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Abstract. We derive a new optimal sampling budget allocation for belief models based on
linear regression with continuous covariates, where the expected response is interpreted as
the value of the covariate vector, and an “error” occurs if a lower-valued vector is falsely
identified as being better than a higher-valued one. Our allocation optimizes the rate at
which the probability of error converges to zero using a large deviations theoretic charac-
terization. This is the first large deviations-based optimal allocation for continuous decision

spaces, and it turns out to be considerably simpler and easier to implement than allocations
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irical potential.
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that use discretization. We give a practicable sequential implementation and illustrate its
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1. Introduction
Consider the linear regression model

y=p"x+e, 1)

where € R? is a fixed, but unknown vector of regres-
sion coefficients, x € R? is a vector of data, and ¢ ~
N(0,0?) is residual noise. The expectation E(y | x) =" x
is interpreted as the “value” of x. For example, the ele-
ments of x could represent various attributes of a combi-
nation treatment for cancer, with the response y being
the health outcome (Bertsimas et al. 2016). We assume
that x is “better” if E(y | x) is larger. The set of possible x
need not be discrete.

Suppose that we have the ability to choose the data
vector: given a sample size of 1, we may choose
x1,...,X, anywhere in some compact subset of R called
the “design space.” This choice may be made either
all at once, before any observations are collected, or
sequentially, where each x,, may depend on x1,v1, ...,
Xm—-1,Ym—1, perhaps through a vector by, of least-squares
regression coefficients estimated using these previously
collected data. The first, static setting has been exten-
sively studied in the literature on experimental design
(Dette 1997, Salagame and Barton 1997). In this litera-
ture, the expected response B'x is not used to evaluate
or compare designs, and the goal is to improve the over-
all accuracy of the least squares estimator b, in some
aggregate sense. Typically, one builds the design to opti-
mize some summary statistic of the covariance matrix of b,,.

There are many possible criteria, known by such “alphabet-
optimal” names as A-optimality (Ahipasaoglu 2015),
D-optimality (Sagnol and Harman 2015, Pokhilko et al.
2019), G-optimality (Rodriguez et al. 2010), and so on.
Because of the properties of linear regression models,
such criteria can be computed without knowledge of 8
and thus do not require any information on the response.

The second, sequential setting has been considered
by the community working on simulation-based opti-
mization. This literature grew out of the ranking
and selection problem, in which the goal is to identify
the highest-valued alternative (unlike experimental
design, ranking and selection always has some notion
of value to maximize) from some finite set using inde-
pendent samples of the value. An early effort to apply
algorithmic concepts from ranking and selection to the
linear regression setting was by Negoescu et al. (2011),
who also assumed that each x,,, could take values only
in a finite set; similar settings were considered by Shen
etal. (2017) and Gao et al. (2019). Han et al. (2016) pro-
vided approximation algorithms for combinatorial
design spaces, whereas Brantley et al. (2013, 2014) han-
dled low-dimensional, continuous design spaces with
special structure (e.g., the value being a quadratic
function of a scalar control). In the computer science
literature, Dani et al. (2008), Abbasi-Yadkori et al.
(2011), and others studied related “linear bandit” pro-
blems where one maximizes the total value of the sam-
pled vectors.
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However, there is a growing stream of literature that
examines the problem of identifying the best x from the
viewpoint of static information collection, somewhat
like experimental design. In the simulation community,
Glynn and Juneja (2004) used large deviations theory to
derive a tractable form for the asymptotic convergence
rate of the probability of incorrect selection (the event
that a suboptimal alternative is erroneously estimated to
have a higher value than the optimal one). Given a finite
set of alternatives, one allocates the sampling budget
among them to speed up this convergence; essentially,
the convergence rate becomes a kind of optimality crite-
rion admitting a new type of “design.” Similar ideas
motivate the literature on optimal computing bud-
get allocation (Chen et al. 2000, 2015; Chen and Lee
2010), which uses various approximations of this error
probability. Later work by Pasupathy et al. (2014), Gao
et al. (2017), and Applegate et al. (2020) generalized this
notion to a broader class of simulation-based optimiza-
tion problems. In all these papers, both the criterion
and the optimal allocation depend on the underlying
unknown problem parameters (in regression, this is the
vector f) that determine the value of each x. This is a sig-
nificant departure from the experimental design litera-
ture, which generally refrains from including such
parameters in the model, but conceptually one may
think of this approach as leveraging ideas from experi-
mental design to address other problem classes focusing
on value maximization. The computer science literature
has also studied similar ideas, with Soare et al. (2014)
and Fiez et al. (2019) proposing variants of G-optimal
design for sequential learning.

In this paper, we derive and optimize a new, large
deviations theoretic optimality criterion for linear regres-
sion. We do not discretize the design space, unlike all the
existing work on large deviations-based allocations (even
Yakowitz et al. 2000, who study a continuous problem,
require discretization). Rather, we allow any x on the L*
sphere {x:||x]| =1}, which can be generalized to other
design spaces with dimension d. The analysis requires
substantial new technical developments over past work
(which is limited to finite sets) and leads to a completely
different interpretation of the allocation. In Glynn and
Juneja (2004) and related papers, each alternative is
assigned a certain nonzero proportion of the sample,
which is no longer possible when x is a continuous vari-
able. However, in the regression context, we find that
samples should be allocated to the elements of an ortho-
normal basis for the design space, with f itself being one of
the basis vectors. We then obtain exceptionally simple
closed-form calculations for the optimal proportions to
assign to each basis vector. In fact, these optimal propor-
tions are almost uniform: one samples  with a certain
small probability (computable in closed form) that does
not depend on p itself, and otherwise chooses one of the
other basis vectors uniformly at random.

In general, because optimal allocations depend on
unknown parameters, they cannot be computed statically
(again, unlike optimal designs), but rather must be learned
over time. For problems with discrete design spaces, such
as ranking and selection, this is a difficult problem, because
optimal allocations require enumeration of all possible
alternatives and make a special distinction between the
allocation to the best alternative versus all the others. See
Chen and Ryzhov (2019a, b) for algorithmic approaches in
such settings. However, in the continuous setting of this
paper, the optimal allocation is much easier to learn: by
changing the focus to an orthonormal basis for the design
space, which depends only on 5, we decouple the alloca-
tion from the actual x whose values are being compared.
The simplicity of this approach makes it attractive as a
benchmark for continuous optimal budget allocation, and
the concept of sampling a basis may be of interest for
future work on other classes of continuous problems.

2. Large Deviations in Least
Squares Regression
Return to (1) and assume, without loss of generality, that
I8l = 1. Suppose that {x,},., is a deterministic sequence
satisfying
li Ly =A 2
n—l;rolo n Z; xmxm T ( )
where A is a symmetric, positive definite matrix. Although
we will treat the data sequence {x, } as deterministic, intui-
tively one can think of (2) as a kind of “law of large
numbers” for the data-generating process. For example,
we could generate independent and identically distributed
(iid.) x, from some distribution, independent of {¢,,},,
and satisfying E(x,x,) = A, and satisfy (2). The results
derived in this section would still hold in such a setting, as
long as {x, } was independent of {¢, }

Let Yy =B X + &y with the residuals &, ~ N(0,0?)
being independent with common variance 0 < 2 < .
The ordinary least-squares estimator b, of f8, given the
data (x,ym) form=1,...,n, is defined as b, = argmin,

S (Y — b2

2.1. Large Deviations Laws
We show that, under the given modeling assumptions,
b, obeys the large deviations law

1 o
lim —log P(b, € E) = — inf I(u), )

where [ can be derived in closed form (Theorem 1). The
set E C IRY satisfies 8 ¢ E, which means that the event
{b, € E} represents an “error” of some sort. As n — oo,
the probability of error decays exponentially, with the
exponent determined by the rate function I.

The proof uses the Gartner-Ellis theorem (Dembo and
Zeitouni 2009), which requires the following steps. First,
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for any 1, we let W,,(y) = log E(e” ") be the log-mgf of
b,,. We then show that the scaled limit
1
W(y) = lim - W, (ny)

exists, and obtain I by taking the Fenchel-Legendre
transform

I(u)=supy 'u—Y(y) 4)
y

of W. Thus, the existence of W is the main requirement
for the analysis; additionally, as discussed in section 2.3
of Dembo and Zeitouni (2009), the interior of the domain
{y : W(y) < oo} should contain the origin, and ¥ should
be essentially smooth and lower semicontinuous. All
these conditions are satisfied in our setting.

Theorem 1. For any ECR? such that f¢E, the least
squares estimator obeys (3) with I(u) = 55 (u — p)"A(u — B).

Proof. For any #, b, can be written (Lai and Wei 1982)

as .
n n

b, =B+ <Z xmx;> leel.
=1

m=1

Using this representation, we calculate
Wu(y) =77 +log E(ewz:;:l o) S )
= )/T‘B +log E(@Z;l:l[)ﬁ(leﬂ xmx;z)flxl]&)
"1 n -1 2
=y"B+ ZEGZ yT mex; x| -
1=1 i=1
Consequently, the scaled limit \V exists and equals
n 1 n -1 2
WY(y) :yTﬂ+y}ij¥>10 ZEGZ" {)/T (mex;> xl]
=1 m=1
"1 n -1 n -1
:VTﬁ"',}EI;ZEUZ"VT (Zx,,pc%) xix) <mex;;> y
=1

m=1 m=1

n 1/ n -1
=y B+ V}Er;%oznyT <Zx,,,x;> (Zx;xf) (Zx,,pcl,) y
=1

m=1 m=1

-1
) 1 5 1
=7/Tﬁ+y}l_r,§0§a YT <n;xmx;> y
o L 2 T,
=y ﬁ+§a Yy ATy,
The domain of W is all of R?, and W is continuous, so

all of the conditions needed for (3) are satisfied. Then,
(4) becomes

I(u)=supy (u—p)— %ozyTA’l)/.
y
The supremum is achieved at y* satisfying
— * * 1
Ay =u-g = vy =§A(u—,8).

Substituting y* into (4) yields I(u) =55 (u—p) A(u—p),
as required. Q.E.D.

It is possible for (3) to hold (with a different I) when
the distribution of ¢ is nonnormal. In such settings, how-
ever, the rate function may have a more complicated
dependence on the data-generating process, making the
analysis much less tractable. For example, in the context
of logistic regression, Jiang et al. (2020) derives a large
deviations bound, where the exact rate in (3) is replaced
by an inequality. For linear regression with normal resi-
duals, the rate function depends on the data only
through the limiting matrix A, which allows more flexi-
bility in the data sequence. The normality assumption is
predominant in classical linear regression; when the resi-
duals are believed to be nonnormal, it is more common
to transform the response (e.g., fitting the regression
model to log y instead of y) than to explicitly model a
nonnormal error distribution.

More explicit rate exponents may be obtained for cer-
tain choices of the error event E. In the remainder of this
paper, we will primarily focus on error events of the form

E,={ueR?: u"v<0} ()

for various fixed vectors v € R? that satisfy 7o > 0. As
will be seen later on, such a v may be viewed as the dif-
ference between two covariate vectors, with the sign of
BT v indicating which vector has the better value, and
{by, € E;} being the event that estimation error yields the
wrong sign. The following result shows that the rate
exponent for any such E, can be computed in closed
form.

Proposition 1. Suppose that v > 0. Then,

1 1
lim Elog P(bv<0)= _FR(U)'

n—oo

T.\2
where R(v) = L2

vTA-1o"

Proof. From Theorem 1, it follows that R(v) is the opti-
mal value of the convex program

min (i — )7 A(u — )
uelR

st.oTu<o.

(6)

Letting A be the Lagrange multiplier of the single lin-
ear constraint, the optimality conditions of (6) are
given by

A(u—B)+Av =0, ?)

v'u=0, 8)

where (8) follows because the linear constraint should
be binding at optimality. Now, (7) yields

u=p-AA"1, )

and plugging (9) into (8) leads to

T TA-1, _ __v'B
vp—AvATv=0 = A_UTA—lv‘
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Plugging this back into (9), we obtain

.
(Y _
u = ﬁl A ly,
vTA- 1o

whence

W) = W =AW —p)

T 2
- <v:jqiv> 0TATTAA

_ @)y
T uTA- 1y’

asrequired. Q.E.D.

Thus, the convergence rate of P(b, € E;) is governed
by the exponent R(v), which depends on the specific vec-
tor v we are studying. R(v) is invariant with respect to
||v]|, so we can assume ||v]| = 1 whenever it is convenient
to do so. We can now study error events of the form
(UiEq, for countable collections {vi},- ;. A straightforward
consequence of Theorem 1 and Proposition 1 is that

lim %log P (bn € LkJEvk> =— zlpirklfR(vk), (10)
provided that g ¢ cl| J,E,, (or, equivalently, infyf" vy > 0).
Intuitively, the probability that at least one error event in
the collection occurs is determined by the slowest conver-
gence rates among the individual error events.

In this work, we focus on uncountable collections of
error events (with continuous-valued vy), so {v;} will be
dense in some such set of interest. Potentially, one could
also let {v;} be a finite set. Then, the results of Theorem 1
and Proposition 1 will remain unchanged, and the infi-
mum in (10) will become a minimum. Such a setting can
be viewed as a generalization of Glynn and Juneja
(2004). Optimal allocations for such problems are well
understood and can be computed efficiently (Chen and
Ryzhov 2019a). For this reason, the present work focuses
on the continuous setting, which has never before been
studied in the literature on optimal sampling allocation
and cannot be addressed by recycling or extending well-
established results from the discrete setting.

2.2. Optimal Sampling Allocations

Let x* € R? be some fixed “reference solution,” possibly
obtained from some optimization problem that will not
be explicitly modeled here. The value of this solution is
BT x*. We assume that larger values are better, so

X(x)={xeR?: gT(x" —x) >0}

is interpreted as the set of all inferior solutions. If there is
any x € X(x*) for which b (x* — x) <0, this means that
the estimated coefficients b, have led us to erroneously
identify x as being superior to x*. This is clearly an exam-
ple of (5) with v=x"—x and {b, € E,} being the false

identification event. The convergence rate of P(b, € E)
only depends on x* and x through v.

Potentially, any x € X(x*) can generate an error. Con-
sider a countable collection {x;},-; € X(x*). Each x; cor-
responds to an error vector vy = x* — xj, motivating an
optimization problem of the form

T 2\2
sup inf %, (11)
sest, k vf A”log

where §?, is the set of all d x d symmetric positive defi-
nite matrices. Through (10), this problem chooses the
matrix A to make P(b, € |J,E.,) converge to zero at the
fastest possible rate. Of course, to ensure that (11) is not
unbounded, we would also need to impose a simple
constraint on the magnitude of A, such as an upper
bound on the trace. Such an upper bound serves as a
scale factor on R(vy) for all k, but otherwise does not
change the geometry of the optimal A.

However, we require ¢ |J,E,, to use Theorem 1,
which means that we cannot make {x;} dense in the entire
set X(x*). Instead, we will focus on {v;.} C Vs, where

Vs={ov:loll=1,pT020},

and 60>0 is a small constant. By introducing 6, we
ensure that optimal allocation problems such as (11) are
well defined. Such problems maximize the smallest rate
exponent over some set, and without setting a nonzero
threshold for 6, it will always be possible to find expo-
nents arbitrarily close to zero. In terms of interpretation,
we are now willing to accept x € X'(x*) whose value is
sufficiently close to that of x*, and we focus on eliminat-
ing errors generated by solutions that are outside this
tolerance level. Our design space need not be restricted to
Vs. The parameter 6 only imposes restrictions on the
error events that we are trying to eliminate.
With this modification, one can rewrite (11) as

2
UT
max min ( ‘B) .
Aes?, veVs 0T A7l

12)

Because A is symmetric and positive definite, we can
write A = Zle piCiC,.T, where p; >0 and (g, ...,Cy) is an
orthonormal basis for IR?. We may assume that 3_,p; = 1
without loss of generality; as discussed earlier, this con-
dition scales the optimal A without changing its geome-
try. Recalling the interpretation of A as an expected
value, p; can be seen as the probability of sampling C;.
Thus far, (12) requires us to jointly choose both eigen-
values and eigenvectors. We will simplify this problem
by setting C; = f; that is, § itself will be an eigenvector.
With this, the orthonormal basis can be straightfor-
wardly completed, and the only remaining decision var-
iable will be the vector p of eigenvalues. We first give
some intuition for this choice. For any fixed positive defi-

T.\2
nite B, the ratio (fT gz)] can in general be made arbitrarily
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small. However, if we allow the positive semidefinite matrix
B =pBB", the ratio evaluates to 1 for any v with f7v # 0.
This suggests that, when we choose a positive definite B,
its principal eigenvector should also be aligned with f3.
Before providing more rigorous support for this idea,
we first manipulate the problem setup as follows. Let
B= Zﬂ’inCiT/ where ((4,...,C;) is an orthonormal basis
for RY, and 71 >, >--->7;> 0 are the eigenvalues. It

can easily be seen that mincy, (o) is attained on the

v By
boundary dVs ={v:|[v||=1,87v =6}. Then, the prob-

lem maxp mingeyy, % has the same optimal solution
as the problem ming maX,eyy,v" Bv. The inner maximi-
zation resembles an eigenvalue problem; this connection
is used in the following result to bound the inner maxi-
mum below by the second-largest eigenvalue of B for
any orthonormal basis not aligned with f.

Proposition 2. Suppose that p+C; for any i. Then,
MaXeyegy, V' Bv > 1y, with strict inequality continuing to
hold in the regime 6 — 0.

Proof. Define v = 68 + Pw, where P =1 — BB" is the pro-
jection onto the orthogonal complement of . Then,
the objective ££, which coincides with v"Bv when

v'v =1, can be rewritten in terms of w as

w T PBPw + 26w PBB + 52ﬁTBﬁ
wT Pw + 6

flw) =

Observe that .
Vof = —— (2PBPw + 26PBB — 2f(w)Pw).
f= B — 2f(w)Pw)

Setting the gradient equal to zero yields
PBPw + O6PBB = f - Pw. (13)

Given any solution (f, w) of (13), we can obtain a feasible
v = 0f + Pw whose objective value is f. Observe, how-
ever, that such a solution may be found for almost any f
value: we may rewrite (13) as (fI — PB)Pw = 0PBp,
where the matrix fI — PB is invertible as long as f is not
equal to any of the eigenvalues s; >--- > s; of PB. Conse-
quently, given any f satisfying f ;& s; for all i, we can
obtain Pw = 5(fI — PB)' PBB such that v = 5 + Pw satis-
f1es v Bv —

However, we also require v to satisfy the normaliza-
tion condition v'v =1. Equivalently, we must have
w P*w =1 — &*, which becomes

62

= b"BP(fl — PB) *PBg. (14)

Thus, the optimal value of max,eyy,v" Bv is the largest
f for which (14) holds. Because the right-hand side of
(14) has a cusp at f = s; and decreases monotonically
on (s1,00), the largest solution satisfies f > s;. By the
Courant-Fischer theorem (Horn and Johnson 2013,
theorem 4.2.6), we have r; >s; >, whence f > 1. As

0 — 0, the largest solution converges to s;, which is
strictly greater than r,. Q.E.D.

In words, once we have fixed the eigenvalues of B,
choosing any orthonormal basis that is not aligned with
B will always result in a nonzero gap between the inner
maximum maXyeyy, 0" Bv and the lower bound r,, and
this gap cannot be closed in the small-0 regime. On the
other hand, if = (;, the inner maximum is achieved by
taking v = 6C; + V1 — 6* - {,, yielding the optimal value
6°r1 + (1 — 6%)r,, which converges to 1, as 6—0.
Because we seek to minimize the value of the inner max-
imum, it follows that we should align the principal
eigenvector with f to close the gap with the lower
bound. Thus, we impose the structure

A=pipBT+> pG], (15)

i>1
where the other vectors (,,...,(; in the orthonormal

basis are unique (up to multiplication by —1). The
remainder of this paper will derive the optimal eigenva-
lues p; subject to the normalization condition ) p; = 1.
In fact, we will see that p; = min;p; in the optimal solu-
tion, confirming the intuition that 8 should be the princi-
pal eigenvector of A~1.

3. Solving for the Optimal Allocation
Suppose that the sequence {v} is dense in V. Because
R(v) is invariant with respect to |||, we can focus on
unit vectors without loss of generality. For fixed K, we
consider the problem

(07 B’
max m ’
p k<K 1(vTﬁ) +Zl>1p(vk G) 2

subject to the constraints p > 0, ) ,;p; = 1. Equation (16) is
a version of (11) with (15) plugged into the denominator.
As K — oo, the inner minimum in (16) will behave like a
minimum over all v € V. Because we are mainly inter-
ested in this asymptotic regime, we can choose the ele-
ments of {vx} in any way we want, as long as the
sequence remains dense in V.

The objective function in (16) is concave in p and can
be rewritten as max, .z subject to

T 2
z< @) k=1,...,K, (17)
pl('U ﬁ) +Zz>lp

in addition to the original constraints on p. The Lagrang-
ian of this optimization problem is given by

(16)

Lepin)=—z+ 3y 2= O
= LB + Lt (0] O

d
+V<Zp,-—1>,
i=1
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with the terms corresponding to the nonnegativity con-
straints on p; omitted to ensure that A is positive definite.
The optimality conditions are as follows:

1. First-order conditions:

K (©:p)’
Hi )
= [ferp? + Seterar]’
K (@)’ (0 C)’
Hi )
N TS D Gl

=plv, (18)

—pfv, i=2,...,d,

(19)

M~
=

(20)
k=1

2. Primal feasibility: (17) and > ",p; =1, p; > 0 for all i.

3. Dual feasibility: y, > 0.

4. Complementary slackness:

_ (V7 B) . - )
L (Z p%(v{ﬁﬁ + Y0l G ) ) , ..., K.
(21)

The first-order conditions (18)—(19) can be viewed as a
system of d linear equations in K variables 1, ..., ;. For
large K, this system may have many solutions. In particu-
lar, we can construct a basic solution by takmg d linearly
independent vectors vy, ..., v, from {3}, and setting
e =0if k¢ {ki,... ka}. Because {vi} is dense in a set of
dimension d, we can choose individual v to take certain
values in that set without affecting the asymptotic result.
For our analysis, it is convenient to take w; =  and let w;
be a linear combination of § and ; for j=2,...,d, with
w{C; =0 for any i #j. We may assume that, for any j,
there exists k; < K such that w; = g,
With this choice of w;, we can rewrite (18)—~(19) as

(] B)*
Pl + >ty - 2=PY, (22)
P L] B + Al )]
w! B (wl ¢
[‘lkj (]‘i)(] ]) 22=p]2V/
@] B + 2wl )| (23)
j=2,...,d.
Substituting (23) into (22) yields
2 T‘B) 2
P, +v P = prv. (24)

j>1 ( TC]

If we set by, = 0, the dual variable v cancels out of (24),
yielding

) o @) ’s
P1 ZP] (w]TCj)2. (25)

>1

For any p, it is easy to find e >0 and v to satisfy (23).
Condition (20) can also be easﬂy satisfied by rescaling
these values. The complementary slackness condition
(21) is satisfied for any k ¢ {k», ..., k;} because the corre-
sponding dual variables 1 are set to zero. To satisfy the
condition for the remaining values of k, it is sufficient to
ensure that R(w;) = R(wj), that is,

(W] B)? ~ (@] p)*
L@l BY +H@l T L] ) + 1w ¢

ij#1.

(26)

Thus, as long as p is chosen to satisfy (25)—(26), we can
find feasible p, v to satisfy (18)—(21). Essentially, most of
the optimality conditions for (16) have reduced to Con-
ditions (25)—(26) on p, which generalize those derived
in example 1 of Glynn and Juneja (2004) for large devia-
tions of pairwise comparisons between scalar normal
distributions.

In fact, there is only one optimality condition for (16)
that has not yet been treated, namely (17). Our choice of

p must also imply R(w;) < R(vy) for all i=2,...,d and
k=1,...,K. Recalling that we have the freedom to pick
wj, we further suppose that (wTﬁ) =6 forj=2,...,d.

Because each w; is a unit Vector it follows that
(w]TCj)z =1- 6% Consequently, (26) now implies that
pi =p; =c fori,j# 1 and some constant c. Then, for any
v € V5, the rate exponent R(v) simplifies to

(©p)° .
;%(UTﬁ)z + %Zi>1 (o7 Ci)2

R(v) =

Because (v )* = 6> for any v € V5, we must also have

321 (@TC)? <1 — 6% because v is a unit vector. Conse-
quently,

62
R@) 2155 =Rw)
507 +o(1—0%)
foranyj=2,...,d. Thus, our choice of w has caused (17)
to be satisfied for any v € V5. Therefore, the solution p* of
(25)—(26), for this choice of w, is optimal for any arbi-
trarily large K, and therefore

p'=arg maxm‘l/nR(v)

Py ipi=1

also optimizes the convergence rate of the probability
that an error arises from any v € Vs.

It remains to calculate p*. Letting A = .= ' 52’ we find that
(25) reduces to

=(d —1)Ac.
At the same time, p1 =1 — (d — 1)c, whence

1—(d—-1)c=c\v/({d—-1)A,
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leading to the closed-form solution

. _ V(d—=1A @)
P+ Jd-na

1 .

pi A+ A DA i=2,...,d. (28)
Recalling our earlier interpretation of A as an expected
value, (15) allows us to view the allocation as a discrete
probability distribution where each p; represents the
probability of collecting a data point using C; as the co-
variate vector. The solution (27)—(28) indicates that the
optimal distribution is almost uniform: any basis vector
that is orthogonal to § can be sampled with the same
probability. However, the probability assigned to the first
eigenvector f is different from the others; as 6 becomes
smaller, this probability is reduced, which means that
A~ will correspondingly place more weight on BB’ as
expected.

One especially striking aspect of this solution is that
the probabilities p; are completely deterministic. Thus,
the only unknown quantity in (15) is B itself, as suitable
C; can be straightforwardly computed if  is known. In
other words, the budget is being allocated to an ortho-
normal basis that depends only on 8, not x*. Another
way to interpret our results is that, for any x*, the proba-
bility that b, (x* — x) > 0 for all x satisfying " (x* —x) > 6
converges to 1 at the fastest possible rate.

The interpretation of the eigenvalues p; as probabili-
ties also allows us to apply the previous results to other
d-dimensional design spaces. For example, suppose that
the design space is a hyper-rectangle, allowing us to
sample scalar multiples a1,a2Cy, . . .,a4C; of the original
orthonormal basis vectors. We simply renormalize the

%

scaled probabilities Z—; and obtain a new data-generating

distribution with support (a1, ...,4,C4). The geometry
of the optimal A will be preserved, although the rate
exponent itself will be scaled by a constant factor
depending on the multipliers a;.

4. Practical Implementation

and Numerical Examples
Section 4.1 gives a simple sequential implementation
of our new optimal allocation and describes three bench-
marks. Section 4.2 describes the generation of test
instances, and Section 4.3 presents numerical results.

4.1. Description of Algorithms

Algorithm 1 states a very simple algorithm (which we
call “LD-optimal”) for sequentially implementing our
new optimal allocation. Essentially, we use the least-
squares estimator b, in place of . The estimator itself
can be updated recursively, but in every iteration, we
have to extend it to an orthonormal basis. A simple way
to do this is to take d arbitrary, prespecified linearly

independent vectors (&4, ...,&4) and apply the Gram-
Schmidt process to (b, &1, ..., &y). Again, the algorithm
does not need to know or estimate x*. In our numerical
experiments, we implemented this procedure together
with three benchmarks, which we now briefly describe.

Algorithm 1 (LD-Optimal Algorithm for Sequential
Implementation of the Optimal Allocation)
Step 0: Let n = 1, initialize b € R? and A; € §* .
Step 1: Calculate vectors (,; such that

(”Z—Z”, Cooreees C,,,d) is an orthonormal basis for R".
Step 2: Set

b, .

W.D.
a1 = 4 ol E P
Cui  W.p.pi.

Step 3: Observe y,+1 = B Xp41 + €q41 and update

T
n+l — b Xn+1
¥ n

by =b,+ Aux
T nAn+ls
1+x,,1AnXns
T
_ Anxn+1xn+1An
An+1 _ An - W .
+ Xp+1nX 41

Increment n by 1 and return to step 1.

4.1.1. Randomized Adaptive Gap Elimination (Fiez et al.
2019). The Randomized Adaptive Gap Elimination
(RAGE) method assumes that the sampling decision is
restricted to a prespecified finite set of vectors {z;}
(unlike our algorithm, which can sample any vector on
the unit sphere). RAGE proceeds in “phases.” In each
phase, some vectors z, are removed (screened out), and
each of the remaining vectors is sampled a number of
times that is determined dynamically. The procedure
terminates when only one element is left, and the screen-
ing and sampling steps are constructed to ensure that a
certain type of accuracy guarantee is achieved at termi-
nation. The number of phases and samples needed for
termination is not known ahead of time. Instead, RAGE
runs until its termination criterion is satisfied. As a
result, RAGE cannot be run with a prespecified fixed
sample size. We run RAGE using the creators” publicly
available code.

4.1.2. Uniformly Random (D-Optimal) Design. This method
samples a vector that is uniformly generated on the L*
sphere. It turns out that this simple procedure is equiv-
alent, in a certain sense, to a classical design of experi-
ments method known as D-optimal (Mitchell 2000).
Traditionally, D-optimal design chooses xi,...,x, to
maximize logdet(}"),_; x,x,,). In many classical set-
tings, the design space is discretized, and the optimal
design is interpreted in terms of proportions of the
total simulation budget assigned to each vector in the
discrete set. These proportions can be obtained using
convex optimization methods (Lu et al. 2018).
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Because (2) assumes - > x;,X,, — A, we can simply

use the limiting matrix A in the D-optimality criterion.
Because A is positive definite, one can write A = ZipiCiCiT
for some orthonormal basis Cy, . .., C;. It is easy to see that
the optimality criterion is unaffected by the choice of ortho-
normal basis, because logdet(A) =", logp;. Under the
normalization condition » _,p; = 1, itis readily seen that the
objective is maximized by setting p; = 1. It is then straight-
forward to show that sampling x from a uniform distribu-
tion on the L* sphere makes the matrix E(xx™) D-optimal.

We also considered a more traditional implementa-
tion of D-optimal in which the design space was
obtained by discretizing the I? sphere. However, the
resulting allocations were very close to uniform, and
performance was nearly identical to the previously
described setup. Thus, we proceed with uniform design,
because it offers more flexibility in the choice of design
points and is also easy to implement sequentially.

4.1.3. Oracle Allocation. This method is given access to
an orthonormal basis (8, Cy, . . . ;), which includes the true
value of 8, and implements the true optimal allocation: in
each iteration, it samples  with probability (27) and ;
with probability (28). The true f is only used for sampling;
the recursive least squares parameters (b,,, A,,) from Algo-
rithm 1 are still calculated and used to evaluate perfor-
mance. Such a method is not implementable in practice,
but we include it here to study whether any loss in perfor-
mance is incurred by using an estimator in place of 5.

We did not compare against such sequential simula-
tion optimization procedures as the knowledge gradient
method of Han et al. (2016) or the Thompson sampling
method of Russo and Van Roy (2014), because these meth-
ods all focus on identifying a particular x* value. By
contrast, our method eliminates false identification events
of the form {b,(x* —x) <0} for x,x* pairs satisfying
BT (x* —x) > 0. This goal is related to simulation optimiza-
tion, because x* could be the desired optimal solution;
however, because the large deviations rates depend on x*
only through pairwise differences x* — x, essentially our
allocation is optimizing convergence rates for all such x, x*
pairs simultaneously (the performance metric used in Sec-
tion 4.2 is also based on all possible pairs). A similar insight
is built into the RAGE algorithm, which is why we see it as
the most natural benchmark.

4.2. Test Problems and Performance Evaluation
First, we describe the metric used to evaluate perfor-
mance. For k=1,...,100, we generate vectors x; and a
normalized vector . After n observations have been col-
lected, we report

_ 2 (5,20 M ()20}

29
2kt L (53,70 “

n

the proportion of pairs x},x;, that satisfy " (x; — x},) > 0

and are correctly ordered under the estimated coeffi-
cients b,,. The problem is more challenging (i.e., F,, tends
to be smaller) if there are more pairs with 7 (x; — x},)
close to zero. In such cases, the sign of BT (x; — xj,) will
be more difficult to identify. If the problem is not suffi-
ciently difficult in this sense, it is likely that virtually any
algorithm will perform well.

The literature has not worked out a standard for gener-
ating difficult test problems. One can find toy examples
for discretized problems: Soare et al. (2014) gives one
example where sampling is restricted to d + 1 predeter-
mined vectors, which are also used as the test vectors x;.
The simulation literature uses some standard test set-
tings, such as the slippage configuration (Shen et al.
2021), but these settings grew out of the simpler ranking
and selection problem and do not reflect the full richness
of covariates that one would likely see in an application
of regression. For these reasons, we developed a new
schema for generating difficult, but diverse test instances.

We first choose § uniformly on the unit sphere in IRY.
Then, for each k, we generate a vector X by sampling each
component independently from a uniform distribution on
[—0.5,0.5]. We then calculate x; = (I — BB )Xy + g, where
1y is a vector whose components are iid. uniform on a
small interval (e.g., on [—0.01,0.01]). Thus, B"x;} is very
close (but not identical) to zero, and there is a much larger
number of (x}, x},) pairs for which the sign of 87 (x} — x7,)
is difficult to identify. At the same time, the individual
components of each x; may be very different from zero,
allowing for considerable diversity between test vectors.
Our results will demonstrate that this schema can produce
exceptionally difficult test instances.

We also comment on the implementation of the meth-
ods from Section 4.1. Both LD-optimal and D-optimal
can be run for any arbitrary 7, neither of them requires
any knowledge of the x; vectors, and both can sample
anywhere on the L sphere. Thus, we can run them
sequentially and evaluate (29) for each n. On the other
hand, the RAGE algorithm requires the vectors x} as
inputs, and furthermore is restricted to sampling from a
finite set {z} of unit vectors, which we generate inde-
pendently and uniformly on the unit sphere. We run the
method with these inputs and two different values of
the accuracy (error tolerance) parameter: the default
value of 0.01 and a higher value of 0.05. As explained
previously, RAGE runs until its termination criterion is
met, and we do not know ahead of time how long this
will take. Thus, we cannot directly compare it against
the other methods for fixed n. Instead, we report the
results of RAGE separately from the other methods and
give a qualitative discussion of the differences.

4.3. Numerical Examples

The space of possible regression problems is very rich:
performance will depend on f, the x} vectors that are
being compared, the dimensionality d, and the level o of
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noise. In our experience, even small differences in these
inputs may significantly change the difficulty of the
problem. In the following, we examine some individual
instances, all following the general schema described in
Section 4.2, to illustrate situations in which the LD-optimal
allocation adds value.

We chose eight instances to illustrate both small-
sample and large-sample behaviors. All instances use
d = 5. The first four instances use ¢ = 0.2 and indepen-
dently generate each component of the random pertur-
bations 1 from a uniform distribution on [—0.01,0.01].
These instances can be said to be moderately difficult;
one can make significant progress with a few hundred
samples. The second set of four instances uses o = 0.25
and intervals [—0.005,0.005]. This seemingly minor dif-
ference significantly increases the difficulty of these
instances relative to the first four.

Figure 1 examines the performance of the three sequen-
tial methods (LD-optimal, D-optimal, and Oracle) on

Instances 1-4 over a horizon of 10> samples. Results are
averaged over 1,000 macro-replications. The four graphs
are very similar, although we will show later (Table 1)
that Instances 14 are quite different from the viewpoint
of the RAGE algorithm. Here, we observe that LD-optimal
consistently outperforms D-optimal in all four instances.
The gap between them widens after an initial learning
period (in the first 100 samples, no method can do
much better than random guessing). Typically, one
can obtain an improvement of about 2% in the metric
(29) by using LD-optimal rather than D-optimal.
Because each instance has 4,950 distinct (x},x},) pairs,
this translates to about 100 more correct pairwise
comparisons.

Figure 2 reports gerformance on Instances 5-8 over a
larger horizon of 10” samples. Again, LD-optimal consis-
tently outperforms D-optimal throughout the time hori-
zon. The typical improvement obtained is 2%—2.5%. The
increased difficulty of these problems is demonstrated

Figure 1. (Color online) Comparison of Sequential Methods in Small-Sample Settings
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Table 1. Performance of RAGE

Accuracy

Sample size

Instance

Tolerance 0.01

Tolerance 0.05

Tolerance 0.01

Tolerance 0.05

OO Ul WN -

0.9909
0.9952
0.9986
0.9962
0.9962
0.9960
0.9962
0.9962

0.9798
0.9966
0.9899
0.9949
0.9960
0.9984
0.9929
0.9903

6,207,952 5,337,158
11,225,936 10,329,391
107,693,007 96,912,107
44,182,938 40,090,358
39,008,844 36,699,609
300,467,296 273,618,006
236,558,223 212,688,891
208,700,241 198,886,657

by the fact that the initial learning period is now much
longer for all methods; their accuracy after 10> samples
is much lower than in Instances 1-4.

It is interesting to observe that the Oracle method,
which knows the true f value, actually lags behind
LD-optimal in all eight instances. Similar behavior has

been observed before by Chen et al. (2006) for optimal
computing budget allocation methods. In our setting,
this happens because the optimal allocation assigns a
much lower proportion of the budget to the basis vector
B. As a result, this vector receives very few samples early
on, making the matrix A, in the computation of the

Figure 2. (Color online) Comparison of Sequential Methods in Large-Sample Settings
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recursive least squares estimator unstable. By contrast,
when LD-optimal uses the estimator b,, to make sampling
decisions, the random error in this estimator actually
improves the stability of A,. However, once sufficiently
many samples have been collected, LD-optimal and Ora-
cle behave identically.

Table 1 reports the performance of RAGE. We find
that this method is able to achieve extremely high accu-
racy according to the metric (29), but this comes at the
cost of extremely large sample sizes. Even the easiest
among Instances 5-8 requires more than 35 million sam-
ples before the termination criterion is met; the others
require upward of 300 million. Increasing the tolerance
parameter of RAGE yields only a modest reduction in
the sample sizes. The numbers in Table 1 were obtained
by running RAGE ten times (on each instance and toler-
ance parameter) with different randomly generated z,
(as described in Section 4.1) and taking the result with
the smallest sample size among these ten. As an aside,
we found that sample sizes were highly sensitive to the
choice of z;. For example, on Instance 6 with tolerance
0.01, the smallest sample size observed in ten runs was
approximately 300 million, but the largest was more
than 484 million. There is also a great deal of variation
between individual instances, despite that Instances 14
(and, respectively, 5-8) were generated from the same
specifications.

Thus, although RAGE nominally achieves the highest
accuracy, the cost of this is impractical. If one truly has
the ability to collect hundreds of millions of samples,
there seems to be little need for a sequential algorithm.
We acknowledge that RAGE has strong guarantees on
the error probability at the moment of termination; how-
ever, it has often been observed in the past (Wang and
Kim 2012) that such “fixed-precision” guarantees often
result in very conservative empirical behavior. If a very
large sampling budget is infeasible, LD-optimal may
offer a powerful alternative.

5. Conclusion

We derived a new optimal sampling allocation for linear
regression based on a large deviations theoretic analysis
of error probability. Our result has several novel charac-
teristics relative to previous work. First, in the linear
regression setting, it is not necessary to specify or esti-
mate a particular “optimal” solution that we are trying
to select. The asymptotic behavior of the error probabil-
ity depends only on the size on the suboptimality gap,
so our allocation simultaneously learns about any gaps,
between any two solutions, in excess of a given thresh-
old 0. As a result, it becomes optimal to allocate the bud-
get to an orthonormal basis for the solution space that
depends only on f rather than on specific x* as in dis-
crete problems. This makes the allocation very easy to
implement, offering a natural computational benchmark

for this problem class that can perform well under lim-
ited sampling budgets.
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