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Abstract—Machine learning (ML) inference workloads present
significantly different challenges than ML training workloads.
Typically, inference workloads are shorter running and under-
utilize GPU resources. To overcome this, co-locating multiple
instances of a model has been proposed to improve the utilization
of GPUs. Co-located models share the GPU through GPU spatial
partitioning facilities, such as Nvidia’s MPS, MIG, or AMD’s
CU Masking API. Existing spatially partitioned inference servers
create model-wise partitions by “right-sizing” based on a model’s
latency tolerance to restricting resources. We show that model-wise
right-sizing is under-utilized due to varying resource restriction
tolerance of individual kernels within an inference pass.

We propose Kernel-wise Right-sizing for Spatial Partitioned
GPU Inference Servers (KRISP) to enable kernel-wise right-sizing
of spatial partitions at the granularity of individual kernels.
We demonstrate that KRISP can support a greater level of
concurrently running inference models compared to existing
spatially partitioned inference servers. KRISP improves overall
throughput by 2x when compared with an isolated inference
(1.22x vs prior works) and reduce energy per inference by 33%.

Index Terms—GPU Inference Server, Compute Unit Masking,
GPU Spatial Partitioning

I. INTRODUCTION

With the rise of Machine Learning (ML) and Inference
as a Service [17], [23], [56], [61], GPUs play a significant
role in performance. Training machine learning models are
computationally heavy for a sustained amount of time. However,
inference workloads are shorter running, which leads to under-
utilization of GPU resources [27], [28], [36]. Figure 1 (left)
illustrates such a scenario where two inference models tempo-
rally share a single GPU while executing, resulting in significant
GPU resource under-utilization.

To increase utilization, the GPU is spatially partitioned to
co-locate multiple inference models on a single GPU [68],
such as Nvidia’s Multi-Process Service (MPS) [45], Multi-
Instance GPU (MIG) [46], and AMD’s CU Masking API [6].
Prior works demonstrated that MPS and MIG can improve
utilization and system throughput in GPU-based inference
serving platforms without violating Service Level Objective
(SLO) constraints [11], [14], [28].

Figure 1 (center) illustrates a scenario where the GPU is
spatially partitioned and two inference models are co-located.
In this scenario, determining the size of spatial partitions is
important to balance throughput, latency (QoS), and resource
utilization. To do this, prior works perform model-wise right-
sizing which looks at the inference model’s resource-latency

University of California, Riverside
danwong @ucr.edu

|EIModel 1

No partitioning

==
==

GPU resources

Model 2w Model 1 partition == Model 2 partition ‘

Spatial partitioning w/
Model-wise Right-sizing

-

Spatial partitioning w/
Kernel-wise Right-sizing

= =
=

Fig. 1: (Left) By default, model inference is not spatially
partitioned. (Center) MPS/MIG enables spatial partitioning
where the models’ partitions are right-sized to satisfy QoS;
which can leave significant fine-grain under-utilization. (Right)
We can further reduce under-utilization by spatially partitioning
individual kernels within an inference request.
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trade-off to size the spatial partition. While this can improve
GPU utilization and inference throughput, significant under-
utilization remains as the resource requirements vary from
kernel to kernel over an inference pass. In order to take
advantage of this fine-grain under-utilization, GPU spatial
partitioning will need to be reconfigured and right-sized on a
per-kernel basis, as shown in Figure 1 (right).

However, existing commercial GPU spatial partitioning
mechanisms cannot support re-partitioning at the granularity
of kernels due to their coarse scope. For example, MPS/MIG
partitions are applied to a process and CU Masking is applied
to a stream. Thus, resizing a spatial partition would require
launching a new process to execute inference requests. Figure 2
illustrates the limitation of process-scoped partition instances.
While processing inference requests, if the inference server
determines that the spatial partition needs to be reconfigured
(t1), we will need to (1) configure a new MPS/MIG instance,
(2) start a new ML backend process to handle the inference
request processing, and (3) load the ML model on to the GPU
before the new spatial partition can begin processing requests
(#2). This reconfiguration overhead typically takes in the order
of tens of seconds [11], [14].

To mask the downtime due to reconfiguration, prior works
have proposed using a shadow instance as shown in Fig-
ure 2 (middle) [11], [14]. Once the shadow instance completes
configuring the new spatial partition, the inference server
schedules the inference request to this new instance, avoiding
downtime. However, due to partition reconfiguration overheads,
all inference requests are handled by a static spatial partition
for the duration of an epoch (for example, every 20s [11]).



In order to realize the benefit of spatial partitioning with
kernel-wise right-sizing, as shown in Figure 1 (right), GPU
spatial partitioning mechanisms must provide the ability to offer
kernel-scoped partitions. As illustrated in Figure 2 (bottom),
providing spatial partitions at the granularity of individual
kernels within an inference pass will (1) avoid reloading of
ML models and ML backend process, (2) avoid the need
for a shadow instance and (3) right-size spatial partitions to
individual kernels and minimize resource under-utilization.

To this end, we propose Kernel-wise Right-sizing for Spatial
Partitioned GPU Inference Servers (KRISP). Kernel-wise right-
sizing can eliminate fine-grain resource under-utilization and
enable more opportunities to support greater concurrency of
running inference models in the GPU without violating QoS
requirements. To the best of our knowledge, this work is the
first to demonstrate dynamic spatial partitioning of GPU
inference servers at the granularity of individual kernels.

Our paper makes the following contributions:

« We identify that significant under-utilization occurs under
existing model-wise right-sizing of spatial partitions. We
show that further opportunities exist for reducing under-
utilization by right-sizing kernels within an inference pass.

« We present KRISP, a framework to enable kernel-wise
right-sizing of spatially partitioned GPU inference servers.
KRISP introduces a programmer-transparent framework to
right-size kernels and a kernel-scoped partition instance to
enforce fine-grain spatial partitions.

o We present an emulation methodology to evaluate KRISP on
a real-world GPU inference server. We demonstrate that
KRISP can provide kernel-wise right-sizing to unmodified
ML serving frameworks, such as PyTorch.

o We show that KRISP can enable the GPU to support
a greater level of concurrently running inference models
compared to existing spatially partitioned inference servers.
KRISP improve throughput by 2x on average while meeting
latency SLO targets and energy per inference by 33%.

II. BACKGROUND
A. High-level GPU Architecture

GPUs are massively parallel architectures that can process
thousands of threads concurrently. GPUs consist of multiple
Compute Units (CUs)! where each can process up to 2,560
threads in groups of 32 or 64 threads, called a warp or
wavefront. These compute units can be organized into clusters,’
called Shader Engines (SEs) in AMD terminology or Graphical
Processing Clusters (GPCs) in Nvidia terminology. For example,
Nvidia A100 organizes a group of 16 SMs into a GPC and
AMD MI50 organizes groups of 15 CUs into an SE.

GPU kernels are partitioned into multiple work-groups
(WGs)?® which are scheduled to SEs through a Command

Also called Streaming Multiprocessors (SMs) in Nvidia terminology. CUs
and SMs may be used interchangeably in this work.

2Clusters and SEs may be used interchangeably in this work.

3 Also called threadblocks (TBs) in Nvidia terminology. WGs and TBs may
be used interchangeably in this work.
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Fig. 2: Resizing inference server’s spatial partition. Existing
commercial GPU spatial partitioning techniques are enforced
at the process-level. (Top) Reconfiguring spatial partition size
requires restarting the ML backend and reloading models.
(Center) Prior works mask this downtime by reconfiguring
shadow instances, but repartitioning is still limited to every
~10s. (Bottom) Our work enables inference requests and kernels
within requests to instantaneously resize spatial partitions.

Processor.* Every SE has a Workload Manager (WLM) that
schedules thread blocks to CUs within their corresponding
SE.vGPU kernels can be programmed and launched directly
using language extensions such as CUDA, HIP, or OpenCL
and runs on GPU runtimes such as Nvidia’s CUDA and AMD
ROCm. GPU kernels can also be utilized through library API
calls, such as cuDNN, MIOpen, cuBLAS, rocBLAS, etc.

B. Inference Server Frameworks

Inference server frameworks enable a common interface
to process client inference requests [21], [32]. These servers
typically consist of a frontend, that enqueues and manages
client inference requests, and a GPU-accelerated backend,
that consists of a machine learning framework to process the
inference (such as TensorFlow [1] or PyTorch [53]) using the
underlying hardware resource. Examples of inference serving
frameworks include TorchServe [54], Tensorflow Serving [50],
and Nvidia TensorRT [48].

However, a major issue with machine learning inference is
that processing inference requests typically under-utilizes the
GPU hardware. [27], [28], [36] Thus, inference servers must
serve multiple machine learning models in order to improve the
utilization of server resources. This is particularly challenging
for GPU-powered inference servers as GPUs do not support
fine-grain context switching between processes, supporting only
coarse-grain spatial sharing of hardware resources.

C. Limitations of GPU Spatial Partitioning Techniques

When two or more kernels are launched on a GPU concur-
rently, the kernels can run on unique sub-sets of CUs (inter-CU
sharing), or the kernels can co-locate and share the same CU
(intra-CU sharing). By default, concurrently running kernels
are not assigned to specific CUs and can run on any CU,
potentially being shared [7], [51].

4Also called Gigathread Engine or Threadblock scheduler in Nvidia
terminology.



TABLE I: Comparison of GPU spatial partitioning techniques.

GPU Spatial S SW/HW Programmer Compute/Memory Spatial Reconfiguration Allow
Partitioning cope Enforced? Transparent Partitioning? Granularity Overhead Oversubscription
MPS [45] Process HW Yes (Service) Yes/No GPU% High Yes
MIG [46] Process HW Yes (vGPU) Yes/Yes GPC High No
CU Masking API [6] Stream HW No (API) Yes/No CUs Medium Yes
Elastic Kernel [52] Kernel SW No (Code Tform) Yes/No Grid/Block Dim Low No
Kernel—Scopeq Partition Kernel HW Yes (Runtime) Yes/No CUs Low Yes
Instance (This work)

Therefore, many spatial partitioning techniques exist to
allocate GPU resources to concurrently running kernels. When
concurrent kernels are co-located in the same CU, intra-CU spa-
tial partitioning techniques exist to partition resources within a
CU between the concurrent kernels. While myriad work exists
in literature [59], [60], [66], we are not aware of any intra-
CU spatial partitioning® that exists in commercial products®.
Thus, this work deals with inter-CU spatial partitioning that is
supported by commercial hardware. Table I summarizes these
inter-CU spatial partitioning techniques.

Process-scoped partition instances: Nvidia GPUs utilize
Multi-Process Service (MPS) to enable workloads to run
concurrently on GPUs. Additionally, MPS provides a feature
to specify the percentage of compute resources (GPU%)
available to a concurrent process over its lifetime. To provide
stronger isolation, Nvidia recently introduced Multi-Instance
GPU (MIG) which enables a GPU to be partitioned into as
many as 7 independent GPUs (on the Nvidia A100 GPU).
Each MIG partition has separate and isolated paths through the
entire memory system and compute resources (corresponding
to a Graphics Processing Cluster, GPC). Both MPS and MIG
do not require any program changes as they are configured
through the CUDA runtime, which can incur high overheads.

As shown previously in Figure 2, MPS/MIG provides
process-scoped partition instances which require launching a
new process during partition resizing, leading to high overheads.
In this work, we propose Kernel-scoped Partition Instance,
which provides the ability to resize and enforce GPU spatial
partitions on a per-kernel basis.

Programmer burden: AMD GPUs by default natively
support multiple concurrent processes (equivalent to Nvidia’s
MPS). Instead of specifying a resource percentage as in MPS,
AMD GPUs support CU Masking APIs [6], which allow users
to provide a resource mask to a stream and specify which

SCarefully note that we make a distinction between sharing (kernel co-
location) and partitioning (kernel resource allocation).
SIntra-SM spatial partitioning techniques are further discussed in Section VII

compute units the kernels in the stream can utilize. While this
does not require reloading a model when resizing partitions, it
has a heavy programmer burden as it requires modification to
the ML framework and libraries to utilize the API and requires
the programmer to manually determine the CU mask to be
applied to the stream.

Concurrent execution of kernels and spatial partitioning
can also be realized through software-only solutions, such
as using Elastic Kernels [52], to control the size of kernels,
in combination with SM-aware programming and thread-
block delegation [40] to map the kernel to specific SMs.
However, software-only solutions require significant program
changes or source code transformation to the compute kernels.
This is infeasible in ML inference as most compute kernels
are derived from API calls from heavily optimized GPU
libraries which can be closed-source and would incur additional
programming burden to library developers. Therefore, GPU
spatial partitioning techniques must be programmer-transparent
to be compatible with existing inference server software stack.

D. Limitations of Spatial Partitioned GPU Inference Servers

Since inference requests tend to under-utilize GPUs, many
recent works aim to understand and improve the spatial
partitioning of GPUs to enable different models to share the
GPU and handle concurrent inference requests [11], [14], [16],
[35]. Table II summarizes the most relevant inference servers.

Spatial partition resizing overhead: Due to their reliance
on process-scoped partitioning techniques, existing spatially
partitioned inference servers incur high reconfiguration over-
heads (in the 10’s of seconds), as shown previously in Figure 2.
These inference servers mask the process/model reloading
overhead by creating new model instances in the background
(Gpulet) and then hot-swapping this shadow instance (GSLICE).
Similarly, PARIS/ELSA by design launch multiple instances of
the same model with different sizing and can rely on scheduling
to mask partition resizing. Even with these masking techniques,
partition resizing can only be done infrequently (for example,
every 20s in Gpulet [11]).

TABLE II: Comparison of spatially partitioned GPU inference servers.

Spatially Shared Spatial Right-sizing Right-sizing Resize Reload Resize Overhead
Inference Servers Partitioning Granularity Metric Overhead Model? Masking
Profiled Model Kneepoint High . Shadow Instance
GSLICE [14] MPS Model (GPU%) (2-155) Yes (50-60us downtime)
Profiled Model Kneepoint (GPU%) High Background Instance
Gpulet [11] MPS Model or Profiled Model’s minGPU% (10-155) Yes | (Masked w/ 20s period)
Profiled Model Kneepoint High Multiple Instances
PARIS and ELSA [35] MIG Model (GPU size & Batch Size) (~10s) Yes + Scheduling
. Kernel-Scoped . Low .
KRISP (This work) Partition Instance Kernel Profiled Kernel’s minCU (milliseconds) No Not required




We present KRISP, which utilizes our Kernel-Scoped
Partition Instance to provide kernel-granular spatial partitioning.
By quickly re-sizing individual kernel’s partition without the
need to reload inference models, we can take advantage of
fine-grain resource under-utilization to maximize the amount
of concurrently running kernels.
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Fig. 3: Inference model sensitivity to GPU resource restriction.

Model-wise right-sizing of spatial partition: All existing
techniques right-size the spatial partition at the granular-
ity of the entire inference model due to their reliance on
MPS (for GSLICE [14] and Gpulet [11]) and MIG (for
PARIS/ELSA [35]). To right-size the model’s spatial partition,
all prior works utilized off-line profiling to obtain the “kneep-
oint”, which is the point where we experience a diminishing
return on performance gains with greater resource allocation
(GPU% for MPS and GPU instance size for MIG). Examples
of such trade-offs are shown in Figure 3. PARIS/ELSA
additionally considers the inference request batch size to
determine the kneepoint, while Gpulet also considers the
minimum GPU% sizing that satisfies the QoS target given
a request rate.

In the next section, we will demonstrate the limitations
of model-wise right-sizing and highlight the opportunities
of kernel-wise right-sizing. Note that these prior works can
potentially benefit by building off Kernel-scoped Partition
Instance instead of MPS/MIG. This would enable GSLICE,
Gpulet, and PARIS and ELSA to still provide model-wise
right-sizing at the granularity of each inference request, instead
of a designated epoch.

III. A CASE FOR KERNEL-WISE RIGHT-SIZING
A. Opportunity for model-wise Right-sizing

Figure 3 shows the sensitivity of model inference to varying
resources (right-sizing). For these experiments, We utilize an
AMD MI50 GPU, which consists of 60 CUs. We tested 9
ML models and swept the range of active CUs that the ML
model can utilize (x-axis). Models exhibit varying tolerance
to resource restriction before exhibiting performance impact.
For example, albert is highly tolerant of resource restriction
where it is able to maintain peak throughput and stable tail
latency even under 10 CUs. On the other hand, vggl9
experiences immediate throughput degradation and an increase
in tail latency. In Table III, we listed the minimum CU required
while maintaining tail latency.

Inherently, models that are tolerant of resource constraints
tend to under-utilize the GPUs, while models that are intolerant
of resource constraints tend to utilize the GPUs more. As shown
previously, many existing works [11], [14], [35] harness this
characteristic to right-size the model’s spatial partition.
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Fig. 4: Kernel trace for albert (top) and resnext (bottom)
showing minimum required CUs. Models vary by both the
number of kernel calls and minimum CU requirements.

B. Why Kernel-wise Right-sizing?

We now motivate the need for kernel-wise right-sizing within
an inference model by profiling and identifying the minimum
required CUs for each kernel to maintain its overall tail latency.
Figure 4 shows the kernel-wise minimum required CUs for
two example models, albert and resnext. The models
consistently switch between high to low minimum required
CUs, and clearly demonstrate phase behavior patterns as the
inference requests are executed through the layers. Each model
varies in the number of kernel calls for a single inference pass,
as shown in Table III.

Recall, albert can tolerate 12 active CUs and satisfy
tail latency requirements. The majority of kernels utilized by
albert only require 10 or less active CUs. There are periodic
spikes of kernels that have 50-60 minimum required CUs, but
those kernels do not necessarily impact overall model latency
if these kernels are short running compared to the other kernels
which may dominate execution time.

On the other hand, resnext suffers significantly when
restricting CUs. This is due to resnext having more kernels
that require a high number of minimum required CUs. Although
with model-wise right-sizing, resnext requires a large spatial
partition (55 CUs), there still exist significant opportunities
within resnext to resize the partition on a per-kernel basis
as many kernels require less than 20 CUs to maintain latency
requirements. Therefore, kernel-wise right-sizing can take
advantage of these fine-grain under-utilization opportunities.

IV. ENABLING KERNEL-WISE RIGHT-SIZING FOR SPATIAL
PARTITIONED INFERENCE
A. High-level Overview

Figure 5 shows a high-level overview of KRISP. When an
ML framework processes an inference request, it can generate
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Fig. 5: KRISP Overview. Right-sizing occurs in the runtime
by injecting partition sizing requirements into each kernel
packet sent to GPU. Kernel-scoped partition instances enable
each kernel to be resized and enforced with a resource mask.
Together KRISP enables kernel-wise right-sizing of inference
requests in a programmer-transparent manner.

hundreds of kernel calls to the GPU. To provide programmer
transparency, we intercept each kernel call in the GPU runtime
and perform kernel-wise right-sizing to determine the kernel’s
partition size. Our goal is to require no program changes
or programmer intervention to natively support existing ML
frameworks. Thus, we implement kernel-wise right-sizing in
the GPU runtime rather than in the ML framework.

To enforce the spatial partition, we introduce Kernel-scoped
Fartition Instance support in the GPU hardware. The hardware
will first perform Resource Allocation to determine which
clusters (shader engines) and CUs to allocate to the kernel’s
spatial partition and determine the kernel resource mask. We
then tag the kernel with this mask and hand it over to the
GPU’s workgroup dispatcher (threadblock scheduler), which
will enforce the spatial partition and schedule the kernel’s work-
groups only to the specified CUs. Note that native hardware
support for kernel-scoped partition instances does not require
any changes to the CUs or their pipeline stages.

Since KRISP introduces native support for kernel-scoped
partition instances (not streams or processes) by tagging spatial
partitioning information to each kernel command, this also
naturally avoids the need for relaunching model instances that
require high-overhead model reloading and techniques to mask
this overhead. Thus, KRISP can quickly reconfigure spatial
partitions of kernels within an inference pass.

B. Finding Kernel-wise Right-Sizing

As shown in Table II, existing GPU inference servers make
spatial partition sizing decisions based on profiled-guided
model-level right-sizing, balancing latency/throughput require-
ments, and resource partitioning. Similarly, KRISP makes spa-
tial partition sizing decisions based on profiled-guided kernel-
level right-sizing. Kernel-level right-sizing can be determined
at the time of the installation of GPU-accelerated libraries.
such as rocBLAS or MIOpen. This performance database is
profiled during library installation time and is utilized to aid
in selecting the most high-performance kernel variation given
certain runtime parameters [55] and are already included in
available libraries [5]. Thus, the overhead of profiling a kernel’s
minimum required CU can be amortized during the library’s
installation and share the library’s performance database. In this
scenario, KRISP would rely on the library’s profiled database
to right-size the kernel.

In our work, we define the kernel-level right-size based
on the least number of CUs that have the same latency as a
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Fig. 6: Minimum require CUs sensitivity for profiled kernels
across all workloads. Differentiating kernel names by color
and marker type. Y-axis is min. required CUs.

kernel utilizing the full GPU. Essentially, the data points in
Figure 6a are the profiled kernels’ minimum CU requirements
that populate this table. Once we determine the minimum
CUs required for a kernel, we pass that information along to
the GPU along with the kernel launch. This partition sizing
information is similar to the information necessary for MPS
(GPU%) and MIG (instance size in terms of GPC) but in units
of the number of CUs.

1) Why Profiled-guided Kernel Right-Sizing?: We found no
strong predictor of a kernel’s minimum required CU given
runtime information, such as kernel size or input data size.
Figure 6a plots the kernel’s minimum required number of
CUs latency (y-axis) vs its kernel size (x-axis). The general
trend is as the kernel size increase so too does the minimum
required number of CUs. However, it does not directly relate
to the total number of threads a GPU can process. For
example, AMD’s MI50 can handle 2560 threads per CU or
153600 threads per GPU. There exists a significant number
of kernels that exceed this thread limit and are capable of
running with no performance penalty when restricting the
number of available CUs. For example, all of the green circles
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Fig. 7: Mllustrative example of allocating 19 CUs (in orange)
across 4 Shader Engines (SEs) with three distribution policies.

(MIOpenConvFFT_fwd_in) exceed the GPU’s physical
thread limit, but have a wide range of minimum required CUs,
sometimes with the same kernel size. This shows that kernels
are not fully utilizing the GPU even with enough threads.

We also explored how the data input size of kernels
may affect the minimum resource requirements in Fig-
ure 6b. We also observe that data input size does not
correlate with the minimum resource requirement for that
kernel. The more important factor is the behavior of the
kernel. For example, miopenSp3AsmConv_v21_1_2_ and
gfx9_f3x2_fp32_stridel_group always require the
full 60 CUs no matter the size of the input data. Therefore,
to determine the minimum required CU, we must account for
kernel type in addition to kernel size and input size, which are
captured during the profiling stage.

C. Allocating Resources for Partition Instances

Once the GPU hardware receives the requested spatial
partition size for the kernel, it must then allocate resources for
that kernel. In order to allocate resources for spatial partitions,
we have to determine (1) Which SE clusters and CUs to allocate
from? and (2) How to distribute selections of CUs across SE
clusters?

1) Distributing CUs across SE Clusters: By default, existing
GPUs tend to distribute work across clusters in a round-robin
manner for both AMD [51] and Nvidia GPUs [49]. We explore
the following distribution policies. [Distributed]: This is the
default distribution policy. Equally distributes CU allocation
across all available SE clusters. [Packed]: Allocate CUs packing
a single SE before spilling over to other SE clusters. This aims
to minimize the number of SEs utilized, leaving other SEs
idle for other spatial partitioning opportunities. [Conserved]:
Find the minimum number of SEs that would satisfy the CU
allocation requirement. Then evenly distribute across those SEs.
Figure 7 illustrates an example of allocation policies.

In Figure 8, we evaluate these policies on an AMD MI50
GPU with 4 SEs of 15 CUs each (60 CUs total). For the
Packed policy, we observe three distinct spikes around 16,
31, and 46 active CUs. In AMD GPUs, thread blocks are
equally split across SEs and then are scheduled to available
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Fig. 8: Characterization of vector multiplication kernel with
respect to reduction of CU resources and distribution policies.

CUs within that SE. Because Packed does not evenly distribute
active CUs across SEs, there is a resource imbalance which
causes slowdown. Distributed has a similar effect at 15, 11,
and 7 active CUs, when the number of active CUs is less
than one entire SE. Conserved avoids both pitfalls and finds a
balance between both policies. Thus, we adopt the Conserved
distribution policy.

It is important to note that energy usage actually decreases
in the conserved policy (up to 8% decrease) for a single kernel
in the 40 CU range. This gives significance to CU distribution
as a viable way to increase energy efficiency and utilization
through co-location of kernels in unused CUs. Many prior
works on energy efficiency and energy proportionality on CPU
and heterogenenous systems demonstrate that scheduling of
workloads across hardware resources has a significant impact on
energy efficiency [10], [12], [62], [63], [64], [67]. Distribution
of CUs across SEs has a significant impact on performance
and power/energy. Therefore, when making spatial partitioning
decisions, we need not only to consider the size of the partitions
but also where the partition is allocated across SEs and CUs.

2) Generating kernel resource mask: To generate the per-
kernel resource mask, we present our policy in Algorithm 1.
Our policy requires the hardware to track the number of kernels
assigned to each CU with the addition of a Resource Monitor.
Exiting GPUs already need to keep track of the number of
thread blocks assigned to a CU as there is a per-CU thread block
limit. Thus we extend existing resource tracking infrastructure
in GPUs to also track the number of kernels assigned to a CU.

Recall we generate resource masks based on the Conserved
policy, which needs to first determine the least amount of SEs
that will satisfy the CU requirement (line 2). Which SE to
select is based on which SEs have the least amount of kernels
actively running in their CUs. This is calculated by the sum of
kernels in an SE from the CU Kernel Counters (lines 4-7) and
then sorted by least first (line 8). Once the SEs are selected, we
then allocate CUs within the SEs. The CU allocation is evenly



Algorithm 1 Partition Resource Mask Generation

Require: SE =4 > 4 SE in MI50
Require: CU =15 > 15 CUs per SE in MI50
Require: CU_Kernel_Counters[SE][CU]
Require: overlap_limit
Ensure: num_cus < total_cus
1: cu_mask =0
2: num_se = ceil (num_cus/CU)
3: cu_per_se = ceil (num_cus/num_se)
4: se_count[SE]
5: for se =1 to SE do
6.
7
8
9

se_count[se] = YV, CU_Kernel_Counters|se][n]
: end for
1 se_id < sort(se_count)
: allocated_cus =0
10: while i < num_se do

11: se = se_id|i]

12: cu_id < sort(CU_Kernel_Counters|se|)

13: while j < cu_per_se && allocated_cus < num_cus do
14: cu=cu_id|[j]

15: if CU_Kernel_Counters|se|[cu] > O then
16: overlapped_cu+ +

17: end if

18: if overlapped_cus <= overlap_limit then
19: setBitInMask(cu_mask, se, cu)

20: end if

21: allocated _cus+ +

22: end while
23: end while
return cu_mask

distributed across the selected SEs (lines 10-18). Similarly to
SE selection, the CUs allocated within SEs will be determined
by sorting the CUs by the number of assigned kernels (line
12) and selecting the CUs with the least assigned kernels (lines
13-17). By minimizing the number of kernels assigned to a
CU, we can reduce the contention of concurrently executing
kernels within a single CU. If there are not enough CUs to
isolate kernels, we may allow them to overlap.

D. Architectural Support for Kernel-scoped Partition Instance

To natively support kernel-scoped partition instances in
hardware, we need to (1) extend the kernel command packet
to include partition size requirements, and (2) extend hardware
threadblock scheduling mechanisms to be aware of the kernel’s
resource masks. In this section, we present a reference
implementation on top of AMD GPU architecture due to the
open-source nature of the entire GPU runtime stack. However,
kernel-scoped partition instances can also be implemented on
top of Nvidia architecture in corresponding components.

1) AMD GPU architecture overview: Our work builds off
AMD GPUs and the AMD ROCm runtime. This subsection
provides a brief overview of the ROCm runtime and the AMD
GPU architecture. Figure 9 illustrates how a kernel packet gets
dispatched through the many layers of the ROCm runtime and
scheduled to the GPU’s compute units (CUs). At the high-
level, machine learning frameworks, such as TensorFlow and
PyTorch, perform model inference that utilizes GPU accelerated
libraries, such as MIOpen [34] and AMDMIGraphX [4] for
optimized ML kernels. These libraries can generate multiple
kernel calls per ML model layer, or custom kernels can be
created by using the HIP language extension.
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Fig. 10: Architectural Support for KRISP. Components in red
are additions to AQL packet and Packet Processor.

Once a kernel is called, the kernel-launch command is
passed to the ROCm Runtime to convert the command to an
architected queuing language (AQL) packet which is inserted
into a heterogeneous system architecture (HSA) queue. AQL
packets can be kernel-launch commands, memory transfers,
or dependency-enforcing barrier packets. The ROCr Runtime
allocates and maintains the software HSA queues in a shared
memory space that both the GPU and user-level runtime can
access [19], [51].

2) Architectural support: Figure 10 illustrates the modifica-
tions required to support kernel-scoped partition instances. In
the baseline AMD architecture, spatial partitioning is enforced
in hardware by a per-queue CU mask where every kernel in the
queue inherits the same spatial partition. This CU mask is set
by the CU Masking API, which internally sets the queue’s CU
mask through an IOCTL syscall. In the command processor,
the kernel packet is read from the queue and processed by the
packet processor before being sent to the Dispatcher, which
schedules the TBs to CUs based on the CU mask.

To enforce kernel-scoped partition instances, we need to
first extend the AQL packets to include an additional field to
store the partition size. Recall that this partition size was set
by kernel-wise right-sizing when the kernel was launched.



Next, on the GPU end, we extend the Command Processor
(specifically the packet processor) to recognize the modified
AQL kernel packet. Once the packet processor consumes the
AQL kernel packet, we run our partition resource allocation
algorithm to generate a kernel resource mask associated with
that kernel. Recall, this resource allocation algorithm also
requires a set of CU resource counters to keep track of the
number of kernels assigned to each CU. Once the kernel’s
resource mask is generated, the kernel’s threadblocks are ready
to be dispatched to the SEs WLM.

We do not require any modifications to the thread block
scheduling algorithm in the Dispatcher nor do we require any
changes to the CU’s pipeline. These mechanisms are already
in place to support AMD’s CU Masking API. Thus, we only
introduce small hardware changes to generate a per-kernel
resource mask to enforce kernel-scoped partition instances. In
AMD architectures, the Command Processor is implemented as
firmware [15], [44]. Therefore, our modifications to the packet
processor can be implemented as firmware extensions to the
existing command processor.

3) Overheads: KRISP introduces (1) a Required CUs table
in the ROCR-Runtime and (2) Per-CU kernel counters in the
Command Processor. Since the Required CUs table is stored in
CPU-side memory, the storage overhead is negligible. Recall
that the information in this table may already exist in certain
accelerated libraries, such as rocBLAS, as discussed previously
in Section I'V-B. The access time to this table is typically off
the critical path unless the HSA queue is empty. The Per-CU
kernel counters keep track of the number of kernels assigned
to a CU. Since the maximum number of concurrent streams
a GPU can handle is 32, we only need 5 bits per CU to
keep track. Therefore, this counter requires an overhead of
300 bits (60 CUs x 5 bits). The additional steps of resource
mask generation add overhead to the Command Processor’s
firmware. However, these operations only require summing and
sorting the utilization of the CUs. We profiled our algorithm’s
implementation in software and have seen a tail latency of 1
ps to run the resource mask generation algorithm.

4) Generalizability: At a high-level, architecture support for
KRISP requires (1) a mechanism to specify a partition’s size
and (2) a mechanism to enforce the partition. On Nvidia GPUs,
such mechanisms already exist, although not well-documented.
For example, MPS allows users to set a percentage of compute
resources assigned to an MPS instance. Furthermore, hardware
isolation mechanisms exist as Voltage MPS includes hardware
facilities to allow each MPS client to have separate GPU
address space and facilities to “concentrate the work submitted
by a client to a set of SMs” [47].

To support KRISP for Nvidia architectures, we would simi-
larly implement kernel-wise right-sizing in the CUDA runtime
to intercept kernel events and inject partition-sizing information
into the kernel commands going to the GPU. Similarly, we
would extract this in hardware and generate a mask to guide
existing hardware MPS enforcement mechanisms.

V. EVALUATING KRISP THROUGH EMULATION

Why emulation and not simulation? Currently, simulation
infrastructures are insufficient for evaluating KRISP. For
example, while gem5 can simulate ML workloads, it can
only simulate native MIOpen workloads (applications that
directly call MIOpen) and does not support ML frameworks,
such as PyTorch or TensorFlow [55]. While GPGPU-sim
has been previously demonstrated to simulate PyTorch and
cuDNN [39], the embedded PTX that it depended on is no
longer packaged into libraries and can no longer simulate
modern PyTorch/cuDNN [30]. Alternatively, Accel-Sim is able
to simulate PyTorch workloads by first creating SASS traces
to drive the simulation [33]. However, we observe that for
a single inference model, there can be different variations
of library kernels called depending on the request’s input
size or batch size. Thus, a static trace-based approach is
insufficient in capturing this dynamic behavior. Furthermore,
GPU simulators fail to capture the behaviors of the ML
framework and GPU runtimes that have a significant impact
on the inference request’s end-to-end latency.

As shown in Figure 5, KRISP does not require modifications
to the GPU pipeline, CUs, or the threadblock dispatcher
(scheduler). We only introduce an allocator that generates a
resource mask. Therefore, evaluating through simulation would
provide limited insights as most of KRISP’s modified behavior
exists outside areas modeled by the simulator.

A. Emulation Methodology

We present an emulation methodology that faithfully eval-
uates the critical aspects of our work, that can capture (1)
the end-to-end tail latency effect of inference requests, (2)
the overhead of KRISP components, and (3) the interplay
between spatial partitions, and co-located inference models.
The major constraints in the baseline system are that (1) we
cannot modify the GPU Command Processor’s firmware, and
(2) we cannot modify the AQL packets as the hardware expects
a well-defined struct. From Figure 5, we can see that these
constraints will require us to emulate the behavior of kernel-
scoped partition instances in GPU runtime, while kernel-wise
right-sizing can still occur in the GPU runtime. Figure 11
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overviews our emulation approach built on top of AMD’s CU
Masking API.

Emulating Kernel-scoped Partition Instance with Stream-
scoped CU Masking: To emulate kernel-scoped partition
instance, we need to behaviorally model the ability to set
resource masks on a per-kernel basis. At a high level, we
coordinate packets in the HSA queues to reconfigure the queue’s
CU mask before every kernel launch (Figure 11b).

When an AQL packet for a kernel launch, (K), is inserted into
the HSA queue, we inject two AQL barrier packets in front of
the kernel packet (B). The first barrier packet ensures that any
currently running kernels are finished before we set a new CU
mask for the queue. Once the first barrier packet is consumed
by the hardware (@), it also triggers a callback function (@)
in the runtime to execute our kernel-wise right-sizing (Q) and
resource allocation algorithm (@) for the upcoming kernel. The
queue’s CU mask is reconfigured through an HSA runtime API
that sets the hardware queue’s CU mask through an IOCTL
system call (@). Once the IOCTL completes, the callback
function sets a dependency signal to the waiting second barrier
packet (@), which avoids a race condition between setting the
queue’s new CU mask and execution of the next kernel packet.

Callback func.
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Fig. 12: Timing diagram comparing Emulated KRISP and
Proposed KRISP with native kernel-wise spatial partitioning
support. Components in red adds emulation timing overheads.

B. Modeling KRISP Performance

Since our evaluation is an emulation, we incur extra
emulation-related timing overheads due to behaviorally model-
ing kernel-scoped partition instances using the baseline server’s
AMD CU Masking APIL. Therefore, we need to account for
these emulation-related timing overheads to estimate the
expected performance of KRISP with native kernel-scoped
partition instance support. Figure 12 illustrates a timeline where
the emulation-related overheads (outlined in red) are due to
(1) setting the queue’s CU mask using an HSA runtime API
call (and underlying IOCTL syscall), and (2) the introduction
of barrier packets to wait for the completion of prior executing
kernels and to wait for the successful reconfiguration of the
queue’s CU mask.

A challenge of adjusting for this emulation overhead is that
it is difficult to directly measure on real GPU hardware. While
it is possible to measure the time to launch a callback function
and associated ioctl call due to the HSA APIs, it is not possible
to time when a barrier packet is consumed in the hardware.
Furthermore, we observe that when running concurrent models,
the ROCm runtime serializes the callback function and HSA
APIs (and therefore, underlying IOCTL syscall) leading to high
timing variation.

We noted that the amount of emulation overhead per
inference should be consistent among the same inference
model as we observe that the amount of emulation overhead
experienced scales with the number of kernel calls in the
inference model. This is because each kernel call incurs an
emulated kernel-scoped partition instance overhead. Therefore,
we measure the rotal emulation overhead of an inference pass
as Loyer = LE%¢ — 1B95¢ where LB%¢ is the latency of the model
on the baseline system without any modification and L2%¢ is the
latency of the baseline system with emulation of kernel-scoped
partition instance with the resource mask to all active CUs. We
can now estimate KRISP’s latency without emulation overhead
as LRRISP — [ KRISP _ [5,0r. Note that Loy, only includes the
components highlighted in red in Figure 12 and that all latency
results include the extra overhead introduced by our resource
right-sizing and partition allocation components.

To estimate throughput, since all evaluated scenarios incur
the same emulation overhead, we obtain the relative throughput
with respect to the baseline system with emulated kernel-scoped
partition instance that sets the resource mask to all active CUs.

VI. EVALUATION
A. Evaluation Methodology

Server Hardware: We deployed our inference server on a
system featuring an AMD MI50 GPU, 2 AMD EPYC 7302 16-
Core Processor, 512 GB RAM, Ubuntu 18.04 LTS with kernel
5.4.0, and Intel 10G X550T network card. The AMD MI50
GPU contains 60 Compute Units across 4 Shader Engines. The
server runs the AMD ROCm 4.5 runtime stack.

GPU Inference Server: We created our own custom
inference server framework [26] as most existing inference
servers, such as TensorRT [48], are designed for Nvidia-based
GPU systems and tightly integrate Nvidia-specific features.
Our inference server consists of the following. Inference
Front-end: a multi-threaded process responsible for accepting
asynchronous gRPC requests from clients and sending back the
inference result (response). Request/Response Queues: Queues
are shared memory segments for storing request’s (response’s)
data to be served (sent to the client). Workers: Performs
pre-processing, inference, and post-processing on a batch of
requests. Each worker is independent of the other, allowing
for concurrent inference execution on the same GPU.

Spatial partitioning policies: We evaluate five inference
server spatial partitioning policies as follows:

MPS Default: By default, AMD GPUs support concurrent
execution of kernels where each concurrently running kernel
can share all resources in the GPU with no isolation. This policy
is also similar to Nvidia MPS with no resource restriction.

Static Equal: Each model has an equal-sized and non-
overlapping spatial partition of CUs.

Model Right Size: This policy represents the prior work’s
spatial partitioning policy which selects a partition sizing based
on the “kneepoint” of the GPU resource vs latency curve [11],
[14], [35]. This minimum required CU per model is presented
in Table III. If concurrent models can fit within a GPU, there
will be no overlapping allocated CUs between partitions. If



TABLE III: Inference workload used along with the number
of kernel calls per inference, model-wise right-sized partition
size, and 95% tail latency (ms).

TABLE IV: Max concurrent models without SLO violations.
Bold font indicate best achieved concurrency for a model.

[ Model [ MPS Default [ Static Equal [ Model Right-Size | KRISP-O [ KRISP-I |

‘ Model ‘ # of Kernels ‘ Model Right-Size (CUs) ‘ 95% lat. (ms) ‘ hert i > > > 5
albert [38] 304 12 27 resnet152 2 4 2 2 4
alexnet [37] 34 45 91 densenet201 2 1 2 2 1

densenet201 [24] 711 32 72 alexnet 4 4 4 4 4
resnet152 [22] 517 26 1T felf“‘fé‘”‘” ; f ; ; 3
resnext101 [63] 347 55 154 qu‘ieejzg - 3 2 2 .
shufflenet [41] 211 21 8 vegl0 5 2 5 i 1
squeezenet [25] 90 21 8

vggl9 [57] 62 60 81

concurrent models do not fit within a GPU, then overlapping of
CUs will occur. This is different from previous works as they
enforce isolation through MPS/MIG and would not consider
extra concurrent cases. However, for completeness, we allow
overlapping between partitions and indicate whether concurrent
models would not be considered in previous works with an
open circle in our results.

KRISP Oversubscribed (KRISP-O): This policy provides
kernel-scoped partitions. It is possible that concurrently running
kernels may require minimum CUs that together exceed the
available number of physical CUs. Thus, CU over-subscription
occurs when we allow all CUs to be overlapped between
partitions, which maximizes the GPU’s utilization.

KRISP Isolated (KRISP-I): Similar to the previous policy,
but we do not allow over-subscription of CUs. This means
concurrent kernels are isolated. In the scenario, where there are
not enough isolated resources to meet the min CU requirement,
we allocate only what is available to the kernel, potentially
allocating fewer CUs than the min CU requirement.

Workloads: The models used for our workloads are
described in Table III. In addition, the table shows the number
of kernel calls that takes place when processing a single
inference request. The models evaluated cover a range of ML
types, including convolutional neural networks and transformer-
based networks.

To measure the impact of various inference server spatial
partitioning techniques, we run 1, 2, and 4 workers of the
same model concurrently. We show evaluation with a batch
size of 32 and geomean results of batch sizes of 16, and 8.
We also evaluate the impact of colocating 2 different models
in Figure 15.

Since the goal of our work is to demonstrate the benefit
of kernel-wise right-sizing in improving utilization of GPU,
our evaluation drives the GPU and inference server at
maximum load. This differs from the evaluation of prior
inference server works which proposed inference scheduling
policies and inference model management policies (to overcome
limitations of process-scoped partitions) that are adaptive to
fluctuating request rates.

B. Evaluation Results

Inference Throughput: The results of our evaluation are
shown in Figure 13a, where each chart shows the system
throughput (request per second) with 1, 2, and 4 workers,
normalized to 1 model worker running independently.
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For MPS Default, throughput improves overall using 2
workers, but there is a decrease in throughput caused by
increased contention for hardware resources with 4 workers.
However, albert, shufflenet, and resnet152 require
the least amount of resources and can co-locate 4 workers
with modest throughput gains due to limited contention. MPS
Default outperforms all other policies, specifically for albert
and densenet 201, because the benefit of sharing unrestricted
resources from MPS default outweighs the potential negative
impacts of contention. We observe that workloads have different
sensitivity to allocated resources and performance impact due
to contention.

On average, Static Equal performs similarly to MPS Default
using 1 and 2 workers, yet shows continuing improvement with
4. This can be attributed to isolated partitions which reduce
contention. This highlights that with high concurrent inference
models, contention becomes a limiting factor and some models
can be very tolerant of resource restriction.

By allocating the minimum required amount of CUs per
model, Model Right-Size presents an upper-bound for existing
spatial partitioning inference server works [11], [14], [35]. In
general, Model Right-Size improves against Static Equal and
MPS Default when concurrently running two models, which
validates result trends seen in prior works. However, when
forced to run with 4 workers it will oversubscribe CUs which
leads to contention, resulting in a decreased throughput.

KRISP-O follows a similar trend of increasing for 2 workers
but decreasing for 4 workers, due to model contention. However,
we note that KRISP-O does provide more throughput than
Model Right-Size with 4 concurrent models.

To alleviate the impact of model contention, KRISP-I makes
sure that there is isolation between concurrent kernels. This is
why we see this policy gives the highest overall throughput and
is the only policy with improved throughput with 4 workers.
resnetl52, resnext101, and densnet201 decrease
in throughput due to these models containing mostly high
minimum required CUs. For example, in Figure 4 we show
the resnext 101 kernel trace with respect to its min CU and
most kernels require more than half of the available CUs. Thus,
at 4 workers, some kernels will get less than the required CUs
because KRISP-I enforces isolation, reducing throughput.

Overall, KRISP-I improves total system throughput by
~2x on average (compared to ~1.5x average for all other
techniques), 1.22x over static equal with 4 workers, and up
to ~3.5x, over MPS Default with 1 worker. Table IV shows
the maximum concurrent model without SLO for each model
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Fig. 13: Evaluation results. KRISP is able to improve throughput by 2x on average, support more concurrent models compared
to other techniques, reduce energy per inference by 33% and satisfy target tail latency SLO.

and policy. We find that for most scenarios, KRISP is able to  geomean)and KRISP-I are the most efficient for 4 workers, as

achieve the higher concurrent model. each worker would get the least amount of resources. KRISP-1
Tail Latency: Figure 13b shows the tail latency for each reduces energy per inference by 29% and 33% for 2 and

model. In inference servers, we define SLO similar to prior 4 workers, respectively, compared to an isolated inference.

works on spatially partitioned inference servers where we set Batch Size Sensitivity: The geomean of all models using
2x the isolated inference tail latency [11], [35]. Latencies must  batch sizes of 16 and 8 is shown in Figure 14. Smaller batches
meet this requirement or it is considered a violation. decrease the input size of each kernel, potentially changing

When reaching 4 workers, MPS Default, Model Right- sensitivity to resource contention. For example, MPS Default
Size, and KRISP-O do not meet SLO requirements for all improves over Static Equal and Model Right Size due to
models, except alexnet (and albert for MPS Default). contention being less of an issue and Static Equal and Model
Static Equal adheres to the SLO target for 4 workers with  Righr Size becoming overly restrictive. However, contention
alexnet, resnetl152, squeezenet and vggl9. This il affects performance, as KRISP-I still outperforms all other
indicates that with 4 workers, contention and interference policies at 4 workers, indicating the importance of kernel-wise
between models become a significant issue. KRISP-I violates  partitioning at smaller batch sizes.

SLO with densenet201 and albert. Note, however, no
spatial partitioning technique was able to successfully handle
4 concurrent densenet201. This demonstrates the need to Geomean Geomean

spatially partition concurrent requests and that not all models ¥ o 1.75 e MPS Default
. o o .
are capable of sharing resources. 5 5 1.50 e Static Equal
. [ [J] . .
Energy Per Inference: We also characterize energy per =& . e r:g? g'ght Size

. .. . .. . . . © o L. ° -
¥nference for our partitioning policies in Figure 13c. To obt.am g g o KRSIP
inference energy, we measure power using rocm-smi during = =1.00

the course of experiments.

We observed that MPS Default, Static Oracle, and KRISP-O  (3) Batch Size of 16 (b) Batch Size of 8
measured a reduction in energy per inference for 2 workers
(geomean of 15%, 19%, 19%, respectively) but not for 4
due to the significant increase in latency. Static Equal (18%

Fig. 14: Geomean of normalized RPS with batch sizes of 16
(a) and 8 (b), for 1, 2, and 4 concurrent models.
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Fig. 15: Co-located mixed inference model throughput with combinations of 2 different co-located workloads

Co-locating with mixed inference models: To demon-
strate KRISP’s ability to support mixed concurrent inference
models, we ran every combination pair of inference models
concurrently with each other. Figure 15 shows the boxplot of
the throughput distribution observed. Recall from Figure 13
that KRISP-I performs slightly better than Model Right Size for
2 concurrent models. These results follow similar trends and
show KRISP and Model Right-Size achieving better throughput
than MPS Default, and KRISP-I generally outperforming or
matching Model Right Size. Thus, KRISP can also improve
utilization and throughput with a mix of inference models.
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Fig. 16: KRISP sensitivity to oversubscription limit

Overlap Limit Sensitivity To see how contention impacts
system performance, we perform a sensitivity study by varying
the amount of allowed kernel overlap. In Figure 16, the x-axis
is the number of CUs that are allowed to have multiple kernels
running concurrently, and the y-axis is the normalized RPS. In
general, as we reduce the allowed overlap of kernels, perfor-
mance increases. This is why KRISP-I typically outperforms
KRISP-O. 4 workers have more to gain than 2 since there
is more contention among concurrent kernels and thus see a
higher improvement. We also observe three distinct spikes at
the 16, 31, and 46 overlap limits. This is due to how the limit
interacts with our resource mask generation algorithm, as it
might lead to an imbalance across SE clusters. At these spikes,
there is less of a chance of imbalance because sharing 15, 30,
or 45 CUs guarantees at least 1, 2, or 3 full SEs, respectively.

VII. RELATED WORKS

The most relevant work was previously presented in sec-
tion II. We now present other related works.

Inference Servers: DjiNN and Tonic presented one of the
first works on GPU-based ML inference serving [20]. Besides
this, there exist many proposed inference serving frameworks,
such as Clipper [13], INFaaS [56], Themis [42], etc. Recent
works explore inference servers with heterogeneous hardware,
such as DeepRecSys [18]. Our work targets spatial partitioning
in GPU-powered inference servers and can be utilized by any
serving framework. Also, we believe our work is one of the
first to target inference serving on AMD-based GPU systems.

GPU Compute Spatial Partitioning: Spatial partitioning of
GPUs is a common approach to improve the utilization of the
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GPU. Significant literature exist in achieving spatial partitioning
of GPUs across SMs [2], [3], [31], [52], [58], [69] and within
SMs [59], [60], [66] through program transformation, runtimes,
microarchitectural techniques and scheduling techniques.

Intra-SM partitioning: Intra-SM spatial partitioning tech-
niques, such as Warped-Slicer [66] and Simultaneous Multi-
Kernel [59] look at mechanisms to partition resources within
an SM without contention. However, we are not aware of any
that exist in commercial products. Intra-SM spatial partitioning
is tangential to our work and can provide additional fairness
and reduce contention when kernels share a CU.

GPU Memory Partitioning: Prior works [8], [9], [29],
[43] have proposed various techniques, such as, memory bank
partitioning or contention aware memory scheduling to improve
system memory bandwidth. These techniques require some
form of hardware support and are not implemented in current
hardware, with the exception of MIG. However, as shown in
GSLICE, GPUlet, and our own work, system throughput can
still be improved without memory partitioning and any memory
partitioning mechanism will only benefit KRISP.

Performance sensitivities of kernels: To an extent, all GPU
spatial partitioning techniques exploit the different performance
sensitivities of individual kernels. For example, prior works
have identified that certain kernels perform better with less
thread-level parallelism [31], or aimed to find the optimal SM
partition for a kernel under dynamic workload conditions [69].

The challenge that ML inference serving presents is that no
current method exist to take advantage of individual kernel
properties. Specifically, all GPU spatial partitioning techniques
apply spatial partitions to an entire process. In order to
reconfigure the partition, one would need to launch a new
process and reload the ML model. Our work close this gap by
taking advantage of kernel-level repartitioning.

VIII. CONCLUSION

Model-wise right-sizing of spatial partitions for GPU infer-
ence servers leaves significant under-utilization. To overcome
this gap, we propose KRISP, to enable Kernel-wise Right-
sizing for Spatial Partition of GPU inference servers. We show
an 2x throughput over isolated inferences, 33% improvement
to energy per inference and a 1.22x improvement over prior
spatial partitioning techniques.
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