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ARTICLE INFO ABSTRACT

Keywords: Frontal polymerization (FP) is a rapid, energy-efficient technique for the manufacturing of
Frontal polymerization polymeric materials and composites. It has also emerged as a way to rapidly alter the shape of
Thermo-chemo-mechanical coupling partially cured polymeric materials through mechanical deformation. The first objective of this

Surface pattern formation
Reaction—diffusion
Nonlinear mechanics

paper is to introduce a coupled thermo-chemo-mechanical theory capable of describing within
the framework of nonlinear kinematics the evolution of deformation and temperature fields
during frontal polymerization of gels. At the heart of the proposed theory is the introduction of
eigenstrains corresponding to the phase transformation prompted by the frontal curing process.
Another objective is to introduce a novel bio-inspired oscillatory loading-induced patterning
technique in which we form thermoset polymeric materials with periodic surface topography
patterns by applying oscillatory uniaxial loads to partially cured gels during FP. After a detailed
presentation of the experimental methodology, the theoretical predictions are compared with
experimental results.

1. Introduction

Frontal polymerization (FP) involves a self-propagating exothermic reaction front that converts a liquid monomer or partially
cured gel to a fully cured polymer (Chechilo et al., 1972; Khanukaev et al., 1974; Chechilo and Enikolopyan, 1974; Davtyan et al.,
1984; Pojman, 1991; Pojman et al., 1995). The reaction front is initiated ordinarily by a local thermal stimulus applied to a mixture
of monomer and catalyst. The heat generated by the exothermic reaction in turn advances the propagating front by thermal diffusion,
resulting in a self-sustained process as shown in Fig. 1(a).

FP provides a rapid, energy-efficient, and scalable method for manufacturing polymeric materials and composites (Robertson
et al., 2017, 2018; Ivanoff et al., 2020). Moreover, FP of partially cured gels has enabled simultaneous free-form 3D printing and
curing (Aw, 2019; Aw et al.,, 2022) (Fig. 1(b)), as well as a way to alter the shape of a material by mechanical deformation or
embossing (Fig. 1(c)). In this work, we focus our attention on the latter application although the proposed theoretical framework
is also applicable to FP-based printing.

Mathematical modeling of FP in the literature has so far focused mostly on the thermo-chemical process in polymers and fiber-
reinforced polymer composites; see Goli et al. (2018) and discussion therein. The emphasis of the modeling work has been to estimate
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Fig. 1. (a) Images showing propagation of a polymerization front through a test tube. Adapted from Robertson et al. (2017). Copyright 2017 American Chemical
Society. (b) Ball helix structure produced via freeform 3D printing and FP of partially cured DCPD. (c) Macropatterned structures produced via deformation (top)
or embossing (bottom) of a DCPD gel prior to FP. (b) and (c) adpated from Robertson et al. (2018). Copyright 2018 Springer Nature.

key front characteristics like maximum temperature and velocity (Goldfeder et al., 1997; Frulloni et al., 2005; Goli et al., 2018; Vyas
etal., 2019; Kumar et al., 2021) and stability (Solovyov et al., 1997; Goli et al., 2020). The study of front instabilities has also inspired
the investigation of fluid convection effects in bounded domains during FP (Pojman et al., 1992; Volpert et al., 1996; Garbey et al.,
1996; Bowden et al., 1997). As an initial step towards constructing a general theory, the first objective of this work is to construct a
macroscopic solid-to-solid phase transformation theory capable of describing and predicting the thermo-chemo-mechanical processes
taking place during FP of gels. The theory needs to be situated within large deformation mechanics due to the very compliant (and
nearly incompressible) mechanical behavior of gel. The central idea in this work is to introduce eigenstrains corresponding to
the phase transformation brought upon by the polymerization reaction. This phase transformation causes the material stiffness to
typically increase by three to four orders of magnitude, essentially freezing the material in its deformed configuration. We also
provide the finite-element based numerical implementation for the theory.

Theoretical and computational work in the area of thermo-chemo-mechanical modeling has attracted a lot of attention
in the past few decades, especially in applications related to energy conversion and storage devices such as fuel cells and
batteries (Haftbaradaran et al., 2011; Gao et al., 2015). Most of the modeling work has been conducted in the realm of small
deformations. However, some recent work has incorporated nonlinear kinematic effects (Cui et al., 2012; Anand, 2012). A notable
contribution in this line of work is that by Anguiano et al. (2020), Anguiano and Masud (2021) who presented a chemo-mechanical
formulation and its variational multiscale numerical implementation to study large chemically induced swelling deformations in
problems like silicon oxidation and lithiation. Related modeling work can be found in the context of chemical reaction-caused
expansion in concrete (Ulm et al., 2000), hydrogels (Cai and Suo, 2011) and other materials. Furthermore, significant attention
has also been given to mechanical modeling of growth and aging processes (Epstein and Maugin, 2000; Epstein, 2015; Sozio and
Yavari, 2019; Javadi et al., 2020) with application to materials like biological tissues (Ambrosi et al., 2011; Kuhl, 2014) and Li-ion
batteries (Rejovitzky et al., 2015; Di Leo et al., 2015). These processes involve the generation of eigenstrains and residual stresses
primarily due to mass variation, rather than purely due to a reaction—diffusion processes in a fixed domain like in the current
work. A key challenge of multi-physics modeling is often associated with a lack of comprehensive experimental data. The work
presented hereafter, however, builds on the extensive prior characterization of mechanical, thermal, and chemical behavior during
FP (Yourdkhani et al., 2019; Koohbor et al., 2022).

The second main objective of this work is to describe the development of a novel, bio-inspired patterning technique in which
thermosets are formed with periodic surface topography patterns by applying oscillatory loading to dicyclopentadiene (DCPD)
gels during FP. In contrast to prior demonstrations of surface patterning using photo-FP (Ma et al., 2013), this technique enables
patterning on multiple surfaces of a single sample, with surface composition and properties identical to the bulk material. We also
study this technique analytically and numerically with the proposed theory and conduct detailed comparisons with experimental
observations.

The inspiration for oscillatory loading-induced patterning comes from nature. There is strong evidence that mechanical forces
in the basal layer of the fetal epidermis create buckling instabilities that lead to the formation of fingerprints (Kucken and
Newell, 2005). Mechanical forces also cause cortical folding, a process critical to human brain development, although the relative
contributions of hypothesized mechanisms are still in dispute (Van Essen, 1997; Bayly et al., 2014). Beyond these surface patterns,
the morphology and properties of bulk biological materials can also be modulated by mechanical stress. For example, bone
remodeling is a cellular process in which the bone structure is adapted to optimize for the mechanical stresses it experience (Robling
et al., 2006; Warden et al., 2014; Weinkamer et al., 2019). This short list of biological processes for mechanically-induced pattern
formation offers tremendous inspiration for the manufacturing of synthetic materials. However, these biological processes are much
too complex for direct imitation and also operate on a lengthy timescale impractical for synthetic manufacturing. In contrast, the
FP-based patterning technique presented here is simple and rapid.

The organization of the paper is as follows. In Section 2, we construct the theory for thermo-chemo-mechanical process during
frontal polymerization. We do so by first introducing the eigenstrains corresponding to thermal expansion and phase transformation
brought on by chemical curing. Then we describe the kinematics, balance relations, and constitutive relations for this process to
formulate the initial-boundary-value problem with emphasis on capturing the changes in the natural stress-free configuration of the
material due to the freezing of deformations during FP curing. The theory amounts to solving a system of three coupled, nonlinear
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partial differential equations (PDEs) for the deformation field y, temperature field T, and an internal variable « that represents the
degree of cure. Section 3 introduces a finite-element scheme to solve these equations numerically. The weak form of the PDEs is time-
discretized with a first-order finite-difference scheme, whereas we employ for space discretization a non-conforming low-order finite
element that has been recently shown (Kumar et al., 2018) to work efficiently in large deformations with nearly incompressible soft
materials. The accuracy of the scheme is verified by solving an idealized 1-D problem for which we generate an analytical solution.
In Section 4, we illustrate the workings of the theory and explore its descriptive capabilities by carrying out 2-D simulations on a
DCPD specimens subjected to static and oscillatory tension and different thermal initial conditions. Then, in Section 5, we present
the experimental methodology for the bioinspired oscillatory loading-induced FP-based patterning technique. Finally, we compare
the theoretical predictions with experimental results.

2. Coupled thermo-chemo-mechanical formulation under finite deformations
2.1. Kinematics

Consider a solid that occupies in its initial reference configuration (at time ¢ = 0) a bounded domain @, c R¥, with boundary
082, and unit outward normal N. The density of the solid is denoted as p,. We identify material points by their initial position vector
X € £2;. The initial temperature of the solid is denoted by T,(X). At a later time ¢ € (0,¢;], due to externally applied mechanical and
thermal stimuli to be described below, the position vector X of a material point moves to a new position specified by

x = yX,1),

where y is a mapping from Q, to the current configuration (z), also contained in RY. The temperature field in the current
configuration is denoted by T'(x,7) € R(. The density of the solid in current configuration is p(x,7). We consider only invertible
deformations and write the deformation gradient and particle velocity fields at X and ¢t as

F(X,/)=Grad y(X,r) and  y(X,)= ‘;—’f(x, 1. 1)

Furthermore, the solid comprises of different phases in the current configuration, which we define using an internal variable (or
order parameter)

@ = ax,1).

The internal variable « € R?, referred to hereafter as the degree of cure, takes a value between 0 and 1. Valuesa =0 and a = 1
respectively denote the uncured and fully cured states of the polymer, and the transition from a phase with lower value of a to
one with higher value is considered irreversible. Keeping in mind the problems of interest where the partially cured polymer is in a
solid gel state, the initial degree of cure in the reference configuration is set to &(x,0) = ay. We further define the direction of front
propagation at X as m(X,¢) defined by Vya -m < 0.

It is well known that thermal expansion/contraction can result in an updated natural (stress-free) configuration with residual
deformation relative to initial configuration (2,,. We represent the deformation gradient due to thermal expansion/contraction by a
second-order tensor F¢. In a similar vein, the curing of the material has also been observed experimentally to result in a new natural
configuration due to irreversible freezing of deformation at material points X at the passage of the polymerization front as the
degree of cure increases from its initial value to the fully cured state corresponding to a = 1. We represent the deformation gradient
due to such process by another second-order tensor F. Then, we define a total deformation gradient tensor as a multiplicative
decomposition

F=FF 'L 2)

Such a decomposition, commonly adopted in constitutive modeling of plasticity and viscoelasticity, reduces to the following additive
decomposition in the limit of small deformations:

o

E=e—€6"-¢€, 3)

where £ = 1/2 (F+F7T —2I), £9 is the classical eigenstrain due to thermal expansion and & is similarly an eigenstrain associated with
curing. We will refer to F¢ and F" as eigenstrains as well from here on. It should be noted that (2) is a constitutive choice used to
simplify the coupling between the three fields.

Fig. 2 shows a schematic of the material in its initial state £, at t = 0 and in the current state Q2(¢) at a later time, illustrating
the changes in deformation, temperature, and degree of cure fields. It also illustrates the two intermediate configurations £2,(¢) and
£,(1) that appear as a result of the assumed multiplicative decomposition (2).

2.2. Balance relations

The balance of linear momentum in the absence of inertia is described by

DivSX,nN+BX, 1) =0, X,1)e€£2;x[0,1] “4)
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Fig. 2. Schematic of the polymer in its initial stress-free configuration at time z = 0 with initial temperature T, and initial degree of cure «,, and at a later time
t >0 defined by the deformation mapping ¥(X,?) (and its gradient F(X,)) and temperature field 7'(x,r). The schematic also shows the evolution of the degree of
cure & in some regions of the polymer from ¢, to 1 representing the curing of the polymer. The « = a;, and « = 1 regions are separated by the polymerization
front, i.e., a thin reaction zone whose width L, is governed by reaction kinetics. Furthermore, the intermediate configurations £2,() and £,(r), with coordinate
vectors x? and x" respectively, prompted by the multiplicative decomposition (2) are shown. The second intermediate configuration £, also represents the new
natural configuration at time 1.

where S represents the first Piola-Kirchhoff stress tensor and B refers to the volumetric body force at each material point X € £,
For clarity, Div[-] refers to the divergence operator with respect to the material coordinate X.

From the balance of energy, the transient heat equation describing the evolution of the thermal state in the solid in its current
configuration £2(x, ) follows as

A

pCp%—j:(x, 1) = —divq(x,1) + s(x,1) + pr (F, T, %) , x1efx|0,] (5)

where q represents the heat flux vector, s denotes the volumetric heat source term associated with the exothermic polymerization for
the problem of interest, and C, is the specific heat capacity of the solid assumed hereafter to be independent of . div[-] refers to the
divergence operator with respect to the spatial coordinate x. Moreover, the term r captures the heating effect due to deformation.
In the problems of interest in this work, this heating effect is expected to be negligible compared to the heat released from the
exothermic chemical reaction. Hence, we will neglect this term from here onwards. Through a change of variables and using
conservation of mass relation p = (det F)~'p,, the balance of energy can be rewritten in terms of the reference coordinate as

pocp‘;—f(x, )= -Div(Q)+ SX,f), (X,1) € 2y x[0,1] (6)

where T(X, 1) = T(x(X,1),1), Q = JF'q, and J = det F. The thermo-mechanical coupling is readily apparent from this relation.
The rate kinetics for the degree of cure « is assumed to be described by the relation (Goli et al., 2018)

‘;—?(x, N =hTa), X1)ex01] @

where a(X, 1) = &(x(X,1),7) and A(T, a) > 0. We assume here that the reaction kinetics remain unaffected by mechanical deformation,
an assumption supported by experimental observations.

2.3. Constitutive relations

Assuming that the polymer of interest is isotropic, we define the eigenstrain F? as
F(X,1) = g(TX, 1), X, )L, with g(T,a)=1+¢T,e)T -Ty) (€)]

where ¢(T,«) is the thermal expansion coefficient for the material. The dependence of the thermal expansion coefficient on the
local temperature and degree-of-cure values is complex and likely depends on the temperature relative to the local glass transition
temperature, which is itself a function of the local degree of cure. In the absence of accurate measurements for DCPD, we adopt
hereafter a constant value ¢ = 10~* K1, which corresponds to the value for fully polymerized DCPD (Koohbor et al., 2022) .

The second-order tensor F'(X, 1) is equal to identity tensor I if the reaction front has not arrived at the material point X at time
t. The time of arrival of a sharp polymerization front is defined as r*(X) when the material state switches from a = a; to a = 1. At
t = r*(X), the natural state of material point X irreversibly updates to the deformed state of the material infinitesimally ahead of
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the front representing a freezing of deformations due to chemical reaction. This update of the natural state is represented through
a change in the value of tensor F"(X, ). Hence, we define

- _ FX*, (X)) Fﬁ_](x+,t*(X)), if r2r*X)
F&n= { , otherwise ©)

where X* = X + em. Here, ¢ is an infinitesimal constant and m(X, r*) was defined earlier as Vx& - m < 0. In reality, since the
polymerization front has a small but finite thickness L, (Goli et al., 2018) as schematically shown in Fig. 2, the material can exist
in a phase for which a; < a < 1. Therefore, we regularize F" as

-1
.1 = { (I+ Ji! fla; C,af —ah)(F - I)da) (I + [ fla;C.af — ah) (T - Ty) da I) ,ifr X 10
L otherwise

where *(X) is now defined such that «(X,*) = «f and infinitesimal constant ¢ is defined such that a(X + em, ) = af — ¢". The
function f is a scalar function of « and two positive constants C, X — o” that satisfy

Clim f((x;C,th —ah) =6[af—aE+ah], an
with §[-] denoting the Dirac delta function. Clearly, for a large value of the constant C, the regularized form of F"(X, r)(10) reduces
to (9). We specifically choose

C exp(Cla — af + a"))
(1 + exp(C(a — aF + ah)))?’

flo)y= (12)

This choice for the function f and the value of the constants C,«f, and a” are motivated by the evolution of elastic modulus
with degree of cure specified below in (16). Having defined F? and F’, we are now in position to prescribe the stress-deformation
response, the flux-temperature response (Fourier’s law), and the cure-kinetics relation.

Stress-deformation response. The nonlinear elastic behavior of the material is taken to be characterized by a free-energy function
w = y(F),

which satisfies the requirement of material frame indifference! w(F) = yw(QF) for all @ € Orth*. The first Piola—Kirchhoff stress
tensor § is defined as

Oy & W e gl
X H=—FE=—@FF "F . 13
SX,n aF() ai,() (13)
A choice for free-energy function y to be adopted in the numerical simulations below is the compressible Neo-Hookean function
- - A -
vk, = X2 (7, - 3) — (e () - 22 (- 17, a4

where I;, = tr(F"F) and J = det(F). As is well known, the Neo-Hookean model is suitable for representing nonlinear elastic behavior
under small to moderate deformations. For large deformations, other non-Gaussian models need to be adopted (Gent, 1996; Lopez-
Pamies, 2010). The positive scalar material property functions u(a) and A(a) represent the two Lamé constants for the polymer in
different phases as a function of degree of cure a. For an isotropic material, the two material properties can be equivalently defined
in terms of the Young’s modulus and the Poisson’s ratio as

E@ o Eev@
2(1 + v(a)) (1 + via))1 = 2v(a))
When ¢ = «), E(¢) = E; and v(a) = v;, where E; and v, are the Young’s modulus and Poisson’s ratio of the soft partially cured
polymer or gel. Similarly, when « = 1, E(«) = E, and v(a) = v,, where E, and v, are the Young’s modulus and Poisson’s ratio of the
fully cured (much stiffer) polymer. The values of E(a) and v(a) with a > 0.28 were measured experimentally for DCPD by Koohbor
et al. (2022) and Yourdkhani et al. (2019) as shown in Fig. 3 along with the best functional fit for the data described as®

E -E
1 +exp(C(a — af))’

(15)

ua) =

Vi—w

T FepDa—-a) (16)

E(a) = Ey) + v(a) = v,

The values of the fitting constants C, o, D, and " in (16) are listed in Table 1 along with the values for E,, v;, E,, and v,. The
choice for function f(a;k, ®f — a*) in (12) is based on the above expression for E(a). Specifically, we adopt
d (E(a+ah)—E2) C exp(Cla + o — af))

r@= E, -E, T (L +exp(Cla+al — ab)?’ a7

where a” is chosen as 0.39 such that E(af — o) » 3E,. A verification study presented in Section 3.3 shows that this choice for the
value of «” is satisfactory for the accurate computation of the eigenstrain F”.

1 The objectivity of free-energy function ensures the rotational balance SF” = FS”.
2 The strong ellipticity of the free-energy function (14) is trivially satisfied with the choice for elastic property functions.
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Fig. 3. Elastic properties of dicyclopentadiene (DCPD) measured experimentally by Koohbor et al. (2022) for various values of degree of cure @ shown along
with the best functional fit (16). (a) Young’s modulus E(e), and (b) Poisson’s ratio v(a).
Source: Figure adapted from Koohbor et al. (2022).

Table 1

Elastic material parameters for dicyclopentadiene (DCPD).
E, =0.29MPa E, =2100MPa C =120.30 a; =0.79
v, = 0.4995 v, = 0416 D=1192 @, =065

Remark 1. The dependence of the elastic properties of DCPD on the degree of cure suggests the following two observations. Firstly,
the Young’s modulus E of DCPD increases by around four orders of magnitude from its partially-cured state of « = 0.28 to the fully
cured state. We also note that the definition of F” is independent of the ratio E,/E,. Secondly, DCPD is nearly incompressible in its
initial cure state. This near incompressibility requires the use of special finite element to numerically solve the initial-boundary-value
problem as discussed in the next section. Moreover, we note that, in this work, the elastic properties are assumed to be a function
of the degree of cure a only and not a direct function of temperature T or time.

Remark 2. In its partially cured gel state for « > 0.1, the polymer has been observed to behave as a visco-elastic solid. Yet, as this
paper presents the first effort to study the thermo-chemo-mechanical coupling in frontal polymerization, we idealize the partially
cured polymer as an elastic solid. This assumption proves to be adequate to describe the experiments of interest in Section 5. In its
current form, the model does not account for chemical shrinkage either, which could be incorporated in the proposed framework
as an additional eigenstrain.

Fourier’s law. The Fourier’s law for heat conduction is defined as

q=-x

o, (18)

where « is the thermal conductivity of the isotropic resin, which is assumed to be constant. Through a change of coordinate, the
Fourier’s law can be written with respect to the reference configuration 2, as

aT
=x JFIFT
Q=x aX

where we recall that J = detF.

19)

Cure kinetics relation. To describe the kinetics of the polymerization reaction of DCPD in (7), we adopt the following separable
form with the temperature dependence captured by an Arrhenius law and the degree-of-cure dependence given by the modified
Prout-Tompkins model:

1

1 +expleyla — ay))’ (20)

-E
h(T,a) = A, exp (R_If) 1—a)'a™
Here, A, (in 1/s) is the time constant, E, (in J/mol) is the activation energy, R (=8.314 J/(mol K)) is the universal gas constant, n
and m are two exponents that define the order of reaction in Prout-Tompkins model while ¢; and a, are two constants that describe
the diffusion-controlled reaction kinetics at high values of a (Yang and Lee, 2014). The thermal and cure kinetics parameters that
appear in (19)—(20) are listed in Table 2.
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Table 2
Thermal and cure kinetic material parameters for dicyclopentadiene (DCPD) (Vyas et al., 2019).
k=015W/m K po = 980kg/m? C,=1600J/kg K
A, =855x 105 1/s E, = 110,750]/mol n=177 m =081 c, = 14.41 a, =041

2.4. Boundary conditions and source terms

We now specify the external mechanical and thermal stimuli applied to the solid, which comprise of both prescribed boundary
conditions and sources terms in the bulk. On a portion 0.@6" of the boundary 042, the deformation field y is taken to be specified by
a known function &, while the complementary part of the boundary 0.(2[? = 6.@0\0.(2[‘]" is subjected to a prescribed nominal traction
SN = t. Moreover, the value of the temperature T is taken to be given by a known function T on a portion a.Q("; of the boundary
a£2,, while the complementary portion 6!28 = agﬂ\agUT is subjected to a prescribed normal heat flux Q - N = gq. More specifically,
we consider the boundary conditions

X0 =&X,0, (X1 €2y x[0,1]

[3—;’(1"?, a)] N=tX,n, X.1)eo;x[0,1] 1)
and
{ TX.H=TX.0, (X1 €] x[0.4] 22)
Q-N=3X,n, (X,1)e€anfx[0,1]
Throughout 2,, we consider that the solid is subjected to a body force and heat source term
B(X,#) and SX, 1), X,1) € 2,%[0,T]. (23)

The heat source relevant to our problem of interest is the heat released from the exothermic chemical reaction, defined hereafter
as

da
at’
where H, (= 350.0 J/g for DCPD) is the heat of reaction.

SX,1) = poH, (24)

2.5. Governing equations

We can now formulate the complete theory for the thermo-chemo-mechanical response during frontal polymerization. Combining
the balance Eq. (4), (6), (7) and constitutive relations (13), (19), (20) introduced above, the following governing equations are
generated for the deformation field y(X,7), the temperature field T(X, ), and the degree of cure a(X,):

[ Div [%(F)FG“ Ff“] +BX, D=0, (X,1)e2,;x[0,1]
detF(X,n >0, (X,1)€Q,x[0,1],
) (25)
X0 =EX,0), (X,1)e€a) x[0,1]
a—"”(f?, O|N=tX,n X, 1) eoRsx[0,1]
L | oF 0
and
Div [« JF-'F-TVT| + poH da _ 20C ar (X,1) € 25 x[0,1,]
"ot Pot’ ? ?
) TiX, 0=T,, Xe (26)
TX.0=TX.1, X,)ea] x[0,1]
Q -N=gX., 10, X1)eaf x[0,4]
w
and
9 _poexp 2t ) dmayan—— L Xne@,x[0.1]
or e P\ Rr 1 +exp(e (e —ay))’ ’ 0 ' 27)

‘l G(X, 0) = s Xe QU
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3. Numerical implementation and verification

In this section, we first present a finite-element formulation to solve the coupled system of Egs. (25)—-(27). The major challenge
here is the selection of an appropriate finite-element discretization capable of dealing with the large deformations and near
incompressibility of the gel. We begin by recasting the strong form of the governing equations into a weak form. The cure kinetic
Eq. (27) will be solved at the quadrature points after space discretization and is hence not recasted into weak form.

Upon definition of admissible sets

U={yeW"QuR"):y=¢ on a2}, Vy={yeW"(2uR"):y=0 on 00}},
v={zew'2@uRY) : z=T on 00] |, Vy={ze W'@:R") :2=0 on 20] },

the boundary value problems (25)-(26) can be reformulated as the problem of finding the deformation field ¥ € 1/, temperature
field T € ¥ and degree of cure field a € L2(£2,) such that

/ [B—W(F)] . de—/ b- vdX—/ t-vdX=0 Vvelyte[0,y], (28)
20 oF 2 aszj
and
1T oT da —
[« JF'FTVT| - VPdX + (pOC ——pUHr—) PdX- | QPdX=0 VPeV,rel0r]. (29)
0 0 L E)‘t 51 ﬂQC
0 0 0
3.1. Time and space discretizations
We first partition the time interval under consideration [0, ¢, ] in the Egs. (28)-(29) into discrete times 0 = O, Lt M =

t, together with the notation y"(X) = y(X.t™), T"(X) = T(X, "), and ¢™(X) = a(X,t") for m = 0,1,2,..., M. We then adopt the
implicit Euler scheme to cast the weak form of the governing equations into their time-discretized form.

For the spatial discretization, we consider partitions "2, = Ufi] £@ with £D n £W) = g Vi # j of the domain £, that comprise
N, non-overlapping simplicial elements £©, with 4 denoting the diameter of the largest element. We discretize the deformation
field over each simplicial elements £ with Crouzeix-Raviart (C-R) linear shape functions, as these non-conforming finite-element
discretizations have been shown to be stable and convergent under near incompressibility and large deformations with fewer degrees
of freedom than competing conforming dicretizations (Kumar et al., 2018). The C-R shape functions are Ng;(pl, ) =1-2p,,
Ntczj)z(pl,pz) = 2(p; +po) — 1, N?}{(pl,pz) = 1 — 2p, for the case of N = 2 space dimensions, and Ng;(pl,pz,pﬁ =1-13p,,
N (102 03) = 3(py + p3 + p3) = 1, Nor(p1.p2.3) = 1 = 3py, N2 (py,p2,p3) = 1 = 3p, for the case of N = 3 space dimensions,
where p, are the coordinates of a reference simplicial element. For the temperature field, we adopt the standard linear Lagrange
shape functions.

3.2. The solver: staggered scheme

After the discretization of the governing PDEs (25)—(27), the next step is to select an appropriate solver for the resulting system
of three coupled nonlinear algebraic equations respectively denoted as G,, G,, G;. A monolithic solution scheme for our choice of
cure kinetics relation (20) requires a very small mesh size and time step, so we instead adopt a staggered approach. Specifically,
the algorithm to solve for the approximate solution fields ” y™+!, hTi'”“, and "a¢™t! at t™! is as follows:

« Step 0. Set the staggered iteration counter r = 1 and define appropriate tolerances TOL, > 0 and maximum number of iterations
I,. For a given solution "™, #T™, and "a™ at time 1™, define also #y"+10 = hym hpmtl0 — hpm and hgm+l0 = hgm,
- Step 1. At the Gauss quadrature points in each of the simplicial elements, find #a™t'+ such that

gg(hTm,r’ ham+1vr) =0. (30)

« Step 2. waing solved the sub-problem (30) for #a¢™*!", which provides the heat source term, and given the increments fml(X)
and 6m+ (X) in boundary data, find »T™+!” such that

gz(hxm,r, hTm+l,r, ham+1,r) =0. (31)

« Step 3. Having solved the sub-problems (30) and (31) for hgm+lr and hTm+lr | update the eigensltrains F9m+l'r and Frmtlr , and
the elastic properties E and v at the quadrature points. Then, given the increments EmHI(X), Em+ (X), and b"*1(X) in boundary
data and body force, find # y"+17 such that

gl(hxm+1.r! hTm+1,r’ ham+l,r) =0. (32)

« Step 4. If I gl(hx;_n+1,r,hTm+1,r.ham+l.r) [ / [ gl(hx:_rﬁl.ﬂ,h_Tm+1,0’ham+l,r) II< TOLI orr > I, then set hxm+1 = hxm+l.r’

hpm+l = hpmtlr hgm+l — hgmtlr and move to the next time step 1™+2; otherwise set r < r + 1 and go back to Step 1.

Sub-problems (30) and (32) are nonlinear and thus solved with Newton’s method, while sub-problem (31) is linear.
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Fig. 4. Verification study for the numerical implementation of the theory outlined in Sections 3.1 and 3.2. (a) Schematic of the idealized 1-D specimen geometry
fixed at X =0 and subjected to time-dependent loading #(f) at X = L. The reaction front located at X ,(f) is assumed to be of zero width and to propagate at a
constant speed V. The reaction front separates the polymerized region (in red) and the gel region (in blue). For both regions, the temperature and degree of
cure are known exactly. (b) Schematic of the 3-D bar problem solved with the proposed numerical scheme. The applied boundary and initial conditions are also
shown. (¢) Comparison between numerical results obtained using material properties described in Section 2.3 and analytical results for the idealized problem
at three different times for applied loading #(r) = A (1 — cos(10¢)) with A = 0.01 mm. The normalized displacement & is defined as & = u/(A) and the normalized
coordinate as X = X/L. (d) Comparison between numerical results obtained using a simplified cure kinetic model (39) and analytical results.

3.3. Verification problem

Next, we verify the proposed numerical formulation by solving an idealized 1-D problem for which an analytical solution can
be derived. The verification problem is shown schematically in Fig. 4(a) and is based on the following assumptions:

+ Deformations in the structure at all times are small, i.e., F(X,1) = L
+ The thermal and reaction fronts coincide with each other at location X £ and are mathematically sharp. For X > X HpT=T,
and e =ay. For X < X,, T =T,y anda = 1.

* The front propagates at a steady speed V, for t > 0, which corresponds to the chosen value of T; and «.
+ There is no heat loss from the domain.

Under the above assumptions, the governing equations reduce to

] .
E(E(X)e) =0, (X,0)el0,L]x[0,]

T= Trnaxs (X, el0,X,1x[0,1,], T=T, (X,)€e[XsLIx[0,1],
a=1, X,Nel0,X,1x[0], a=ay (X,n)€[X;LIX[0,1]

where & = 0u/dX — €% — " and Ty, = T;, + (1 — ay)H,/C,. The elastic modulus E(X) = E, in the polymerized region (X < X /) and
E(X) = E, in the gel region (X > X,) as shown in Fig. 4(a). The eigenstrain due to thermal expansion % is equal to £ = {(T - T),
whereas the eigenstrain associate with curing £” in the small-deformation limit reduces to

+ gy — : >
Xty = QufoX(X*, 1) = E( Ty — Tp), ift >t
0, otherwise

where f* = X /V, denotes the time at which the front arrives at location X. From (33),, it follows that, in the region X € (X, L],
LEEEN=0 > e =60, (34)
whereas, in the region X € [0, X h

S (B8 (X,0) = SAT = 1 (X V) =0, 35)



A. Kumar et al. Journal of the Mechanics and Physics of Solids 168 (2022) 105055

with AT =T,,,, — Tj,. At the gel-polymer interface at X = X, we have traction continuity:

Ey(e*(X,1) — (AT — )°(X /V})) = Ej£,°(f) (36)
Solving (35)—(36) along with the boundary conditions (33),, we obtain an integral equation for &,°(t)
€ El e X‘{ €
(L, — &; (i,‘)(LD—Xf)=E—g1 (Xf/Vf)Xf+§ATXf+/ £ (y/Vf)dy. 37)
2 0
Eq. (37) can be equivalently written in a non-dimensional differential form
El - dEle El d?’,‘
— =1)i+1) — — % = =¢AT + —, 38
((E2 )+) T +E2£‘ (AT + — (38)

where 7 = —— with tmax = L/Vy. Eq. (38) is a linear first-order ordinary differential equation that can be solved analytically or
semi-analytir@gily for arbitrary expressions of the loading function #(7). For example, for n(f) = A (1 — cos(w)), the solution is

i® E,
¢ B ((E, —1)7+1) 5 o LB
£,5(0) = E [—ZaATeEr" (((E, —1)i+1) &1 — 1) -

iAwE, (. 1 iw Zio . 1 iw
E - —eETE : +
E,—l('[l-E, E,-1] ¢ 1[1—5, E,—l]

7))

. Ee e [ .
((E,—1)7+1) BT (eEr’lEl [I—E , (i) (r+
r

) io((E,-1)7+1)
o[ )

where E, = E,/E, and the function Ei[a, 5] is given by Ei[a,b] = /| ¢~ /1°dt. Once £,° is known, the normalized displacement
field #(X,7), where X = X/L, can be obtained as

1 (E , Xf(ij 5 = X _ (¥ o
i Z(E_zgl (V—f X +ATX + [ ¢ V—f dy), ifXel0,X,/L]

1 e Xf(F) ~ R
1—C05((Di)—z£l (?)(l—x), leG[Xf/L,I]

We present the analytical results for the normalized displacement field for three different times 7 = 0.16,0.48, and 0.8 in Fig. 4(c).
At 7 > ¢, the front is located in the normalized coordinates X r=X;/L at X ¢ = c. The analytical results show that a(X,0fori>c
remain unchanged for the domain X < c, illustrating the freezing of deformations brought upon by curing.

To verify our proposed finite-element discretization and the staggered solver outlined in the previous two subsections, we also
solve the problem of a three-dimensional bar subjected to cyclic loading using 2-D axisymmetric finite elements (Fig. 4(b)). The bar
is taken to be of length L = 5 mm and diameter D = 0.25 mm. At X = L, we apply the cyclic loading 5(f) = A (1 — cos(dt)) with
A =001 mm and & = w/t,,, = 10 s"L. At X = 0, the bar is held fixed and a temperature trigger Tiig = 230°C is applied for 1 s.
The initial temperature T, and initial degree of cure a, are chosen to be 30°C and 0.1 respectively. The analytical results show that
#(X,7) for ¥ > ¢ remain unchanged for X < c, illustrating the freezing of deformations brought upon by curing.

The numerical results for the axial displacement field from solving Egs. (25)-(27) for the material properties outlined in
Section 2.3 are also presented in Fig. 4(c). The numerical problem does not adhere perfectly to the idealizations of the 1-D theoretical
solution, i.e., the front is mathematically sharp and propagates at a steady speed. Yet, the results show a reasonable agreement with
the analytical results obtained for the idealized problem. To further confirm the accuracy of the proposed numerical scheme and
also the regularization adopted for the eigenstrain F” (10)—(12), we also solved the numerical problem with a different cure kinetics
model for which the front width is much smaller. In this model, the function h(T, a) in the cure kinetic relation (7) is given by

I(T,a) = A, exp (;3 ) 1-a), (39)

with the values 4, = 1.54x 10'% 1 /s, E, = 92,800J/mol, and n = 2.3 obtained by fitting differential scanning calorimetry (DSC) data
for DCPD. The numerical results for the axial displacement field using the simplified model (39) are presented in Fig. 4(d), and
show excellent agreement with the analytical results.

4. Numerical results

In this section, we explore the capabilities of this theory to describe the coupled thermo-chemo-mechanical response of a frontally
polymerizing gel specimen under constant and oscillatory loads. For computational frugality, the simulations in this section are
conducted in 2-D under the assumption of plane strain. First, we discuss the effect of mechanical loading on the speed and stability
of the polymerization front. Then, we investigate how changing the oscillatory loading affects the induced surface pattern. Finally,
we show how non-steady mechanical loading can accentuate the thermo-chemical instabilities inherent in the FP process and lead
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Fig. 5. Simulation of frontal polymerization conducted under a constant pre-applied stretch of ¢ = 1,1.25 and 1.5. (a) Schematic of the specimen geometry in
its initial configuration at ¢ = 0, and applied boundary and initial conditions. (b) Contour plots of the temperature field T(x,r) at = 12 s for the three cases. (c)
Temperature profiles along the direction of front propagation shown for the case of applied stretch 1.25 and along two parallel planes: bottom plane (X, = 0)
and middle plane (X, = W /2). (d) True velocity as a function of time for the three cases: comparison between numerical (solid curves) and analytically expected
value.

to a more complex surface pattern. All of the simulations are carried out over a fixed rectangular domain of dimensions L x W=
15 mm X 5 mm under adiabatic conditions. The reaction front is triggered by applying temperature T,;;, = 210°C for 1 s along the
left boundary of the domain X = 0 while the mechanical loading is applied at the right boundary X = L. The elastic, thermal, and
cure kinetic properties for DCPD are as listed in Section 2.3.

4.1. FP in DCPD gel specimen under constant pre-applied stretch

We begin with the simulation for the case in which frontal polymerization is conducted under a constant pre-applied displacement
u = (c — 1) L. A schematic of the geometry is shown in Fig. 5(a). Three values of applied stretch are studied: ¢ = 1,1.25, and 1.5.
Fig. 5(b) shows the contour plots for the temperature field in the deformed configuration, i.e., T(x, ), at t = 12 s for each of the three
cases. The location of the front plane is nearly identical for the three cases, which shows that the true or spatial front velocity is
unaffected by mechanical loading as expected from Eq. (5). Experiments have also confirmed the previous observation as discussed
in Section 5.5.

Fig. 5(c) shows the temperature profiles at three different times ¢t = 5.5,10.5, and 15.5 s for ¢ = 1.25 in the direction of front
propagation along two planes: bottom plane (X, = 0) and middle plane (X, = W /2). As apparent there, the front propagates in a
stable manner. Since the deformation is not exactly homogeneous in the domain because of thermal expansion, the front is slightly
ahead in the bottom plane compared to the middle plane. We further explore the speed of the reaction front quantitatively in
Fig. 5(d), which presents the true velocity v rasa function of time for each of the three loading cases, with v I defined as

dx (1)

U= where Xg (I) = X(I)l(X2=W/2.H=0.5) “ey. (40)

The results show that the true velocity is nearly independent of the amount of pre-stretching even under fairly large deformations
and is equal to 0.84 mm/s on an average, which matches the front velocity v obtained from the solution of the thermo-chemical
equations in the absence of structural deformations obtained either numerically or from the analytical solution for front velocity
presented in Kumar et al. (2021).

Note, however, that the material frame velocity defined as:

dX /(1)
ST T

depends on the amount of pre-stretching. This effect can be observed from the governing Eq. (26) written in the material frame,

which shows a dependence of the thermal-chemical solution on the deformation gradient tensor F. Based on the governing Eq. (26),

where X ,(f) = X(:)|(X2=W/2!ﬂ=0_5) e 41)
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Fig. 6. Simulation of FP under simultaneous cyclic loading and at room temperature. (a) Schematic of the specimen geometry in its initial configuration and
applied boundary and initial conditions. (b) Contour plots of the temperature field in the deformed configuration for A =0.05L at 1 =9 s and r = 9.5 s illustrating
the formation of a surface pattern. (c¢) Temperature profiles along the direction of front propagation along two planes: bottom plane (X, = 0) and middle plane
(X, = W /2) showing the oscillatory loading-induced instabilities. (d) Height of the surface pattern, i.e., spatial variation of the post-FP displacement of the top
edge of the specimen.

we can define an effective thermal conductivity tensor K as
K=xJF'F'. (42)

From the analytical solution for the thermo-chemical equations, we know that the front velocity of a unidirectional front is
proportional to the square root of the thermal conductivity in the direction of the front, i.e., Vi \/Iﬁ . Hence, for known values
of tensor F, we can readily estimate the material frame front velocity for different values of pre-stretching. For ¢ = 1, V; = v,. For
the cases ¢ = 1.25 and ¢ = 1.5, as F|; = ¢, the material frame front velocity is predicted to be approximately v,/1.25 and v, /1.5,
respectively.

4.2. FP in DCPD gel specimen subjected to simultaneous oscillatory loading

Next, we focus our attention on the case in which FP is conducted in the specimen under simultaneous uniaxial oscillatory
loading. A schematic of the geometry along with the boundary and initial conditions is shown in Fig. 6(a). The initial temperature
of the gel is assumed to be T, = 20°C. The applied displacement at the right boundary is taken to be u = A (1 — cos(w?)) with
A=0.05L=0.75mmand w =1 Hz.

Fig. 6(b) shows the contour plots for the temperature field in the deformed configuration, T'(x,7), at f = 9 s and t = 9.5 5. We
observe that, while the polymerization front propagates in a steady, stable fashion at that initial temperature in the absence of the
cyclic loading (see Fig. 5(c)), the coupling between the deformation field and the thermo-chemical fields leads to a two-head front
instability originating from the top and bottom edges of the domain. This instability can be better visualized in Fig. 6(c), which
presents the temperature profiles along the direction of front propagation along the bottom edge (X, = 0) and the middle plane
(X, =WwW/2).

Fig. 6(d) shows the height of the surface pattern after the completion of the FP process. We note that the amplitude of the pattern
increases with X, and that the surface pattern is asymmetric in its peaks and valleys despite a sinusoidal applied input.

To visualize the residual deformations inside the domain, we show in Fig. 7 contour plots of the maximum eigenvalue 1™ of the
deformation gradient tensor F and of the two eigenstrain tensors F? and F". The regions of tension and compression induced by the
sinusoidal loading can be seen in Fig. 7(a) and Fig. 7(c) for Ag*™ and Ag™, respectively. These regions are vertically nearly-uniform
except near the top and bottom edges. The plot for }.;";’x in Fig. 7(b) shows a higher value near the top and bottom edges, which is
a consequence of the front instability discussed above in the context of Fig. 6(c).

The nature of the surface pattern is directly related to the amplitude and the frequency of the applied loading. Fig. 8(a)
shows the height of the surface pattern along the direction of front propagation X, for three values of imposed amplitude A; =
L/40, L/20, L/10, whereas Fig. 8(b) presents the height of the surface pattern for three values of imposed frequency @, = 0.5,1,2 Hz
showing a strong dependence of the amplitude and wavelength of the surface pattern on the imposed frequency. A direct comparison
with the experimental results regarding the dependence of surface pattern on the imposed frequency will be presented in the next
section.
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Fig. 7. Contour plots of the maximum eigenvalues 2™ of the deformation gradient tensor F and the two eigenstrains F® and F* shown in the reference
configuration for X, € [1.5,9.5] mm for the simulation of FP in a DCPD gel specimen under simultaneous cyclic loading at room temperature. (a) ages of tensor
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Fig. 8. FP at room temperature conducted under simultaneous oscillatory loading with three different values of the loading amplitude and frequency. (a)
Schematic of the specimen geometry in its initial configuration and of the applied boundary and initial conditions. Spatial variation of the height of the surface
pattern for three values of the imposed amplitude A, = L/40, L/20,L/10 (b) and of the imposed frequency w, = 0.5,1,2 Hz (c).

4.3. FP in DCPD gel specimen under cyclic loading at lower initial temperature

We finally turn to the case where the frontal polymerization is conducted in the gel specimen at a lower ambient temperature of
T, = 0°C while subjected to simultaneous oscillatory loading (Fig. 9(a)). For this lower initial temperature, the DCPD reaction front
is known to experience a thermo-chemical instability as discussed in Goli et al. (2020). They showed that for initial temperature
T, < 14°C, the front experiences a repeatable sharp thermal spike prior to achieving its final temperature as it propagates through
the reaction channel. We aim to investigate how the intrinsic thermo-chemical instability interacts with the oscillatory mechanical
loading.

The applied displacement at the right boundary is again taken to be u = A (1 — cos(et)) with A=0.05L =0.75 mm and w = 1 Hz.
Fig. 9(b) shows the contour plots for the temperature field in the deformed configuration, i.e., T(x,t), at t = 20 s and f = 205 s.
It is clear that the thermal front appears to be more complex than in the previous simulation with T, = 20°C. Fig. 9(c) shows the
temperature profiles along the direction of front propagation along two planes: bottom plane (X, = 0) and middle plane (X, = W /2).
In contrast to Fig. 5(c) and Fig. 6(c), the temperature profile along the middle plane also shows a front instability in this case.
Moreover, for the bottom plane, the front is more unstable than in Fig. 6(c). The interaction between the intrinsic thermo-chemical
instability and the mechanical fields thus seems to have accentuated the front instability.

Fig. 9(d) shows the height of the surface pattern along the top edge of the specimen. As apparent in that figure, the surface pattern
is also more ‘chaotic’ and has a smaller amplitude than in the previous case. The increased complexity of the thermo-chemo-structural
solution is apparent in Fig. 10, which shows contour plots of the maximum eigenvalues A™®* of F, F®, and F". Again, in contrast to
the results for T, = 20°C shown in Fig. 7, the pattern of residual deformation observed in Fig. 10 is more irregular and intricate.

5. Experimental methodology and comparisons between experiments and theory

The numerical experiments presented in the last section illustrated the capability of the proposed theory and its numerical
implementation to capture the coupled thermo-chemo-mechanical response of gels during FP under oscillatory loading. In this
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Fig. 9. FP under simultaneous cyclic loading for a lower initial temperature T, = 0°C. (a) Schematic of the specimen geometry and of the applied boundary
and initial conditions. (b) Contour plots of the temperature field in the deformed configuration for A = 0.05L at t =20 s and ¢ = 20.5 s demonstrating a more
chaotic surface pattern. (c) Temperature profiles along two planes: bottom plane (X, = 0) and middle plane (X, = W /2), both of which show an unstable front.
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Fig. 10. Contour plots for the maximum eigenvalue (a) ape of tensor F, (b) an of tensor F?, and (c) g of tensor F’, shown in the region X, € [1,8] mm
for the simulation of frontal polymerization conducted under simultaneous cyclic loading and low initial temperature T, =0 °C.

section, we aim to provide more quantitative evidence for the descriptive and predictive capabilities of the theory by making
direct comparisons with a new set of experiments. We focus on the investigation of surface patterns formed by applying a uniaxial
oscillatory load during FP of a partially cured DCPD gel. Below, we first present our experimental methodology including the
characterization techniques. The experimental results are then compared directly with results from 3-D simulations.

5.1. Materials

Dicyclopentadiene (DCPD), 5-ethylidene-2-norbornene (ENB), 2nd generation Grubbs’ catalyst (GC2), and phenylcyclohexane
(PCH) were purchased from SigmaAldrich. Since DCPD is solid at room temperature, 5 wt % ENB was added to depress the melting
point below room temperature and facilitate handling. All references to DCPD in this work refer to this 95:5 DCPD:ENB mixture.
Tributyl phosphite (TBP) inhibitor was purchased from TCI Chemicals and stored under inert gas. All other chemicals were used as

received.
5.2. Preparation of DCPD gel samples

Liquid resin was prepared by mixing the appropriate amount of DCPD with GC2 and TBP, using PCH as a solvent. For a typical
sample, GC2 (12.5 mg, 14.7 pmol) was dissolved in PCH (625 xL) using bath sonication (10 min). TBP (4.0 pL, 14.7 pmol, 1 equiv)
was added, and the solution was then thoroughly mixed with DCPD (19.46 g, 147 mmol, 10000 equiv). The low-viscosity liquid
resin was carefully poured into a rectangular cell casting mold consisting of borosilicate glass plates and a polyurethane spacer. The
resin was then pre-cured, either in ambient conditions (ca. 20°C) or in an oven set to 30°C. The pre-curing time dictated the degree
of pre-cure (&) and stiffness of the gel. The degree of pre-cure, in turn, affects the velocity of the polymerization front. Typical
pre-curing times were 6-9 h at 20°C, or 2.5-3.5 h at 30°C. After pre-curing, the gel was removed from the mold and cut to size.
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Fig. 11. Experiment on formation of periodic surface topography patterns through the application of uniaxial oscillatory load during linear propagation of a
single front. (a) Schematic of the experimental geometry in its initial configuration at t =0, and applied boundary and initial conditions. (b) Three-dimensional
contour plots from the simulations of the temperature field in the deformed configuration at r = 22.5 s for three values of applied frequency w = 0.5,1,2 Hz.

Some samples were stored in a freezer (ca. —20°C) prior to testing, and it was determined that the degree of pre-cure and front
velocity were not affected by freezer storage.

5.3. Application of loading during FP

Cyclic tensile loading was applied on DCPD gel specimen (3.2 mm thick, 10 mm wide, 25 mm gauge length) during FP using
an Instron 8841 fatigue frame. The applied displacement amplitude was maintained at 2 mm for all experiments. Frequency was
varied from 0.1-15 Hz. FP was initiated at one end of the gel using a hot soldering iron. The front velocity was determined from
a linear fit of front position vs. time based on videos taken during FP. The true front velocity was not affected by the mechanical
input confirming the numerical results in Section 4.1.

5.4. Characterization

Profilometry. Surface topography profiles were measured using a KLA-Tencor P-6 stylus profiler. Line scans were performed in
the direction of linear front propagation. The data were post-processed via baseline correction to remove the effect of specimen
waviness over long length scales. 3D optical profilometry was performed using a Keyence VHX-5000 digital microscope. Samples
were spray-coated with thin layer of flat black paint prior to imaging.

Optical imaging. pDCPD specimens with surface topography patterns were imaged through a 5x or 10x objective using a Leica DMR
optical microscope equipped with a QImaging Micropublisher camera. Specimens with large patterns with wavelength 4 > 1 mm
were imaged with an Epson scanner. Pattern wavelengths were measured in at least four locations of each specimen and then
averaged. No difference was observed between measurements in different locations of the same specimen.

5.5. Experimental results and comparison with theory

Fig. 11(a) shows a schematic of the experiment. The initial degree of cure a; = 0.14 corresponds to the samples for which the
reaction fronts progresses at a constant velocity of 0.6 mm/s. The initial temperature of the gel is room temperature. The reaction
front is allowed to initiate and propagate for ¢ = 10 s from the left boundary of the domain before the oscillatory loading is initiated
at the right boundary. The frequency of the applied oscillatory loading is varied over a range of @ = 0.1 to 15 Hz. The corresponding
simulations are conducted in 3-D with the same initial and boundary conditions for three values of applied frequency, @ = 0.5, 1,2 Hz.
The material properties and initial conditions used in the simulations are summarized in Table 3.

Contour plots of the temperature field in the deformed configuration in 3-D at t = 22.5 s are shown in Fig. 11(b) for the three
different values of frequency.
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Fig. 12. Comparison of the proposed model with an experimental result for frontal polymerization under imposed cyclic loading with three values of constant
frequency w = 0.5,1,2 Hz. (a) Surface patterns obtained experimentally (left column) and numerically (right column). (b) Experimental 3-D profile of a surface
pattern produced for @ = 1 Hz. (c) Relative height of the surface pattern in the x; direction along the direction of front propagation and in deformed coordinate
%, = x, —7 mm. (d) Pattern wavelength, A, as a function of imposed frequency, w, for three sets of experiments with different front velocities (v ) arising from

different degrees of pre-cure (a,). Model results are shown only for v, ~ 0.6 mm/s.

Fig. 12 shows a direct comparison between the experimental and numerical results for the three values of frequency of applied
load. In Fig. 12(a), we show images of the top surface of experimental specimens post-FP along with the corresponding images
from the simulations. A representative 3-D surface profile of a periodic surface pattern from the experiments produced for @ =
1 Hz is shown in Fig. 12(b). In Fig. 12(c), we provide a quantitative comparison between the surface profiles obtained from the
experiments and the simulations. We observe a fairly good agreement between the experimental and numerical results for all three
imposed frequencies. The gap between the results for @ = 0.5 Hz is potentially due to higher viscous effects at this frequency that
have not been currently accounted for in the model. The strong dependence of the amplitude of the pattern on the imposed frequency
is notable. Finally, in Fig. 12(d), we show a plot of pattern wavelength, A, as a function of imposed frequency, w, for three sets of
experiments with different values of a,. These values of &, correspond to front velocity v, = 0.4,0.6 and 0.8 mm/s. We observe that
the front velocity is unaffected by the value of imposed frequency and the pattern wavelength follows the relationship

v (ap) (43)

Alag) =
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Table 3

Summary of material parameters and initial conditions used in simulations.

Type Property values Source

Thermal k =0.15W/m K, p, = 980kg/m?, Vyas et al. (2019), Koohbor et al. (2022)
C, =16001/kg K, { =107* K

Cure kinetic A, =855x 10 1fs, E, = 110,7501 /mol, Vyas et al. (2019)
n=177, m=081, ¢, = 1441, a, =041

Mechanical E, =0.29MPa, E, = 2100 MPa, Koohbor et al. (2022)
v, = 04995, v, = 0.416

Elastic model (16) C =20.30, ap =079, D=11.92, Fitted to data from Koohbor et al. (2022)

a, = 0.65, a" =0.39

Initial conditions T, =20 °C, a, =0.14 T, - room temperature, a, — corresponding
to experimental front velocity 0.6 mm/s

as shown in the figure. Thus, we can tune the imposed frequency and the front velocity to reliably produce patterns of a desired
wavelength over a range of more than two orders of magnitude, from 30 pm to 6 mm.

6. Conclusions

In this work, we have proposed a novel large deformation thermo-chemo-mechanical theory capable of describing the evolution
of deformation and temperature fields during frontal polymerization of partially cured polymeric gels subjected to arbitrary quasi-
static mechanical loads and thermal flux. The extensive analytical and numerical study conducted in Sections 3 and 4 demonstrate
the capability of theory to respond to variety of mechanical and thermal input.

Furthermore, we have demonstrated pattern formation in pDCPD via the application of mechanical stress during FP of partially
cured DCPD gels. This patterning technique was enabled by the directional nature of FP and the ability of the gels to withstand and
respond to the input of mechanical force. Oscillatory mechanical inputs were imposed during FP of DCPD gels, leading to pDCPD
specimens with periodic surface topography patterns. The pattern wavelength was controlled predictably by varying the frequency
of the imposed mechanical input. We showed that the proposed theory is able to predict the experimental results well.
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