statement of this closeness property.)
Essentially, ME

ε2/4,ψ′

R−B−C restricts σRBC to quantum Markov
chains for which σB

CC
j is close to the projection of ψB

CC

on the support of σB
CC

j in the decomposition of σRBC as in
Eq. (I.3).

To elaborate further, consider an example where ψRBC

is the GHZ state 1√
d

∑d
j=1 |j〉

R |j〉B |j〉C . In this
case, the closest Markov extension σRBC of ψRB

is 1
d

∑d
j=1 |j〉〈j|R ⊗ |j〉〈j|B ⊗ |j〉〈j|C . A naive way to

decouple register C from registers RB in σRBC is to
coherently erase register C conditioned on register B.
However, the same operation applied to ψRBC changes ψRB .
To overcome this problem, first, we coherently “measure”
register B by adding a maximally entangled state |Ψ〉TT

′

and making another “copy” of |j〉B in ΨT . The copying
is done by applying a distinct Heisenberg-Weyl operator

to the state ΨT , for each j ∈ [d]. This operation measures
register B in ψRBC , keeps σRBC unchanged, and leaves ΨT

in tensor product with registers RB in both ψ and σ. Then,
conditioned on register B, we can coherently erase register C
in σRBC ; this operation applied to ψ does not change the
state ψRB . Subsection III-A contains the complete details.

For a general state ψRBC with quantum Markov
extension σRBC , the isometry operator V2 can be
used to transform σRBC to the classical-quantum
state

∑
j p(j)σ

RBR

j ⊗ |j〉〈j|J ⊗ σBCCj . However, we
encounter an additional issue here: it may not be possible
to unitarily transform all of σB

CC
j to a fixed state since the

spectrum of σB
CC

j is not necessarily the same for all j ∈ [d].
So we first “flatten” σB

CC
j for each j through a unitary

procedure. This task can be achieved via the technique of
coherent flattening via embezzlement due to Anshu and
Jain [10]. After flattening, the dimension of the support of
systems BCC no longer depends on j and so the states in
registers BCC can all be rotated to a flat state over a fixed
subspace. Hence, BCC gets decoupled from RBRJ in the
state σ. Finally, to keep ψRB unchanged, we regenerate the
system BC via a standard embezzling technique similar to
the protocol in Fig. 2.

C. Organization of the paper

The rest of this paper is organized as follows. In Section II,
we present the notation and background necessary for devel-
oping the main result, namely Theorem I.1. In section II-A, we
review basic concepts and results from quantum information
theory. In Section II-B, we define quantum Markov states and
present some of their properties. We also identify a natural
subset of quantum Markov states related to a given state; this
subset plays a central role in the main result.

In Section II-C, we define the task of quantum state re-
distribution formally, and present two key primitives, namely
Coherent Rejection Sampling (implicit in the Convex-Split
Lemma) and Position-Based Decoding. We then describe how
these are used by Anshu, Jain, and Warsi [6] to design a one-
shot protocol for quantum state redistribution.

Next we present some of the other components of the new
protocol we develop. In Section II-D, we introduce a technique
for decoupling classical-quantum states via embezzlement [9]
and a flattening technique designed in ref. [10].

We develop the new protocol for one-shot quantum state
redistribution in Section III. We first explain the intuition
behind the protocol in detail by considering the example
of the d-dimensional GHZ state in Section III-A. We then
describe the steps of the protocol for arbitrary states and
analyze it in Section III-B. We show how the one-shot protocol
leads to the optimal communication rate for quantum state
redistribution in the asymptotic i.i.d. case in Section III-C.

We conclude with a summary of the results and an outlook
in Section IV.

Throughout Sections II-B–II-D, we provide proofs of some
lemmas and theorems which are implicit in the literature. Most
of these proofs are not essential for understanding the main
result of this paper. The reader may safely skip the proofs
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if they so wish. The reader familiar with the prior work
mentioned above may also start with Section III directly, and
refer to Section II as needed.

II. PRELIMINARIES

A. Mathematical notation and background

For a thorough introduction to basics of quantum informa-
tion and Shannon theory, we refer the reader to the books by
Watrous [11] and Wilde [12]. In this section, we briefly review
the notation and some results that we use in this article.

For the sake of brevity, we denote the set {1, 2, . . . , k}
by [k]. We denote physical quantum systems (“registers”) with
capital letters, like A, B and C. The state space corresponding
to a register is a finite-dimensional Hilbert space. We denote
(finite dimensional) Hilbert spaces by capital script letters
like H and K, and the Hilbert space corresponding to a
register A by HA. We denote the dimension of the space HA
by |A|. We sometimes refer to the space corresponding to the
register A by the name of the register.

We use the Dirac notation, i.e., “ket” and “bra”, for unit
vectors and their adjoints, respectively. We denote the set
of all linear operators on Hilbert space H by L(H), the set
of all positive semi-definite operators by Pos(H), the set of
all unitary operators by U(H), and the set of all quantum
states (or “density operators”) over H by D(H). The identity
operator on space H or register A, is denoted by 1H or 1A,
respectively. Similarly, we use superscripts to indicate the
registers on which an operator acts. We say a positive semi-
definite operator M ∈ Pos(H) is a measurement operator
if M � 1H, where � denotes Löwner order for Hermitian
operators.

Let T be a register with |T | = d ≥ 1. For a ∈ [d], we define
the operator Pa ∈ U

(
HT
)

as

Pa :=
d∑
t=1

|t⊕ a〉〈t| ,

where the addition ‘⊕’ is cyclic, i.e.,
t⊕ a = t+ a− db(t+ a− 1)/dc. This is the a-th power of
the generalized Pauli operator (also called a Heisenberg-Weyl
operator).

We denote quantum states by lowercase Greek letters
like ρ, σ. We use the notation ρA to indicate that register A
is in quantum state ρ. We denote the partial trace operation
over register A by TrA. When it is clear from the context,
we also use ρB to denote the partial trace of a state ρAB

over B. We say ρAB is an extension of σA if TrB(ρAB) = σA.
A purification of a quantum state ρ is an extension of ρ
with rank one. For the Hilbert space CS for some set S,
we refer to the basis {|x〉 : x ∈ S} as the canonical basis for
the space. We say the register X is classical in a quantum
state ρXB if ρXB is block-diagonal in the canonical basis
of X , i.e., ρXB =

∑
x p(x)|x〉〈x|X ⊗ ρBx for some probability

distribution p on X . For a non-trivial register B, we say ρXB

is a classical-quantum state if X is classical in ρXB . We
say a unitary operator UAB ∈ U(HA ⊗HB) is read-only on
register A if it is block-diagonal in the canonical basis of A,

i.e., UAB =
∑
a |a〉〈a|A ⊗ UBa where each UBa is a unitary

operator.
The trace norm (Schatten 1 norm) of an operator M ∈ L(H)

is the sum of its singular values and we denote it by ‖M‖1.
The trace distance between ρ and σ is induced by trace norm.
The following theorem is a well-known property of trace norm
(see, e.g., [11, Theorem 3.4, page 128]).

Theorem II.1 (Holevo-Helstrom [13], [14]). For any pair of
quantum states ρ, σ ∈ D(H),

‖ρ− σ‖1 = 2 max { |Tr(Πρ)− Tr(Πσ)| :
Π � 1,Π ∈ Pos(H)} .

Lemma II.2 (Gentle Measurement [15], [16]). Let ε ∈ [0, 1],
ρ ∈ D(H) and Π ∈ Pos(H) be a measurement operator such
that Tr(Πρ) ≥ 1− ε. Then,∥∥∥∥ ΠρΠ

Tr(Πρ)
− ρ
∥∥∥∥

1

≤ 2
√
ε .

The fidelity between two sub-normalized states ρ and σ is
defined as

F(ρ, σ) := Tr
√√

ρ σ
√
ρ+

√
(1− Tr(ρ)) (1− Tr(σ)) .

Fidelity can be used to define a useful metric called the purified
distance [17], [18], [19], [20], [21] between quantum states:

P(ρ, σ) :=
√

1− F(ρ, σ)2 .

Purified distance and trace distance are related to each other
as follows (see, e.g., [11, Theorem 3.33, page 161]):

Theorem II.3 (Fuchs and van de Graaf inequality [22]). For
any pair of quantum states ρ, σ ∈ D(H),

1−
√

1− P(ρ, σ)2 ≤ 1

2
‖ρ− σ‖1 ≤ P(ρ, σ) .

For a quantum state ρ ∈ D(H) and ε ∈ [0, 1], we define

Bε(ρ) := {ρ̃ ∈ D(H) : P(ρ, ρ̃) ≤ ε}

as the ball of quantum states that are within purified distance ε
of ρ. Note that in some works, the states in the set Bε(ρ) are
allowed to be sub-normalized. Here, we require the states in
the ball to have trace equal to one.

Theorem II.4 (Uhlmann [23]). Consider quantum
states ρA, σA ∈ D(HA). Let |ξ〉AB , |θ〉AB ∈ D(HA ⊗ HB)
be arbitrary purifications of ρA and σA, respectively. Then,
there exists some unitary operator V B ∈ U(HB) such that

P
(
|ξ〉AB ,

(
1⊗ V B

)
|θ〉AB

)
= P(ρA, σA) .

Let ρ ∈ D(H) be a quantum state over the Hilbert space H.
The von Neumann entropy of ρ is defined as

S(ρ) := −Tr (ρ log ρ) .

This coincides with Shannon entropy for a classical state. The
relative entropy of two quantum states ρ, σ ∈ D(H) is defined
as

D(ρ‖σ) := Tr (ρ (log ρ− log σ)) ,
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when supp(ρ) ⊆ supp(σ), and is ∞ otherwise. The max-
relative entropy [24] of ρ with respect to σ is defined as

Dmax(ρ‖σ) := min{λ : ρ ≤ 2λσ} ,

when supp(ρ) ⊆ supp(σ), and is∞ otherwise. The following
proposition bounds purified distance in terms of max-relative
entropy. It is a special case of the monotonicity of minimal
quantum α-Rényi divergence in α (see, e.g., [25, Corollary
4.2, page 56]) obtained by considering α = 1/2 and α→∞.

Proposition II.5 ([26]). Let H be a Hilbert space, and
let ρ, σ ∈ D(H) be quantum states over H. It holds that

P(ρ, σ) ≤
√

1− 2−Dmax(ρ‖σ) .

The above property also implies the Pinsker inequality.
For ε ∈ [0, 1], the ε-smooth max-relative entropy [24] of ρ
with respect to σ is defined as

Dε
max(ρ‖σ) := min

ρ′∈Bε(ρ)
Dmax(ρ′‖σ) .

For ε ∈ [0, 1], the ε-hypothesis testing relative entropy [27],
[28], [29] of ρ with respect to σ is defined as

Dε
H (ρ‖σ) := sup

0�Π�1,Tr(Πρ)≥1−ε
log

(
1

Tr(Πσ)

)
.

Smooth max-relative entropy and hypothesis testing relative
entropy both converge to relative entropy in the asymptotic
and i.i.d. setting [30], [31], [32]. The following proposition
gives upper and lower bounds for the convergence of these
quantities for finite n; these bounds are tight up to the second
order additive term.

Theorem II.6 ([33],[34]). Let ε ∈ (0, 1) and n be
an integer. Consider quantum states ρ, σ ∈ D(H).
Define V(ρ‖σ) := Tr(ρ(log ρ − log σ)2) − (D(ρ‖σ))2

and Φ(x) :=
∫ x
−∞

exp(−x2/2)√
2π

dx. It holds that

Dε
max

(
ρ⊗n‖σ⊗n

)
= nD(ρ‖σ)−

√
nV(ρ‖σ) Φ−1(ε2)

+ O(log n)−O(log(1− ε)) , (II.1)

and

Dε
H

(
ρ⊗n‖σ⊗n

)
= nD(ρ‖σ) +

√
nV(ρ‖σ) Φ−1(ε)

+ O(log n) . (II.2)

Note that Eq. (II.1) has an additional O(log(1− ε)) term as
compared to the original statement in ref. [33] because we only
allow the normalized states in Bε(ρ). We also need the follow-
ing property due to Anshu, Berta, Jain, and Tomamichel [35,
Theorem 2]. The original statement involves a minimization
over all σB on both sides of the inequality, but the proof works
for any fixed σB .

Theorem II.7 ([35], Theorem 2). Let ε, δ ∈ (0, 1) such
that 0 ≤ 2ε + δ ≤ 1. Consider quantum states σB ∈ D(HB)
and ρAB ∈ D(HAB). We have

inf
ρ∈B2ε+δ(ρAB)

ρA=ρA

Dmax

(
ρAB‖ρA ⊗ σB

)
≤ Dε

max

(
ρAB‖ρA ⊗ σB

)
+ log

8 + δ2

δ2
. (II.3)

Suppose that ρAB ∈ D(HA ⊗ HB) is the joint state of
registers A and B, then the mutual information of A and B
is denoted by

I(A : B)ρ := D
(
ρAB‖ ρA ⊗ ρB

)
.

When the state is clear from the context, the subscript ρ may be
omitted. Let ρRBC ∈ D(HRBC) be a tripartite quantum state.
The conditional mutual information of R and C given B is
defined as

I(R : C |B) := I(RB : C)− I(B : C) .

For the state ρAB ∈ D(HA ⊗ HB), the max-information
register B has about register A is defined as

Imax(A : B)ρ := min
σB∈D(HB)

Dmax

(
ρAB‖ ρA ⊗ σB

)
.

For ε ∈ [0, 1], the ε-smooth max-information register B has
about register A in the state ρAB ∈ D(HA ⊗HB) is defined
as

Iεmax(A : B)ρ := min
ρ′∈Bε(ρAB)

Imax(A : B)ρ′ .

B. Quantum Markov states

A tripartite quantum state σRBC ∈ D(HRBC) is called
a quantum Markov state of the form R−B −C if there
exists a quantum operation Λ : L

(
HB
)
→ L

(
HBC

)
such

that (1⊗Λ)(σRB) = σRBC . This is equivalent to the condition
that I(R : C |B)σ = 0, and is the quantum analogue of
the notion of Markov chains for classical registers. Classical
registers Y XM form a Markov chain in this order (denoted
as Y−X−M ) if registers Y and M are independent given X .
Hayden, Josza, Petz, and Winter [8] showed that an analogous
property holds for quantum Markov states.

Theorem II.8 ([8]). A state σRBC ∈ D(HR ⊗HB ⊗HC) is
a quantum Markov state of the form R−B−C if and only if
there is a decomposition of the space HB into a direct sum
of tensor products as

HB =
⊕
j

HB
R
j ⊗HB

C
j , (II.4)

such that

σRBC =
⊕
j

p(j)σ
RBRj
j ⊗ σB

C
j C

j , (II.5)

where σ
RBRj
j ∈ D

(
HR ⊗HB

R
j

)
, σ

BCj C

j ∈ D
(
HB

C
j ⊗HC

)
and p is a probability distribution over the direct summands.

For a state ψRBC , we say that σRBC is a Markov ex-
tension of ψRB if σRB = ψRB and σRBC is a Markov
state. We denote the set of all Markov extensions of ψRB

by QMCψR−B−C . Note that QMCψR−B−C is non-empty, as
it contains the state σRBC := ψRB ⊗ ψC . The following
lemma relates the quantum conditional mutual information
to quantum Markov extensions. The proof of this lemma is
implicit in ref. [4, Lemma 1], but we provide a proof here for
completeness.
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Lemma II.9 (Implicit in [4], Lemma 1). For any tripar-
tite quantum state ψRBC , and any quantum Markov exten-
sion σRBC ∈ QMCψR−B−C , it holds that

I(R : C |B)ψ = D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
.

Proof: For sake of clarity, in this proof, we suppress tensor
products with the identity in expressions involving sums
or products of quantum states over different sequences of
registers. For example, we write ωXY + τY Z to represent the
sum ωXY ⊗ 1Z + 1X ⊗ τY Z , and ωXY τY Z to represent the
product

(
ωXY⊗1Z

)(
1X⊗τY Z

)
. All the expressions involving

entropy and mutual information are with respect to the state ψ.

Consider any quantum Markov chain σRBC satisfying
σRB = ψRB . From Eq. (II.5), we have

log σRBC =
⊕
j

(
log

(
p(j)σ

RBRj
j

)
+ log σ

BCj C

j

)
,

and similarly,

log σBC =
⊕
j

(
log

(
p(j)σ

BRj
j

)
+ log σ

BCj C

j

)
.

Thus, we can evaluate

D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
= Tr

(
ψRBC logψRBC

)
− Tr

(
ψRBC log σRBC

)
− Tr

(
ψBC logψBC

)
+ Tr

(
ψBC log σBC

)
= S(BC)− S(RBC)

−
∑
j

Tr

(
ψRBC log

(
p(j)σ

RBRj
j

))
−
∑
j

Tr

(
ψRBC log σ

BCj C

j

)
+
∑
j

Tr

(
ψBC log

(
p(j)σ

BRj
j

))
+
∑
j

Tr

(
ψBC log σ

BCj C

j

)
.

Since Tr

(
ψRBC log σ

BCj C

j

)
= Tr

(
ψBC log σ

BCj C

j

)
, the

above equation can be simplified to obtain

D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
= S(BC)− S(RBC)

−
∑
j

Tr

(
ψRBC log

(
p(j)σ

RBRj
j

))
+
∑
j

Tr

(
ψBC log

(
p(j)σ

BRj
j

))
= S(BC)− S(RBC)

− Tr

ψRBC log

⊕
j

p(j)σ
RBRj
j


+ Tr

ψBC log

⊕
j

p(j)σ
BRj
j


= S(BC)− S(RBC)

− Tr

ψRBC log
⊕
j

(
p(j)σ

RBRj
j ⊗ σB

C
j

j

)
+ Tr

ψBC log
⊕
j

(
p(j)σ

BRj
j ⊗ σB

C
j

j

) ,

where the last equality above follows by noting that

Tr

(
ψRBC log σ

BCj
j

)
= Tr

(
ψBC log σ

BCj
j

)
.

Since ψRB = σRB , we get that

D
(
ψRBC‖σRBC

)
−D

(
ψBC‖σBC

)
= S(BC)− S(RBC)− Tr

(
ψRBC log σRB

)
+ Tr

(
ψBC log σB

)
= S(BC)− S(RBC)− Tr

(
ψRB logψRB

)
+ Tr

(
ψB logψB

)
= S(BC)− S(RBC) + S(RB)− S(B)

= I(R : C |B) .

This completes the proof.

For a Markov extension σ ∈ QMCψR−B−C , let Πσ
j be the

orthogonal projection operator onto the j-th subspace of the
register B given by the decomposition corresponding to the
Markov state σ as described above. In other words, Πσ

j is the
projection onto the Hilbert space HB

R
j ⊗ HB

C
j in Eq. (II.4).

For a quantum state ψRBC , we define

MEε,ψR−B−C :=

{
σ ∈ QMCψR−B−C

∣∣∣ for all j,

σ
BCj C

j ∈ Bε
(

TrBRj

[
(Πσ

j ⊗ 1)ψBC(Πσ
j ⊗ 1)

])}
. (II.6)

Informally, this is the subset of Markov extensions σ of ψ
such that the restrictions of σ and ψ to the j-th subspace
in the decomposition of σ agree well on the registers BCj C.
Again, the state σRBC := ψRB ⊗ ψC belongs to MEε,ψR−B−C
for every ε ≥ 0, so the set is non-empty.
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C. Quantum state redistribution

Consider a pure state |ψ〉RABC shared between Ref (R), Al-
ice (AC) and Bob (B). In an ε-error quantum state redistribu-
tion protocol, Alice and Bob share an entangled state |θ〉EAEB ,
where register EA is with Alice and register EB with Bob. Al-
ice applies an encoding operation E : L(HACEA)→ L(HAQ),
and sends the register Q to Bob. Then, Bob applies a de-
coding operation D : L(HQBEB ) → L(HBC). The out-
put of the protocol is the state φRABC with the property
that P(ψRABC , φRABC) ≤ ε. The communication cost of the
protocol is log |Q|.

To derive the bound in Theorem I.1, we use a protocol due
to Anshu, Jain, and Warsi [6], which we call the AJW protocol
in the sequel. The AJW protocol is based on the Convex-
Split Lemma introduced by Anshu, Devabathini, and Jain [36],
and the technique of Position-Based Decoding introduced by
Anshu, Jain, and Warsi [37].

Let n be an integer, ρAB ∈ D(HAB) and σB ∈ D(HB).
Consider the quantum state τAB1...Bn derived by adding n−1
independent copies of σB in tensor product with ρAB and
swapping the (i − 1)-th copy of σB with ρB for uniformly
random i ∈ [n − 1]. The convex-split lemma states that the
state τAB1...Bn is almost indistinguishable from the product
state ρA ⊗ (σB)⊗n, provided that n is large enough.

Lemma II.10 (Convex-Split Lemma [36]).
Let ρAB ∈ D(HAB) and σB ∈ D(HB) be quantum states
with Dmax(ρAB‖ρA ⊗ σB) = k for some finite number k.
Let δ > 0 and n :=

⌈
2k

δ

⌉
. Define the following states on n+1

registers A,B1, B2, . . . , Bn :

τAB1B2···Bn :=
1

n

n∑
j=1

ρABj ⊗ σB1 ⊗ · · · ⊗ σBj−1

⊗σBj+1 ⊗ · · · ⊗ σBn ,

and

τ̃AB1B2···Bn := ρA ⊗ σB1 ⊗ · · · ⊗ σBn ,

where for all i ∈ [n], we have |Bi| = |B|, ρABi = ρAB ,
and σBi = σB . Then, we have

P
(
τAB1···Bn , τ̃AB1···Bn

)
≤
√
δ .

We may think of the Convex-Split Lemma as providing
a sufficient condition under which the correlations between
registers A and B in ρ can be “hidden” by taking a certain
convex combination of quantum states. A dual problem is to
find conditions sufficient for identifying the location of desired
correlations in a convex combination. This task is achievable
via the position-based decoding technique, which in turn uses
quantum hypothesis testing.

Lemma II.11 (Position-Based Decoding [37]). Let ε > 0,
and ρAB ∈ D(HAB) and σB ∈ D(HB) be quantum states
such that supp(ρB) ⊆ supp(σB). Let

n :=
⌈
ε 2DεH(ρAB‖ρA⊗σB)

⌉
,

and for every j ∈ [n],

τAB1...Bn
j := ρABj ⊗ σB1 ⊗ · · · ⊗ σBj−1

⊗σBj+1 ⊗ · · · ⊗ σBn .

There exists a measurement (Λj : j ∈ [n + 1]) on regis-
ters AB1B2 · · ·Bn, i.e., operators Λi � 0 with

n+1∑
j=1

Λj = 1 ,

such that for all j ∈ [n],

Tr
[
Λjτ

AB1...Bn
j

]
≥ 1− 6ε .

The above statement is slightly different from the one in
ref. [37] because of a minor difference in defining quantum
hypothesis testing relative entropy.

Let |ψ〉RABC be a quantum state shared between Alice,
Bob, and Ref where registers AC are with Alice, register B is
with Bob and register R is with Ref, and ψ′RBC ∈ Bε(ψRBC).
The AJW protocol works as follows.

a) The AJW protocol::
1) Alice and Bob initially share m :=

⌈
2β/ε2

⌉
copies of a purification |σ〉LC of σC

where β := Dmax

(
ψ′RBC‖ψ′RB ⊗ σC

)
. Their

global state is |ψ〉RABC ⊗ |σ〉L1C1 ⊗ . . . ⊗ |σ〉LmCm ,
where |Li| = |L| and |Ci| = |C| for all i ∈ [m].
The registers ACL1L2 · · ·Lm are with Alice and the
registers BC1C2 · · ·Cm are with Bob.

2) Let b be the smallest integer such that

log b ≥ Dε2

H (ψ′BC‖ψ′B ⊗ σC)− log
1

ε2
.

By performing a suitable isometry on her registers, Alice
transforms the global state into a state close to the state

1

m

m∑
j=1

|b(j − 1)/bc〉J1 |j − 1 (mod b)〉J2 |0〉Lj

⊗ |ψ〉RABCj ⊗ |σ〉L1C1 ⊗ · · · ⊗ |σ〉Lj−1Cj−1

⊗ |σ〉Lj+1Cj+1 ⊗ · · · ⊗ |σ〉LmCm .

This is possible due to the Uhlmann theorem, the
Convex-Split Lemma, and the choice of m.

3) Alice sends register J1 to Bob with communication cost
at most (logm− log b)/2 using superdense coding.

4) Then, for each j2 ∈ [b], Bob swaps registers Cj2
and Cj2+bj1 , conditioned on register J1 being in
state |j1〉. At this point, registers RBC1 . . . Cb are in
a state close to

1

b

b∑
j2=1

ψRBCj2 ⊗ σC1 ⊗ . . .⊗ σCj2−1

⊗ σCj2+1 ⊗ . . .⊗ σCb .

5) Then, Bob uses position-based decoding to determine
the index j2 for which register Cj2 is correlated with
registers RB. This is possible by the choice of b.
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6) Since the state over registers RBCj2 is close to ψRBC ,
and it is in tensor product with the state over regis-
ters C1 · · ·Cj2−1Cj2+1 · · ·Cb, the register purifying reg-
isters RBCj2 is with Alice. She transforms the purifying
registers to the register A such that the final state over
registers RABCj2 is close to ψRABC .

The following theorem states the communication cost and
the error in the final state of the above protocol.

Theorem II.12 ([6]). Let ε ∈ (0, 1), and |ψ〉RABC be a pure
quantum state shared by Ref (R), Alice (AC) and Bob (B).
There is a quantum state redistribution protocol for |ψ〉RABC
which outputs a state φRABC ∈ B9ε(ψRABC). Moreover, the
number of qubits sent by Alice to Bob in the protocol is
bounded from above by

1

2
inf
σC

inf
ψ′∈Bε(ψRBC)

(
Dmax

(
ψ′RBC

∥∥ψ′RB ⊗ σC)
−Dε2

H

(
ψ′BC

∥∥ψ′B ⊗ σC))+ log
1

ε2
. (II.7)

For a complete proof of this result, including the correctness
and error analysis of the protocol, see the proof of Theorem 1
in ref. [6].

D. Decoupling classical-quantum states

Embezzlement refers to a process introduced by van Dam
and Hayden [9] in which any bipartite quantum state, possibly
entangled, can be approximately produced from a bipartite cat-
alyst using only local unitary operations. The bipartite catalyst
is called the embezzling quantum state. For an integer n and
registers D and D′ with |D| = |D′| ≥ n, the embezzling state
is defined as

|ξ〉DD
′

:=
1√
S(n)

n∑
i=1

1√
i
|i〉D |i〉D

′
, (II.8)

where S(n) :=
∑n
i=1

1
i . Van Dam and Hayden [9] showed

that an arbitrary bipartite state can be embezzled from |ξ〉DD
′

with arbitrary accuracy when n is chosen to be correspond-
ingly large.

Theorem II.13 ([9]). Let |φ〉AB ∈ HAB be a bipartite
state with Schmidt rank m and |ξ〉DD

′
be the state defined

in Eq. (II.8). For δ ∈ (0, 1], there exists local isome-
tries V1 : HD → HDA and V2 : HD′ → HD′B such that

P((V1 ⊗ V2) |ξ〉 , |ξ〉 ⊗ |φ〉) ≤ δ , (II.9)

provided that n ≥ m2/δ2 .

For a fixed a ∈ [n], a close variant of the above embezzling
state is defined as

|ξa:n〉DD
′

:=
1√

S(a, n)

n∑
i=a

1√
i
|i〉D |i〉D

′
, (II.10)

where S(a, n) :=
∑n
i=a

1
i . Using these states, Lemma II.14

below shows how we may embezzle the uniform distribution
with closeness guaranteed in terms of max-relative entropy.
The proof of Eq. (II.12) in this lemma is due to Anshu and
Jain [10, Claim 1], and Eq. (II.13) follows from a similar

argument. For completeness, we provide a proof for the
lemma.

Lemma II.14 (Extension of [10], Claim 1). Let δ ∈ (0, 1
15 ),

and a, b, n ∈ Z be positive integers such that a ≥ b ≥ 2
and n ≥ a1/δ . Let D and E be registers with |D| ≥ n
and |E| ≥ b. Let Wb be a unitary operation that acts as

Wb |i〉D |0〉E = |bi/bc〉D |i (mod b)〉E (II.11)

for every i ∈ {0, . . . |D|−1} and Πb ∈ Pos
(
HDE

)
be the pro-

jection operator onto the support of Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b .

It holds that

Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b � (1 + 15δ) ξD1:n ⊗ µEb , (II.12)

and

Πb

(
ξD1:n ⊗ µEb

)
Πb � 2 Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b . (II.13)

where µEb := 1
b

∑b−1
e=0 |e〉〈e|.

Proof: Let Wb be a unitary operator satisfying Eq. (II.11). We
have

Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b (II.14)

=
1

S(a, n)

n∑
i=1

1

i
Wb

(
|i〉〈i|D ⊗ |0〉〈0|E

)
W †b

=
1

S(a, n)

n∑
i=1

1

i
|bi/bc〉〈bi/bc|D

⊗ |i (mod b)〉〈i (mod b)|E

=
1

S(a, n)

bnb c∑
i′=b ab c

min{b−1,n−i′b}∑
e=0

1

bi′ + e
|i′〉〈i′|D

⊗ |e〉〈e|E (II.15)

� 1

S(a, n)

bnb c∑
i′=b ab c

b−1∑
e=0

1

bi′
|i′〉〈i′|D ⊗ |e〉〈e|E

� S(1, n)

S(a, n)
ξD1:n ⊗ µEb . (II.16)

In ref. [38], it is shown that
∣∣S(a, n)− log n

a

∣∣ ≤ 4.
Since n ≥ a1/δ , we have

S(1, n)

S(a, n)
≤ log n+ 4

log n− log a− 4
≤ 1 + 4δ

1− 5δ
≤ 1 + 15δ . (II.17)

Now, Eq. (II.16) and Eq. (II.17) together imply Eq. (II.12). It
remains to prove Eq. (II.13). Let Πb ∈ Pos

(
HDE

)
be the pro-

jection operator onto the support of Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b .

Eq. (II.15) implies that

Πb =

bnb c∑
i′=b ab c

min{b−1,n−i′b}∑
e=0

|i′〉〈i′|D ⊗ |e〉〈e|E .
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Thus,

Πb

(
ξD1:n ⊗ µEb

)
Πb

=
1

S(1, n)

bnb c∑
i′=b ab c

min{b−1,n−i′b}∑
e=0

1

bi′
|i′〉〈i′|D

⊗ |e〉〈e|E

� 1

S(1, n)

bnb c∑
i′=b ab c

min{b−1,n−i′b}∑
e=0

2

bi′ + e
|i′〉〈i′|D

⊗ |e〉〈e|E

=
2 S(a, n)

S(1, n)
Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b

(by Eq. (II.12))

� 2 Wb

(
ξDa:n ⊗ |0〉〈0|E

)
W †b ,

where the first inequality holds since bi′+ e ≤ 2 bi′ for i′ ≥ 1
and 0 ≤ e ≤ b − 1, and the second inequality holds
since S(a, n) ≤ S(1, n).

As a corollary of the above lemma, Anshu and Jain [10]
show that the embezzling state ξDa:n can be used almost
catalytically to flatten any quantum state using unitary op-
erations. The proof of Eq. (II.18) in the corollary is provided
in ref. [10, Eq. (6)], and Eq. (II.19) follows from Eq. (II.13).
For completeness, we provide a proof below.

Corollary II.15 (Extension of [10], Eq. (6)).
Let ρ ∈ D(HC) be a quantum state with spectral
decomposition ρC =

∑
c q(c)|vc〉〈vc|C . Let δ ∈ (0, 1

15 )

and γ ∈ (0, 1) such that |C|
γ is an integer and

all eigenvalues q(c) are integer multiples of γ
|C| .

Let a := |C|
γ maxc q(c), n := a1/δ , and D and E be quantum

registers with |D| ≥ n and |E| = a. Let W ∈ U(HCED) be
the unitary operator defined as

W :=
∑
c

|vc〉〈vc|C ⊗WED
b(c)

and Π ∈ Pos(HCED) be the projection operator defined as

Π :=
∑
c

|vc〉〈vc|C ⊗ΠED
b(c) ,

where Wb(c) and Πb(c) are the operators defined in
Lemma II.14 with b(c) := q(c)|C|

γ (but with the tensor factors
corresponding to D and E swapped). Then, we have

W
(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W † � (1+15δ) ρCE⊗ξD1:n (II.18)

and

Π
(
ρCE ⊗ ξD1:n

)
Π � 2 W

(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W † ,

(II.19)
where ρCE := γ

|C|
∑
c |vc〉〈vc|C ⊗

∑b(c)−1
e=0 |e〉〈e|E is an

extension of ρC with flat spectrum.

Proof: Let W be the unitary operator defined in the statement
of the corollary . We have

W
(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W †

=
∑
c

q(c)|vc〉〈vc|C ⊗Wb(c)

(
|0〉〈0|E ⊗ ξDa:n

)
W †b(c)

� (1 + 15δ)
∑
c

q(c)|vc〉〈vc|C

⊗ γ

q(c)|C|

b(c)−1∑
e=0

|e〉〈e|E ⊗ ξDa:n

= (1 + 15δ) ρCE ⊗ ξDa:n ,

where the inequality follows from Lemma II.14. So, it remains
to prove Eq. (II.19). Let Π be the projection operator defined
in the statement of the corollary. We have

Π
(
ρCE ⊗ ξD1:n

)
Π

=
γ

|C|
∑
c

b(c)|vc〉〈vc|C ⊗Πb(c)

(
µEb(c) ⊗ ξ

D
a:n

)
Πb(c)

� 2
∑
c

q(c)|vc〉〈vc|C ⊗Wb(c)

(
|0〉〈0|E ⊗ ξDa:n

)
W †b(c)

= 2 W
(
ρC ⊗ |0〉〈0|E ⊗ ξDa:n

)
W † ,

where the inequality is a consequence of Lemma II.14.

We use the above flattening procedure to decouple the
quantum register in a classical-quantum state.

Corollary II.16. Consider a classical-quantum state

ρJC :=
∑
j

p(j) |j〉〈j|J ⊗ ρCj ,

where p is a probability distribution and ρCj ∈ D
(
HC
)
.

Let δ ∈ (0, 1
15 ) and γ ∈ (0, 1) such that a := |C|

γ is an integer
and suppose that the eigenvalues of all the states ρCj are
integer multiples of γ

|C| . Let n := a1/δ , D and E be quantum
registers with |D| ≥ n and |E| = a. Then, there exists a
unitary operator U ∈ U(HJCED), read-only on register J ,
and a projection operator Π̃ ∈ Pos(HJCED) such that

U
(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U† � (1+15δ) ρJ⊗νCE⊗ξD1:n ,

(II.20)

Π̃
(
ρJ ⊗ νCE ⊗ ξD1:n

)
Π̃

� 2 U
(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U† , (II.21)

and

Tr
[
Π̃U

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †
]

= 1 , (II.22)

where νCE := 1
a

∑a−1
s=0 |s〉〈s|CE .

Proof: Notice that the integers a and n and registers D and E
satisfy the properties required in Corollary II.15. For each j,
let W (j) be the unitary operator given by Corollary II.15 for
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flattening ρCj :=
∑
c qj(c) |vj,c〉〈vj,c|. Hence, we can flatten

all ρCj simultaneously using the unitary operator

U1 :=
∑
j

|j〉〈j| ⊗W (j) ,

and we get

U1

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U †1

� (1 + 15δ)
∑
j

p(j) |j〉〈j|J ⊗ ρCEj ⊗ ξD1:n ,

where ρCEj := γ
|C|
∑
c |vj,c〉〈vj,c|C ⊗

∑qj(c)|C|/γ
e=0 |e〉〈e|E is

an extension of ρC with flat (i.e., uniform) spectrum. For
each j, the support of ρCj has dimension

∑
c qj(c)

|C|
γ , which

equals a independent of j. Hence, there exists a unitary
operator V (j) mapping ρCEj to νCE . Let U2 ∈ U(HJCE) be
the unitary operator U2 :=

∑
j |j〉〈j|⊗V (j). Then, the unitary

operator U := U2U1 satisfies Eq. (II.20).
Now, for each j, let Π(j) ∈ Pos(HCED) be the projection

operator given by Corollary II.15. Define

Π′ :=
∑
j

|j〉〈j| ⊗Π(j)

and Π̃ := U2Π′U †2 . We have

Π̃
(
ρJ ⊗ νCE ⊗ ξD1:n

)
Π̃

= U2Π′U †2
(
ρJ ⊗ νCE ⊗ ξD1:n

)
U2Π′U †2

= U2Π′

∑
j

p(j) |j〉〈j|J ⊗ ρCEj ⊗ ξD1:n

Π′U †2

= U2

∑
j

p(j) |j〉〈j|J ⊗Π(j)
(
ρCEj ⊗ ξD1:n

)
Π(j)

U†2
� 2 U2

(∑
j

p(j) |j〉〈j|J

⊗W (j)
(
ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
W (j)†

)
U†2

= 2 U2U1

(∑
j

p(j) |j〉〈j|J ⊗ ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
U†1U

†
2

= 2 U
(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U† ,

where the inequality follows from Corollary II.15, Eq. (II.19).
Moreover, by the construction in Lemma II.14 and Corol-

lary II.15, for each j, the operator Π(j) is the projection op-
erator onto the support of W (j)

(
ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
W (j)†.

Hence, we have

Tr
[
Π̃U

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U†
]

= Tr
[
Π′U1

(
ρJC ⊗ |0〉〈0|E ⊗ ξDa:n

)
U†1

]
=
∑
j

p(j) Tr
[
Π(j)W (j)

(
ρCj ⊗ |0〉〈0|E ⊗ ξDa:n

)
W (j)†

]
= 1 .

This completes the proof.

Remark: In the above corollary, we assume that the eigen-
values of ρCj are rational. We can approximate an arbitrary
state with one that has only rational eigenvalues with arbitrary
accuracy, since the set of rational numbers is dense in the set of
reals. Consequently, the error with respect to the max-relative
entropy can also be made arbitrarily close to zero.

III. THE NEW PROTOCOL

In this section, we present and analyse the new protocol for
one-shot state redistribution. This proves the main result in
this article, as stated more precisely in the following theorem.

Theorem III.1. Let |ψ〉RABC be a pure quantum state shared
between a referee (R), Alice (AC) and Bob (B). For ev-
ery ε1, ε2 ∈ (0, 1) satisfying ε1 + 9ε2 ≤ 1, there exists
an entanglement-assisted one-way protocol operated by Alice
and Bob which starts in the state |ψ〉RABC , and outputs a
state φRABC ∈ Bε1+9ε2(ψRABC) where registers A, BC,
and R are held by Alice, Bob and Ref, respectively. The
communication cost of this protocol is bounded from above
by

1

2
inf

ψ′∈Bε1 (ψRBC)
inf

σ∈ME
ε42/4,ψ

′

R−B−C

[
Dmax

(
ψ′
RBC

∥∥∥ σRBC)
− D

ε22
H

(
ψ′
BC
∥∥∥ σBC)]+ log

1

ε22
+ 1 . (III.1)

We get Theorem I.1 by choosing ε22 = ε1 = ε.
We describe a protocol for redistributing |ψ〉RABC with

error 9ε2 and cost at most
1

2
min

σRBC∈ME
ε42/4,ψ

R−B−C

[
Dmax

(
ψRBC

∥∥σRBC)−D
ε22
H

(
ψBC

∥∥σBC)]
+ log

1

ε22
+ 1 . (III.2)

Then, Theorem III.1 follows since for ev-
ery |ψ′〉 ∈ Bε1(|ψ〉RABC), Alice and Bob can assume
that the global state is |ψ′〉RABC , and run the protocol
for |ψ′〉. This protocol redistributes the state |ψ〉 with
additional error at most ε1.

Let σRBC be a quantum Markov extension of ψRB .
If σRBC = ψRB⊗ψC , Alice and Bob can redistribute ψRABC

with error 9ε2 > 0 and communication cost bounded by
Eq. (III.2) using the AJW protocol. However, in general, σRBC

is not necessarily a product state. In that case, we design a
reduction procedure which allows us to use the AJW proto-
col as a subroutine. This procedure decouples C from RB
when applied to σRBC , while preserving ψRB when applied
to ψRBC . This procedure is similar to the conditional erasure
task in Refs. [39], [40] except that, here, the decoupling and
negligible disturbance properties are desired for two possibly
different quantum states.

In the rest of this section, we first explain a simplified ver-
sion of the reduction procedure and the protocol for the special
case that register A is trivial and |ψ〉RBC is the GHZ state.
This illustrates the key components underlying the reduction.
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Then, in Section III-B, we provide the complete version of
the reduction procedure and the protocol for redistributing an
arbitrary quantum state |ψ〉RABC .

A. The GHZ state example

To elaborate on the reduction procedure, we start with the
example where ψRBC is the GHZ state

1√
d

d∑
j=1

|j〉R |j〉B |j〉C ,

and the Markov extension σRBC of ψRB is

1

d

d∑
j=1

|j〉〈j|R ⊗ |j〉〈j|B ⊗ |j〉〈j|C .

The reduction broadly follows the description we gave in
Section I-B, and is a two-step process. We expand on these
steps below.

(1) Coherent measurement of register B. By “coher-
ent measurement”, we mean the application of the isome-
try given by a Steinspring representation of the measure-
ment. For the GHZ state, this corresponds “copying” the
content of register B into a fresh register, in superposi-
tion. The state of the fresh register is chosen so as to
facilitate the redistribution protocol. Let T be a register
with |T | = d, and |Ψ〉TT

′
:= 1√

d

∑
t |tt〉 be the maximally

entangled state over registers T and T ′. Define the unitary
operator U1 ∈ U(HBT ) as U1 :=

∑
j |j〉〈j|B ⊗PTj , where Pj

is the Heisenberg-Weyl operator as defined in Section II-A.
Let |κ1〉RBCTT

′
and τRBCT1 be the states obtained by apply-

ing U1 to |ψ〉RABC ⊗ |Ψ〉TT
′

and σRBC ⊗ΨT , respectively.
We have

|κ1〉RBCTT
′

=
1

d

d∑
j=1

|j〉R |j〉B |j〉C ⊗
d∑
t=1

|t⊕ j〉T |t〉T
′
.

Since the set of Heisenberg-Weyl operators {Pa} is closed
under multiplication, and each Pa is traceless unless a = d,
the states (Pa⊗1) |Ψ〉 are mutually orthogonal. So the unitary
operator U1 coherently measures register B in ψRBC while it
acts trivially on σ. Moreover, the reduced state on T remains
maximally mixed. So

κRBC1 =
1

d

∑
j

|j〉〈j|R ⊗ |j〉〈j|B ⊗ |j〉〈j|C , and

τRBCT1 = σRBC ⊗ 1T

d
.

(2) Decoupling C from RB in σ. Let U2 ∈ U(HBC) be a
unitary operator that is read-only on B and maps |j〉C to |0〉C

if system B is in the state |j〉. Let |κ2〉RBCTT
′

and τRBCT2

be the states after applying U2 to |κ1〉RBCTT
′

and τRBCT1 ,
respectively. We have

|κ2〉RBCTT
′

=
1

d

∑
j

|j〉R |j〉B |0〉C ⊗
d∑
t=1

|t⊕ j〉T |t〉T
′
,

and

τRBCT2 = ψRB ⊗ |0〉〈0|C ⊗ 1T

d
.

In particular, since register B is classical in κRBC1 and U2 is
read-only on B, we get κRB2 = ψRB .

The reduction procedure uses the above two steps to (ef-
fectively) add the maximally mixed state ΨT and apply the
unitary operator U2U1. Note that running this procedure on
both ψ and σ does not change their max-relative entropy and
the hypothesis testing entropy. We have

Dmax

(
ψRBC‖σRBC

)
−D

ε22
H

(
ψBC‖σBC

)
= Dmax

(
κRBCT2 ‖τRBCT2

)
−D

ε22
H

(
κBCT2 ‖τBCT2

)
(III.3)

where τRBCT2 = κRB2 ⊗ |0〉〈0|C ⊗ 1T

d . Hence, if Alice
and Bob locally map |ψ〉 to |κ2〉, then they can run the
AJW protocol to transfer registers CT to Bob and finally
retrieve |ψ〉 by applying U−1

1 U−1
2 . A hitch here is that the

reduction procedure cannot be implemented directly (i.e., as
described above) for the local transformation of |ψ〉 to |κ2〉.
This is because register C is initially with Alice and reg-
ister B is with Bob. However, since ψRB = κRB2 , there
is an isometry V : HAC → HACTT ′ which maps |ψ〉RABC

to |κ2〉RABCTT
′
, as guaranteed by the Uhlmann theorem.

Alice can thus implement the local transformation from |ψ〉
to |κ2〉.

In summary, the simplified version of the protocol for the
GHZ state works as follows:

1) Alice applies the isometry V on her registers AC, and
transforms the global state to the state |κ2〉RABCTT

′

such that registers (ACTT ′), (B), and (R) are with
Alice, Bob and Ref, respectively.

2) Choosing σCT := |0〉〈0|C ⊗ 1T

d , Alice and Bob run the
AJW protocol on |κ2〉 to transfer registers CT to Bob
with error at most 9ε2. Let κ̂RABCTT

′

2 be the joint state
of the registers RABCTT ′ at the end of this step.

3) Bob applies U−1
1 U−1

2 on the registers BCT , which are
now in his possession.

4) The output of the protocol is the final state in regis-
ters RABC.

By Theorem II.12 and Eq. (III.3), the cost of the above
protocol is at most

Dmax

(
ψRBC‖σRBC

)
−D

ε22
H

(
ψBC‖σBC

)
+ log

1

ε22
,

and P(κRABCTT
′

2 , κ̂RABCTT
′

2 ) ≤ 9ε2 . Let φRABC be the
final state of the registers RABC. We have

P
(
ψRABC , φRABC

)
≤ P

(
ψRABC ⊗ΨTT ′ , φRABCTT

′
)

= P
(
κRABCTT

′

2 , κ̂RABCTT
′

2

)
≤ 9ε2 ,

where the first inequality is obtained by considering extensions
of states in RABC to those in RABCTT ′ and the mono-
tonicity of purified distance under quantum operations, and
the second step follows by the invariance of purified distance
under unitary operations (in this case U2U1).
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B. The protocol for arbitrary states
Now consider an arbitrary state |ψ〉RABC and a quantum

Markov extension σRBC ∈ ME
ε42/4,ψ
R−B−C . As explained in

Section II-B, there exists a decomposition of register B

as HB =
⊕

j H
BRj ⊗HB

C
j such that

ψRB = σRB =
⊕
j

p(j)ψ
RBRj
j ⊗ ψB

C
j

j , (III.4)

and
σRBC =

⊕
j

p(j)σ
RBRj
j ⊗ σB

C
j C

j , (III.5)

where σ
BCj C

j ∈ Bε
4
2/4
(

TrBRj

(
(Πj ⊗ 1)ψBC(Πj ⊗ 1)

))
,

σ
RBRj
j = ψ

RBRj
j and Πj is the projection operator over the j-th

subspace in the direct sum decomposition of HB . This special
structure of σRBC makes it possible to design the reduction
procedure. As in the case of the GHZ state, the reduction pro-
cedure consists of the two main steps of coherent measurement
and decoupling. These are preceded by two pre-processing
steps. The pre-processing steps unitarily transform ψ and σ
to the states κ and τ which are easier to handle. In step (i),
we apply a local isometry transforming σRBC to a classical-
quantum state.

(i) Viewing σRBC as a classical-quantum state. Let BR

and BC be two quantum registers with
∣∣BR∣∣ := maxj

∣∣BRj ∣∣
and

∣∣BC∣∣ := maxj
∣∣BCj ∣∣. As a consequence of Eq. (III.5),

there exists an isometry Ui : HB → HBRJBC which
takes σRBC to the state

σ̃RB
RJBCC :=

∑
j

p(j)σRB
R

j ⊗ |j〉〈j|J ⊗ σB
CC

j . (III.6)

Let |ψ1〉RAB
RJBCC be the state obtained by applying the

same operation on |ψ〉RABC , i.e.,

|ψ1〉RAB
RJBCC := Ui |ψ〉RABC

=
∑
j,j′

|j〉〈j′|J ⊗ ψRAB
RBCC

j,j′ , (III.7)

for some sub-normalized, rank 1 states ψj,j′ . It is
sufficient to design a protocol for redistributing regis-
ter C in |ψ1〉RAB

RJBCC when initially registers (AC)
are held by Alice, (BRJBC) are held by Bob and R

is held by Ref. Notice that ψRB
RJBC

1 = σRB
RJBC

since ψRB = σRB . So ψRB
RJBC

1 is a quantum Markov state
of the form RBR−J−BC . So, Alice and Bob can use the
folklore protocol for redistributing quantum Markov states
explained in Fig. 2 and transfer BC to Alice. This is done
in step (ii) of pre-processing.

(ii) Transferring BC from Bob to Alice without commu-
nication. Note that ψRB

RJBC

1 is purified by systems (AC)
which are with Alice. So by applying a suitable isometry, Alice
can prepare the following purification of ψRB

RJBC

1 :∣∣∣ψ̂1

〉RBRJJ ′BCGH
:=
∑
j

√
p(j) |σj〉RB

RG ⊗ |j, j〉JJ
′
⊗ |σj〉B

CH
, (III.8)

where registers J ′GH are held by Alice.
Let δ1 ∈ (0, 1), n1 :=

∣∣BCH∣∣2/δ21 , and D1, D
′
1 be registers

with |D1| = |D′1| = n1. Conditioned on register J , Alice
and Bob use the embezzling state |ξ〉D1D

′
1 (as defined in

Eq. (II.8)) and the reverse of the van Dam-Hayden protocol [9]
to embezzle out |σj〉B

CH in superposition. They thus obtain
a state ψ̃1 such that

P

(
ψ̃
RBRGJJ ′D1D

′
1

1 ,
∑
j

√
p(j) |σj〉RB

RG |j, j〉JJ
′
|ξ〉D1D

′
1

)
≤ δ1 .

Finally, conditioned on register J , Alice locally gener-
ates |σj〉B

CH in superposition with registers BCH on her side,
and applies an Uhlmann unitary operator to her registers in
order to prepare the purification |ψ1〉RAB

RJBCC . Let Uii,A

and Uii,B denote the overall unitary operators applied by
Alice and Bob, respectively, in this step. After applying Uii,A

and Uii,B , the global state is |ψ2〉 satisfying

P
(
ψ
RABRJBCCD1D

′
1

2 , |ψ1〉〈ψ1|RAB
RJBCC ⊗ |ξ〉〈ξ|D1D

′
1

)
≤ δ1 ,

where registers ABCC are with Alice, registers BRJ are with
Bob and register R is with Ref.

Thus, the problem reduces, up to a purified distance δ1, to
the case where the global state is |ψ1〉 and the register BC is
with Alice. Henceforth, we assume that this is indeed the case.
We account for the inaccuracy introduced by this assumption
in the error analysis of the protocol. This completes the second
step and the pre-processing stage of the protocol.

Due to the pre-processing steps, we may suppose
that the global state is |ψ1〉RAB

RJBCC such that regis-
ters (ABCC), (BRJ), and R are held by Alice, Bob, and
Ref, respectively. It then remains for Alice to send BCC to
Bob. To achieve this, we follow a two-step unitary procedure
(as in the case of the GHZ state) which decouples regis-
ters RBRJ and BCC in σ̃RB

RJBCC while keeping the state
of registers RBRJ unchanged. This operation transforms σ̃
to a product state and allows us to use the AJW protocol
as a subroutine to achieve the redistribution with the desired
communication cost and accuracy.

To decouple RBRJ from BCC in σ̃, we would like to
use embezzlement and the unitary operator given by Corol-
lary II.16. This unitary operator acts on registers JBCC
and is read-only on register J . However, since register J is
not necessarily classical in ψRB

RJBCC
1 , the operation may

disturb the marginal state ψRB
RJ

1 . So as in the example of the
GHZ state, we resolve this issue by first coherently measuring
register J using an additional maximally entangled state. This
operation transforms ψRB

RJBCC
1 to a classical-quantum state,

classical in register J , and keeps σ̃RB
RJBCC intact. The

following two steps contain the detailed construction of these
unitary procedures.

(1) Coherent measurement of register J . Let F
be a register with |F | = |J |, and let d := |F |.
Let Pj ∈ U

(
HF
)

be a Heisenberg-Weyl operator as defined in
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Section II-A. Let U1 ∈ U(HJF ) be a unitary operator defined
as U1 :=

∑
j |j〉〈j|J ⊗ PFj . Define

|κ1〉RAB
RJBCCFF ′ := U1

(
|ψ1〉RAB

RJBCC ⊗ |Ψ〉FF
′)

,

and

τRB
RJBCCF

1 := U1

(
σ̃RB

RJBCC ⊗ 1F

|F |

)
U†1 , (III.9)

where |Ψ〉FF
′

:= 1√
d

∑d
f=1 |ff〉 is the maximally entangled

state over registers F and F ′. For the same reasons as in the
GHZ example, the unitary operator U1 acts trivially on σ̃ while
it measures register J in ψRB

RJBCC
1 coherently. In particular,

τRB
RJBCCF

1 = σ̃RB
RJBCC ⊗ 1F

|F |
, (III.10)

and

κRB
RJBCC

1 =
∑
j

|j〉〈j|J ⊗ ψRB
RBCC

j,j . (III.11)

(2) Decoupling registers BCC from RBRJ in τ1 . By
Eqs. (III.6) and (III.10), register J is classical in τRB

RJBCC
1

and conditioned on J , registers RBR are decoupled
from BCC. Hence, we can decouple registers BCC from
registers RBRJ in τ1 using embezzling states and applying
the unitary operator given in Corollary II.16. (See also the
remark after the proof of the corollary.)

For γ2 ∈ (0, 1) chosen as in Corollary II.16,
let a2 := |BCC|/γ2, n2 := a

1/δ22
2 , and D2, D

′
2 and E2 be

quantum registers with |D2| = |D′2| ≥ n2 and |E2| = a2.
Let

νB
CCE2

2 :=
1

a2

a2∑
r=1

|r〉〈r|B
CCE2 .

According to Corollary II.16, there exists a unitary opera-
tor U2 ∈ U(HJBCCE2D2), read-only on register J , and a
projection operator Π̃ ∈ Pos(HJBCCE2D2) such that

U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U†2

≤ log(1 + 15δ2
2) τRB

RJ
1 ⊗ νB

CCE2
2 ⊗ ξD2

1:n2
, (III.12)

Π̃
(
τRB

RJ
1 ⊗ νB

CCE2
2 ⊗ ξD2

1:n2

)
Π̃

� 2 U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U†2 , (III.13)

and

Tr
[
Π̃U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U†2

]
= 1 .

(III.14)
Define

τRB
RJBCCE2D2

2

:= U2

(
τRB

RJBCC
1 ⊗ |0〉〈0|E2 ⊗ ξD2

a2:n2

)
U†2 ,

and

|κ2〉RAB
RJBCCE2D2D

′
2FF

′

:= U2

(
|κ1〉RAB

RJBCCFF ′ ⊗ |0〉E2 ⊗ |ξa2:n2
〉D2D

′
2

)
.

Since U2 is read-only on register J and J is classical in
the state κRB

RJBCC
1 , the unitary operator U2 keeps κRB

RJ
1

intact. So, we have

κRB
RJ

2 = κRB
RJ

1 = ψRB
RJ

1 . (III.15)

Moreover, by Eq. (III.12), τ2 is close to a product state in
max-relative entropy and therefore, we can claim the following
statement.

Claim III.2. For the state κ2 defined above, we have

Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥κRBRJ2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)
≤ Dmax

(
ψRBC‖ σRBC

)
+ 5δ2 , (III.16)

and

D
ε22
H

(
κB

RJBCCE2D2F
2

∥∥∥ κB
RJ

2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)
≥ D

ε42/4
H

(
ψBC‖ σBC

)
− 1 . (III.17)

We prove the claim at the end of this section.
To redistribute registers BCC in the state ψ1 with the

desired cost, Claim III.2 suggests that it would be sufficient
for parties to transform their joint state ψ1 to κ2 through
the unitary operators U2U1, then use the AJW protocol
to redistribute registers BCCE2D2F , and finally, transform
back κ2 to the state ψ1 by applying U−1

1 U−1
2 . However,

in order to apply U2U1, one needs to have access to all
the registers JBCC, but initially registers BCC are with
Alice and register J is with Bob. This problem can be
resolved using the Uhlmann theorem, as in the GHZ example.
Recall that κRB

RJ
2 = ψRB

RJ
1 as mentioned in Eq. (III.15).

Therefore, by the Uhlmann Theorem, there exists an isome-
try V : HABCC → HABCCE2D2D

′
2FF

′
such that

V |ψ1〉RAB
RJBCC

= |κ2〉RAB
RJBCCE2D2D

′
2FF

′
. (III.18)

Notice that V only acts on registers ABCC which are initially
with Alice and so she can apply the isometry V locally to
transform ψ1 to κ2.

Now we have all the ingredients for the new state redistri-
bution protocol. We describe the steps systematically below.
Let

β := Dmax

(
ψRBC‖ σRBC

)
+ 5δ2 ,

and m :=
⌈

2β

ε22

⌉
, where ε2 ∈ (0, 1). Let S and T be

quantum registers such that |S| = |T | =
∣∣BCCE2D2F

∣∣.
Let |η〉ST be a purification of νB

CCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F | such

that ηT = νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F | .
The protocol. In order to redistribute |ψ〉RABC , Alice and

Bob implement the following steps.
1) Initially, Alice and Bob start in the state |ψ〉RABC , and

share the quantum state |ξ〉D
′
1D1 and m copies of the

state |η〉ST in registers (SiTi : i ∈ [m]). Hence, the
initial joint quantum state of Ref, Alice, and Bob is

|ψ〉RABC ⊗ |ξ〉D
′
1D1

m⊗
i=1

|η〉SiTi ,
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χ := Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥ κRB
RJ

2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)
−D

ε22
H

(
κB

RJBCCE2D2F
2

∥∥∥ κB
RJ

2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)
. (III.19)

such that register R is held by Ref, regis-
ters (ACD′1S1 . . . Sm) are held by Alice, and
registers (BD1T1 . . . Tm) are held by Bob.

2) Alice and Bob pre-process their joint state via local
transformations, without any communication. I.e., Bob
applies the isometry Uii,BUi on his registers, and Alice
applies the isometry Uii,A on her registers. This trans-
forms their joint state on RABCD′1D1 into a quantum
state ψRAB

RJBCCD′1D1

2 which has purified distance at
most δ1 from ψRAB

RJBCC
1 ⊗ξD′1D1 , where the state ψ1

is as given by Eq. (III.7).
At this point, the registers (ABCCD′1) are with Alice,
registers (BRJD1) are with Bob, and register (R) is
with Ref. Registers (SiTi) are not touched in this step,
and are shared as before. Registers D′1D1 are not used
after this point, and may be discarded.

3) Alice and Bob perform the first part of reduction in-
volving the coherent measurement and the decoupling
of a classical-quantum state. I.e., Alice applies the
isometry V to the registers ABCC. This transforms
their joint state on registers RABRJBCC into a quan-
tum state ω which has purified distance at most δ1
from |κ2〉RAB

RJBCCE2D2D
′
2FF

′
.

The registers (ABCCE2D2D
′
2FF

′) are with Alice,
registers (BRJ) are with Bob, and register (R) is with
Ref. Registers (SiTi) are not touched in this step, and
are shared as before.

4) Alice and Bob run the AJW protocol to transfer the reg-
isters BCCE2D2F to Bob, as described in Section II-C.
I.e., the two parties redistribute their registers assuming
that their joint state is |κ2〉RAB

RJBCCE2D2D
′
2FF

′
, with

the registers held as above. For this, they use the m
copies of the state |η〉ST that were shared in regis-
ters (SiTi : i ∈ [m]).
For the reader’s convenience we include in Table I the
correspondence between the states and registers involved
in the AJW protocol as presented in Section II-C and
those involved in the use of the protocol here.
At the end of the AJW protocol, the parties end up
with a state ω̂RAB

RJBCCE2D2D
′
2FF

′
such that regis-

ter (R) is held with Ref, (AD′2F
′) are held with Alice

and (BRJBCCE2D2F ) are held with Bob.
5) Bob completes the second part of reduction involv-

ing the coherent measurement and the decoupling of
a classical-quantum state and reverses the first pre-
processing step. I.e., he applies the operator (U2U1Ui)

−1

on registers BRJBCCE2D2F .
6) The output of the protocol is now the state in regis-

ters RABC.

Define χ as in Eq. (III.19). According to Theorem II.12, the
communication cost of this protocol is 1

2χ + log 1
ε22

which is
at most

1

2

[
Dmax

(
ψRBC‖ σRBC

)
−D

ε42/4
H

(
ψBC‖ σBC

)]
+ 5 δ2 + log

1

ε22
+ 1 ,

by Claim III.2.
Correctness of the protocol. Let φ be the final joint state

of parties in the above protocol. We have

P
(
φRABC , ψRABC

)
≤ P

(
φRABCE2D2D

′
2FF

′
, ψRABC⊗ |0〉〈0|E2⊗ ξD2D

′
2

a2:n2 ⊗ΨFF ′
)

≤ P
(
ω̂RAB

RJBCCE2D2D
′
2FF

′
, κ
RABRJBCCE2D2D

′
2FF

′

2

)
≤ P

(
ω̂RAB

RJBCCE2D2D
′
2FF

′
, ωRAB

RJBCCE2D2D
′
2FF

′
)

+ P
(
ωRAB

RJBCCE2D2D
′
2FF

′
, κ
RABRJBCCE2D2D

′
2FF

′

2

)
≤ 9ε2 + δ1 .

Here, the first and second inequalities follow from monotonic-
ity of purified distance under quantum operations. In the first,
we consider the extensions of the two states to a larger set of
registers. In the second inequality, we consider the states by
reversing the isometries in step 5 of the protocol. The third
inequality is the Triangle Inequality for purified distance. The
last inequality holds since ω̂ ∈ B9ε2(ω) by Theorem II.12,
and ω ∈ Bδ1(κ2).

By the properties of the embezzlement protocol due to van
Dam and Hayden [9] (see Eqs. (II.8) and (II.9)) and the
protocol given by Corollary II.16, we can make δ1 and δ2
arbitrarily small by choosing suitable entangled states shared
between Alice and Bob. (Note that this comes at the cost of
shared entanglement with arbitrarily large local dimension.)
Hence, the statement of the theorem follows.

It only remains to prove Claim III.2.
Proof of Claim III.2: Consider the states and operators de-
fined in the description preceding the protocol. Since register J
is classical in both κRB

RJBCC
1 and τRB

RJBCC
1 and U2 is

read-only on J , we have that κRB
RJ

2 = τRB
RJ

2 = τRB
RJ

1 .
Therefore, we get

Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥κRBRJ2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)
≤ Dmax

(
κRB

RJBCCE2D2F
2

∥∥∥ τRBRJBCCE2D2
2 ⊗ 1F

|F |

)
+ Dmax

(
τRB

RJBCCE2D2
2

∥∥∥ τRBRJ2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2

)
≤ Dmax

(
ψRBC‖σRBC

)
+ log(1 + 15δ2

2) ,
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TABLE I
THE CORRESPONDENCE BETWEEN THE STATES AND REGISTERS IN THE AJW PROTOCOL AS DESCRIBED

IN SECTION II-C AND THOSE INVOLVED IN THE USE OF THE AJW PROTOCOL HERE.

Section II-C Here

State to be redistributed (“input”) |ψ〉RABC |κ2〉RABRJBCCE2D2D
′
2FF ′

Registers of input initially with Ref R R

Registers of input initially with Alice A ABCCE2D2D′
2FF

′

Registers of input initially with Bob B BRJ

Registers to be transferred to Bob C BCCE2D2F

Smoothed state ψ′RBC κRBRJBCCE2D2F
2

State used in application of Convex-Split σC νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

Initial shared entangled state
⊗m

i=1 |σ〉
LiCi

⊗m
i=1 |η〉

SiTi

Registers of entangled state initially with Alice L1 · · ·Lm S1 · · ·Sm

Registers of entangled state initially with Bob C1 · · ·Cm T1 · · ·Tm

where the last inequality is a consequence of Eq. (III.12)
and the fact that κRB

RJBCCE2D2F
2 and τRB

RJBCCE2D2F
2

are obtained by the applying the same unitary transformation
to ψRBC and σRBC , respectively. The above equation implies
Eq. (III.16) since log2(1 + 15x2) ≤ 5x for all x ≥ 0.

In the rest of the proof, we show that

D
ε22
H

(
κB

RJBCCE2D2F
2

∥∥∥ κB
RJ

2 ⊗ νB
CCE2

2 ⊗ ξD2
1:n2
⊗ 1F

|F |

)
≥ D

ε42/4
H

(
κB

RJBCCE2D2F
2

∥∥∥ τB
RJBCCE2D2

2 ⊗ 1F

|F |

)
− 1 .

(III.20)

Then, Eq. (III.17) follows since κRB
RJBCCE2D2F

2 and
τRB

RJBCCE2D2F
2 are obtained by the applying the same

unitary transformation to ψRBC and σRBC , respectively. Let

λ := D
ε42/4
H

(
κB

RJBCCE2D2F
2

∥∥∥ τB
RJBCCE2D2F

2

)
,

and Π′ be the POVM operator achieving λ, i.e.,

Tr
[
Π′κB

RJBCCE2D2F
2

]
≥ 1− ε42

4
and

Tr

[
Π′
(
τB

RJBCCE2D2
2 ⊗ 1F

|F |

)]
= 2−λ .

Recall that κB
RJ

2 = τB
RJ

2 = τB
RJ

1 . So, Eq. (III.13) implies
that

Π̃
(
κB

RJ
2 ⊗ νB

CCE2
2 ⊗ ξD2

1:n2

)
Π̃ � 2 τB

RJBCCE2D2
2 .

(III.21)
Since σRBC ∈ ME

ε42/4,ψ
R−B−C , the state κJB

CCE2D2
2 is (ε42/4)-

close to τJB
CCE2D2

2 in purified distance. This implies that

Tr
[
Π̃κB

RJBCCE2D2F
2

]
≥ Tr

[
Π̃ τB

RJBCCE2D2F
2

]
− ε42

4

= 1− ε42
4
, (III.22)

using Theorem II.1, Theorem II.3, and Eq. (III.14). So, the
Gentle Measurement lemma, Lemma II.2, implies that∥∥∥∥∥∥ Π̃κB

RJBCCE2D2F
2 Π̃

Tr
[
Π̃κB

RJBCCE2D2F
2

] − κBRJBCCE2D2F
2

∥∥∥∥∥∥
1

≤ ε22 .

(III.23)
Define the POVM operator Π := Π̃ Π′Π̃. By Eq. (III.23),
Eq. (III.22), and Theorem II.1 we have

Tr
[
ΠκB

RJBCCE2D2F
2

]
= Tr

[
Π′Π̃κB

RJBCCE2D2F
2 Π̃

]
≥
(

1− ε42
4

)(
Tr
[
Π′κB

RJBCCE2D2F
2

]
− ε22

2

)
≥ 1− ε22 .

By Eq. (III.21), we get

Tr

[
Π

(
κB

RJ
2 ⊗ νB

CCE2
2 ⊗ ξD2

1:n2
⊗ 1F

|F |

)]
≤ 2 Tr

[
Π′
(
τB

RJBCCE2D2
2 ⊗ 1F

|F |

)]
= 2−λ+1 ,

which implies Eq. (III.20), as desired.

C. Asymptotic and i.i.d. analysis

We can obtain the asymptotic cost of redistributing copies
of a state using the one-shot bound from the previous section.

Suppose that the state |ψ〉R
nAnBnCn :=

(
|ψ〉RABC

)⊗n
is

shared between Alice (AnCn), Bob (Bn) and Ref (Rn)
where Rn, An, Bn, and Cn denote n-fold tensor products
of registers R, A, B and C, respectively. Let ε := ε1 = ε42/4.
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By Theorem III.1, choosing σR
nBnCn := ψ′R

nBn ⊗ ψC
n

,
there exists an entanglement-assisted one-way protocol which
outputs a state φR

nAnBnCn ∈ B14ε1/4(ψR
nAnBnCn) with

communication cost Q(n, ε) bounded as

Q(n, ε)

≤ 1

2
inf

ψ′∈Bε(ψRnBnCn )

[
Dmax

(
ψ′
RnBnCn

∥∥∥ ψ′RnBn ⊗ ψCn)
−Dε

H

(
ψ′
BnCn

∥∥∥ ψ′Bn ⊗ ψCn)]+ log
1

2
√
ε

≤ 1

2
inf

ψ′∈Bε(ψR
nBnCn )

ψ′R
nBn=ψR

nBn

[
Dmax

(
ψ′
RnBnCn

∥∥∥ ψRnBn ⊗ ψCn)

−Dε
H

(
ψ′
BnCn

∥∥∥ ψBn ⊗ ψCn)]+ log
1

2
√
ε

≤ 1

2
inf

ψ′∈Bε(ψR
nBnCn )

ψ′R
nBn=ψR

nBn

[
Dmax

(
ψ′
RnBnCn

∥∥∥ ψRnBn ⊗ ψCn)

−D2ε
H

(
ψB

nCn
∥∥∥ ψBn ⊗ ψCn)]+ log

1

2
√
ε

≤ 1

2

[
Dε/3

max

(
ψR

nBnCn
∥∥∥ ψRnBn ⊗ ψCn)

−D2ε
H

(
ψB

nCn
∥∥∥ ψBn ⊗ ψCn)]+ log

1

2
√
ε

+ log
72 + ε2

ε2
,

where the first inequality follows from Eq.(III.1), the third
inequality follows from the definition of Hypothesis testing
entropy, and the last inequality follows from Theorem II.7 for
the choice of ε, δ ← ε/3, ρAB ← ψR

nBnCn , ρA ← ψR
nBn

and σB ← ψC
n

. Therefore, using Theorem II.6, the asymp-
totic communication rate of redistributing n copies of a pure
state |ψ〉RABC is

lim
n→∞

1

n
Q(n, ε) ≤ 1

2
I(R : C |B)ψ .

IV. CONCLUSION AND OUTLOOK

In this article, we revisited the task of one-shot quantum
state redistribution, and introduced a new protocol achieving
this task with communication cost

1

2
min

ψ′∈Bε(ψRBC)
min

σRBC∈ME
ε2/4,ψ′
R−B−C

[
Dmax

(
ψ′RBC‖σRBC

)
−Dε

H

(
ψ′BC‖σBC

)]
+ O

(
log

1

ε

)
, (IV.1)

with error parameter ε. This is the first result connecting
the communication cost of state redistribution with Markov
chains. It provides an operational interpretation for a one-
shot representation of quantum conditional mutual information
as explained in Sec I. In the special case where ψRBC is a
quantum Markov chain, our protocol leads to near-zero com-
munication which was not known for the previous protocols
designed for arbitrary states. Moreover, the communication
cost of our protocol is lower than that of all previously known
one-shot protocols and we show that it achieves the optimal
cost of 1

2 I(R : C |B) in the asymptotic i.i.d. setting. Our

protocol also achieves the near-optimal result of ref. [41] in
the case when ψRBC is classical.

A question of interest is whether the communication cost
of our one-shot protocol can be bounded with I(R : C |B). In
the quantum communication complexity setting, such a bound
would imply the possibility of compressing the communication
of bounded-round quantum protocols to their information
content. This would lead to a direct-sum theorem for bounded-
round quantum communication complexity [42].

Another question that we have not addressed in this article
is whether our bound is near-optimal. There are several known
lower bounds in the literature for the communication cost of
entanglement-assisted quantum state redistribution, such as in
ref. [43, Proposition 6] and ref. [44, Theorem 3.2, Eq. (3.17)].
However, it is not clear if our bound matches any of them.
Obtaining a near-optimal bound for one-shot quantum state
redistribution remains a major open question.
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