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Abstract

Gaussian process regression is widely used to model an unknown function on a con-
tinuous domain by interpolating a discrete set of observed design points. We develop
a theoretical framework for proving new moderate deviations inequalities on different
types of error probabilities that arise in GP regression. Two specific examples of broad
interest are the probability of falsely ordering pairs of points (incorrectly estimating one
point as being better than another) and the tail probability of the estimation error at an
arbitrary point. Our inequalities connect these probabilities to the mesh norm, which
measures how well the design points fill the space.
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1. Introduction

Given a compact domain D⊆R
d, let {E(x)}x∈D be a centered Gaussian process on a

probability space (�,F , P). Define

f (x)=m(x)+ E(x), x ∈D, (1.1)

where m :D→R is a pre-specified ‘mean function’. Suppose that we are given the values
f (x1), . . . , f (xn) of f at the design points x1, . . . , xn ∈D. Then we can construct an estimator
f̂n of f using Gaussian process regression [25]. This is a Bayesian method: for each x, f̂n(x)
is the conditional mean of the random variable f (x) given f (x1), . . . , f (xn). The covariance
function of the Gaussian process is used to infer the value of f at unobserved x from information
collected about the design points.

Gaussian process regression is widely used to interpolate and predict the values of black-
box functions in simulation calibration [26] and optimization [2, 15], biomedical applications
[18], risk assessment of civil infrastructure [27], tuning of machine learning models [28], and
many other problems from diverse branches of science. In all such applications, f models the
output of a complex system (physical or virtual), with x being the input. There is no closed
form for f , but it is possible to observe f (x) at individual x values, e.g. by running expensive
lab, field, or computer experiments with those particular inputs. The goal is to obtain accurate
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2 J. LI AND I. O. RYZHOV

estimates at unobserved values using as few experiments as possible. Often, the function f
represents a performance metric, such as the predictive power of a machine learning model
with a given set of parameters, and the goal then becomes to optimize f (x) over x ∈D.

The analysis of this paper is motivated by concerns that arise in design of experiments,
though we do not explicitly model any design problem. Our main contribution is a theoreti-
cal framework for studying the moderate deviations behavior of random vectors of the form(
f̂n(x), f̂n(x∗), f (x), f (x∗)

)
for two fixed but arbitrary points x, x∗ ∈D. This framework can be

used to prove new convergence rates for different types of ‘error probabilities’ related to GP
regression. We demonstrate the usefulness of the theory with two specific applications, though
others may be possible. The first application deals with probabilities of the form

πn(x, x
∗)= P

(
f̂n(x)≤ f̂n(x

∗)− δ | f (x)≥ f (x∗)
)
, (1.2)

where δ > 0 is a small threshold. In words, it is given to us that x∗ has a smaller function value
than x, but interpolation error may cause us to falsely reverse this ordering (the threshold δ

makes (1.2) well-defined). When f is an objective function, this is the probability of reporting
x as being ‘better’ than x∗ when in reality the opposite is the case. For this type of error
probability, we leverage our theory to prove a new moderate deviations inequality

πn(x, x
∗)≤C1 exp

(−δ2C2h
−s/2
n

)
, (1.3)

where C1,C2, s> 0 are constants depending on the specification of the Gaussian process,
and

hn =max
y∈D min

m=1,...,n
‖y− xm‖2

is the mesh normmeasuring the density of the design points. In a special case where the design
points are uniformly distributed on D, it has been shown [13] that hn is of order (log n/n)1/d,
which justifies the interpretation of (1.3) as a moderate deviations rate.

The second application deals with the estimation error | f̂n(x)− f (x)| at arbitrary x ∈D. For
this error, we prove the uniform bound

sup
x∈D

P
(| f̂n(x)− f (x)| ≥ δ

)≤C′
1 exp

(−δ2C′
2h

−s
n

)
. (1.4)

Both types of error probabilities are of broad interest in simulation, statistics, and uncer-
tainty quantification. In particular, the pairwise comparison in (1.2) is motivated by the
approach developed by Glynn and Juneja [12] for the ranking and selection problem, where
one collects samples from a finite number of populations in an effort to select the one with
the highest mean. The probability of correct selection can be related to the probability of false
ordering between pairs of populations. The quantity πn(x, x∗) is the analog of this concept in
the GP regression setting, with the additional complication that we are using a Bayesian model
of f , so the event in (1.2) can only be viewed as an error conditionally given f (x)≥ f (x∗).

Interestingly, the mesh norm is in use as a criterion for design of experiments, in the lit-
erature on so-called space-filling designs [16, 24]. As early as Johnson et al. in 1990 [14],
statisticians proposed spreading out the design points in D in a way that essentially minimizes
the mesh norm. From (1.3), we can see that this has the effect of speeding up the rate at
which (1.2) converges to zero, uniformly over all x, x∗. Essentially, if we have no specific x∗
to serve as the reference solution, we can view space-filling designs as a way to minimize the
probability of false ordering across all possible x∗.

The available theory for Gaussian process regression has extensively studied (pointwise)
consistency; see e.g. [4] or [11]. The rate at which f̂n converges to f has been studied, e.g. in
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Moderate deviations for GP regression 3

[30] and [34], but these papers do not consider tail probabilities, and so their rates have com-
pletely different orders to (1.3)–(1.4), though their analysis also makes some connections to the
mesh norm. A different, less directly related stream of literature focuses on online optimization
problems where the goal is to maximize the sum of the function values of the design points; a
representative example of this type of work is that of Srinivas et al. [29]. In general, many of
the existing rate results are derived for specific classes of kernels, such as squared exponential
[23] and Matérn [30], or specific choices of the design points [6]. Probabilists have investigated
tail probabilities [1, 11] and excursion probabilities [7, 8] of Gaussian processes, and some of
these results also have the form of moderate deviations laws, but they pertain to generic GPs
rather than the GP regression mechanism. Analogously, moderate deviations laws are available
for sums of random variables [5] and random PDE models [20], but these results do not pertain
to GP regression either.

To our knowledge, this paper presents the first moderate deviations results for Gaussian
process regression estimators. It is well known [10] that sample averages of independent and
identically distributed (i.i.d.) Gaussian observations satisfy large deviations laws. Similar laws
hold for ordinary least-squares estimators under Gaussian residuals [37], extrema of Gaussian
vectors [32], and various finite-dimensional statistical estimators [3]. Gaussian process regres-
sion can be viewed as an infinite-dimensional generalization of linear regression, but the
analysis is made much more complicated because, essentially, the dimensionality of the objects
used to construct the estimator grows over time, and their asymptotic behavior heavily depends
on the covariance kernel. One could perhaps recover large deviations laws for certain specific
choices of the kernel and design, but it is far from clear whether this is possible in general. In
the process of proving our results, we also establish a modified version of the Gärtner–Ellis
theorem [10], which may be of stand-alone interest.

Section 2 describes the GP regression framework, states the assumptions used throughout
the paper, and gives important technical preliminaries. Section 3 gives the bulk of our analy-
sis, which relies on a general large deviations law for random vectors. This latter result also
requires some new technical developments, but since they are unrelated to GP regression, they
are deferred to Section 6 for readability. Section 4 handles several extensions not covered by
the main theorem. Section 5 uses our analysis to derive (1.3) and (1.4), and presents several
more explicit examples. Section 7 concludes the paper.

2. Gaussian process regression and approximation theory

Before we begin the analysis that leads to (1.3)–(1.4), it is necessary to understand the def-
inition, construction, and properties of the GP regression estimator f̂n. The computation of the
estimator (a form of Bayesian updating) is described in Section 2.1. Our analysis also makes
use of an alternative interpretation, originating from approximation theory, of the GP regres-
sion model. We use this theory to study the asymptotic behavior of the posterior covariance
function, which is crucial to the tail probabilities of f̂n. The relevant technical preliminaries are
given in Section 2.2.

2.1. Definitions and assumptions

Recalling the model in (1.1), we assume that the mean function m is Lipschitz-continuous,
and the Gaussian process E is specified by

E(E(x))= 0,

Cov(E(x), E(x′))= k(x, x′)
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4 J. LI AND I. O. RYZHOV

for all x, x′ ∈D. In one application, we will assume that k :D×D→R is a fixed, symmetric
kernel function mappingD×D intoR+. The kernel is required to be positive definite, meaning
that for any n, any set of n distinct design points {xm}nm=1 ⊆D, and any vector v= (v1, . . . , vn)
in Rn, we have ∑

m,m′
vmvm′k(xm, xm′ )> 0.

Without this assumption, the Gaussian process would be degenerate.
In addition, we assume that there exists a function φ on R+ such that k(x, x′)= φ(‖x− x′‖)

for all x, x′. Such a φ is called a radial basis function. We assume that φ is twice differentiable
at zero with φ′′(0)< 0. Many commonly used covariance kernels satisfy this requirement,
including Gaussian, multiquadric, inverse quadratic, inverse multiquadric, and others.

Let Xn = {xm}nm=1 denote the set of design points. We treat the design points as a deter-
ministic sequence, as is standard in the literature on design of experiments, and assume that
Xn becomes dense in D as n→ ∞, a common condition in the theoretical literature [33]. For
convenience, we introduce the notation

f (xn)= ( f (x1), . . . , f (xn))
�,

m(xn)= (m(x1), . . . ,m(xn))
�,

K(Xn, x)= (k(x, x1), . . . , k(x, xn))
�,

as well as K(x, Xn)=K(Xn, x)�. We also let K(Xn, Xn) denote the matrix whose (m,m′)th entry
is k(xm, xm′ ).

Given the design points Xn and observations f (xn), the posterior distribution of f (x), at any
arbitrary x ∈D, is Gaussian with mean

f̂n(x)=K(x, Xn)K(Xn, Xn)
−1f (xn)

and variance

PXn (x)= k(x, x)−K(x, Xn)K(Xn, Xn)
−1K(Xn, x). (2.1)

This specific structure of the mean and variance is what is referred to by the name of Gaussian
process regression. The variance PXn (x), viewed as a function of x, is also sometimes called the
‘power function’ in the literature on interpolation. In this paper we use the posterior mean f̂n to
interpolate the observed function values f (Xn) over the design space D and make predictions
at unobserved points.

We letH denote the reproducing kernel Hilbert space (RKHS) whose reproducing kernel is
k. The construction and uniqueness ofH are discussed by Wendland [35]. For our purposes, it
is sufficient to review the following properties. Letting 〈·, ·〉H be the inner product of H, we
know that

(1) k(·, x) ∈H for all x ∈D,

(2) g(x)= 〈g, k(·, x)〉H for all g ∈H and x ∈D,

(3) k(x, x′)= 〈k(·, x), k(·, x′)〉H for all x, x′ ∈D.

Additionally, from the usual properties of the inner product, we have the Cauchy–Schwarz
inequality |〈g1, g2〉H| ≤ ‖g1‖H‖g2‖H, where ‖ · ‖H is the norm induced by the inner product.
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2.2. Approximation theory

With the assumptions made in Section 2.1, Gaussian process regression can be seen as a
special case of radial basis function (RBF) interpolation, enabling us to make use of some
results from interpolation theory. We should note, however, that this theory treats interpolation
models as purely deterministic, and thus has assumptions and interpretations very different
to GP regression. Below, we present key facts from the theory that will be important for our
analysis, and discuss their applicability to our setting when necessary.

Like GP regression, RBF interpolation requires a kernel k with the properties described
in Section 2.1, as well as a matrix Xn describing n design points. Recall that under these
assumptions we have k(x, x′)= φ(‖x− x′‖). Let Lk,Xn denote the operator mapping some fixed
function g :D→R

d to its interpolant according to

Lk,Xng(x)=
n∑

m=1

αmk(x, xm), (2.2)

where the coefficients αm solve the linear system

n∑
m=1

αmk(xm, xm′ )= g(xm′ ), m′ = 1, . . . , n. (2.3)

In fact Wu and Schaback [36] presented a more general form where (2.2)–(2.3) include addi-
tional polynomial functions, but this will not be necessary for our purposes. It can be shown
that Lk,Xng(x)=K(x, Xn)K(Xn, Xn)−1g(xn), similar to the calculations used in GP regression.

Let g̃ be the Fourier transform of g, and suppose that the generalized Fourier transform
(as defined in Section 8.2 of [35]) of the function x �→ φ(‖x‖) exists and coincides with a
continuous function φ̃ on R

d \ {0} satisfying
0< φ̃(x)≤ cφ̃‖x‖−d−s∞ as ‖x‖ → ∞ (2.4)

for suitable constants cφ̃ , s∞ > 0. In particular, the constant s∞ will play a significant role in
our analysis, and it is worth pointing out that this quantity is explicitly computable for a variety
of commonly used kernels. For example, for Gaussian kernels s∞ can take on any arbitrarily
large value (this special case is treated separately in Section 5.3), while for the Matérn kernel,
Teckentrup [30] showed that s∞ = 2σ where σ is the kernel smoothness parameter. Other
examples are given in Section 8.3 of [35].

We now define

c2g,φ = 1

(2π )d

∫
Rd

|g̃(x)|2φ̃(x)−1 dx.

The results below require c2g,φ < ∞, which essentially means that g resides in the RKHS whose
reproducing kernel is k. Before stating these results, we should make it clear that we will not
require c2f ,φ < ∞, i.e. we will not apply the above definitions with f as the choice of g. Lukić
and Beder [21] showed that a sample from a GP prior is almost surely not in the RKHS induced
by the kernel assumed in the prior. Therefore it is not possible for the function f to satisfy
c2f ,φ < ∞. This is a major difference between GP regression and interpolation theory, where f

is modeled as a deterministic function and so the condition c2f ,φ < ∞ is seen as fairly innocuous
(for example, it is assumed in [36] and many other papers in pure interpolation theory, e.g.
[19]). In the present work, however, we cannot make this assumption, and will instead apply
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6 J. LI AND I. O. RYZHOV

this framework to other choices of g related to the kernel, for example the function k(·, x) for
fixed x.

For any compact E ⊆D, let hn(E)=maxy∈E minm=1,...,n ‖y− xm‖2 be the mesh norm of E.
We slightly abuse notation by using hn to denote hn(D) when the entire domain is considered.
Let Bx,ρ denote the closed ball of radius ρ centered at x ∈R

d. We can now state the results that
will be referenced and applied throughout this paper.

Lemma 2.1. ([36].) Fix ρ > 0 and assume that the kernel k satisfies (2.4) with some s∞. Then
there exist positive constants h̄ and cP such that for any Xn and any point x ∈R

d with hn(Bx,ρ ∩
D)< h̄, the power function PXn defined in (2.1) satisfies

PXn (x)≤ cP(hn(Bx,ρ ∩D))s∞ .

Lemma 2.2. ([36].) Fix g satisfying cg,φ < ∞ and assume that the kernel k satisfies (2.4) with
some s∞. Then, for any Xn and any x ∈R

d, we have

|g(x)−Lk,Xng(x)|2 ≤ c2g,φPXn (x).

We note that in Lemma 2.1 the constant cP depends only on d and s∞ but not on the fixed
value ρ. The same is true of the ratio h̄/ρ, indicating that h̄ is proportional to ρ.

3. Large deviations for a fixed pair of points

We now fix x, x∗ ∈D and focus on the sequence of random vectors

Zn = (
f̂n(x), f̂n(x

∗), f (x), f (x∗)
)�.

Letting μn be the probability law of Zn, we will derive the inequality of the form

lim sup
n→∞

1

an
logμn(E)≤ − inf

u∈E I(u), (3.1)

which holds for any closed measurable set E and any sequence {an} satisfying
limn→∞ an = ∞. Our end goal is to characterize the function I and specify an and E in a
manner that causes (3.1) to yield results such as (1.3).

Inequalities of the form (3.1) can be obtained by invoking the Gärtner–Ellis theorem from
large deviations theory [10]. In general, the derivation of the function I consists of two main
steps. The first step is to derive the scaled limit

	(γ )= lim sup
n→∞

1

an
	n(anγ ), (3.2)

where 	n(γ )= logEμn

(
e〈γ,Zn〉) denotes the cumulant-generating function of Zn, and 〈·, ·〉 is

the usual L2 inner product on R
p. The scaling 	 is allowed to take values on the extended

number line (i.e. may be +∞ for some γ ). The second step obtains I via the Fenchel–Legendre
transform

I(u)= sup
γ∈Rp

〈γ, u〉 − 	(γ ) (3.3)

of 	. Inequality (3.1) then follows under certain technical conditions on 	.
Our analysis in this section follows this outline. Section 3.1 studies the cumulant-generating

functions of {Zn} and characterizes 	. Section 3.2 then studies the Fenchel–Legendre
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transform of	, and Section 3.3 analyzes the convergence rates of various terms in the Fenchel–
Legendre transform, which helps us to select {an} in a way that makes (3.1) yield an informative
inequality (stated in Section 3.4). In Section 5 we will instantiate this inequality with certain
choices of E that yield (1.3)–(1.4).

One complication that arises in this procedure is that the technical conditions of the classical
Gärtner–Ellis theorem do not hold in our setting, so additional analysis is required to obtain
(3.1). This analysis is carried out in the setting of general random vectors, and thus is somewhat
tangential to the setting of Gaussian process regression. For this reason we defer it to Section 6
at the end of the paper; the core result of that section is Theorem 6.1, which recovers the
desired inequality. Here we take (3.1) as given, referring readers to Theorem 6.1 for the proof,
and focus on applying this inequality to the specific sequence {Zn}.

3.1. Analysis of cumulant-generating functions

We write Zn as⎡
⎢⎢⎢⎢⎣
f̂n(x)

f̂n(x∗)
f (x)

f (x∗)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣
K(x, Xn)K(Xn, Xn)−1f (xn)

K(x∗, Xn)K(Xn, Xn)−1f (xn)

f (x)

f (x∗)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣
K(x, Xn)K(Xn, Xn)−1 0 0

K(x∗, Xn)K(Xn, Xn)−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ f (X̄n),

where X̄n = Xn ∪ {x, x∗}. The distribution of Zn is Gaussian with mean vector Anm(X̄n) and
covariance matrix Vn = An�nA�

n , where

An =

⎡
⎢⎢⎢⎢⎣
K(x, Xn)K(Xn, Xn)−1 0 0

K(x∗, Xn)K(Xn, Xn)−1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎦ , �n =

⎡
⎢⎣
K(Xn, Xn) K(Xn, x) K(Xn, x∗)
K(x, Xn) k(x, x) k(x, x∗)
k(x∗, Xn) k(x∗, x) k(x∗, x∗)

⎤
⎥⎦.

For convenience, we introduce the notation

QXn (x)=K(x, Xn)K(Xn, Xn)
−1K(Xn, x),

QXn (x, x
∗)=K(x, Xn)K(Xn, Xn)

−1K(Xn, x
∗).

Then the power function PXn in (2.1) can be written as PXn (x)= k(x, x)−QXn (x). We also use
the analogous notation PXn (x, x

∗)= k(x, x∗)−QXn (x, x
∗). With some trivial computation, we

obtain

Vn =

⎡
⎢⎢⎢⎢⎣

QXn (x) QXn (x, x
∗) QXn (x) QXn (x, x

∗)
QXn (x, x

∗) QXn (x
∗) QXn (x, x

∗) QXn (x
∗)

QXn (x) QXn (x, x
∗) k(x, x) k(x, x∗)

QXn (x, x
∗) QXn (x

∗) k(x, x∗) k(x∗, x∗)

⎤
⎥⎥⎥⎥⎦.

Since Zn follows a multivariate normal distribution, it follows straightforwardly that

	n(γ )= γ �Anm(X̄n)+ 1

2
γ �Vnγ
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8 J. LI AND I. O. RYZHOV

for any γ ∈R
4. Then, by (3.2),

	(γ )= γ �( lim
n→∞ Anm(X̄n)

)
+ 1

2
lim sup
n→∞

γ �(anVn)γ, (3.4)

provided that the limit on the right-hand side of (3.4) exists.
To study these limits, it is helpful to observe that QXn (x, x

∗) can be viewed as the RBF
interpolant of the function k(x, ·) evaluated at the point x∗, or, equivalently, the RBF interpolant
of k(x∗, ·) evaluated at the point x. This allows us to leverage the results from approximation
theory that were stated in Section 2.2.

First, we consider the limit of

Anm(X̄n)=
[
K(x, Xn)K(Xn, Xn)−1m(Xn) K(x∗, Xn)K(Xn, Xn)−1m(Xn) m(x) m(x∗)

]
.

We may observe that Lk,Xnm(x), with Lk,Xn being the operator that maps a function to
its interpolant given k and Xn as in (2.2), is a (differentiable) linear combination of the
values k(x, xm). Hence the difference y �→m(y)−Lk,Xnm(y) is a Lipschitz function whose
zeros become dense (as n→ ∞) around x and x∗. That is, there exist ρ, ρ∗ > 0 such that
hn(Bx,ρ ∩D)→ 0 and hn(Bx∗,ρ∗ ∩D)→ 0 as n→ ∞. Consequently, m(x)−Lk,Xnm(x)→ 0,
whence limn→∞ Anm(X̄n)=m0, with m0 = (m(x),m(x∗),m(x),m(x∗))�. Thus (3.4) becomes

	(γ )= γ �m0 + 1

2
lim sup
n→∞

γ �(anVn)γ . (3.5)

The precise behavior of the limit superior will depend on an and the asymptotics of the
matrix Vn.

3.2. Analysis of Fenchel–Legendre transform

We begin by examining the limit of Vn. It is easy to see that PXn (y)≥ 0 for all y ∈D.
Furthermore, by Lemma 2.1 we can see that PXn (y)→ 0 if Xn is dense in D as n→ ∞. This
implies thatQXn (x)→ k(x, x) and similarlyQXn (x

∗)→ k(x∗, x∗), with k(x, x)= k(x∗, x∗) by the
properties of the radial basis function. Although we do not know the sign of PXn (x, x

∗), we can
note that

PXn (x, x
∗)= k(x, x∗)− (Lk,Xnk(·, x∗))(x)= k(x∗, x)− (Lk,Xnk(·, x))(x∗).

By Lemma 2.2, we have PXn (x, x
∗)2 ≤ c2k(·,x∗),φPXn (x). The finiteness of ck(·,x∗),φ can be veri-

fied. Therefore, if Xn is dense in D as n→ ∞, we have PXn (x, x
∗)→ 0, whence QXn (x, x

∗)→
k(x, x∗). Thus we have shown that Vn → V entrywise, where

V =

⎡
⎢⎢⎢⎢⎣
k(x, x) k(x, x∗) k(x, x) k(x, x∗)
k(x, x∗) k(x, x) k(x, x∗) k(x, x)

k(x, x) k(x, x∗) k(x, x) k(x, x∗)
k(x, x∗) k(x, x) k(x, x∗) k(x, x)

⎤
⎥⎥⎥⎥⎦.

It is easy to verify that V has eigenvalues λ1 = 2(k(x, x)+ k(x, x∗)), λ2 = 2(k(x, x)− k(x, x∗))
with respective eigenvectors

U1 = 1

2
(1, 1, 1, 1)�, U2 = 1

2
(1, −1, 1, −1)�,
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and λ3 = λ4 = 0 with respective eigenvectors

U3 = 1√
2
(1, 0, −1, 0)�, U4 = 1√

2
(0, 1, 0, −1)�. (3.6)

Similarly, let λi,n and Ui,n (for 1≤ i≤ 4) denote the eigenvalues and corresponding eigen-
vectors of Vn. Since Vn → V , we also have λi,n → λi. Accordingly, we also have U1,n →U1
and U2,n →U2. However, the zero eigenvalue of V has multiplicity 2, so U3,n,U4,n will con-
verge to limits U′

3,U
′
4 that belong to the span of U3,U4, but these limits need not be U3,U4

themselves. We know, however, that(
U′
3,U

′
4

)= (U3,U4)T, (3.7)

where T ∈R
2×2 is an orthonormal matrix.

Looking back to (3.3) and (3.5), we can write the Fenchel–Legendre transform as

I(u)= sup
γ∈R4

(u−m0)
�γ − 1

2
lim sup
n→∞

γ �(anVn)γ

= sup
γ∈R4

(u−m0)
�Uγ − 1

2
lim sup
n→∞

γ �U�(anVn)Uγ

= sup
γ∈R4

(u−m0)
�Uγ − 1

2
lim sup
n→∞

anγ
�U�Un
nU

�
n Uγ

= sup
γ∈R4

(u−m0)
�Uγ − 1

2
lim sup
n→∞

∑
j

(∑
i

γiU
�
i Uj,n

)2

anλj,n.

Observe that limn→∞ U�
i Uj,n = 1{i=j}, whence

lim sup
n→∞

(∑
i

γiU
�
i Uj,n

)2

anλj,n = γ 2
j λj lim sup

n→∞
an = ∞

as long as γj �= 0 for j ∈ {1, 2}. Therefore the supremum in (3.3) can only be achieved at γ for
which γ1 = γ2 = 0, whence

I(u)= sup
γ3,γ4

(u−m0)
�U3γ3 + (u−m0)

�U4γ4 − 1

2
lim sup
n→∞

∑
j

(∑
i

γiU
�
i Uj,n

)2

anλj,n

≥ sup
γ3,γ4

[
(u−m0)

�U3γ3 + (u−m0)
�U4γ4 − 1

2

2∑
j=1

λj lim sup
n→∞

(
4∑

i=3

γiU
�
i Uj,n

)2

an

− 1

2

4∑
j=3

lim sup
n→∞

(
4∑

i=3

γiU
�
i Uj,n

)2

lim sup
n→∞

anλj,n

]

= sup
γ3,γ4

[
(u−m0)

�U3γ3 + (u−m0)
�U4γ4 − 1

2

2∑
j=1

λj lim sup
n→∞

(
4∑

i=3

γiU
�
i Uj,n

)2

an

− 1

2

4∑
j=3

(T1,j−2γ3 + T2,j−2γ4)
2 lim sup

n→∞
anλj,n

]
. (3.8)
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The supremum value in (3.3) is thus governed by the rate at which an increases. If this rate is
fast, we will have to take γ3 = γ4 = 0, leading to I = 0. To avoid this situation, an should be
assigned the highest order that makes one of the limits superior in (3.8) finite. Some matrix
perturbation analysis is required to understand the rate that an can take.

3.3. Perturbation analysis for rate function

Define the notation

Ṽ = V − Vn =

⎡
⎢⎢⎢⎢⎣

PXn (x) PXn (x, x
∗) PXn (x) PXn (x, x

∗)
PXn (x, x

∗) PXn (x
∗) PXn (x, x

∗) PXn (x
∗)

PXn (x) PXn (x, x
∗) 0 0

PXn (x, x
∗) PXn (x

∗) 0 0

⎤
⎥⎥⎥⎥⎦.

Let us also write Uj,n =∑
i νijnUi. Then

λj,nUj,n = (V − Ṽ)Uj,n

=
∑
i

νijnVUi − ṼUj,n

=
∑
i

νijnλiUi − ṼUj,n,

where the last line follows because λi is an eigenvalue (and Ui is an eigenvector) of V . Left-
multiplying by the unit vector Ui, we obtain

νijnλj,n = νijnλi −U�
i ṼUj,n. (3.9)

Recalling that λ3 = λ4 = 0 and λj,n > 0, we find that

νijn = −U�
i ṼUj,n

λj,n
, i ∈ {3, 4}, j ∈ {1, 2}. (3.10)

This allows us to bound the limits superior in (3.8) as shown in Lemmas 3.1 and 3.2 below.

Lemma 3.1. For fixed γ3, γ4 ∈R, we have

(
4∑

i=3

γiU
�
i Uj,n

)2

=O
(
P2
Xn (x)+ P2

Xn (x, x
∗)+ P2

Xn (x
∗)
)
, j ∈ {1, 2}.

Proof. Using (3.10), we write

(
4∑

i=3

γiU
�
i Uj,n

)2

= (ν3jnγ3 + ν4jnγ4)
2 =

(
U�
j,nṼ(γ3U3 + γ4U4)

)2
λ2j,n

.

Plugging in the closed-form expressions for U3,U4 from (3.6) yields

ṼU3 = 1√
2
(0, 0, PXn (x), PXn (x, x

∗))�, ṼU4 = 1√
2
(0, 0, PXn (x, x

∗), PXn (x
∗))�.
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Since γ3, γ4 are fixed and U3,U4 are unit vectors, the Cauchy–Schwarz inequality yields(
4∑

i=3

γiU
�
i Uj,n

)2

≤ max
{
γ 2
3 , γ 2

4

}
2λ2j,n

(
P2
Xn (x)+ P2

Xn (x, x
∗)+ P2

Xn (x
∗)
)
,

as desired. �

Lemma 3.2. Suppose that the matrix T defined in (3.7) has no zero-valued entries. Then

λj,n =
(
1

2
+ o(1)

)(
PXn (x)+

T2,j−2

T1,j−2
PXn (x, x

∗)
)

=
(
1

2
+ o(1)

)(
PXn (x

∗)+ T1,j−2

T2,j−2
PXn (x, x

∗)
)

(3.11)

for j ∈ {3, 4}.
Proof. Recall (3.9) and note that νijn → Ti−2,j−2 for i, j ∈ {3, 4}. Since T is assumed to have

no zero-valued entries, we do not need to worry about zero values of νijn. Then (3.10) can be
rewritten as

λj,n = −U�
i ṼUj,n

νijn
, i, j ∈ {3, 4}. (3.12)

The first equality in (3.11) can be obtained by setting i= 3, whence (3.12) yields

λj,n = − 1

ν3jn
√
2
(0, 0, PXn (x), PXn (x, x

∗)) ·Uj,n.

By expressing (0, 0, 1, 0) and (0, 0, 0,1) in terms of Ui, we obtain

λj,n = − 1

ν3jn
√
2

(
PXn (x)U ·

(
1

2
,
1

2
, − 1√

2
, 0

)�
+ PXn (x, x

∗)U ·
(
1

2
, −1

2
, 0, − 1√

2

)�)�
Uj,n

= − 1

ν3jn
√
2

(
PXn (x) ·

(
1

2
,
1

2
, − 1√

2
, 0

)
+ PXn (x, x

∗) ·
(
1

2
, −1

2
, 0, − 1√

2

))
v·jn

=
(
1

2
+ o(1)

)(
PXn (x)+

T2,j−2

T1,j−2
PXn (x, x

∗)
)

,

where the last line follows from the fact that νijn → 0 for i ∈ {1, 2} and j ∈ {3, 4}, while νijn →
Ti−2,j−2 for i, j ∈ {3, 4}. The second equality in (3.11) can be obtained by repeating the above
arguments with i= 4. �

The analysis in Lemma 3.2 is easily extended to handle situations where T has zero-valued
entries. If this occurs, we must have ||T11| − |T21|| = 1 because T is orthonormal. In the first
case we can repeat the proof of Lemma 3.2 with i= 4, j= 3 and i= 3, j= 4, and obtain

λ3,n =
(
1

2
+ o(1)

)
PXn (x

∗), λ4,n =
(
1

2
+ o(1)

)
PXn (x). (3.13)

In the second case we repeat the same proof with i= 3, j= 3 and i= 4, j= 4, and obtain

λ3,n =
(
1

2
+ o(1)

)
PXn (x), λ4,n =

(
1

2
+ o(1)

)
PXn (x

∗).
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In general, the bounds in Lemmas 3.1 and 3.2 depend on PXn (x, x
∗), which is a difficult

object to study. Lemma 3.3 establishes a bound that relates this quantity to a simpler function
of the design points. Then Lemma 3.4 derives a similar lower bound on PXn (x). Note that these
results provide lower bounds; we will later multiply them by negative quantities to convert
them to upper bounds, which will enable additional analysis of the terms in (3.8).

Lemma 3.3. Let λmin(·) denote the smallest eigenvalue of a square matrix. The following
bound holds:

2PXn (x, x
∗)+ PXn (x)+ PXn (x

∗)≥ 2λmin(K(X̄n, X̄n)).

Proof. For notational convenience, define a vector κ(x)=K(x, Xn)K(Xn, Xn)−1. Note that
κ(x) takes values in Rn, and observe the identities

n∑
m=1

(κm(x)+ κm(x
∗))k(xm, x)=QXn (x)+QXn (x, x

∗),

n∑
m=1

(κm(x)+ κm(x
∗))k(xm, x∗)=QXn (x

∗)+QXn (x, x
∗),

∑
m,m′

(κm(x)+ κm(x
∗))(κm′(x)+ κm′ (x∗))k(xm, xm′ )=QXn (x)+ 2QXn (x, x

∗)+QXn (x
∗).

We extend κ to Rn+2 by taking κn+1, κn+2 ≡ − 1
2 . Plugging in the above identities, we derive

n+2∑
m,m′=1

(κm(x)+ κm(x
∗))(κm′(x)+ κm′ (x∗))k(xm, xm′ )

= (κn+1(x)+ κn+1(x
∗))2k(x, x)+ (κn+2(x)+ κn+2(x

∗))2k(x∗, x∗)
+ 2(κn+1(x)+ κn+1(x

∗))(κn+2(x)+ κn+2(x
∗))k(x, x∗)

+ 2(κn+1(x)+ κn+1(x
∗))(QX(x)+QX(x, x

∗))
+ 2(κn+2(x)+ κn+2(x

∗))(QX(x
∗)+QX(x, x

∗))
+QXn (x)+ 2QXn (x, x

∗)+QXn (x
∗)

= 2PXn (x, x
∗)+ PXn (x)+ PXn (x

∗).

Thus we arrive at

2PXn (x, x
∗)+ PXn (x)+ PXn (x

∗)= (κ(x)+ κ(x∗))�K(X̄n, X̄n)(κ(x)+ κ(x∗))
≥ ‖κ(x)+ κ(x∗)‖22 · λmin(K(X̄n, X̄n))

=
(

n∑
m=1

(κm(x)+ κm(x
∗))2 + 2

)
λmin(K(X̄n, X̄n))

≥ 2λmin(K(X̄n, X̄n)),

which completes the proof. �

Lemma 3.4. Let X′
n = Xn ∪ {x}. Then

PXn (x)≥ λmin(K(X
′
n, X

′
n)).
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Proof. Define κ(x) as in the proof of Lemma 3.3 and extend it to Rn+1 by taking κn+1 ≡ −1.
Then, by repeating the arguments in the proof of Lemma 3.3, we obtain

PXn (x)=
n+1∑

m,m′=1

κm(x)κm′ (x)k(xm, xm′ )

≥ λmin(K(X
′
n, X

′
n))

n+1∑
m=1

κ2
m(x)

≥ λmin(K(X
′
n, X

′
n)),

as desired. �

Now, we can study the rate at which λmin(K(X′
n, X

′
n)) or λmin(K(X̄n, X̄n)) converges to zero.

For this, we cite the following result (Theorem 12.3 of [35]).

Lemma 3.5. ([35].) Define qXn =minxm �=xm′ ‖xm − xm′ ‖2 and φ0(M)= inf‖y‖2≤M φ̃(y), where
φ̃ is the generalized Fourier transform of the radial basis function φ. Then

λmin(K(Xn, Xn))≥Cdφ0

(
Md

qXn

)
q−d
Xn

,

where the constants Cd,Md depend only on d.

Combining Lemmas 3.3–3.5, we have

PXn (x)≥Cdφ0

(
Md

qX′
n

)
q−d
X′
n
.

Consequently, the inequality in Lemma 3.3 becomes

2PXn (x, x
∗)+ PXn (x)+ PXn (x

∗)≥ 2Cdφ0

(
Md

qX̄n

)
q−d
X̄n

. (3.14)

The lower bound in (3.14) can be connected back to the upper bound obtained in Lemma 3.2
in the following manner. Note that if T has no zero-valued entries as assumed in Lemma 3.2,
by orthogonality we either have T11/T21 > 0 and T12/T22 < 0 or vice versa (note also that
T11 = −T22). Without loss of generality, we only treat the first case here.

Supposing that T12/T22 < 0, we apply (3.14) to (3.11) with j= 4 and argue that

λ4,n ≤
(
1

2
+ o(1)

)[
PXn (x)−

T22
2T12

(
PXn (x)+ PXn (x

∗)− 2Cdφ0

(
Md

qX̄n

)
q−d
X̄n

)]
(3.15)

=
(
1

2
+ o(1)

)[(
1− T22

2T12

)
PXn (x)−

T22
2T12

PXn (x
∗)+O

(
qs∞
X̄n

)]
(3.16)

=O(hn(Bx,ρ ∩D)s∞). (3.17)

In this derivation, (3.15) uses the fact that T12/T22 < 0 to convert the lower bound in (3.14)
into an upper bound, while (3.16) applies (2.4) to bound φ0. Noting that the multipliers
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1− T22/(2T12) and −T22/(2T12) are both strictly positive, we then obtain (3.17) by applying
Lemma 2.1 together with the fact that

hn(Bx,ρ ∩D)≥ qXn ≥ qX̄n .

Next we return to (3.11) with j= 3 and obtain

λ3,n ≤
(
1

2
+ o(1)

)(
PXn (x)+

T21
T11

√
φ(0)

√
PXn (x)

)

by using the Cauchy–Schwarz inequality for the RKHS inner product to produce the simple
bound

|PXn(x, x
∗)| ≤√

φ(0)
√
PXn (x).

Applying Lemma 2.1, we conclude that λ3,n =O(hn(Bx,ρ ∩D)s∞/2). Finally, applying Lemma
2.1 to the bound in Lemma 3.1 straightforwardly yields

(
4∑

i=3

γiU
�
i Uj,n

)2

=O(hn(Bx,ρ ∩D)s∞).

When Xn is dense inD as n→ ∞, we have hn(Bx,ρ ∩D)≤ hn(D) with hn(D)→ 0. Thus, among

the limits superior in (3.8), one is O
(
hs∞/2
n

)
and the others are O

(
hs∞n

)
. This will also happen

in the symmetric situation where T12/T22 > 0, but with the order switched for λ3,n and λ4,n.

3.4. Main moderate deviations inequality

The conclusions of Section 3.3 suggest that an should have the exact order h−s∞/2
n , which

we denote by an ∼ h−s∞/2
n . Then we obtain

(
4∑

i=3

γiU
�
i Uj,n

)2

an → 0

in (3.8), and bound I(u)≥ Il(u), where Il is defined as

Il(u)= sup
γ3,γ4∈R

(u−m0)
�U3γ3 + (u−m0)

�U4γ4 − 1

2
c3(T11γ3 + T21γ4)

2

when T12/T22 < 0, and

Il(u)= sup
γ3,γ4∈R

(u−m0)
�U3γ3 + (u−m0)

�U4γ4 − 1

2
c4(T12γ3 + T22γ4)

2

when T12/T22 > 0, for some suitable constants c3, c4. Furthermore, recalling (3.6) and the
definition of m0, we find that m�

0 U3 =m�
0 U4 = 0. Now, applying (3.1), we can finally state our

main result.

Theorem 3.1. Let T be as in (3.7), take an ∼ h−s∞/2
n , and let cl be a constant satisfying

lim supn→∞ anλj,n ≤ cl for j ∈ {3, 4}. If ||T11| − |T21|| /∈ {0, 1}, we have

lim sup
n→∞

1

an
logμn(E)≤ − inf

u∈E I
l(u) (3.18)
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for any closed E ⊆R
4, with

Il(u)= sup
γ3,γ4∈R

u�U3γ3 + u�U4γ4 − 1

2
cl(|T11|γ3 + |T21|γ4)2. (3.19)

Throughout this analysis we have assumed that Xn is dense in D when n→ ∞, but it is
possible to recover Theorem 3.1, for fixed x, x∗, as long as the design is dense only in neigh-
borhoods of those two points, e.g. in Bx,ρ ∪ Bx∗,ρ for some ρ > 0. In that case an will take the
order of min{hn(Bx,ρ)−s∞/2, hn(Bx∗,ρ)−s∞/2}.

The right-hand side of (3.18) is some strictly negative, problem-specific constant, and it is
the order of an that governs the convergence rate of μn(E). The moderate deviations inequality
allows the rate to depend on the kernel through the quantity s∞, but otherwise the complex
interdependence of the various elements of K(Xn, Xn) has been streamlined using Lemmas 2.1
and 3.5. For this reason, the bound in (3.18) may not be the tightest possible.

4. Extensions and special cases

In this section we treat several special cases not covered by Theorem 3.1. First, Section 4.1
handles the situation where ||T11| − |T21|| ∈ {0, 1}. Section 4.2 discusses how the bound of
Theorem 3.1 is improved if we only consider one reference point x instead of two points x, x∗.

4.1. Special cases of Theorem 3.1

Again, let T be as in (3.7), and suppose that ||T11| − |T21|| = 0. For simplicity we consider
the case T11 = T21, as the other cases are very similar.

Because T is orthonormal, we must have T11 = T21 = √
2/2. Then, returning to the

derivation of (3.8) and recalling that m�
0 U3 =m�

0 U4 = 0, we have

I(u)≥ sup
γ3,γ4

u�U3γ3 + u�U4γ4 − 1

2
lim sup
n→∞

[
2∑

j=1

λj

(
4∑

i=3

γiU
�
i Uj,n

)2

an

− 1

2

(
(γ3 + γ4)

2λ3,n + (γ3 − γ4)
2λ4,n

)
an

]
(4.1)

Using an argument similar to that in Lemma 3.1, we explicitly derive

2∑
j=1

λj

(
4∑

i=3

γiU
�
i Uj,n

)2

= 1+ o(1)

8

[
1

λ1
(γ3PXn (x)+ (γ3 + γ4)PXn (x, x

∗)+ γ4PXn (x
∗))2

+ 1

λ2
(γ3PXn (x)+ (γ4 − γ3)PXn (x, x

∗)− γ4PXn (x
∗))2

]
. (4.2)

By direct application of Lemma 3.2, we have

λ3,n =
(
1

2
+ o(1)

)
(PXn (x)+ PXn (x, x

∗))=
(
1

2
+ o(1)

)
(PXn (x

∗)+ PXn (x, x
∗)),

λ4,n =
(
1

2
+ o(1)

)
(PXn (x)− PXn (x, x

∗))=
(
1

2
+ o(1)

)
(PXn (x

∗)− PXn (x, x
∗)).
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Let us now take an ∼ h−s∞
n , which guarantees

lim sup
n→∞

anPXn (x)≤ cl and lim sup
n→∞

anPXn (x
∗)≤ cl

for some finite cl > 0. This allows us to place a bound on (4.1) that drops all negligible terms
in (4.2) that contain PXn (x) and PXn (x

∗). That is,

I(u)

≥ sup
γ3,γ4

u�U3γ3 + u�U4γ4 − 1

16
lim sup
n→∞

[
1

λ1
(γ3 + γ4)

2P2
Xn (x, x

∗)+ 1

λ2
(γ4 − γ3)

2P2
Xn (x, x

∗)

+ 2(γ3 + γ4)
2PXn (x)+ 2(γ3 − γ4)

2PXn (x
∗)− 4γ3γ4PXn (x, x

∗)
]
an (4.3)

The last term in (4.3) requires us to take γ3γ4 ≤ 0 to avoid I(u) becoming −∞. Then (4.3)
becomes

I(u)

≥ sup
γ3γ4≤0

u�U3γ3 + u�U4γ4 − 1

16
lim sup
n→∞

[
1

λ1
(γ3 + γ4)

2P2
Xn (x, x

∗)+ 1

λ2
(γ4 − γ3)

2P2
Xn (x, x

∗)

+ 2(γ3 + γ4)
2PXn (x)+ 2(γ3 − γ4)

2PXn (x
∗)− 4γ3γ4(PXn (x)+ PXn (x

∗))
]
an (4.4)

≥ sup
γ3γ4≤0

u�U3γ3 + u�U4γ4 − cl
16

[
1

λ1
(γ3 + γ4)

2c2k(·,x∗),φ + 1

λ2
(γ3 − γ4)

2c2k(·,x∗),φ

+ 2((γ3 + γ4)
2 + (γ3 − γ4)

2 − 4γ3γ4)

]
(4.5)

= sup
γ3γ4≤0

u�U3γ3 + u�U4γ4 − cl
16

[
1

λ1
(γ3 + γ4)

2c2k(·,x∗),φ + (γ3 − γ4)
2
(c2k(·,x∗),φ

λ2
+ 4

)]
.

where (4.4) applies Lemma 3.3 to bound PXn (x, x
∗), and (4.5) uses the bound P2

Xn
(x, x∗)≤

c2k(·,x∗),φPXn (x) from Lemma 2.2. After some algebra, we obtain a version of the moderate
deviations inequality (3.18) with

Il(u)= sup
γ3γ4≤0

1

2
u�(U3 +U4)(γ3 + γ4)+ 1

2
u�(U3 −U4)(γ3 − γ4)

− cl
16

[
1

λ1
(γ3 + γ4)

2c2k(·,x∗),φ + (γ3 − γ4)
2
(c2k(·,x∗),φ

λ2
+ 4

)]
. (4.6)

The second special case ||T11| − |T21|| = 1 is handled in almost the same way. For sim-
plicity we take T11 = T22 = 0, as the other possible cases are very similar. Then (4.2) remains
unchanged, but we use (3.13) instead of Lemma 3.2. We can thus omit the final cross-term
−4γ3γ4PXn (x, x

∗) in (4.3), so we no longer need γ3γ4 ≤ 0. The other arguments are unchanged
and yield another version of (3.18) with

Il(u)= sup
γ3,γ4

1

2
u�(U3 +U4)(γ3 + γ4)+ 1

2
u�(U3 −U4)(γ3 − γ4)

− cl
16

[
(γ3 + γ4)

2
(c2k(·,x∗),φ

λ1
+ 2

)
+ (γ3 − γ4)

2
(c2k(·,x∗),φ

λ2
+ 2

)]
. (4.7)
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4.2. Moderate deviations for a single point

In the following, we treat the special case where Zn = (
f̂n(x), f (x)

)�, for a single, fixed
x ∈D. Although one can obtain moderate deviations inequalities for such Zn directly from
Theorem 3.1, it is possible to tighten the bounds by modifying the analysis. Below we highlight
those parts of the argument that require changes.

As before, we let μn denote the probability law of Zn and assume that the set Xn of design
points becomes dense in D as n→ ∞. We write Zn = Anf (X′

n), where X
′
n = Xn ∪ {x} and

An =
[
K(x, Xn)K(Xn, Xn)−1 0

0 1

]
.

The covariance matrix of Zn is given by

Vn =
[
QXn (x) QXn (x)

QXn (x) k(x, x)

]
,

where QXn is as defined in Section 3.1. Equation (3.5) remains unchanged with m0 =
(m(x),m(x))�. Repeating the arguments in Section 3.2, we have Vn → V entrywise, where
V is a 2× 2 matrix whose elements are all equal to k(x, x). This matrix has two eigenvalues
λ1 > 0 and λ2 = 0, with corresponding eigenvectors

U1 = 1√
2
(1, 1)�, U2 = 1√

2
(1, −1)�.

Similarly, let λi,n and Ui,n denote the eigenvalues and eigenvectors of Vn.
Again following Section 3.2, the supremum in (3.3) can only be achieved at γ ∈R

2

satisfying γ1 = 0. Repeating the derivation of (3.8), we obtain

I(u)≥ sup
γ2

(u−m0)
�U2γ2 − 1

2
λ1
(
γ2U

�
2 U1,n

)2
an − 1

2
lim sup
n→∞

(
γ2U

�
2 U2,n

)2 lim sup
n→∞

anλ2,n,

where lim supn→∞
(
γ2U�

2 U2,n
)2 = γ 2

2 and

(
γ2U

�
2 U1,n

)2 = 1

λ21,n

(
γ2U

�
1,n(V − Vn)U2

)2 ≤ γ 2
2

λ21,n

P2
Xn (x)=O

(
P2
Xn (x)

)
,

analogously to Lemma 3.1. Repeating the proof of Lemma 3.2, we obtain

λ2,n =
(
1

2
+ o(1)

)
PXn (x).

The rest of Section 3.3 remains the same, but it is sufficient to use Lemma 3.4, as there
is no longer any cross-term. Thus we avoid the factor of 2 in the lower bound derived in
Lemma 3.3, which allows us to take an ∼ h−s∞

n . It then follows that
(
γ2U�

2 U1,n
)2
an → 0, while

lim supn→∞ anλ2,n ≤ cl for some cl < ∞. We thus obtain I(u)≥ Il(u), where

Il(u)= sup
γ2

(u−m0)
�U2γ2 − 1

2
clγ

2
2

= sup
γ2

u�U2γ2 − 1

2
clγ

2
2

= (u1 − u2)2

4cl
.
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18 J. LI AND I. O. RYZHOV

We now apply (3.1) to obtain the desired result. Note that the support set {γ ∈R
2 :	(γ )< ∞}

is a subspace, so (3.1) still holds by the results of Section 6.

Theorem 4.1. Take an ∼ h−s∞
n and let cl be a constant satisfying lim supn→∞ anλ2,n ≤ cl.

Then

lim sup
n→∞

1

an
logμn(E)≤ − inf

u∈E
(u1 − u2)2

4cl

for any closed E ⊆R
2.

By considering one reference point x instead of two points x, x∗, we obtain a better bound
because it is no longer necessary to bound a cross-term, as in Lemma 3.3. However, the bound
will not get worse if we consider K > 2 points, i.e. with

Zn = {
f̂n
(
x∗
k

)
, f
(
x∗
k

)}K
k=1 for some K < ∞.

This is because the same bound in Lemma 3.3 can be applied to every possible cross-term.

5. Applications: pairwise comparisons and estimation error

In Sections 5.1–5.2 we use Theorems 3.1 and 4.1 to prove (1.3) and (1.4), respectively. The
proofs are very similar, but use different definitions of the error set E in (3.18). Section 5.3
presents several other results of interest where the moderate deviations bound can be made
more explicit.

5.1. Moderate deviations for false ordering

We return to (1.2) and write

πn(x, x
∗)= P

(
f̂n(x)≤ f̂n(x∗)− δ, f (x)≥ f (x∗)

)
P( f (x)≥ f (x∗))

. (5.1)

For fixed x, x∗, the denominator is a strictly positive constant, so we can focus on the numerator,
which fits into the framework of Section 3 with

E = {u ∈R
4 : u1 ≤ u2 − δ, u3 ≥ u4}. (5.2)

We will apply Theorem 3.1 and derive a more explicit form for (3.19). First, note that the
supremum in (3.19) can only be finite when

u�U3

|T11| = u�U4

|T21| . (5.3)

Letting η be the value in (5.3), we then have Il(u)= η2/(2cl). Then we minimize Il(u) subject
to (5.2)–(5.3). From the optimality conditions, it can be seen that the inequalities in (5.2) must
be binding at optimality, which leads to

inf
u∈E I

l(u)= δ2

4cl

1

(|T11| − |T21|)2 .

Applying Theorem 3.1, we complete the proof of (1.3). The formal statement of the result is
as follows.
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Theorem 5.1. Let T be as in (3.7), take an ∼ h−s∞/2
n and let cl be a constant satisfying

lim supn→∞ anλj,n ≤ cl for j ∈ {3, 4}. If ||T11| − |T21|| /∈ {0, 1}, we have

πn(x, x
∗)≤C1 exp

(
− δ2C2

4cl(|T11| − |T21|)2 h
−s∞/2
n

)
where C1,C2 are positive constants.

In fact, we can show that the moderate deviations bound holds uniformly for all x, x∗ ∈D.
To do so, we must make sure that the denominator of (5.1) is well-behaved. It is easily seen
that

P( f (x)≥ f (x∗))= �

(
m(x)−m(x∗)√

2(k(x, x)− k(x, x∗))

)
,

where � is the standard Gaussian cumulative distribution function. We let cL be the Lipschitz
constant of m, and derive

lim‖x−x∗‖→0

(m(x)−m(x∗))2

2(k(x, x)− k(x, x∗))
≤ lim‖x−x∗‖→0

c2L‖x− x∗‖22
2(φ(0)− φ(‖x− x∗‖))

= c2L
2

lim
y↘0

y2

φ(0)− φ(y)

= −c2L lim
y↘0

y

φ′(y)

= − c2L
φ′′(0)

< ∞
using the assumption made in Section 2.1 that φ is twice differentiable at zero with φ′′(0)< 0.
Because D is compact, there exists some cD > 0 satisfying

inf
x,x∗∈D P( f (x)≥ f (x∗))≥ cD.

Furthermore, the constant C2 in Theorem 5.1 does not depend on x, x∗. The constant C1 may
depend on x, x∗, but we can take C′

1 to be its largest value over the compact set D. We then
conclude the following.

Corollary 5.1. Suppose that we are in the situation of Theorem 5.1. Then

sup
x,x∗∈D

πn(x, x
∗)≤ C′

1

cD
exp

(
− δ2C2

4cl(|T11| − |T21|)2 h
−s∞/2
n

)

where C′
1,C2, cD are positive constants.

Finally, we consider two special cases covered in Section 4. First, in the case where
T11 = T21 or T12 = T22, we apply (4.6). It can be shown that the supremum is attained when
γ3 + γ4 = 0, which satisfies the condition γ3γ4 ≤ 0 and achieves u�(U3 +U4)= 0 and
|u�U3 − u�U4| = δ/(2

√
2). Consequently, we have

πn(x, x
∗)≤C1 exp

(−δ2C′
2h

−s∞
n

)
, (5.4)

where C′
2 depends on λ2, cl, ck(·,x∗),φ . In the second special case where ||T11| − |T21|| = 1, we

apply (4.7). Again, the supremum achieves u�(U3 +U4)= 0 and |u�U3 − u�U4| = δ/(2
√
2)

and (5.4) follows. In summary, both special cases admit an exponential bound in h−s∞
n rather

than h−s∞/2
n .
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5.2. Moderate deviations for pointwise estimation error

The convergence rate of the tail probability P
(| f̂n(x)− f (x)| ≥ δ

)
for fixed x can be obtained

from Theorem 4.1 using the error event E′ = {|u1 − u2| ≥ δ}. It is easy to see that

inf
u∈E′

(u1 − u2)2

4cl
= δ2

4cl
,

whence we have

P
(| f̂n(x)− f (x)| ≥ δ

)≤C1 exp

(
−δ2C2

4cl
h−s∞
n

)
where C1,C2 > 0 are constants. As in Corollary 5.1, we can take the supremum over all x ∈D
to obtain the desired result, which is formally stated as follows.

Theorem 5.2. There exist constants C1,C2 > 0 such that

sup
x∈D

P
(| f̂n(x)− f (x)| ≥ δ

)≤C1 exp

(
−δ2C2

4cl
h−s∞
n

)
.

A natural question is whether this result can be extended to bound P
(
supx | f̂n(x)− f (x)| ≥

δ
)
, the tail probability of the estimation error over the domain, perhaps by combining Theorem

5.2 with the continuity of f and an epsilon-net partition of D. Such an argument could work if
f and f̂n were uniformly equicontinuous over all sample paths, a property known as ‘uniform
modulus of continuity’ [22]. It is possible to obtain such results for generic GPs in certain
settings [9], but they are currently not available for the specific mechanism of Gaussian process
regression; recent work, such as [17] and [31], has only bounded the modulus of continuity on
a restricted set of sample paths, not almost surely. This extension is an interesting topic for
future work.

5.3. Other results of interest

In the following, we give several examples in which our main results can be made more
explicit. To avoid excessive repetition, we focus on the uniform bound in Corollary 5.1 in
our presentation, but analogs of the other results in Sections 5.1–5.2 can be straightforwardly
obtained as well. For simplicity, let us take D= [0, 1]d.

Gaussian kernel. Suppose that k is the Gaussian kernel with parameter α, that is, k(x, x∗)=
exp(−α‖x− x∗‖22). For this particular kernel, it is known that s∞ can take arbitrarily large
values. However, Theorem 11.22 of [35] proves the bound

PXn (x)≤ exp

(
cα

log hn
hn

)
,

where cα depends only on α, d, and D. In addition, Corollary 12.4 in [35] provides a modified
version of Lemma 3.5 for this setting, namely,

λmin(K(Xn, Xn))≥ c′
α exp

(
−40.71

d2

αq2Xn

)
q−d
Xn

.

Thus, using the above results instead of Lemmas 2.1 and 3.5, we can repeat our analysis with

an ∼ exp

(
−cα

log hn
hn

)
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and obtain, for example,

sup
x,x∗∈D

πn(x, x
∗)≤ c1 exp

(
−δ2c2 exp

(
−cα

2

log hn
hn

))

under the same assumptions as Corollary 5.1.

Uniform design. Consider a uniform grid, discretized evenly in each dimension, with n being
the total number of points in the discretization. One can find that hn =O(n−1/d), leading to the
explicit rate

sup
x,x∗∈D

πn(x, x
∗)≤ C′

1

cD
exp

(
− δ2C2

4cl(|T11| − |T21|)2 n
s∞/(2d)

)

under the assumptions of Corollary 5.1.

Uniform random design. Suppose that the design points are sampled from a uniform distri-
bution on [0, 1]d. By adapting results in [13], one can show that hn =O((log n/n)1/d), leading
to the explicit rate

sup
x,x∗∈D

πn(x, x
∗)≤ C′

1

cD
exp

(
− δ2C2

4cl(|T11| − |T21|)2
(

n

log n

)s∞/(2d))

under the assumptions of Corollary 5.1. One can also extend this result to a setting with inde-
pendent but non-uniform sampling. Suppose that the nth design point is sampled independently
from some fixed density gn with support [0, 1]d. Then one can show that

hn =O

((
log (cgn)

cgn

)1/d)
,

and the rate follows.
We remark that the above discussion implicitly assumes that ||T11| − |T21|| /∈ {0, 1}.

However, the exceptions can be handled using the same arguments that were presented in
Section 5.1.

6. General large deviations inequality

Let {Zn} be a sequence of random vectors taking values in Rp, and let μn denote the proba-
bility law of Zn. Let 	n be the cumulant-generating function of Zn, and let {an} be a sequence
satisfying an → ∞ as n→ ∞. Define 	(γ ) as in (3.2). The functions 	n and 	 are convex.
Let D	 = {γ ∈R

p :	(γ )< ∞} be the convex support set of 	 and note that 0 ∈D	 .
Let I be the Fenchel–Legendre transform of 	 as in (3.3). The classical Gärtner–Ellis the-

orem [10] establishes the inequality (3.1) for any closed measurable set E, under the condition
that the origin belongs to the interior of D	 . This condition will fail to hold in our setting,
because we will consider situations in which D	 is a subspace of Rp. Thus it is necessary to
prove (3.1) under weaker conditions.

In the following, let P be the orthogonal projection operator onto the subspace D	 , and
define PE = {Pu : u ∈ E} to be the projection of any E ⊆R

p. Let μP
n be the probability law of

the random variable PZn.
Our goal is to prove (3.1), for any closed measurable set E, under the assumption that

D	 �= {0} is a subspace of Rp. This is accomplished in three steps with progressively fewer
assumptions on E. In the first two steps (Lemma 6.1), the large deviations inequality is proved
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for PE, with the first step making the additional assumption that this projected set is compact.
The final step (Theorem 6.1) then proves the inequality for E.

Lemma 6.1. Suppose that D	 �= {0} is a subspace of Rp, and E ⊆R
p has the property that PE

is compact and measurable. Then

lim sup
n→∞

1

an
logμP

n (PE)≤ − inf
u∈PE

I(u).

Proof. Let Iτ (u)=min{I(u)− τ, 1/τ } for τ > 0. By definition of this function, for any u ∈
PE we can pick γ u ∈D	 for which 〈γ u, u〉 − 	(γ u)≥ Iτ (γ u). We can also pick ρu such that
ρu‖γ u‖ ≥ τ and let Bu,ρu be the closed ball of radius ρu centered at u.

By Chebyshev’s inequality,

μP
n (G)=E(1{PZn∈G})≤E

[
exp

(
〈γ,PZn〉 − inf

u∈G〈γ, u〉
)]

for any n, γ ∈R
p and measurable G⊆D	 . In particular,

μP
n (PBu,ρu )≤E[exp (an〈γ u,PZn〉)] exp

(
− inf

u′∈PBu,ρu
〈anγ u, u′〉

)
.

For any u ∈PE,

− inf
u′∈Bu,ρu

〈anγ u, u′〉 ≤ anρ
u‖γ u‖ − an〈γ u, u〉 ≤ anτ − an〈γ u, u〉,

whence

1

an
logμP

n (PBu,ρu )≤ 1

an
logE[exp (an〈γ u,PZn)]+ τ − 〈γ u, u〉

≤ 1

an
logE[exp (〈anPγ u, Zn)]+ τ − 〈γ u, u〉 (6.1)

= 1

an
	n(anPγ u)+ τ − 〈γ u, u〉,

where (6.1) follows from the fact that P is self-adjoint.
SincePE is compact, we can select a finite covering from the open covering

⋃
u∈PE Bu,ρu of

PE. Let N be the number of balls in this covering, and denote their centers by ui, i= 1, . . . ,N.
For simplicity, let γi, ρi denote the corresponding γ u, ρu values. Then

1

an
logμP

n (PE)≤ 1

an
logN + τ − min

1≤i≤N

{
〈γi, ui〉 − 1

an
	n(anPγi)

}
,

and we can take the limsup of both sides to obtain

lim sup
n→∞

1

an
logμP

n (PE)≤ τ − min
1≤i≤n

{
〈γi, ui〉 − lim sup

n→∞
1

an
	n(anPγi)

}
= τ − min

1≤i≤n
{〈γi, ui〉 − 	(Pγi)}.

Recalling the properties of γi, we arrive at

lim sup
n→∞

1

an
logμP

n (PE)≤ τ − min
1≤i≤n

Iτ (γi)≤ τ − inf
u∈PE

Iτ (u).

This holds for any τ > 0, so we take τ ↘ 0 to prove the desired result. �
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Lemma 6.2. Suppose that D	 �= {0} is a subspace of Rp, and E ⊆R
p is closed and measur-

able. Then

lim sup
n→∞

1

an
logμP

n (PE)≤ − inf
u∈PE

I(u).

Proof. Let u1, . . . , u� be a basis for the subspace D	 , with � < p being its dimensionality.
Let μj

n denote the probability law of 〈uj, Zn〉.
Let γ = anuj and take some ζ > 0. By Chebyshev’s inequality,

μj
n([ζ, ∞))≤E

[
exp

(
〈anuj,PZn〉 − inf

u : 〈uj,u〉≥ζ
〈anuj, u〉

)]
≤E[exp (an〈uj,PZn〉)] exp(−anζ ),

whence

lim sup
n→∞

1

an
logμj

n([ζ, ∞))≤ 	(uj)− ζ < ∞.

Consequently,

lim
ζ→∞ lim sup

n→∞
1

an
logμj

n([ζ, ∞))= −∞
for all j= 1, . . . , �. Using symmetric arguments, one can also obtain

lim
ζ→∞ lim sup

n→∞
1

an
logμj

n((−∞, −ζ ])= −∞.

Now define the compact set Gζ = {u ∈Dψ : 〈uj, u〉 ∈ [− ζ, ζ ] for all j= 1, . . . , �} We then
derive

lim
ζ→∞ lim sup

n→∞
1

an
logμP

n (Dψ \Gζ )

≤ lim
ζ→∞ lim sup

n→∞
1

an
log

�∑
j=1

μj
n((−∞, −ζ ])+ μj

n([ζ, ∞))

≤ lim
ζ→∞ lim sup

n→∞
1

an
log

(
2�max

j

{
μj
n((−∞, −ζ ]), μj

n([ζ, ∞))
})

= −∞, (6.2)

where the first inequality uses a union bound together with the monotonicity of probability
measures.

Observing that PE ∩Gζ is compact, we can apply Lemma 6.1 to obtain

lim sup
n→∞

1

an
logμP

n (PE ∩Gζ )≤ − inf
u∈PE∩Gζ

I(u)≤ − inf
u∈PE

I(u).

On the other hand, PE ∩Gc
ζ ⊆Dψ \Gζ , so

lim sup
n→∞

1

an
logμP

n

(PE ∩Gc
ζ

)≤ lim sup
n→∞

1

an
logμP

n (Dψ \Gζ ).

Combining both inequalities, we find that

lim sup
n→∞

1

an
logμP

n (PE)≤ 2 max

{
− inf

u∈PE
I(u), lim sup

n→∞
1

an
logμP

n (Dψ \Gζ )

}
.

Taking ζ → ∞ and applying (6.2) yields the desired result. �
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Theorem 6.1. Suppose that D	 �= {0} is a subspace of R
p, and E ⊆R

p is closed and
measurable. Then

lim sup
n→∞

1

an
logμn(E)≤ − inf

u∈E I(u).

Proof. We rewrite (3.3) as

I(u)= sup
γ∈D	

〈γ, u〉 − 	(γ ),

because 	(γ ) takes finite values only for γ ∈Dψ . Observe, however, that

sup
γ∈D	

〈γ, u〉 − 	(γ )= sup
γ∈Rp

〈Pγ, u〉 − 	(γ )

= sup
γ∈Rp

〈γ,Pu〉 − 	(γ )

= I(Pu)

because P is self-adjoint. Therefore, by Lemma 6.2,

lim sup
n→∞

1

an
logμn(E)≤ lim sup

n→∞
1

an
logμP

n (PE)≤ − inf
u∈PE

I(u)≤ − inf
u∈E

I(u),

which completes the proof. �

We remark that the large deviations inequality can be recovered under the weaker condition
0 /∈ rel int(Dψ ), without requiringDψ to be a subspace ofRp. However, this is beyond the needs
of the present work so we do not give the proof here.

7. Conclusion

We have presented a theoretical framework that leverages the connections between Gaussian
process regression and approximation theory to derive newmoderate deviations inequalities for
different types of error probabilities. The utility of these results is demonstrated through two
applications of broad interest: probabilities of pairwise errors between fixed errors of points,
and uniform tail probabilities for the pointwise estimation error. Furthermore, our results
illustrate the effect of the kernel on the convergence rate.

It is difficult to say whether it is possible to improve on these bounds; perhaps this also
depends on the class of kernels that is chosen. The main limitation of this work is that for
purposes of tractability, we bound difficult posterior covariances by the much more tractable
mesh norm. The mesh norm only measures the extent to which the design points are evenly
spread out, and thus has limited ability to distinguish between different strategies for choosing
the design points. We leave this problem for future work, noting that the results presented here
are the first of their kind.
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