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Abstract. We derive a new optimal sampling budget allocation for belief models based on 
linear regression with continuous covariates, where the expected response is interpreted as 
the value of the covariate vector, and an “error” occurs if a lower-valued vector is falsely 
identified as being better than a higher-valued one. Our allocation optimizes the rate at 
which the probability of error converges to zero using a large deviations theoretic charac
terization. This is the first large deviations-based optimal allocation for continuous decision 
spaces, and it turns out to be considerably simpler and easier to implement than allocations 
that use discretization. We give a practicable sequential implementation and illustrate its 
empirical potential.
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1. Introduction
Consider the linear regression model

y � β⊤x + ε, (1) 

where β ∈ Rd is a fixed, but unknown vector of regres
sion coefficients, x ∈ Rd is a vector of data, and ε ~ 
N (0,σ2) is residual noise. The expectation E(y | x) � β⊤x 
is interpreted as the “value” of x. For example, the ele
ments of x could represent various attributes of a combi
nation treatment for cancer, with the response y being 
the health outcome (Bertsimas et al. 2016). We assume 
that x is “better” if E(y | x) is larger. The set of possible x 
need not be discrete.

Suppose that we have the ability to choose the data 
vector: given a sample size of n, we may choose 
x1, : : : , xn anywhere in some compact subset of Rd called 
the “design space.” This choice may be made either 
all at once, before any observations are collected, or 
sequentially, where each xm may depend on x1, y1, : : : , 
xm�1, ym�1, perhaps through a vector bm of least-squares 
regression coefficients estimated using these previously 
collected data. The first, static setting has been exten
sively studied in the literature on experimental design 
(Dette 1997, Salagame and Barton 1997). In this litera
ture, the expected response β⊤x is not used to evaluate 
or compare designs, and the goal is to improve the over
all accuracy of the least squares estimator bn in some 
aggregate sense. Typically, one builds the design to opti
mize some summary statistic of the covariance matrix of bn. 

There are many possible criteria, known by such “alphabet- 
optimal” names as A-optimality (Ahipaşaoglu 2015), 
D-optimality (Sagnol and Harman 2015, Pokhilko et al. 
2019), G-optimality (Rodriguez et al. 2010), and so on. 
Because of the properties of linear regression models, 
such criteria can be computed without knowledge of β 
and thus do not require any information on the response.

The second, sequential setting has been considered 
by the community working on simulation-based opti
mization. This literature grew out of the ranking 
and selection problem, in which the goal is to identify 
the highest-valued alternative (unlike experimental 
design, ranking and selection always has some notion 
of value to maximize) from some finite set using inde
pendent samples of the value. An early effort to apply 
algorithmic concepts from ranking and selection to the 
linear regression setting was by Negoescu et al. (2011), 
who also assumed that each xm could take values only 
in a finite set; similar settings were considered by Shen 
et al. (2017) and Gao et al. (2019). Han et al. (2016) pro
vided approximation algorithms for combinatorial 
design spaces, whereas Brantley et al. (2013, 2014) han
dled low-dimensional, continuous design spaces with 
special structure (e.g., the value being a quadratic 
function of a scalar control). In the computer science 
literature, Dani et al. (2008), Abbasi-Yadkori et al. 
(2011), and others studied related “linear bandit” pro
blems where one maximizes the total value of the sam
pled vectors.
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However, there is a growing stream of literature that 
examines the problem of identifying the best x from the 
viewpoint of static information collection, somewhat 
like experimental design. In the simulation community, 
Glynn and Juneja (2004) used large deviations theory to 
derive a tractable form for the asymptotic convergence 
rate of the probability of incorrect selection (the event 
that a suboptimal alternative is erroneously estimated to 
have a higher value than the optimal one). Given a finite 
set of alternatives, one allocates the sampling budget 
among them to speed up this convergence; essentially, 
the convergence rate becomes a kind of optimality crite
rion admitting a new type of “design.” Similar ideas 
motivate the literature on optimal computing bud
get allocation (Chen et al. 2000, 2015; Chen and Lee 
2010), which uses various approximations of this error 
probability. Later work by Pasupathy et al. (2014), Gao 
et al. (2017), and Applegate et al. (2020) generalized this 
notion to a broader class of simulation-based optimiza
tion problems. In all these papers, both the criterion 
and the optimal allocation depend on the underlying 
unknown problem parameters (in regression, this is the 
vector β) that determine the value of each x. This is a sig
nificant departure from the experimental design litera
ture, which generally refrains from including such 
parameters in the model, but conceptually one may 
think of this approach as leveraging ideas from experi
mental design to address other problem classes focusing 
on value maximization. The computer science literature 
has also studied similar ideas, with Soare et al. (2014) 
and Fiez et al. (2019) proposing variants of G-optimal 
design for sequential learning.

In this paper, we derive and optimize a new, large 
deviations theoretic optimality criterion for linear regres
sion. We do not discretize the design space, unlike all the 
existing work on large deviations-based allocations (even 
Yakowitz et al. 2000, who study a continuous problem, 
require discretization). Rather, we allow any x on the L2 

sphere {x : ‖x‖ � 1}, which can be generalized to other 
design spaces with dimension d. The analysis requires 
substantial new technical developments over past work 
(which is limited to finite sets) and leads to a completely 
different interpretation of the allocation. In Glynn and 
Juneja (2004) and related papers, each alternative is 
assigned a certain nonzero proportion of the sample, 
which is no longer possible when x is a continuous vari
able. However, in the regression context, we find that 
samples should be allocated to the elements of an ortho
normal basis for the design space, with β itself being one of 
the basis vectors. We then obtain exceptionally simple 
closed-form calculations for the optimal proportions to 
assign to each basis vector. In fact, these optimal propor
tions are almost uniform: one samples β with a certain 
small probability (computable in closed form) that does 
not depend on β itself, and otherwise chooses one of the 
other basis vectors uniformly at random.

In general, because optimal allocations depend on 
unknown parameters, they cannot be computed statically 
(again, unlike optimal designs), but rather must be learned 
over time. For problems with discrete design spaces, such 
as ranking and selection, this is a difficult problem, because 
optimal allocations require enumeration of all possible 
alternatives and make a special distinction between the 
allocation to the best alternative versus all the others. See 
Chen and Ryzhov (2019a, b) for algorithmic approaches in 
such settings. However, in the continuous setting of this 
paper, the optimal allocation is much easier to learn: by 
changing the focus to an orthonormal basis for the design 
space, which depends only on β, we decouple the alloca
tion from the actual x whose values are being compared. 
The simplicity of this approach makes it attractive as a 
benchmark for continuous optimal budget allocation, and 
the concept of sampling a basis may be of interest for 
future work on other classes of continuous problems.

2. Large Deviations in Least 
Squares Regression

Return to (1) and assume, without loss of generality, that 
‖β‖ � 1. Suppose that {xn}

∞
n�1 is a deterministic sequence 

satisfying

lim
n→∞

1
n
Xn

m�1
xmx⊤

m � A, (2) 

where A is a symmetric, positive definite matrix. Although 
we will treat the data sequence {xn} as deterministic, intui
tively one can think of (2) as a kind of “law of large 
numbers” for the data-generating process. For example, 
we could generate independent and identically distributed 
(i.i.d.) xn from some distribution, independent of {εn}

∞
n�1 

and satisfying E(xnx⊤
n ) � A, and satisfy (2). The results 

derived in this section would still hold in such a setting, as 
long as {xn} was independent of {εn}.

Let ym � β⊤xm + εm with the residuals εm ~ N (0,σ2)

being independent with common variance 0 < σ2 < ∞. 
The ordinary least-squares estimator bn of β, given the 
data (xm, ym) for m � 1, : : : , n, is defined as bn � argminb Pn

m�1 (ym � b⊤xm)
2.

2.1. Large Deviations Laws
We show that, under the given modeling assumptions, 
bn obeys the large deviations law

lim
n→∞

1
n log P(bn ∈ E) � � inf

u∈E
I(u), (3) 

where I can be derived in closed form (Theorem 1). The 
set E ⊆ Rd satisfies β ∉ E, which means that the event 
{bn ∈ E} represents an “error” of some sort. As n → ∞, 
the probability of error decays exponentially, with the 
exponent determined by the rate function I.

The proof uses the Gärtner-Ellis theorem (Dembo and 
Zeitouni 2009), which requires the following steps. First, 

Zhou and Ryzhov: Rate-Optimal Budget Allocation for Linear Models 
2 Operations Research, Articles in Advance, pp. 1–12, © 2023 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

29
.2

.1
9.

10
2]

 o
n 

06
 Ju

ly
 2

02
3,

 a
t 0

5:
53

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



for any n, we let Ψn(γ) � log E(eγ⊤bn ) be the log-mgf of 
bn. We then show that the scaled limit 

Ψ(γ) � lim
n→∞

1
nΨn(nγ)

exists, and obtain I by taking the Fenchel-Legendre 
transform

I(u) � sup
γ
γ⊤u �Ψ(γ) (4) 

of Ψ. Thus, the existence of Ψ is the main requirement 
for the analysis; additionally, as discussed in section 2.3 
of Dembo and Zeitouni (2009), the interior of the domain 
{γ : Ψ(γ) < ∞} should contain the origin, and Ψ should 
be essentially smooth and lower semicontinuous. All 
these conditions are satisfied in our setting.

Theorem 1. For any E ⊆ Rd such that β ∉ E, the least 
squares estimator obeys (3) with I(u) � 1

2σ2 (u � β)⊤A(u � β).

Proof. For any n, bn can be written (Lai and Wei 1982) 
as

bn � β +

 
Xn

m�1
xmx⊤

m

!�1
Xn

l�1
xlεl:

Using this representation, we calculate

Ψn(γ) � γ⊤β + log E
�

eγ⊤(
Pn

m�1 xmx⊤
m)

�1Pn
l�1 xlεl

�

� γ⊤β + log E
�

e
Pn

l�1[γ⊤(
Pn

m�1 xmx⊤
m)

�1xl]εl
�

� γ⊤β +
Xn

l�1

1
2σ

2

"

γ⊤

 
Xn

i�1
xmx⊤

m

!�1

xl

#2

:

Consequently, the scaled limit Ψ exists and equals

Ψ(γ)�γ⊤β+ lim
n→∞

Xn

l�1

1
2σ

2n

"

γ⊤

 
Xn

m�1
xmx⊤

m

!�1

xl

#2

�γ⊤β+ lim
n→∞

Xn

l�1

1
2σ

2nγ⊤

 
Xn

m�1
xmx⊤

m

!�1

xlx⊤
l

 
Xn

m�1
xmx⊤

m

!�1

γ

�γ⊤β+ lim
n→∞

1
2σ

2nγ⊤

 
Xn

m�1
xmx⊤

m

!�1 
Xn

l�1
xlx⊤

l

! 
Xn

m�1
xmx⊤

m

!�1

γ

�γ⊤β+ lim
n→∞

1
2σ

2γ⊤ 1
n
Xn

m�1
xmx⊤

m

 !�1

γ

�γ⊤β+
1
2σ

2γ⊤A�1γ:

The domain of Ψ is all of Rd, and Ψ is continuous, so 
all of the conditions needed for (3) are satisfied. Then, 
(4) becomes

I(u) � sup
γ
γ⊤(u � β) �

1
2σ

2γ⊤A�1γ:

The supremum is achieved at γ∗ satisfying

σ2A�1γ∗ � u � β ⇒ γ∗ �
1
σ2 A(u � β):

Substituting γ∗ into (4) yields I(u) � 1
2σ2 (u � β)⊤A(u � β), 

as required. Q.E.D.

It is possible for (3) to hold (with a different I) when 
the distribution of ε is nonnormal. In such settings, how
ever, the rate function may have a more complicated 
dependence on the data-generating process, making the 
analysis much less tractable. For example, in the context 
of logistic regression, Jiang et al. (2020) derives a large 
deviations bound, where the exact rate in (3) is replaced 
by an inequality. For linear regression with normal resi
duals, the rate function depends on the data only 
through the limiting matrix A, which allows more flexi
bility in the data sequence. The normality assumption is 
predominant in classical linear regression; when the resi
duals are believed to be nonnormal, it is more common 
to transform the response (e.g., fitting the regression 
model to log y instead of y) than to explicitly model a 
nonnormal error distribution.

More explicit rate exponents may be obtained for cer
tain choices of the error event E. In the remainder of this 
paper, we will primarily focus on error events of the form

Ev � {u ∈ Rd : u⊤v ≤ 0} (5) 

for various fixed vectors v ∈ Rd that satisfy β⊤v > 0. As 
will be seen later on, such a v may be viewed as the dif
ference between two covariate vectors, with the sign of 
β⊤v indicating which vector has the better value, and 
{bn ∈ Ev} being the event that estimation error yields the 
wrong sign. The following result shows that the rate 
exponent for any such Ev can be computed in closed 
form.

Proposition 1. Suppose that β⊤v > 0. Then,

lim
n→∞

1
n

log P(b⊤
n v ≤ 0) � �

1
2σ2 R(v), 

where R(v) �
(β⊤v)

2

v⊤A�1v.

Proof. From Theorem 1, it follows that R(v) is the opti
mal value of the convex program

min
u∈Rd

(u � β)⊤A(u � β)

s:t: v⊤u ≤ 0:
(6) 

Letting λ be the Lagrange multiplier of the single lin
ear constraint, the optimality conditions of (6) are 
given by

A(u � β) + λv � 0, (7) 
v⊤u � 0, (8) 

where (8) follows because the linear constraint should 
be binding at optimality. Now, (7) yields

u � β� λA�1v, (9) 

and plugging (9) into (8) leads to

v⊤β� λv⊤A�1v � 0 ⇒ λ �
v⊤β

v⊤A�1v :
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Plugging this back into (9), we obtain

u∗ � β�
v⊤β

v⊤A�1v
A�1v, 

whence

I(u∗) � (u∗ � β)A(u∗ � β)

�
v⊤β

v⊤A�1v

� �2
v⊤A�1AA�1v

�
(v⊤β)2

v⊤A�1v
, 

as required. Q.E.D.

Thus, the convergence rate of P(bn ∈ Ev) is governed 
by the exponent R(v), which depends on the specific vec
tor v we are studying. R(v) is invariant with respect to 
‖v‖, so we can assume ‖v‖ � 1 whenever it is convenient 
to do so. We can now study error events of the form 
S

kEvk for countable collections {vk}
∞
k�1. A straightforward 

consequence of Theorem 1 and Proposition 1 is that

lim
n→∞

1
n log P

 

bn ∈
[

k
Evk

!

� �
1

2σ2 inf
k

R(vk), (10) 

provided that β ∉ cl
S

kEvk (or, equivalently, infkβ
⊤vk > 0). 

Intuitively, the probability that at least one error event in 
the collection occurs is determined by the slowest conver
gence rates among the individual error events.

In this work, we focus on uncountable collections of 
error events (with continuous-valued vk), so {vk} will be 
dense in some such set of interest. Potentially, one could 
also let {vk} be a finite set. Then, the results of Theorem 1
and Proposition 1 will remain unchanged, and the infi
mum in (10) will become a minimum. Such a setting can 
be viewed as a generalization of Glynn and Juneja 
(2004). Optimal allocations for such problems are well 
understood and can be computed efficiently (Chen and 
Ryzhov 2019a). For this reason, the present work focuses 
on the continuous setting, which has never before been 
studied in the literature on optimal sampling allocation 
and cannot be addressed by recycling or extending well- 
established results from the discrete setting.

2.2. Optimal Sampling Allocations
Let x∗ ∈ Rd be some fixed “reference solution,” possibly 
obtained from some optimization problem that will not 
be explicitly modeled here. The value of this solution is 
β⊤x∗. We assume that larger values are better, so

X (x∗) � {x ∈ Rd : β⊤(x∗ � x) > 0}

is interpreted as the set of all inferior solutions. If there is 
any x ∈ X (x∗) for which b⊤

n (x∗ � x) ≤ 0, this means that 
the estimated coefficients bn have led us to erroneously 
identify x as being superior to x∗. This is clearly an exam
ple of (5) with v � x∗ � x and {bn ∈ Ev} being the false 

identification event. The convergence rate of P(bn ∈ Ev)

only depends on x∗ and x through v.
Potentially, any x ∈ X(x∗) can generate an error. Con

sider a countable collection {xk}
∞
k�1 ⊆ X(x∗). Each xk cor

responds to an error vector vk � x∗ � xk, motivating an 
optimization problem of the form

sup
A∈Sd

++

inf
k

(v⊤
k β)

2

v⊤
k A�1vk

, (11) 

where Sd
++ is the set of all d × d symmetric positive defi

nite matrices. Through (10), this problem chooses the 
matrix A to make P(bn ∈

S
kEvk ) converge to zero at the 

fastest possible rate. Of course, to ensure that (11) is not 
unbounded, we would also need to impose a simple 
constraint on the magnitude of A, such as an upper 
bound on the trace. Such an upper bound serves as a 
scale factor on R(vk) for all k, but otherwise does not 
change the geometry of the optimal A.

However, we require β ∉
S

kEvk to use Theorem 1, 
which means that we cannot make {xk} dense in the entire 
set X(x∗). Instead, we will focus on {vk} ⊆ Vδ, where

Vδ � {v : ‖v‖ � 1, β⊤v ≥ δ}, 

and δ > 0 is a small constant. By introducing δ, we 
ensure that optimal allocation problems such as (11) are 
well defined. Such problems maximize the smallest rate 
exponent over some set, and without setting a nonzero 
threshold for δ, it will always be possible to find expo
nents arbitrarily close to zero. In terms of interpretation, 
we are now willing to accept x ∈ X (x∗) whose value is 
sufficiently close to that of x∗, and we focus on eliminat
ing errors generated by solutions that are outside this 
tolerance level. Our design space need not be restricted to 
Vδ. The parameter δ only imposes restrictions on the 
error events that we are trying to eliminate.

With this modification, one can rewrite (11) as

max
A∈Sd

++

min
v∈Vδ

(v⊤β)2

v⊤A�1v
: (12) 

Because A is symmetric and positive definite, we can 
write A �

Pd
i�1 piζiζ

⊤
i , where pi > 0 and (ζ1, : : : ,ζd) is an 

orthonormal basis for Rd. We may assume that 
P

ipi � 1 
without loss of generality; as discussed earlier, this con
dition scales the optimal A without changing its geome
try. Recalling the interpretation of A as an expected 
value, pi can be seen as the probability of sampling ζi.

Thus far, (12) requires us to jointly choose both eigen
values and eigenvectors. We will simplify this problem 
by setting ζ1 � β; that is, β itself will be an eigenvector. 
With this, the orthonormal basis can be straightfor
wardly completed, and the only remaining decision var
iable will be the vector p of eigenvalues. We first give 
some intuition for this choice. For any fixed positive defi
nite B, the ratio (β⊤v)

2

v⊤Bv can in general be made arbitrarily 
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small. However, if we allow the positive semidefinite matrix 
B � ββ⊤, the ratio evaluates to 1 for any v with β⊤v ≠ 0. 
This suggests that, when we choose a positive definite B, 
its principal eigenvector should also be aligned with β.

Before providing more rigorous support for this idea, 
we first manipulate the problem setup as follows. Let 
B �

P
iriζiζ

⊤
i , where (ζ1, : : : ,ζd) is an orthonormal basis 

for Rd, and r1 > r2 ≥ ⋯ ≥ rd > 0 are the eigenvalues. It 
can easily be seen that minv∈Vδ

(β⊤v)
2

v⊤Bv is attained on the 
boundary ∂Vδ � {v : ‖v‖ � 1,β⊤v � δ}. Then, the prob
lem maxB minv∈∂Vδ

(β⊤v)
2

v⊤Bv has the same optimal solution 
as the problem minB maxv∈∂Vδv⊤Bv. The inner maximi
zation resembles an eigenvalue problem; this connection 
is used in the following result to bound the inner maxi
mum below by the second-largest eigenvalue of B for 
any orthonormal basis not aligned with β.

Proposition 2. Suppose that β≠ ζi for any i. Then, 
maxv∈∂Vδv⊤Bv > r2, with strict inequality continuing to 
hold in the regime δ→ 0.

Proof. Define v � δβ+ Pw, where P � I � ββ⊤ is the pro
jection onto the orthogonal complement of β. Then, 
the objective v⊤Bv

v⊤v , which coincides with v⊤Bv when 
v⊤v � 1, can be rewritten in terms of w as

f (w) �
w⊤PBPw + 2δw⊤PBβ+ δ2β⊤Bβ

w⊤Pw + δ2 :

Observe that
∇wf �

1
w⊤Pw + δ2 (2PBPw + 2δPBβ� 2f (w)Pw):

Setting the gradient equal to zero yields
PBPw + δPBβ � f · Pw: (13) 

Given any solution (f, w) of (13), we can obtain a feasible 
v � δβ+ Pw whose objective value is f. Observe, how
ever, that such a solution may be found for almost any f 
value: we may rewrite (13) as (fI � PB)Pw � δPBβ, 
where the matrix fI – PB is invertible as long as f is not 
equal to any of the eigenvalues s1 ≥ ⋯ ≥ sd of PB. Conse
quently, given any f satisfying f ≠ si for all i, we can 
obtain Pw � δ(fI � PB)

�1PBβ such that v � δβ+ Pw satis
fies v⊤Bv

v⊤v � f .
However, we also require v to satisfy the normaliza

tion condition v⊤v � 1. Equivalently, we must have 
w⊤P2w � 1 � δ2, which becomes

1 � δ2

δ2 � b⊤BP(fI � PB)
�2PBβ: (14) 

Thus, the optimal value of maxv∈∂Vδv⊤Bv is the largest 
f for which (14) holds. Because the right-hand side of 
(14) has a cusp at f � s1 and decreases monotonically 
on (s1, ∞), the largest solution satisfies f > s1. By the 
Courant-Fischer theorem (Horn and Johnson 2013, 
theorem 4.2.6), we have r1 > s1 > r2, whence f > r2. As 

δ→ 0, the largest solution converges to s1, which is 
strictly greater than r2. Q.E.D.

In words, once we have fixed the eigenvalues of B, 
choosing any orthonormal basis that is not aligned with 
β will always result in a nonzero gap between the inner 
maximum maxv∈∂Vδv⊤Bv and the lower bound r2, and 
this gap cannot be closed in the small-δ regime. On the 
other hand, if β � ζ1, the inner maximum is achieved by 
taking v � δζ1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � δ2

√
· ζ2, yielding the optimal value 

δ2r1 + (1 � δ2)r2, which converges to r2 as δ→ 0. 
Because we seek to minimize the value of the inner max
imum, it follows that we should align the principal 
eigenvector with β to close the gap with the lower 
bound. Thus, we impose the structure

A � p1ββ
⊤ +

X

i>1
piζiζ

⊤
i , (15) 

where the other vectors ζ2, : : : ,ζd in the orthonormal 
basis are unique (up to multiplication by �1). The 
remainder of this paper will derive the optimal eigenva
lues pi subject to the normalization condition 

P
ipi � 1. 

In fact, we will see that p1 � minipi in the optimal solu
tion, confirming the intuition that β should be the princi
pal eigenvector of A�1.

3. Solving for the Optimal Allocation
Suppose that the sequence {vk} is dense in Vδ. Because 
R(v) is invariant with respect to ‖v‖, we can focus on 
unit vectors without loss of generality. For fixed K, we 
consider the problem

max
p

min
k≤K

(v⊤
k β)

2

1
p1

(v⊤
k β)

2
+
P

i>1
1
pi

(v⊤
k ζi)

2 , (16) 

subject to the constraints p ≥ 0,
P

ipi � 1. Equation (16) is 
a version of (11) with (15) plugged into the denominator. 
As K → ∞, the inner minimum in (16) will behave like a 
minimum over all v ∈ Vδ. Because we are mainly inter
ested in this asymptotic regime, we can choose the ele
ments of {vk} in any way we want, as long as the 
sequence remains dense in Vδ.

The objective function in (16) is concave in p and can 
be rewritten as maxp, zz subject to

z ≤
(v⊤

k β)
2

1
p1

(v⊤
k β)

2
+
P

i>1
1
pi

(v⊤
k ζi)

2 , k � 1, : : : , K, (17) 

in addition to the original constraints on p. The Lagrang
ian of this optimization problem is given by

L(z, p, µ,ν) � �z +
XK

k�1
µk z �

(v⊤
k β)

2

1
p1

(v⊤
k β)

2
+
P

i>1
1
pi

(v⊤
k ζi)

2

0

@

1

A

+ ν

 
Xd

i�1
pi � 1

!

, 
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with the terms corresponding to the nonnegativity con
straints on pi omitted to ensure that A is positive definite. 
The optimality conditions are as follows: 

1. First-order conditions:
XK

k�1
µk

(v⊤
k β)

4

1
p1

(v⊤
k β)

2
+
P

i>1
1
pi

(v⊤
k ζi)

2
h i2 � p2

1ν, (18) 

XK

k�1
µk

(v⊤
k β)

2
(v⊤

k ζi)
2

1
p1

(v⊤
k β)

2
+
P

i>1
1
pi

(v⊤
k ζi)

2
h i2 � p2

i ν, i � 2, : : : , d,

(19) 
XK

k�1
µk � 1: (20) 

2. Primal feasibility: (17) and 
P

ipi � 1, pi > 0 for all i.
3. Dual feasibility: µk ≥ 0.
4. Complementary slackness:

µk z �
(v⊤

k β)
2

1
p1

(v⊤
k β)

2
+
P

i>1
1
pi

(v⊤
k ζi)

2

0

@

1

A � 0, k � 1, : : : , K:

(21) 

The first-order conditions (18)–(19) can be viewed as a 
system of d linear equations in K variables µ1, : : : , µK. For 
large K, this system may have many solutions. In particu
lar, we can construct a basic solution by taking d linearly 
independent vectors vk1 , : : : , vkd from {vk}

K
k�1 and setting 

µk � 0 if k ∉ {k1, : : : , kd}. Because {vk} is dense in a set of 
dimension d, we can choose individual vk to take certain 
values in that set without affecting the asymptotic result. 
For our analysis, it is convenient to take w1 � β and let wj 
be a linear combination of β and ζj, for j � 2, : : : , d, with 
w⊤

j ζi � 0 for any i ≠ j. We may assume that, for any j, 
there exists kj ≤ K such that wj � vkj .

With this choice of wj, we can rewrite (18)–(19) as

p2
1µk1

+
X

j>1
µkj

(w⊤
j β)

4

1
p1

(w⊤
j β)

2
+ 1

pj
(w⊤

j ζj)
2

h i2 � p2
1ν, (22) 

µkj

(w⊤
j β)

2
(w⊤

j ζj)
2

1
p1

(w⊤
j β)

2
+ 1

pj
(w⊤

j ζj)
2

h i2 � p2
j ν,

j � 2, : : : , d:

(23) 

Substituting (23) into (22) yields

p2
1µk1

+ ν
X

j>1
p2

j
(w⊤

j β)
2

(w⊤
j ζj)

2 � p2
1ν: (24) 

If we set µk1
� 0, the dual variable ν cancels out of (24), 

yielding

p2
1 �
X

j>1
p2

j
(w⊤

j β)
2

(w⊤
j ζj)

2 : (25) 

For any p, it is easy to find µkj
> 0 and ν to satisfy (23). 

Condition (20) can also be easily satisfied by rescaling 
these values. The complementary slackness condition 
(21) is satisfied for any k ∉ {k2, : : : , kd} because the corre
sponding dual variables µk are set to zero. To satisfy the 
condition for the remaining values of k, it is sufficient to 
ensure that R(wi) � R(wj), that is,

(w⊤
i β)

2

1
p1

(w⊤
i β)

2
+ 1

pi
(w⊤

i ζi)
2 �

(w⊤
j β)

2

1
p1

(w⊤
j β)

2
+ 1

pj
(w⊤

j ζj)
2 , i, j ≠ 1:

(26) 

Thus, as long as p is chosen to satisfy (25)–(26), we can 
find feasible µ,ν to satisfy (18)–(21). Essentially, most of 
the optimality conditions for (16) have reduced to Con
ditions (25)–(26) on p, which generalize those derived 
in example 1 of Glynn and Juneja (2004) for large devia
tions of pairwise comparisons between scalar normal 
distributions.

In fact, there is only one optimality condition for (16) 
that has not yet been treated, namely (17). Our choice of 
p must also imply R(wi) ≤ R(vk) for all i � 2, : : : , d and 
k � 1, : : : , K. Recalling that we have the freedom to pick 
wj, we further suppose that (w⊤

j β)
2

� δ2 for j � 2, : : : , d. 
Because each wj is a unit vector, it follows that 
(w⊤

j ζj)
2

� 1 � δ2. Consequently, (26) now implies that 
pi � pj � c for i, j ≠ 1 and some constant c. Then, for any 
v ∈ Vδ, the rate exponent R(v) simplifies to

R(v) �
(v⊤β)2

1
p1

(v⊤β)2
+ 1

c
P

i>1(v⊤ζi)
2 :

Because (v⊤β)2
≥ δ2 for any v ∈ Vδ, we must also have 

P
i>1(v⊤ζi)

2
≤ 1 � δ2 because v is a unit vector. Conse

quently,

R(v) ≥
δ2

1
p1
δ2 + 1

c(1 � δ2)
� R(wj)

for any j � 2, : : : , d. Thus, our choice of w has caused (17) 
to be satisfied for any v ∈ Vδ. Therefore, the solution p∗ of 
(25)–(26), for this choice of w, is optimal for any arbi
trarily large K, and therefore

p∗ � arg max
p:
P

ipi�1
min
v∈Vδ

R(v)

also optimizes the convergence rate of the probability 
that an error arises from any v ∈ Vδ.

It remains to calculate p∗. Letting ∆ � δ2

1�δ2, we find that 
(25) reduces to

p2
1 � (d � 1)∆c2:

At the same time, p1 � 1 � (d � 1)c, whence

1 � (d � 1)c � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d � 1)∆

p
, 
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leading to the closed-form solution

p∗
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d � 1)∆

p

(d � 1) +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d � 1)∆

p , (27) 

p∗
i �

1
(d � 1) +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d � 1)∆

p , i � 2, : : : , d: (28) 

Recalling our earlier interpretation of A as an expected 
value, (15) allows us to view the allocation as a discrete 
probability distribution where each pi represents the 
probability of collecting a data point using ζi as the co
variate vector. The solution (27)–(28) indicates that the 
optimal distribution is almost uniform: any basis vector 
that is orthogonal to β can be sampled with the same 
probability. However, the probability assigned to the first 
eigenvector β is different from the others; as δ becomes 
smaller, this probability is reduced, which means that 
A�1 will correspondingly place more weight on ββ⊤, as 
expected.

One especially striking aspect of this solution is that 
the probabilities p∗

i are completely deterministic. Thus, 
the only unknown quantity in (15) is β itself, as suitable 
ζi can be straightforwardly computed if β is known. In 
other words, the budget is being allocated to an ortho
normal basis that depends only on β, not x∗. Another 
way to interpret our results is that, for any x∗, the proba
bility that b⊤

n (x∗ � x) > 0 for all x satisfying β⊤(x∗ � x) ≥ δ 
converges to 1 at the fastest possible rate.

The interpretation of the eigenvalues p∗
i as probabili

ties also allows us to apply the previous results to other 
d-dimensional design spaces. For example, suppose that 
the design space is a hyper-rectangle, allowing us to 
sample scalar multiples a1β, a2ζ2, : : : , adζd of the original 
orthonormal basis vectors. We simply renormalize the 
scaled probabilities p

∗
i

a2
i 

and obtain a new data-generating 
distribution with support (a1β, : : : , adζd). The geometry 
of the optimal A will be preserved, although the rate 
exponent itself will be scaled by a constant factor 
depending on the multipliers ai.

4. Practical Implementation 
and Numerical Examples

Section 4.1 gives a simple sequential implementation 
of our new optimal allocation and describes three bench
marks. Section 4.2 describes the generation of test 
instances, and Section 4.3 presents numerical results.

4.1. Description of Algorithms
Algorithm 1 states a very simple algorithm (which we 
call “LD-optimal”) for sequentially implementing our 
new optimal allocation. Essentially, we use the least- 
squares estimator bn in place of β. The estimator itself 
can be updated recursively, but in every iteration, we 
have to extend it to an orthonormal basis. A simple way 
to do this is to take d arbitrary, prespecified linearly 

independent vectors (ξ1, : : : ,ξd) and apply the Gram- 
Schmidt process to (bn,ξ1, : : : ,ξd). Again, the algorithm 
does not need to know or estimate x∗. In our numerical 
experiments, we implemented this procedure together 
with three benchmarks, which we now briefly describe.

Algorithm 1 (LD-Optimal Algorithm for Sequential 
Implementation of the Optimal Allocation) 

Step 0: Let n � 1, initialize b1 ∈ Rd and A1 ∈ Sd
++.

Step 1: Calculate vectors ζn, i such that 
bn

‖bn‖
,ζn, 2, : : : ,ζn, d

� �
is an orthonormal basis for Rd.

Step 2: Set

xn+1 �

bn

‖bn‖
w:p: p∗

1

ζn, i w:p: p∗
i :

8
<

:

Step 3: Observe yn+1 � β⊤xn+1 + εn+1 and update

bn+1 � bn +
yn+1 � b⊤

n xn+1

1 + x⊤
n+1Anxn+1

Anxn+1,

An+1 � An �
Anxn+1x⊤

n+1An

1 + x⊤
n+1Anx⊤

n+1
:

Increment n by 1 and return to step 1.

4.1.1. Randomized Adaptive Gap Elimination (Fiez et al. 
2019). The Randomized Adaptive Gap Elimination 
(RAGE) method assumes that the sampling decision is 
restricted to a prespecified finite set of vectors {zℓ}
(unlike our algorithm, which can sample any vector on 
the unit sphere). RAGE proceeds in “phases.” In each 
phase, some vectors zℓ are removed (screened out), and 
each of the remaining vectors is sampled a number of 
times that is determined dynamically. The procedure 
terminates when only one element is left, and the screen
ing and sampling steps are constructed to ensure that a 
certain type of accuracy guarantee is achieved at termi
nation. The number of phases and samples needed for 
termination is not known ahead of time. Instead, RAGE 
runs until its termination criterion is satisfied. As a 
result, RAGE cannot be run with a prespecified fixed 
sample size. We run RAGE using the creators’ publicly 
available code.

4.1.2. Uniformly Random (D-Optimal) Design. This method 
samples a vector that is uniformly generated on the L2 

sphere. It turns out that this simple procedure is equiv
alent, in a certain sense, to a classical design of experi
ments method known as D-optimal (Mitchell 2000). 
Traditionally, D-optimal design chooses x1, : : : , xn to 
maximize log det

Pn
m�1 xmx⊤

m
� �

. In many classical set
tings, the design space is discretized, and the optimal 
design is interpreted in terms of proportions of the 
total simulation budget assigned to each vector in the 
discrete set. These proportions can be obtained using 
convex optimization methods (Lu et al. 2018).
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Because (2) assumes 1
n
Pn

m�1 xmx⊤
m → A, we can simply 

use the limiting matrix A in the D-optimality criterion. 
Because A is positive definite, one can write A �

P
ipiζiζ

⊤
i 

for some orthonormal basis ζ1, : : : ,ζd. It is easy to see that 
the optimality criterion is unaffected by the choice of ortho
normal basis, because log det(A) �

P
i log pi. Under the 

normalization condition 
P

ipi � 1, it is readily seen that the 
objective is maximized by setting pi ≡ 1

d. It is then straight
forward to show that sampling x from a uniform distribu
tion on the L2 sphere makes the matrix E(xx⊤) D-optimal.

We also considered a more traditional implementa
tion of D-optimal in which the design space was 
obtained by discretizing the L2 sphere. However, the 
resulting allocations were very close to uniform, and 
performance was nearly identical to the previously 
described setup. Thus, we proceed with uniform design, 
because it offers more flexibility in the choice of design 
points and is also easy to implement sequentially.

4.1.3. Oracle Allocation. This method is given access to 
an orthonormal basis (β,ζ2, : : :ζd), which includes the true 
value of β, and implements the true optimal allocation: in 
each iteration, it samples β with probability (27) and ζi 
with probability (28). The true β is only used for sampling; 
the recursive least squares parameters (bn, An) from Algo
rithm 1 are still calculated and used to evaluate perfor
mance. Such a method is not implementable in practice, 
but we include it here to study whether any loss in perfor
mance is incurred by using an estimator in place of β.

We did not compare against such sequential simula
tion optimization procedures as the knowledge gradient 
method of Han et al. (2016) or the Thompson sampling 
method of Russo and Van Roy (2014), because these meth
ods all focus on identifying a particular x∗ value. By 
contrast, our method eliminates false identification events 
of the form {b⊤

n (x∗ � x) ≤ 0} for x, x∗ pairs satisfying 
β⊤(x∗ � x) > 0. This goal is related to simulation optimiza
tion, because x∗ could be the desired optimal solution; 
however, because the large deviations rates depend on x∗

only through pairwise differences x∗ � x, essentially our 
allocation is optimizing convergence rates for all such x, x∗

pairs simultaneously (the performance metric used in Sec
tion 4.2 is also based on all possible pairs). A similar insight 
is built into the RAGE algorithm, which is why we see it as 
the most natural benchmark.

4.2. Test Problems and Performance Evaluation
First, we describe the metric used to evaluate perfor
mance. For k � 1, : : : , 100, we generate vectors x∗

k and a 
normalized vector β. After n observations have been col
lected, we report

Fn �

P
k, k′ 1 b⊤

n x∗
k�x∗

k′( )>0{ }1 β⊤ x∗
k�x∗

k′( )>0{ }
P

k, k′ 1 β⊤ x∗
k�x∗

k′( )>0{ }
, (29) 

the proportion of pairs x∗
k, x∗

k′ that satisfy β⊤(x∗
k � x∗

k′ ) > 0 

and are correctly ordered under the estimated coeffi
cients bn. The problem is more challenging (i.e., Fn tends 
to be smaller) if there are more pairs with β⊤(x∗

k � x∗
k′ )

close to zero. In such cases, the sign of β⊤(x∗
k � x∗

k′ ) will 
be more difficult to identify. If the problem is not suffi
ciently difficult in this sense, it is likely that virtually any 
algorithm will perform well.

The literature has not worked out a standard for gener
ating difficult test problems. One can find toy examples 
for discretized problems: Soare et al. (2014) gives one 
example where sampling is restricted to d + 1 predeter
mined vectors, which are also used as the test vectors x∗

k. 
The simulation literature uses some standard test set
tings, such as the slippage configuration (Shen et al. 
2021), but these settings grew out of the simpler ranking 
and selection problem and do not reflect the full richness 
of covariates that one would likely see in an application 
of regression. For these reasons, we developed a new 
schema for generating difficult, but diverse test instances.

We first choose β uniformly on the unit sphere in Rd. 
Then, for each k, we generate a vector x̃k by sampling each 
component independently from a uniform distribution on 
[�0:5, 0:5]. We then calculate x∗

k � (I � ββ⊤)x̃k + uk, where 
uk is a vector whose components are i.i.d. uniform on a 
small interval (e.g., on [�0:01, 0:01]). Thus, β⊤x∗

k is very 
close (but not identical) to zero, and there is a much larger 
number of (x∗

k, x∗
k′ ) pairs for which the sign of β⊤(x∗

k � x∗
k′ )

is difficult to identify. At the same time, the individual 
components of each x∗

k may be very different from zero, 
allowing for considerable diversity between test vectors. 
Our results will demonstrate that this schema can produce 
exceptionally difficult test instances.

We also comment on the implementation of the meth
ods from Section 4.1. Both LD-optimal and D-optimal 
can be run for any arbitrary n, neither of them requires 
any knowledge of the x∗

k vectors, and both can sample 
anywhere on the L2 sphere. Thus, we can run them 
sequentially and evaluate (29) for each n. On the other 
hand, the RAGE algorithm requires the vectors x∗

k as 
inputs, and furthermore is restricted to sampling from a 
finite set {zℓ} of unit vectors, which we generate inde
pendently and uniformly on the unit sphere. We run the 
method with these inputs and two different values of 
the accuracy (error tolerance) parameter: the default 
value of 0.01 and a higher value of 0.05. As explained 
previously, RAGE runs until its termination criterion is 
met, and we do not know ahead of time how long this 
will take. Thus, we cannot directly compare it against 
the other methods for fixed n. Instead, we report the 
results of RAGE separately from the other methods and 
give a qualitative discussion of the differences.

4.3. Numerical Examples
The space of possible regression problems is very rich: 
performance will depend on β, the x∗

k vectors that are 
being compared, the dimensionality d, and the level σ of 
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noise. In our experience, even small differences in these 
inputs may significantly change the difficulty of the 
problem. In the following, we examine some individual 
instances, all following the general schema described in 
Section 4.2, to illustrate situations in which the LD-optimal 
allocation adds value.

We chose eight instances to illustrate both small- 
sample and large-sample behaviors. All instances use 
d � 5. The first four instances use σ � 0:2 and indepen
dently generate each component of the random pertur
bations uk from a uniform distribution on [�0:01, 0:01]. 
These instances can be said to be moderately difficult; 
one can make significant progress with a few hundred 
samples. The second set of four instances uses σ � 0:25 
and intervals [�0:005, 0:005]. This seemingly minor dif
ference significantly increases the difficulty of these 
instances relative to the first four.

Figure 1 examines the performance of the three sequen
tial methods (LD-optimal, D-optimal, and Oracle) on 

Instances 1–4 over a horizon of 103 samples. Results are 
averaged over 1,000 macro-replications. The four graphs 
are very similar, although we will show later (Table 1) 
that Instances 1–4 are quite different from the viewpoint 
of the RAGE algorithm. Here, we observe that LD-optimal 
consistently outperforms D-optimal in all four instances. 
The gap between them widens after an initial learning 
period (in the first 100 samples, no method can do 
much better than random guessing). Typically, one 
can obtain an improvement of about 2% in the metric 
(29) by using LD-optimal rather than D-optimal. 
Because each instance has 4,950 distinct (x∗

k, x∗
k′ ) pairs, 

this translates to about 100 more correct pairwise 
comparisons.

Figure 2 reports performance on Instances 5–8 over a 
larger horizon of 105 samples. Again, LD-optimal consis
tently outperforms D-optimal throughout the time hori
zon. The typical improvement obtained is 2%–2.5%. The 
increased difficulty of these problems is demonstrated 

Figure 1. (Color online) Comparison of Sequential Methods in Small-Sample Settings 

Notes. (a) Instance 1. (b) Instance 2. (c) Instance 3. (d) Instance 4.
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by the fact that the initial learning period is now much 
longer for all methods; their accuracy after 103 samples 
is much lower than in Instances 1–4.

It is interesting to observe that the Oracle method, 
which knows the true β value, actually lags behind 
LD-optimal in all eight instances. Similar behavior has 

been observed before by Chen et al. (2006) for optimal 
computing budget allocation methods. In our setting, 
this happens because the optimal allocation assigns a 
much lower proportion of the budget to the basis vector 
β. As a result, this vector receives very few samples early 
on, making the matrix An in the computation of the 

Figure 2. (Color online) Comparison of Sequential Methods in Large-Sample Settings 

Notes. (a) Instance 5. (b) Instance 6. (c) Instance 7. (d) Instance 8.

Table 1. Performance of RAGE

Instance

Accuracy Sample size

Tolerance 0.01 Tolerance 0.05 Tolerance 0.01 Tolerance 0.05

1 0.9909 0.9798 6,207,952 5,337,158
2 0.9952 0.9966 11,225,936 10,329,391
3 0.9986 0.9899 107,693,007 96,912,107
4 0.9962 0.9949 44,182,938 40,090,358
5 0.9962 0.9960 39,008,844 36,699,609
6 0.9960 0.9984 300,467,296 273,618,006
7 0.9962 0.9929 236,558,223 212,688,891
8 0.9962 0.9903 208,700,241 198,886,657
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recursive least squares estimator unstable. By contrast, 
when LD-optimal uses the estimator bn to make sampling 
decisions, the random error in this estimator actually 
improves the stability of An. However, once sufficiently 
many samples have been collected, LD-optimal and Ora
cle behave identically.

Table 1 reports the performance of RAGE. We find 
that this method is able to achieve extremely high accu
racy according to the metric (29), but this comes at the 
cost of extremely large sample sizes. Even the easiest 
among Instances 5–8 requires more than 35 million sam
ples before the termination criterion is met; the others 
require upward of 300 million. Increasing the tolerance 
parameter of RAGE yields only a modest reduction in 
the sample sizes. The numbers in Table 1 were obtained 
by running RAGE ten times (on each instance and toler
ance parameter) with different randomly generated zℓ 
(as described in Section 4.1) and taking the result with 
the smallest sample size among these ten. As an aside, 
we found that sample sizes were highly sensitive to the 
choice of zℓ. For example, on Instance 6 with tolerance 
0.01, the smallest sample size observed in ten runs was 
approximately 300 million, but the largest was more 
than 484 million. There is also a great deal of variation 
between individual instances, despite that Instances 1–4 
(and, respectively, 5–8) were generated from the same 
specifications.

Thus, although RAGE nominally achieves the highest 
accuracy, the cost of this is impractical. If one truly has 
the ability to collect hundreds of millions of samples, 
there seems to be little need for a sequential algorithm. 
We acknowledge that RAGE has strong guarantees on 
the error probability at the moment of termination; how
ever, it has often been observed in the past (Wang and 
Kim 2012) that such “fixed-precision” guarantees often 
result in very conservative empirical behavior. If a very 
large sampling budget is infeasible, LD-optimal may 
offer a powerful alternative.

5. Conclusion
We derived a new optimal sampling allocation for linear 
regression based on a large deviations theoretic analysis 
of error probability. Our result has several novel charac
teristics relative to previous work. First, in the linear 
regression setting, it is not necessary to specify or esti
mate a particular “optimal” solution that we are trying 
to select. The asymptotic behavior of the error probabil
ity depends only on the size on the suboptimality gap, 
so our allocation simultaneously learns about any gaps, 
between any two solutions, in excess of a given thresh
old δ. As a result, it becomes optimal to allocate the bud
get to an orthonormal basis for the solution space that 
depends only on β rather than on specific x∗ as in dis
crete problems. This makes the allocation very easy to 
implement, offering a natural computational benchmark 

for this problem class that can perform well under lim
ited sampling budgets.
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