
KRISP: Enabling Kernel-wise RIght-sizing for

Spatial Partitioned GPU Inference Servers

Marcus Chow Ali Jahanshahi

Department of Computer Science & Engineering

University of California, Riverside

{mchow009,ajaha004}@ucr.edu

Daniel Wong

Department of Electrical & Computer Engineering

University of California, Riverside

danwong@ucr.edu

Abstract—Machine learning (ML) inference workloads present
significantly different challenges than ML training workloads.
Typically, inference workloads are shorter running and under-
utilize GPU resources. To overcome this, co-locating multiple
instances of a model has been proposed to improve the utilization
of GPUs. Co-located models share the GPU through GPU spatial
partitioning facilities, such as Nvidia’s MPS, MIG, or AMD’s
CU Masking API. Existing spatially partitioned inference servers
create model-wise partitions by “right-sizing” based on a model’s
latency tolerance to restricting resources. We show that model-wise
right-sizing is under-utilized due to varying resource restriction
tolerance of individual kernels within an inference pass.

We propose Kernel-wise Right-sizing for Spatial Partitioned
GPU Inference Servers (KRISP) to enable kernel-wise right-sizing
of spatial partitions at the granularity of individual kernels.
We demonstrate that KRISP can support a greater level of
concurrently running inference models compared to existing
spatially partitioned inference servers. KRISP improves overall
throughput by 2x when compared with an isolated inference
(1.22x vs prior works) and reduce energy per inference by 33%.

Index Terms—GPU Inference Server, Compute Unit Masking,
GPU Spatial Partitioning

I. INTRODUCTION

With the rise of Machine Learning (ML) and Inference

as a Service [17], [23], [56], [61], GPUs play a significant

role in performance. Training machine learning models are

computationally heavy for a sustained amount of time. However,

inference workloads are shorter running, which leads to under-

utilization of GPU resources [27], [28], [36]. Figure 1 (left)

illustrates such a scenario where two inference models tempo-

rally share a single GPU while executing, resulting in significant

GPU resource under-utilization.

To increase utilization, the GPU is spatially partitioned to

co-locate multiple inference models on a single GPU [68],

such as Nvidia’s Multi-Process Service (MPS) [45], Multi-

Instance GPU (MIG) [46], and AMD’s CU Masking API [6].

Prior works demonstrated that MPS and MIG can improve

utilization and system throughput in GPU-based inference

serving platforms without violating Service Level Objective

(SLO) constraints [11], [14], [28].

Figure 1 (center) illustrates a scenario where the GPU is

spatially partitioned and two inference models are co-located.

In this scenario, determining the size of spatial partitions is

important to balance throughput, latency (QoS), and resource

utilization. To do this, prior works perform model-wise right-

sizing which looks at the inference model’s resource-latency

v

No partitioning Spatial partitioning w/
Model-wise Right-sizing

Spatial partitioning w/
Kernel-wise Right-sizing

Tim
e

GPU resources

Model 1 Model 2 Model 1 partition Model 2 partition

Fig. 1: (Left) By default, model inference is not spatially

partitioned. (Center) MPS/MIG enables spatial partitioning

where the models’ partitions are right-sized to satisfy QoS;

which can leave significant fine-grain under-utilization. (Right)

We can further reduce under-utilization by spatially partitioning

individual kernels within an inference request.

trade-off to size the spatial partition. While this can improve

GPU utilization and inference throughput, significant under-

utilization remains as the resource requirements vary from

kernel to kernel over an inference pass. In order to take

advantage of this fine-grain under-utilization, GPU spatial

partitioning will need to be reconfigured and right-sized on a

per-kernel basis, as shown in Figure 1 (right).

However, existing commercial GPU spatial partitioning

mechanisms cannot support re-partitioning at the granularity

of kernels due to their coarse scope. For example, MPS/MIG

partitions are applied to a process and CU Masking is applied

to a stream. Thus, resizing a spatial partition would require

launching a new process to execute inference requests. Figure 2

illustrates the limitation of process-scoped partition instances.

While processing inference requests, if the inference server

determines that the spatial partition needs to be reconfigured

(t1), we will need to (1) configure a new MPS/MIG instance,

(2) start a new ML backend process to handle the inference

request processing, and (3) load the ML model on to the GPU

before the new spatial partition can begin processing requests

(t2). This reconfiguration overhead typically takes in the order

of tens of seconds [11], [14].

To mask the downtime due to reconfiguration, prior works

have proposed using a shadow instance as shown in Fig-

ure 2 (middle) [11], [14]. Once the shadow instance completes

configuring the new spatial partition, the inference server

schedules the inference request to this new instance, avoiding

downtime. However, due to partition reconfiguration overheads,

all inference requests are handled by a static spatial partition

for the duration of an epoch (for example, every 20s [11]).

1

In order to realize the benefit of spatial partitioning with

kernel-wise right-sizing, as shown in Figure 1 (right), GPU

spatial partitioning mechanisms must provide the ability to offer

kernel-scoped partitions. As illustrated in Figure 2 (bottom),

providing spatial partitions at the granularity of individual

kernels within an inference pass will (1) avoid reloading of

ML models and ML backend process, (2) avoid the need

for a shadow instance and (3) right-size spatial partitions to

individual kernels and minimize resource under-utilization.

To this end, we propose Kernel-wise Right-sizing for Spatial

Partitioned GPU Inference Servers (KRISP). Kernel-wise right-

sizing can eliminate fine-grain resource under-utilization and

enable more opportunities to support greater concurrency of

running inference models in the GPU without violating QoS

requirements. To the best of our knowledge, this work is the

first to demonstrate dynamic spatial partitioning of GPU

inference servers at the granularity of individual kernels.

Our paper makes the following contributions:

• We identify that significant under-utilization occurs under

existing model-wise right-sizing of spatial partitions. We

show that further opportunities exist for reducing under-

utilization by right-sizing kernels within an inference pass.

• We present KRISP, a framework to enable kernel-wise

right-sizing of spatially partitioned GPU inference servers.

KRISP introduces a programmer-transparent framework to

right-size kernels and a kernel-scoped partition instance to

enforce fine-grain spatial partitions.

• We present an emulation methodology to evaluate KRISP on

a real-world GPU inference server. We demonstrate that

KRISP can provide kernel-wise right-sizing to unmodified

ML serving frameworks, such as PyTorch.

• We show that KRISP can enable the GPU to support

a greater level of concurrently running inference models

compared to existing spatially partitioned inference servers.

KRISP improve throughput by 2x on average while meeting

latency SLO targets and energy per inference by 33%.

II. BACKGROUND

A. High-level GPU Architecture

GPUs are massively parallel architectures that can process

thousands of threads concurrently. GPUs consist of multiple

Compute Units (CUs)1 where each can process up to 2,560

threads in groups of 32 or 64 threads, called a warp or

wavefront. These compute units can be organized into clusters,2

called Shader Engines (SEs) in AMD terminology or Graphical

Processing Clusters (GPCs) in Nvidia terminology. For example,

Nvidia A100 organizes a group of 16 SMs into a GPC and

AMD MI50 organizes groups of 15 CUs into an SE.

GPU kernels are partitioned into multiple work-groups

(WGs)3 which are scheduled to SEs through a Command

1Also called Streaming Multiprocessors (SMs) in Nvidia terminology. CUs
and SMs may be used interchangeably in this work.

2Clusters and SEs may be used interchangeably in this work.
3Also called threadblocks (TBs) in Nvidia terminology. WGs and TBs may

be used interchangeably in this work.

M
P

S
/M

IG

R
e

p
a

rt
it
io

n

Configure MPS/MIG

Instances

Start ML Backend Process

/ Reload ML Model
t

R
e

p
a

rt
it
io

n

w
/

S
h

a
d

o
w

t

Configure MPS/MIG

Instances

Instance 1

Instance 2

K
e

rn
e

l-
s
c
o

p
e

d

P
a

rt
it
io

n
in

g

Inference Req.Legend:

Start ML Backend Process

/ Reload ML Model

~10s

t1 reconfig. event t2

t
Resource. . .

Fig. 2: Resizing inference server’s spatial partition. Existing

commercial GPU spatial partitioning techniques are enforced

at the process-level. (Top) Reconfiguring spatial partition size

requires restarting the ML backend and reloading models.

(Center) Prior works mask this downtime by reconfiguring

shadow instances, but repartitioning is still limited to every

~10s. (Bottom) Our work enables inference requests and kernels

within requests to instantaneously resize spatial partitions.

Processor.4 Every SE has a Workload Manager (WLM) that

schedules thread blocks to CUs within their corresponding

SE.vGPU kernels can be programmed and launched directly

using language extensions such as CUDA, HIP, or OpenCL

and runs on GPU runtimes such as Nvidia’s CUDA and AMD

ROCm. GPU kernels can also be utilized through library API

calls, such as cuDNN, MIOpen, cuBLAS, rocBLAS, etc.

B. Inference Server Frameworks

Inference server frameworks enable a common interface

to process client inference requests [21], [32]. These servers

typically consist of a frontend, that enqueues and manages

client inference requests, and a GPU-accelerated backend,

that consists of a machine learning framework to process the

inference (such as TensorFlow [1] or PyTorch [53]) using the

underlying hardware resource. Examples of inference serving

frameworks include TorchServe [54], Tensorflow Serving [50],

and Nvidia TensorRT [48].

However, a major issue with machine learning inference is

that processing inference requests typically under-utilizes the

GPU hardware. [27], [28], [36] Thus, inference servers must

serve multiple machine learning models in order to improve the

utilization of server resources. This is particularly challenging

for GPU-powered inference servers as GPUs do not support

fine-grain context switching between processes, supporting only

coarse-grain spatial sharing of hardware resources.

C. Limitations of GPU Spatial Partitioning Techniques

When two or more kernels are launched on a GPU concur-

rently, the kernels can run on unique sub-sets of CUs (inter-CU

sharing), or the kernels can co-locate and share the same CU

(intra-CU sharing). By default, concurrently running kernels

are not assigned to specific CUs and can run on any CU,

potentially being shared [7], [51].

4Also called Gigathread Engine or Threadblock scheduler in Nvidia
terminology.

2

TABLE I: Comparison of GPU spatial partitioning techniques.
GPU Spatial
Partitioning

Scope
SW/HW

Enforced?
Programmer
Transparent

Compute/Memory
Partitioning?

Spatial
Granularity

Reconfiguration
Overhead

Allow
Oversubscription

MPS [45] Process HW Yes (Service) Yes/No GPU% High Yes

MIG [46] Process HW Yes (vGPU) Yes/Yes GPC High No

CU Masking API [6] Stream HW No (API) Yes/No CUs Medium Yes

Elastic Kernel [52] Kernel SW No (Code Tform) Yes/No Grid/Block Dim Low No

Kernel-Scoped Partition
Instance (This work)

Kernel HW Yes (Runtime) Yes/No CUs Low Yes

Therefore, many spatial partitioning techniques exist to

allocate GPU resources to concurrently running kernels. When

concurrent kernels are co-located in the same CU, intra-CU spa-

tial partitioning techniques exist to partition resources within a

CU between the concurrent kernels. While myriad work exists

in literature [59], [60], [66], we are not aware of any intra-

CU spatial partitioning5 that exists in commercial products6.

Thus, this work deals with inter-CU spatial partitioning that is

supported by commercial hardware. Table I summarizes these

inter-CU spatial partitioning techniques.

Process-scoped partition instances: Nvidia GPUs utilize

Multi-Process Service (MPS) to enable workloads to run

concurrently on GPUs. Additionally, MPS provides a feature

to specify the percentage of compute resources (GPU%)

available to a concurrent process over its lifetime. To provide

stronger isolation, Nvidia recently introduced Multi-Instance

GPU (MIG) which enables a GPU to be partitioned into as

many as 7 independent GPUs (on the Nvidia A100 GPU).

Each MIG partition has separate and isolated paths through the

entire memory system and compute resources (corresponding

to a Graphics Processing Cluster, GPC). Both MPS and MIG

do not require any program changes as they are configured

through the CUDA runtime, which can incur high overheads.

As shown previously in Figure 2, MPS/MIG provides

process-scoped partition instances which require launching a

new process during partition resizing, leading to high overheads.

In this work, we propose Kernel-scoped Partition Instance,

which provides the ability to resize and enforce GPU spatial

partitions on a per-kernel basis.

Programmer burden: AMD GPUs by default natively

support multiple concurrent processes (equivalent to Nvidia’s

MPS). Instead of specifying a resource percentage as in MPS,

AMD GPUs support CU Masking APIs [6], which allow users

to provide a resource mask to a stream and specify which

5Carefully note that we make a distinction between sharing (kernel co-
location) and partitioning (kernel resource allocation).

6Intra-SM spatial partitioning techniques are further discussed in Section VII

compute units the kernels in the stream can utilize. While this

does not require reloading a model when resizing partitions, it

has a heavy programmer burden as it requires modification to

the ML framework and libraries to utilize the API and requires

the programmer to manually determine the CU mask to be

applied to the stream.

Concurrent execution of kernels and spatial partitioning

can also be realized through software-only solutions, such

as using Elastic Kernels [52], to control the size of kernels,

in combination with SM-aware programming and thread-

block delegation [40] to map the kernel to specific SMs.

However, software-only solutions require significant program

changes or source code transformation to the compute kernels.

This is infeasible in ML inference as most compute kernels

are derived from API calls from heavily optimized GPU

libraries which can be closed-source and would incur additional

programming burden to library developers. Therefore, GPU

spatial partitioning techniques must be programmer-transparent

to be compatible with existing inference server software stack.

D. Limitations of Spatial Partitioned GPU Inference Servers

Since inference requests tend to under-utilize GPUs, many

recent works aim to understand and improve the spatial

partitioning of GPUs to enable different models to share the

GPU and handle concurrent inference requests [11], [14], [16],

[35]. Table II summarizes the most relevant inference servers.

Spatial partition resizing overhead: Due to their reliance

on process-scoped partitioning techniques, existing spatially

partitioned inference servers incur high reconfiguration over-

heads (in the 10’s of seconds), as shown previously in Figure 2.

These inference servers mask the process/model reloading

overhead by creating new model instances in the background

(Gpulet) and then hot-swapping this shadow instance (GSLICE).

Similarly, PARIS/ELSA by design launch multiple instances of

the same model with different sizing and can rely on scheduling

to mask partition resizing. Even with these masking techniques,

partition resizing can only be done infrequently (for example,

every 20s in Gpulet [11]).

TABLE II: Comparison of spatially partitioned GPU inference servers.
Spatially Shared
Inference Servers

Spatial
Partitioning

Right-sizing
Granularity

Right-sizing
Metric

Resize
Overhead

Reload
Model?

Resize Overhead
Masking

GSLICE [14] MPS Model
Profiled Model Kneepoint

(GPU%)
High

(2-15s)
Yes

Shadow Instance
(50-60µs downtime)

Gpulet [11] MPS Model
Profiled Model Kneepoint (GPU%)

or Profiled Model’s minGPU%
High

(10-15s)
Yes

Background Instance
(Masked w/ 20s period)

PARIS and ELSA [35] MIG Model
Profiled Model Kneepoint
(GPU size & Batch Size)

High
(~10s)

Yes
Multiple Instances

+ Scheduling

KRISP (This work)
Kernel-Scoped

Partition Instance
Kernel Profiled Kernel’s minCU

Low
(milliseconds)

No Not required

3

overviews our emulation approach built on top of AMD’s CU

Masking API.

Emulating Kernel-scoped Partition Instance with Stream-

scoped CU Masking: To emulate kernel-scoped partition

instance, we need to behaviorally model the ability to set

resource masks on a per-kernel basis. At a high level, we

coordinate packets in the HSA queues to reconfigure the queue’s

CU mask before every kernel launch (Figure 11b).

When an AQL packet for a kernel launch, (K), is inserted into

the HSA queue, we inject two AQL barrier packets in front of

the kernel packet (B). The first barrier packet ensures that any

currently running kernels are finished before we set a new CU

mask for the queue. Once the first barrier packet is consumed

by the hardware (1), it also triggers a callback function (2)

in the runtime to execute our kernel-wise right-sizing (3) and

resource allocation algorithm (4) for the upcoming kernel. The

queue’s CU mask is reconfigured through an HSA runtime API

that sets the hardware queue’s CU mask through an IOCTL

system call (5). Once the IOCTL completes, the callback

function sets a dependency signal to the waiting second barrier

packet (6), which avoids a race condition between setting the

queue’s new CU mask and execution of the next kernel packet.

Exec. K1

E
m

u
la

te
d

K
R

IS
P

Barrier Barrier Exec. K2

P
ro

p
o

s
e

d

K
R

IS
P

Resource “right-sizing” IOCTLPartition Alloc.

Callback func.

Partition Alloc. Exec. K2Resource “right-sizing”

In CPU

In GPU
Legend:

t

t

Exec. K1

(can overlap w/ K1’s exec.)

Fig. 12: Timing diagram comparing Emulated KRISP and

Proposed KRISP with native kernel-wise spatial partitioning

support. Components in red adds emulation timing overheads.

B. Modeling KRISP Performance

Since our evaluation is an emulation, we incur extra

emulation-related timing overheads due to behaviorally model-

ing kernel-scoped partition instances using the baseline server’s

AMD CU Masking API. Therefore, we need to account for

these emulation-related timing overheads to estimate the

expected performance of KRISP with native kernel-scoped

partition instance support. Figure 12 illustrates a timeline where

the emulation-related overheads (outlined in red) are due to

(1) setting the queue’s CU mask using an HSA runtime API

call (and underlying IOCTL syscall), and (2) the introduction

of barrier packets to wait for the completion of prior executing

kernels and to wait for the successful reconfiguration of the

queue’s CU mask.

A challenge of adjusting for this emulation overhead is that

it is difficult to directly measure on real GPU hardware. While

it is possible to measure the time to launch a callback function

and associated ioctl call due to the HSA APIs, it is not possible

to time when a barrier packet is consumed in the hardware.

Furthermore, we observe that when running concurrent models,

the ROCm runtime serializes the callback function and HSA

APIs (and therefore, underlying IOCTL syscall) leading to high

timing variation.

We noted that the amount of emulation overhead per

inference should be consistent among the same inference

model as we observe that the amount of emulation overhead

experienced scales with the number of kernel calls in the

inference model. This is because each kernel call incurs an

emulated kernel-scoped partition instance overhead. Therefore,

we measure the total emulation overhead of an inference pass

as LOver = LBase
Emu −LBase

Real , where LBase
Real is the latency of the model

on the baseline system without any modification and LBase
Emu is the

latency of the baseline system with emulation of kernel-scoped

partition instance with the resource mask to all active CUs. We

can now estimate KRISP’s latency without emulation overhead

as LKRISP
Real = LKRISP

Emu −LOver. Note that LOver only includes the

components highlighted in red in Figure 12 and that all latency

results include the extra overhead introduced by our resource

right-sizing and partition allocation components.

To estimate throughput, since all evaluated scenarios incur

the same emulation overhead, we obtain the relative throughput

with respect to the baseline system with emulated kernel-scoped

partition instance that sets the resource mask to all active CUs.

VI. EVALUATION

A. Evaluation Methodology

Server Hardware: We deployed our inference server on a

system featuring an AMD MI50 GPU, 2 AMD EPYC 7302 16-

Core Processor, 512 GB RAM, Ubuntu 18.04 LTS with kernel

5.4.0, and Intel 10G X550T network card. The AMD MI50

GPU contains 60 Compute Units across 4 Shader Engines. The

server runs the AMD ROCm 4.5 runtime stack.

GPU Inference Server: We created our own custom

inference server framework [26] as most existing inference

servers, such as TensorRT [48], are designed for Nvidia-based

GPU systems and tightly integrate Nvidia-specific features.

Our inference server consists of the following. Inference

Front-end: a multi-threaded process responsible for accepting

asynchronous gRPC requests from clients and sending back the

inference result (response). Request/Response Queues: Queues

are shared memory segments for storing request’s (response’s)

data to be served (sent to the client). Workers: Performs

pre-processing, inference, and post-processing on a batch of

requests. Each worker is independent of the other, allowing

for concurrent inference execution on the same GPU.

Spatial partitioning policies: We evaluate five inference

server spatial partitioning policies as follows:

MPS Default: By default, AMD GPUs support concurrent

execution of kernels where each concurrently running kernel

can share all resources in the GPU with no isolation. This policy

is also similar to Nvidia MPS with no resource restriction.

Static Equal: Each model has an equal-sized and non-

overlapping spatial partition of CUs.

Model Right Size: This policy represents the prior work’s

spatial partitioning policy which selects a partition sizing based

on the “kneepoint” of the GPU resource vs latency curve [11],

[14], [35]. This minimum required CU per model is presented

in Table III. If concurrent models can fit within a GPU, there

will be no overlapping allocated CUs between partitions. If

9

TABLE III: Inference workload used along with the number

of kernel calls per inference, model-wise right-sized partition

size, and 95% tail latency (ms).
Model # of Kernels Model Right-Size (CUs) 95% lat. (ms)

albert [38] 304 12 27

alexnet [37] 34 45 91

densenet201 [24] 711 32 72

resnet152 [22] 517 26 11

resnext101 [65] 347 55 154

shufflenet [41] 211 21 8

squeezenet [25] 90 21 8

vgg19 [57] 62 60 81

concurrent models do not fit within a GPU, then overlapping of

CUs will occur. This is different from previous works as they

enforce isolation through MPS/MIG and would not consider

extra concurrent cases. However, for completeness, we allow

overlapping between partitions and indicate whether concurrent

models would not be considered in previous works with an

open circle in our results.

KRISP Oversubscribed (KRISP-O): This policy provides

kernel-scoped partitions. It is possible that concurrently running

kernels may require minimum CUs that together exceed the

available number of physical CUs. Thus, CU over-subscription

occurs when we allow all CUs to be overlapped between

partitions, which maximizes the GPU’s utilization.

KRISP Isolated (KRISP-I): Similar to the previous policy,

but we do not allow over-subscription of CUs. This means

concurrent kernels are isolated. In the scenario, where there are

not enough isolated resources to meet the min CU requirement,

we allocate only what is available to the kernel, potentially

allocating fewer CUs than the min CU requirement.

Workloads: The models used for our workloads are

described in Table III. In addition, the table shows the number

of kernel calls that takes place when processing a single

inference request. The models evaluated cover a range of ML

types, including convolutional neural networks and transformer-

based networks.

To measure the impact of various inference server spatial

partitioning techniques, we run 1, 2, and 4 workers of the

same model concurrently. We show evaluation with a batch

size of 32 and geomean results of batch sizes of 16, and 8.

We also evaluate the impact of colocating 2 different models

in Figure 15.

Since the goal of our work is to demonstrate the benefit

of kernel-wise right-sizing in improving utilization of GPU,

our evaluation drives the GPU and inference server at

maximum load. This differs from the evaluation of prior

inference server works which proposed inference scheduling

policies and inference model management policies (to overcome

limitations of process-scoped partitions) that are adaptive to

fluctuating request rates.

B. Evaluation Results

Inference Throughput: The results of our evaluation are

shown in Figure 13a, where each chart shows the system

throughput (request per second) with 1, 2, and 4 workers,

normalized to 1 model worker running independently.

TABLE IV: Max concurrent models without SLO violations.

Bold font indicate best achieved concurrency for a model.

Model MPS Default Static Equal Model Right-Size KRISP-O KRISP-I

albert 4 2 2 2 2

resnet152 2 4 2 2 4

densenet201 2 1 2 2 1

alexnet 4 4 4 4 4

resnext101 2 2 2 2 4

shufflenet 2 1 2 2 4

squeeznet 2 4 2 2 4

vgg19 2 4 2 1 4

For MPS Default, throughput improves overall using 2

workers, but there is a decrease in throughput caused by

increased contention for hardware resources with 4 workers.

However, albert, shufflenet, and resnet152 require

the least amount of resources and can co-locate 4 workers

with modest throughput gains due to limited contention. MPS

Default outperforms all other policies, specifically for albert

and densenet201, because the benefit of sharing unrestricted

resources from MPS default outweighs the potential negative

impacts of contention. We observe that workloads have different

sensitivity to allocated resources and performance impact due

to contention.

On average, Static Equal performs similarly to MPS Default

using 1 and 2 workers, yet shows continuing improvement with

4. This can be attributed to isolated partitions which reduce

contention. This highlights that with high concurrent inference

models, contention becomes a limiting factor and some models

can be very tolerant of resource restriction.

By allocating the minimum required amount of CUs per

model, Model Right-Size presents an upper-bound for existing

spatial partitioning inference server works [11], [14], [35]. In

general, Model Right-Size improves against Static Equal and

MPS Default when concurrently running two models, which

validates result trends seen in prior works. However, when

forced to run with 4 workers it will oversubscribe CUs which

leads to contention, resulting in a decreased throughput.

KRISP-O follows a similar trend of increasing for 2 workers

but decreasing for 4 workers, due to model contention. However,

we note that KRISP-O does provide more throughput than

Model Right-Size with 4 concurrent models.

To alleviate the impact of model contention, KRISP-I makes

sure that there is isolation between concurrent kernels. This is

why we see this policy gives the highest overall throughput and

is the only policy with improved throughput with 4 workers.

resnet152, resnext101, and densnet201 decrease

in throughput due to these models containing mostly high

minimum required CUs. For example, in Figure 4 we show

the resnext101 kernel trace with respect to its min CU and

most kernels require more than half of the available CUs. Thus,

at 4 workers, some kernels will get less than the required CUs

because KRISP-I enforces isolation, reducing throughput.

Overall, KRISP-I improves total system throughput by

~2x on average (compared to ~1.5x average for all other

techniques), 1.22x over static equal with 4 workers, and up

to ~3.5x, over MPS Default with 1 worker. Table IV shows

the maximum concurrent model without SLO for each model

10

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:
Large-scale machine learning on heterogeneous distributed systems,”
2016. [Online]. Available: https://arxiv.org/abs/1603.04467

[2] P. Aguilera, K. Morrow, and N. S. Kim, “Fair share: Allocation of GPU
resources for both performance and fairness,” in 32nd IEEE International

Conference on Computer Design, ICCD 2014, Seoul, South Korea,

October 19-22, 2014. IEEE Computer Society, 2014, pp. 440–447.
[Online]. Available: https://doi.org/10.1109/ICCD.2014.6974717

[3] P. Aguilera, K. Morrow, and N. S. Kim, “Qos-aware dynamic resource
allocation for spatial-multitasking gpus,” in 19th Asia and South

Pacific Design Automation Conference, ASP-DAC 2014, Singapore,

January 20-23, 2014. IEEE, 2014, pp. 726–731. [Online]. Available:
https://doi.org/10.1109/ASPDAC.2014.6742976

[4] AMD, “Amd migraphx’s documentation.” [Online]. Available: https:
//rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/

[5] AMD, “Performance database.” [Online]. Available: https:
//rocmsoftwareplatform.github.io/MIOpen/doc/html/perfdatabase.html

[6] AMD, “Stream management hip api.” [Online]. Avail-
able: https://docs.amd.com/bundle/HIP_API_Guide/page/group___stream.
html#gad61df06555ebdfa30784b3233ca5e13f

[7] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “Gpu
scheduling on the nvidia tx2: Hidden details revealed,” in 2017 IEEE

Real-Time Systems Symposium (RTSS). IEEE, 2017, pp. 104–115.

[8] R. Ausavarungnirun, “Techniques for shared resource management in
systems with throughput processors,” Ph.D. dissertation, Carnegie Mellon
University, 2017.

[9] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,
C. J. Rossbach, and O. Mutlu, “Mask: Redesigning the gpu memory
hierarchy to support multi-application concurrency,” ACM SIGPLAN

Notices, vol. 53, no. 2, pp. 503–518, 2018.

[10] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” IEEE Computer, 2007.

[11] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Multi-model
machine learning inference serving with gpu spatial partitioning,” arXiv

preprint arXiv:2109.01611, 2021.

[12] C.-H. Chou, L. N. Bhuyan, and D. Wong, “µdpm: Dynamic power
management for the microsecond era,” in High Performance Computer

Architecture (HPCA), 2019 IEEE 25th International Symposium on.
IEEE, 2019.

[13] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A {Low-Latency} online prediction serving
system,” in 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 17), 2017, pp. 613–627.

[14] A. Dhakal, S. G. Kulkarni, and K. Ramakrishnan, “Gslice: controlled
spatial sharing of gpus for a scalable inference platform,” in Proceedings

of the 11th ACM Symposium on Cloud Computing, 2020, pp. 492–506.

[15] A. Duţu, M. D. Sinclair, B. M. Beckmann, D. A. Wood, and M. Chow,
“Independent forward progress of work-groups,” in Proceedings of

the ACM/IEEE 47th Annual International Symposium on Computer

Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 1022–1035. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00087

[16] G. Gilman and R. J. Walls, “Characterizing concurrency mechanisms for
nvidia gpus under deep learning workloads,” Performance Evaluation,
vol. 151, p. 102234, 2021.

[17] A. Gujarati, R. Karimi, S. Alzayat, W. Hao, A. Kaufmann, Y. Vigfusson,
and J. Mace, “Serving {DNNs} like clockwork: Performance predictabil-
ity from the bottom up,” in 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), 2020, pp. 443–462.

[18] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A system for
optimizing End-To-End At-Scale neural recommendation inference,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA), May 2020, pp. 982–995.

[19] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor et al.,
“Lost in abstraction: Pitfalls of analyzing gpus at the intermediate language

level,” in 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2018, pp. 608–619.

[20] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge,
R. G. Dreslinski, J. Mars, and L. Tang, “DjiNN and tonic: DNN as a
service and its implications for future warehouse scale computers,” in
Proceedings of the 42Nd Annual International Symposium on Computer

Architecture, ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp.
27–40.

[21] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2018, pp. 620–629.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

[23] Y. Hu, R. Ghosh, and R. Govindan, “Scrooge: A cost-effective deep
learning inference system,” in Proceedings of the ACM Symposium on

Cloud Computing, 2021, pp. 624–638.

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[26] A. Jahanshahi, M. Chow, and D. Wong, “Scaleserve: A scalable
multi-gpu machine learning inference system and benchmarking
suite,” in Proceedings of the 14th Workshop on General Purpose

Processing Using GPU, ser. GPGPU ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3530390.3532735

[27] A. Jahanshahi, H. Z. Sabzi, C. Lau, and D. Wong, “Gpu-nest: Character-
izing energy efficiency of multi-gpu inference servers,” IEEE Computer

Architecture Letters, vol. 19, no. 2, pp. 139–142, 2020.

[28] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” arXiv preprint arXiv:1901.00041, 2018.

[29] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W.
Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu memory
system for multi-application execution,” in Proceedings of the 2015

International Symposium on Memory Systems, 2015, pp. 223–234.

[30] jswon, “Help me to problems with setting up pytorch-gpgpu-
sim.” [Online]. Available: https://github.com/gpgpu-sim/gpgpu-sim_
distribution/issues/168

[31] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for gpgpus,” in Proceedings

of the 22nd International Conference on Parallel Architectures and

Compilation Techniques, ser. PACT ’13. IEEE Press, 2013, p. 157–166.

[32] L. Ke, U. Gupta, M. Hempstead, C.-J. Wu, H.-H. S. Lee, and X. Zhang,
“Hercules: Heterogeneity-aware inference serving for at-scale personalized
recommendation,” arXiv preprint arXiv:2203.07424, 2022.

[33] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-sim:
An extensible simulation framework for validated gpu modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA), 2020, pp. 473–486.

[34] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse,
M. Nandhimandalam, K. Nasyrov, I. Perminov, T. Shah et al., “Miopen:
An open source library for deep learning primitives,” arXiv preprint

arXiv:1910.00078, 2019.

[35] Y. Kim, Y. Choi, and M. Rhu, “Paris and elsa: An elastic scheduling
algorithm for reconfigurable multi-gpu inference servers,” arXiv preprint

arXiv:2202.13481, 2022.

[36] J. Kosaian, A. Phanishayee, M. Philipose, D. Dey, and R. Vinayak,
“Boosting the throughput and accelerator utilization of specialized cnn
inference beyond increasing batch size,” in International Conference on

Machine Learning. PMLR, 2021, pp. 5731–5741.

[37] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[38] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Al-
bert: A lite bert for self-supervised learning of language representations,”
arXiv preprint arXiv:1909.11942, 2019.

[39] J. Lew, D. A. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla, C. Ng,
N. Goli, M. D. Sinclair, T. G. Rogers, and T. M. Aamodt, “Analyzing

13

machine learning workloads using a detailed gpu simulator,” in 2019

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), 2019, pp. 151–152.
[40] A. Li, S. L. Song, W. Liu, X. Liu, A. Kumar, and H. Corporaal,

“Locality-aware cta clustering for modern gpus,” in Proceedings of the

Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
297–311. [Online]. Available: https://doi.org/10.1145/3037697.3037709

[41] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the

European conference on computer vision (ECCV), 2018, pp. 116–131.
[42] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,

A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and efficient
{GPU} cluster scheduling,” in 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20), 2020, pp. 289–304.
[43] M. Mao, W. Wen, X. Liu, J. Hu, D. Wang, Y. Chen, and H. Li, “Temp:

Thread batch enabled memory partitioning for gpu,” in Proceedings of

the 53rd Annual Design Automation Conference, 2016, pp. 1–6.
[44] R. McCrary, M. Houston, P. J. Rogers, G. J. Cheng, M. Hummel, and

P. Blinzer, “Graphics processing dispatch from user mode,” Nov 2015.
[45] NVIDIA, “multi-process service.” [Online]. Available: https://docs.nvidia.

com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
[46] NVIDIA, “nvidia multi-instance gpu user guide - nvidia

developer.” [Online]. Available: https://docs.nvidia.com/datacenter/
tesla/pdf/NVIDIA_MIG_User_Guide.pdf

[47] NVIDIA, “Volta mps execution resource provisioning.” [Online].
Available: https://docs.nvidia.com/deploy/mps/index.html#topic_3_3_5_2

[48] NVIDIA, “Nvidia tensorrt,” Mar 2022. [Online]. Available: https:
//developer.nvidia.com/tensorrt

[49] I. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and
M. Bertogna, “Dissecting the cuda scheduling hierarchy: a performance
and predictability perspective,” in 2020 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS). IEEE, 2020, pp.
213–225.

[50] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Ra-
jashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:1712.06139, 2017.

[51] N. Otterness and J. H. Anderson, “Exploring amd gpu scheduling
details by experimenting with “worst practices”,” in 29th International

Conference on Real-Time Networks and Systems, 2021, pp. 24–34.
[52] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu

concurrency with elastic kernels,” ACM SIGARCH Computer Architecture

News, vol. 41, no. 1, pp. 407–418, 2013.
[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, and others, “Pytorch:
An imperative style, high-performance deep learning library,” Advances

in neural information processing systems, vol. 32, 2019.
[54] pytorch, “torchserve.” [Online]. Available: https://pytorch.org/serve/
[55] K. Roarty and M. D. Sinclair, “Modeling modern gpu applications in

gem5,” May 2020. [Online]. Available: https://www.gem5.org/2020/05/
27/modern-gpu-applications.html

[60] Z. Wang, J. Yang, R. G. Melhem, B. R. Childers, Y. Zhang, and
M. Guo, “Quality of service support for fine-grained sharing on
gpus,” in Proceedings of the 44th Annual International Symposium

on Computer Architecture, ISCA 2017, Toronto, ON, Canada,

June 24-28, 2017. ACM, 2017, pp. 269–281. [Online]. Available:
https://doi.org/10.1145/3079856.3080203

[56] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis, “{INFaaS}:
Automated model-less inference serving,” in 2021 USENIX Annual

Technical Conference (USENIX ATC 21), 2021, pp. 397–411.

[57] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[58] Y. Ukidave, C. Kalra, D. Kaeli, P. Mistry, and D. Schaa, “Runtime
support for adaptive spatial partitioning and inter-kernel communication
on gpus,” in 2014 IEEE 26th International Symposium on Computer

Architecture and High Performance Computing, 2014, pp. 168–175.

[59] Z. Wang, J. Yang, R. G. Melhem, B. R. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel GPU: multi-tasking throughput processors via
fine-grained sharing,” in 2016 IEEE International Symposium on High

Performance Computer Architecture, HPCA 2016, Barcelona, Spain,

March 12-16, 2016. IEEE Computer Society, 2016, pp. 358–369.
[Online]. Available: https://doi.org/10.1109/HPCA.2016.7446078

[61] Q. Weng, “MLaaS in the wild: Workload analysis and scheduling in
Large-Scale heterogeneous GPU clusters,” in 19th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 22).
Renton, WA: USENIX Association, Apr. 2022. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/weng

[62] D. Wong, “Peak efficiency aware scheduling for highly energy propor-
tional servers,” in Proceedings of the 43rd International Symposium on

Computer Architecture, ser. ISCA ’16, 2016.

[63] D. Wong and M. Annavaram, “Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity,” in 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE, 2012,
pp. 119–130.

[64] D. Wong and M. Annavaram, “Implications of high energy proportional
servers on cluster-wide energy proportionality,” in 2014 IEEE 20th

International Symposium on High Performance Computer Architecture

(HPCA). IEEE, 2014, pp. 142–153.

[65] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[66] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-slicer:
Efficient intra-sm slicing through dynamic resource partitioning for
GPU multiprogramming,” in 43rd ACM/IEEE Annual International

Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea,

June 18-22, 2016. IEEE Computer Society, 2016, pp. 230–242.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.29

[67] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars, “Powerchief:
Intelligent power allocation for multi-stage applications to improve
responsiveness on power constrained cmp,” in Proceedings of the

44th Annual International Symposium on Computer Architecture, ser.
ISCA ’17. Toronto, ON, Canada: ACM, 2017, pp. 133–146. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080224

[68] F. Yu, D. Wang, L. Shangguan, M. Zhang, C. Liu, and X. Chen, “A
survey of multi-tenant deep learning inference on gpu,” 2022. [Online].
Available: https://arxiv.org/abs/2203.09040

[69] X. Zhao, Z. Wang, and L. Eeckhout, “Classification-driven search for
effective sm partitioning in multitasking gpus,” in Proceedings of the

2018 International Conference on Supercomputing, ser. ICS ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 65–75.
[Online]. Available: https://doi.org/10.1145/3205289.3205311

14

	Introduction
	Background
	High-level GPU Architecture
	Inference Server Frameworks
	Limitations of GPU Spatial Partitioning Techniques
	Limitations of Spatial Partitioned GPU Inference Servers

	A Case for Kernel-wise Right-sizing
	Opportunity for model-wise Right-sizing
	Why Kernel-wise Right-sizing?

	Enabling Kernel-Wise Right-Sizing for Spatial Partitioned Inference
	High-level Overview
	Finding Kernel-wise Right-Sizing
	Why Profiled-guided Kernel Right-Sizing?

	Allocating Resources for Partition Instances
	Distributing CUs across SE Clusters
	Generating kernel resource mask

	Architectural Support for Kernel-scoped Partition Instance
	AMD GPU architecture overview
	Architectural support
	Overheads
	Generalizability

	Evaluating KRISP Through Emulation
	Emulation Methodology
	Modeling KRISP Performance

	Evaluation
	Evaluation Methodology
	Evaluation Results

	Related Works
	Conclusion
	References

