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Figure 1: iBall augments basketball videos with gaze-moderated embedded visualizations to facilitate game understanding and 
engagement of casual fans. It embeds data visualizations into basketball raw footage using a well-designed computer vision 
pipeline, and automatically adapts the visualizations based on the game context and users’ gaze. 

ABSTRACT 
We present iBall, a basketball video-watching system that leverages 
gaze-moderated embedded visualizations to facilitate game under-
standing and engagement of casual fans. Video broadcasting and 
online video platforms make watching basketball games increas-
ingly accessible. Yet, for new or casual fans, watching basketball 
videos is often confusing due to their limited basketball knowledge 
and the lack of accessible, on-demand information to resolve their 
confusion. To assist casual fans in watching basketball videos, we 
compared the game-watching behaviors of casual and die-hard fans 
in a formative study and developed iBall based on the fndings. 
iBall embeds visualizations into basketball videos using a computer 
vision pipeline, and automatically adapts the visualizations based 
on the game context and users’ gaze, helping casual fans appreciate 
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basketball games without being overwhelmed. We confrmed the 
usefulness, usability, and engagement of iBall in a study with 16 
casual fans, and further collected feedback from 8 die-hard fans. 
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1 INTRODUCTION 
Basketball, one of the most popular team sports, has continued to 
attract new fans over the past decades due to the proliferation of 
video broadcasting and online video platforms. However, as our 
formative study will show, unlike experienced fans, new or casual 
fans often get confused when watching basketball videos. This is 
because they lack sufcient basketball knowledge to understand 
the players’ complex teamwork and in-game decisions. Existing 
methods of providing extra information, such as scoreboards in 
broadcasting videos and online webpages (e.g., ESPN [23]), often 
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fail to adequately address their confusion. These methods either 
cannot provide on-demand data or distract fans from the game by 
showing data in separate windows. Thus, fnding a way to enable 
seamless access to extra data while watching basketball games 
would particularly beneft casual fans in their understanding and 
engagement of games. 

Embedded visualizations provide a promising opportunity to al-
low audiences to access extra data without being distracted from the 
game video by directly displaying data in the actual scenes. Given 
such benefts, various commercial products [19, 76] and research 
systems [15, 16] leverage embedded visualizations to augment 
sports videos. However, these systems either focus on post-game 
analysis rather than game-watching scenarios, or only use simple, 
non-interactive text labels and progress bars to show data. Recently, 
researchers have started to explore the design space of embedded 
visualizations for game-watching scenarios but used low-fdelity 
simulated environments (e.g., 3D simulated sports games [41], mov-
ing charts on white backgrounds [80]). Little is known about how 
to design and implement interactive embedded visualizations in 
real sports videos and how they can facilitate game understanding 
and increase engagement of fans when watching games. 

In this work, we aim to fll this gap by developing interactive 
embedded visualizations to assist casual fans in watching basketball 
game videos. To understand the particular practices, pain points, 
and solutions of casual fans in watching basketball game videos, 
we compared the game-watching behaviors of 8 casual and 8 die-
hard fans in a formative study. Findings revealed that the casual 
fans were confused about key players and their in-game decisions 
from time to time, and had trouble seeking customized data during 
the game. Informed by the study, we developed iBall (Fig. 1), a 
basketball game viewing system that automatically highlights key 
players and visualizes their performance through gaze-moderated 
embedded visualizations. 

We developed iBall by tackling two main challenges. First, em-
bedding visualizations into actual scenes is recognized as a grand 
challenge [22], especially for basketball, where players overlap 
heavily and the camera moves rapidly. To tackle this challenge, 
we contribute a CV pipeline that pre-processes team sports videos 
for embedding visualizations. We also conducted experiments to 
evaluate our pipeline quantitatively and discuss potential methods 
to extend the pipeline to process live videos. Second, it remains 
unclear how to design embedded visualizations that are informa-
tive but not overwhelming for individual audiences, who may have 
various levels of game literacy, data needs, and personal interests. 
We designed a set of gaze-moderated embedded visualizations that 
leverage the user’s gaze to seamlessly present the data the user is 
interested in and suppress others. To evaluate iBall, we conducted 
a user study with 16 casual fans to compare the game-watching 
experiences between raw video (RAW), video + embedded visualiza-
tions (AUG), and video + gaze-moderated embedded visualizations 
(FULL). Participants spoke highly of our system, ranked FULL as 
the best, and confrmed that our embedded visualizations and gaze 
interactions were useful, usable, and engaging. We further collected 
and discuss the feedback on iBall from another 8 die-hard fans. We 
discuss our observations and design implications learned from the 
study for future research inspiration. 

In summary, through developing iBall, we make the following 
four main contributions: 1) a formative study that identifes the pain 
points of casual fans in watching basketball videos and solicits plau-
sible solutions from die-hard fans, 2) an open-source CV pipeline 
to process team sports videos for embedding visualizations, 3) a set 
of gaze-moderated embedded visualizations for basketball game 
videos, and 4) a user study that assesses our system and provides 
insightful feedback on using gaze-moderated embedded visualiza-
tions in team sports videos. Finally, we will open source our system 
at https://github.com/ASportsV/iBall. 

2 RELATED WORK 
We review prior work on personalized game viewing systems, em-
bedded visualizations in sports videos, computer vision for embed-
ded visualizations, and applications of gaze interactions. 

2.1 Personalized Game Viewing Systems 
Visualization has long been used in sports to present data [56], 
including box scores [25], tracking data [18, 44, 55, 81], and meta-
data [77]. Sports visualizations are mainly used for post-game anal-
ysis or in-game informing purposes. This work mainly focuses on 
the latter. 

Sports games usually involve complex in-game decision-making. 
To better understand, analyze, and appreciate players’ in-game 
decisions, spectators often look for additional information when 
watching a sports game [41]. To fulfll individual spectators’ infor-
mation needs, prior research has explored the design of interactive 
game-watching systems. ARSpectator [87], for example, presents a 
concept design of using mobile AR to enhance the experience of 
live sports events. Gamebot [86] uses a conversational interface 
to help users request data visualizations in watching NBA games. 
GameViews [85] uses simple visualizations (e.g., line charts) to 
show in-game box scores of basketball games. Omnioculars [41] 
uses interactive embedded visualizations to support in-game analy-
sis of basketball games. CourtVision [19] is a commercial product 
that allows inspectors to review basketball in-game data through 
simple, non-interactive embedded visualizations (e.g., text labels, 
progress bars). Compared to traditional sports, most E-Sports al-
ready provide a personalized game viewing experience by default. 
Multiplayer Online Battle Arena (MOBA) games, such as Defense 
of the Ancients2 [1] (Dota2) and League of Legends [3] (LoL), allow 
spectators to interact with the systems to inspect in-game data (e.g., 
points over time) of players or teams. Nevertheless, these systems 
either display the data in separated panels or require viewers to 
explicitly interact with the system to request the data, inevitably 
distracting viewers from the game. In contrast, we propose to use 
embedded visualizations and gaze interactions to present extra data 
in game videos, providing an intuitive, seamless, and engaging 
watching experience. 

2.2 Embedded Visualizations in Sports Videos 
Embedded visualizations have been widely used for sports data 
due to their ability to show the data into its physical context (e.g., 
a basketball court). Early works mainly embedded the data into 
static court diagrams. Examples such as CourtVision [28] (basket-
ball), StatCast Dashboard [40] (baseball), and SnapShot [57] (ice 
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hockey) display density maps on top of court diagrams to show 
sports events, such as successful shots. Recent progress in CV now 
allows embedding visualizations directly into sports videos instead 
of just court diagrams. For example, Stein et al. [68, 69] developed 
a method to automatically extract and visualize data from and in 
soccer videos. Chen et al. [15, 16, 42] explored the design of aug-
mented sports videos and introduce fast prototyping tools to help 
users create augmented videos for racket-based sports by using 
direct manipulation and textual comments. However, these works 
mainly target experts for analytic and authoring purposes. More 
recently, researchers have started to explore embedded visualiza-
tions in live game-watching scenarios. Yao et al. [80] proposed the 
notion of visualization in motion to depict visualizations that are 
moving relative to the viewer and summarized a design space for 
it. Lin et al. [41] presented a design framework for embedded visu-
alizations to facilitate in-game analysis when watching basketball 
games. Yet, all the above works only evaluated visualizations in 
simulated scenarios (e.g., moving charts on white backgrounds, 
3D virtual sports games). We design our embedded visualizations 
based on these prior works but particularly target real basketball 
videos, with the aim to understand how embedded visualizations 
can improve casual fans’ game-watching experience. 

2.3 Computer Vision for Embedded 
Visualizations 

Recent years have shown remarkable advances in CV techniques 
based on deep learning. Researchers have achieved unprecedented 
success in a broad range of tasks including object detection [26, 43], 
object tracking [7, 83], pose estimation [79], and segmentation [14]. 
Thanks to this progress, more and more data can be extracted from 
videos (e.g., [20, 30, 36, 59]), opening new opportunities for sports 
analytics. For example, the positions of the players and the ball [67], 
as well as other tracking data [4, 5], of each NBA game are ex-
tracted and shared online. We refer the reader to Shih [63] for a 
comprehensive survey on content-aware video analysis for sports. 
Furthermore, these new CV techniques ease the embedding of vi-
sualizations into the video scenes, which is recognized as a grand 
challenge in situated visualization [22]. Embedding visualizations 
into sports videos requires a CV pipeline to complete tasks such 
as detecting, tracking, and segmenting the players from the video, 
estimating their pose, calibrating the camera [84], and sometimes 
reconstructing the 3D scene [47]. Prior works [15, 16, 69] applied 
a simplifed CV pipeline to process racket-based sports videos, in 
which the players are separated, and the camera is mostly static. 
However, it is much more difcult to embed visualizations into team 
sports videos (especially basketball) since players overlap heavily 
and the camera typically moves rapidly. While commercial sys-
tems [19] can achieve good embedding results, they require videos 
collected from multiple cameras [78] to register the visualizations. 
To the best of our knowledge, there is no existing CV solution 
that can embed visualizations into basketball videos based solely 
on broadcasting videos. The lack of such a solution inevitably 
hinders the research of embedded visualizations in complex, dy-
namic scenarios, such as team sports. In this work, we contribute a 
CV pipeline that consists of open-sourced modular components to 
process team sports videos for embedding visualizations. 

2.4 Applications of Gaze Interactions 
There is a long history of interest in leveraging gaze for interactions 
due to its efciency, expressiveness, and applicability in hands-free 
scenarios [11, 45, 46]. Gaze interactions either explicitly or implic-
itly leverage the gaze to interact with digital content. We focus 
on implicit methods and refer readers to a more comprehensive 
review [45] for further reading. 

Implicit gaze-based systems use gaze as an implicit input source, 
usually in combination with other input modalities, to facilitate 
interactions [24, 45]. Given that reliable eye trackers are now aford-
able enough to be integrated into desktop and laptop computers, 
researchers have leveraged implicit gaze interactions to support a 
variety of applications, such as content annotation [17, 70], video 
editing [35, 48, 58], and remote collaborations [32, 38]. The most 
relevant to our endeavor are attempts at adapting viewing content 
based on users’ gaze. The gaze-contingent display [21], for example, 
shows a higher resolution on the area the user is focusing on. Other 
examples include adjusting the playback speed of lecture videos 
based on the user’s gaze [51], or a tourist guide that directs a user’s 
gaze to highlighted features in a panorama and adapts the audio 
introductions accordingly [39]. Kurzhals et al. [37] have proposed 
a gaze-adaptive system that dynamically adjusts video captions’ 
placement to optimize the viewing experience. We also aim to use 
gaze to adjust video content but focus on augmented sports videos. 

In the visualization feld, research related to gaze mainly focuses 
on visualizing gaze data [8] and analyzing users’ gaze in viewing 
visualizations [9, 12]. Only a few works [53, 62, 65, 66] have explored 
leveraging the gaze to interact with visualization systems. Silva et 
al. [64] give a systematic review on eye tracking for visual analytics 
systems and current challenges. We draw on this line of research 
and, to the best of our knowledge, are the frst to explore gaze-
aware embedded visualizations to improve the sports-watching 
experience. 

3 FORMATIVE STUDY WITH BASKETBALL 
FANS 

To understand the practices, pain points, and solutions of casual 
fans in watching basketball videos, we conducted a formative study. 

3.1 Study Setup 
3.1.1 Participants 
We recruited participants using university mailing lists and fo-
rums and pre-screened participants based on their fandom level, 
game-watching frequency, and basketball knowledge. In total, we 
recruited 8 casual fans (P1-P8; M=3, F=5; Age: 18 - 35), who only 
knew “basic rules of basketball” and watched “1 - 10 games per year”. 
To better identify the pain points specifc to casual fans, we further 
recruited 8 die-hard fans (P9 - P16; M=8; Age: 18 - 55), who knew 
“basketball tactics and pros and cons of specifc players” and watched 
“at least 1 game per week”. No female die-hard fan responded to us. 
All participants had normal vision or wore contact lenses or glasses 
to correct to normal vision. 

3.1.2 Procedure 
We started each session by introducing our research motivation and 
study protocol. The experimenter then conducted a semi-structured 
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ba

Figure 2: a) Formative study setup. b) In the review phase, the participant’s gaze is visualized and overlaid on the video. 

Table 1: The two game videos in the formative study. 
Date Teams Quarter Duration (m:ss) 

G1 2015.12.25 GSW vs. CLE∗ 4 9:02 
G2 2015.12.22 OKC vs. LAC∗ 4 9:30 

∗ GSW (Golden State Warriors), CLE (Cleveland Cavaliers), OKC (Oklahoma City 
Thunder), and LAC (Los Angeles Clippers) 

interview with each participant, focusing on their current practices, 
pain points, and solutions when watching live basketball games. 
Next, we followed the format of contextual query [31] to ask partic-
ipants to watch two videos (Table 1) on a 24-inch monitor. These 
two games were rated as top-30 games of the season and have been 
watched millions of times. We collected think-aloud and gaze data 
during the game-watching process. To collect the gaze data, we used 
Eyeware Beam [2], a commercial software that leverages Apple’s 
TrueDepth camera [6] to track the participant’s head and gaze. The 
participants sat approximately 60cm from the screen and were asked 
to adjust the chair before watching the videos (Fig. 2a). The system 
was then calibrated and the participants were allowed to move the 
head freely after the calibration. We used a TrueDepth camera-
based tracker as it provided sufcient accuracy [29] for inspecting 
what video objects participants were looking at while watching the 
game, at a much lower budget. For more fne-grained gaze data (e.g., 
saccades, fxation), more profcient eye-tracker would be required. 

After watching each game video, we asked participants to re-
watch the game with their gaze data overlaid (Fig. 2b) and to elabo-
rate on any confusion, data needs, insights, and excitement they 
had felt when watching the game for the frst time. Participants 
could pause the video in the review phase. Each participant was 
compensated with a $20 gift card for their time (1 hour). 

3.1.3 Analysis 
Interviews and think-alouds were audio-recorded, transcribed, and 
analyzed using a refexive thematic analysis [10]. Three authors 
coded independently on the transcriptions to form sets of plausible 
codes and iteratively refned the codes to converge on a single 
coding schema. Besides, three authors analyzed the gaze data by 
manually annotating the video objects each participant was looking 
at while watching the games. The categories of objects (Fig. 3 x-
axis) were generated based on the data and prior knowledge. We 

classifed participants as looking at an object only when their gaze 
rested on the object for at least 0.25 seconds (fxation duration [54]). 
The duration when the gaze was moving to the object was also 
annotated as looking at the object. 

3.2 Findings and Discussions 
All the casual fans only watched “important games, such as semi-
fnals or fnals.” (P1) They were neither familiar with basketball 
nor the NBA. In comparison, the die-hard fans watched basketball 
games much more frequently. They had a rich knowledge of bas-
ketball (e.g., tactics), knowing almost all NBA players and even 
their strengths and shortcomings. TV was the main way for all the 
participants to watch live basketball games. Overall, for the casual 
fans, watching live basketball games was a leisure activity, such as 
hiking, but it was a more serious hobby for the die-hard fans. 

3.2.1 Casual Fans’ Confusion in Watching Basketball Games 
In terms of the watching experience, all 16 participants confrmed 
that they were confused from time to time when watching bas-
ketball games and that they would like to seek extra information, 
other than the data provided by the scoreboard and commentaries. 
Some confusion is common among both casual and die-hard fans, 
such as questions like “who got a foul?” and “which team called the 
timeout?” These questions can usually be resolved by “watching 
the replay” (P15) or simply by searching Google. However, we did 
identify some confusing aspects specifc to casual fans that cannot 
be easily resolved by the current methods and thus lead to a poor 
watching experience: 

C1: Casual fans are unsure about which players they should focus 
on. When watching basketball games, the casual fans often could 
not identify the important players and felt that the players were 
just “moving objects.” (P4) The casual fans’ inability to identify key 
players was also refected in their gaze patterns. In our study, we 
found that casual fans spent more time on the player with the ball 
than the die-hard fans (Fig. 3), since they “didn’t notice other players’ 
[of-ball] movement” (P1) when watching the game. As a result, the 
casual fans often missed important of-ball movements and felt that 
the ball “magically fy to an open player.” (P1) Moreover, in some 
casual fans’ gaze, we noticed some rapid zigzag movement between 
the player with the ball and the other players, revealing their at-
tempts to scan through the players. P4, for example, explained that 
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Figure 3: The gaze distribution in seconds shows that, compared to die-hard fans, casual fans spent more time watching the
player with the ball in both games. Due to the small sample size, we discuss these results with a descriptive approach and focus
more on other behavioral observations.

she was “scan[ning] other players” to predict the ball receiver at
the next pass while keeping an eye on the player with the ball,
leading to a heavy cognitive load. In contrast, the die-hard fans
scanned through the players much more predictively and often
could directly identify the next ball receiver.

C2: Casual fans are confused about the in-game decisions of play-
ers. The casual fans could hardly understand the in-game decisions
of the players, since the situated factors (e.g., players’ abilities)
behind these decisions were hard to interpret from the videos. Con-
sequently, the casual fans could not appreciate the game at the same
deep level as die-hard fans and had difculties keeping pace with
their experienced friends. This was also revealed in the think-aloud
data of the participants. When watching the two videos, the most
frequent verbal comments from the casual fans were interjections,
e.g., “Oops”, “Wooooow!” Even in the follow-up review session, ca-
sual fans could hardly describe their thoughts while watching the
games. P3 acknowledged that she sometimes actually “didn’t totally
understand” what was going on but just felt excited. By contrast,
the die-hard fans could clearly elaborate, comment on, and even
suggest players’ tactics when watching the games. Generally speak-
ing, our study suggested that the experience of watching games for
the casual fans was closer to “feeling” while the experience for the
die-hard fans was closer to “reading”.

C3: Casual fans have trouble seeking customized data while watch-
ing game videos. All the casual fans never searched the internet
to seek data to resolve their confusion when watching the games.
This was because the games were so fast and overwhelming that
they could miss key events when looking up websites. Additionally,
the casual fans sometimes could not search for a player’s data be-
cause they did not know the player’s name. In contrast, the die-hard
fans would search websites (e.g., ESPN) when watching the games,
though they also complained about the context switching between
the games and the webpages. According to the casual fans, perhaps
the best way to seek information about game understanding was
to “ask my [experienced] friends.” (P2) Otherwise, they would just
“let it [the confusions] go.”

3.2.2 Die-hard Fans’ Suggestions for Understanding Basket-
ball Games

Since casual fans preferred to “ask experienced friends” to seek
information, we were interested in what information die-hard fans
suggest for understanding a live basketball game. Several critical
insights were suggested by die-hard fans:

Distinguishing between ofense and defense. Basketball, from a
certain perspective, is a turn-based game. A basketball game con-
sists of multiple possessions (i.e., turns), in which the team that
has possession of the ball is on ofense, and the other team is on
defense. A player can have completely diferent roles, tactics, and
behaviors between ofense and defense. Being aware of players’
ofense and defense status can help casual fans better understand
and follow the game.

Identifying Key Players. While basketball is a team sport, the
importance of each player, especially when she/he is on ofense,
is diferent. Generally speaking, on the ofensive side, the player
with the ball and the ball receiver at the next pass are the most
important ones. Players with open spaces are also critical to the
ofensive team as they have a higher chance of making the goal. On
the defensive side, all the defenders guarding the player with the
ball are important. By identifying these key players, the die-hard
fans could watch the game more efectively and predictably. In
addition to the aforementioned key players, we also discussed other
players with the die-hard fans, such as ofensive helpers who play
screens. Overall, they suggested not helping casual fans identify
these players, as their contributions to the possession outcome (e.g.,
a goal) are not explicit and thus can confuse casual fans.

Understanding In-game Decisions. Knowing players’ ofensive
and defensive abilities is essential to understanding their in-game
decisions. The die-hard fans suggested two metrics to help casual
fans understand the players’ abilities. For ofensive players, we can
present their location-based expected point value, which measures
how many points a player is expected to make if they shoot at
a specifc location. For defensive players, we can present their
location-based percentage points diference, which measures how
much the feld goal percentage of a player changes when being
defended by the defensive player. Both metrics can be calculated
or directly obtained by using the data from the Ofcial NBA Stats
website [5]. The die-hard fans also suggested visualizing the one-on-
one relationships between ofensive and defensive players, which
can reveal interactions between the players and their tactics (e.g.,
defensive switching).

3.3 Summary
In summary, the casual fans were often confused about the key
players and their in-game decisions, but rarely sought data to re-
solve their confusion because the searching process is slow and
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Table 2: Three design requirements for assisting casual fans
in game watching derived from the formative study.

Findings Design Requirements

C1: Casual fans are unsure
about which players they
should focus on.

R1: Guide the user’s attention
to the important ofensive and
defensive players. (Sec. 5.1)

C2: Casual fans are confused
about the in-game decisions of
players.

R2: Visualize players’ ofen-
sive and defensive abilities.
(Sec. 5.2)

C3: Casual fans have trouble
seeking customized data while
watching game videos.

R3: Provide a fast and seam-
less method to retrieve data of
interest. (Sec. 5.3)

distracting. To help casual fans better understand the game, the die-
hard fans suggested a few critical insights, including distinguishing
between ofense and defense, identifying key players, and under-
standing players’ in-game decisions. By interpreting these fndings
and suggestions, we derived three design requirements (Table 2)
and designed iBall. Next, we frst introduce a CV pipeline (Sec. 4)
to enable iBall, followed by a set of gaze-moderated embedded
visualizations (Sec. 5).

4 A CV PIPELINE FOR EMBEDDING
VISUALIZATIONS

To embed visualizations into a basketball video, we need to recog-
nize the players (e.g., bounding box, identity, and key points) and
segment them from the background. To this end, we designed a CV
pipeline (Fig. 4) to pre-process team sports videos.

4.1 Recognizing the Players
To embed visualizations for a player, one must frst recognize the
player in the video. For example, to display a label with the name of a
player, the system needs to detect the video object that corresponds
to the player (bounding box and identity) and the player’s key body
joints (key points) for placing the label. Given a raw video frame,
we obtain this information for each player via three steps:

Step 1. Player Detection (Fig. 4a). To obtain the players’ bound-
ing boxes and identities in a video frame, we use an object detection
model to locate and classify each player into diferent categories.
Diferent from common object detection tasks, we use the players’
identities as their categories. In our implementation, we fne-tuned a
COCO [13] pretrained YoLoX [27] model on an NBA player dataset
(details in Appendix A). The output of the model is a set of bound-
ing boxes associated with their identities and confdence scores
(i.e., 𝑠𝑐𝑜𝑟𝑒𝑐 ). By convention, only those bounding boxes with 𝑠𝑐𝑜𝑟𝑒𝑐
greater than a threshold 𝑇ℎ𝑖𝑔ℎ are considered successful detections.

Step 2. Post-Processing (Fig. 4b). One limitation of the object
detector is that it only utilizes the players’ visual appearance in-
formation to determine their confdence score. Consequently, the
detector can assign low confdence scores to players whose visual
qualities are low (e.g., when they are occluded by others) and flter
them out. We thus use object trackers to exploit the players’ motion
information to complement the detector. An object tracker stores
the history of an object’s bounding boxes in the previous frames
and can predict the object’s bounding box in the next frame by
using a Kalman flter. We use object trackers as follows:

(1) For a frame 𝐹𝑡 , we divide all the detected bounding boxes
into three clusters based on their 𝑠𝑐𝑜𝑟𝑒𝑐 : high-quality boxes
(𝑠𝑐𝑜𝑟𝑒𝑐 > 𝑇ℎ𝑖𝑔ℎ), low-quality boxes (𝑇𝑙𝑜𝑤 < 𝑠𝑐𝑜𝑟𝑒𝑐 < 𝑇ℎ𝑖𝑔ℎ),
and rejected boxes (𝑠𝑐𝑜𝑟𝑒𝑐 < 𝑇𝑙𝑜𝑤 ).

(2) For each high-quality box, we match it with the trackers in
the previous frame 𝐹𝑡−1 by calculating the Intersection over
Union (IoU) between the box and the predicted boxes of the
trackers. A tracker is considered as matched with the high-
quality box if it maximizes the IoU. If matching is successful,
we assign the matched tracker to the box; otherwise, we
initialize a new object tracker for the box.

(3) For each low-quality box, we match it with the remaining
trackers (i.e., those that have not been matched with any
high-quality boxes). If matching is successful, we assign the
matched tracker to the box.

(4) Finally, we output all the boxes with matched trackers.

Raw Footage

Foreground

Background
Augmented Video

Semantic Segmentation

Pose Estimation

CV Processing Pipeline

Visualization

Gaze-moderated Embedded Vis

Gaze Data

Game Data

c

Player Detection

Post-Processing

Interpolator

Tracker

a

d

b

Figure 4: Our CV pipeline takes a raw video as the input, outputs the bounding box, identity, and key points of each player,
and separates the image frame into the foreground (humans) and background (all others). The bounding boxes, identities,
and key points are used to create visualizations, which are then composited with the foreground and background to form the
augmented video.
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Intuitively, this method uses the motion information of the players 
to select some low-quality bounding boxes to complement the 
output of the detector. We refer the readers to Bot-SORT [7] for 
more details about the tracker and the matching process. 

Step 3. Pose Estimation (Fig. 4c). We use a pose estimation 
model to obtain the players’ key points, such as head, hands, hip, 
and feet. In our implementation, we frst used the bounding boxes 
produced in Step. 2 to extract the players from the video frame and 
then fed those boxes to ViTPose [79] to estimate the key points. 

4.2 Separating Foreground and Background 
According to previous works [16, 41], embedded visualizations 
for sports, such as empty areas, are often placed on the ground, 
beneath the players’ feet. To achieve this, we need to separate 
the video frame into the foreground (the objects on the ground) 
and background (the ground), draw the visualizations onto the 
background, and fnally overlay the foreground on the background 
to form an augmented video frame (Fig. 4d). Ideally, all the objects 
should be segmented from the ground. To simplify the segmentation 
process, we decided to only segment humans from the video as 
the foreground and leave the remaining pixels as the background, 
as humans are the major objects on the ground in a basketball 
video. In our implementation, we used a ViT-Adapter [14] trained 
on COCO 164K [13] to perform binary semantic segmentation to 
segment the humans. 

4.3 Computational Evaluation 
To evaluate the performance of our pipeline, we conducted several 
experiments focused on three main questions: 1) Can the object de-
tector detect the players?; 2) Can the post-processing step improve 
the detections?; 3) How much time does each step take? To answer 
these three questions, we manually annotated the bounding box 
and identity of each player in each frame of the two game videos 
used in Sec. 3 (i.e., G1 and G2). We then split each video into clips 
and allocated 70% for training and 30% for testing. To accelerate the 
training process, we sampled every tenth frame from the training 
clips and used only these frames for training. This is because the 
consecutive frames often contain redundant information. Despite 
this, the testing was conducted on all frames in the testing clips. 
The details of the dataset can be found in Appendix A. We trained 
and evaluated the detector on G1 and G2 separately, using their 
default hyperparameters whenever possible. 

We did not evaluate the accuracy of the Pose Estimation and 
Semantic Segmentation steps because we used of-the-shelf models 
for their standard tasks without any fne-tuning in these two steps. 
Yet, their performance for basketball videos can be qualitatively 
evaluated by inspecting the augmented videos provided in the 
supplemental material. 

Table. 3 shows the performance of our fne-tuned object detector 
on the testing clips of G1 and G2. To access the detector, we followed 
the convention to calculate the Average Precision (AP) metrics over 
diferent IoUs. The higher the AP, the better it is. ��50:95 is the 
average AP over diferent IoU, from 0.5 to 0.95 with step 0.05. ��50 
and ��75 are the APs calculated at IoU 0.5 and 0.75, respectively. 
The larger the IoU, the stricter the metric will be. Overall, the 
results reveal that our fne-tuned object detector can perform well in 

Table 3: Average Precision of the Player Detection and Post-
processing steps. 

Dataset Step AP50:95 AP50 AP75 

G1 Player Detection 
Post-Processing 

65.4 
69.2 (+3.8) 

83.6 
87.9 (+4.3) 

76.2 
79.4 (+3.2) 

G2 Player Detection 
Post-Processing 

70.7 
75.0 (+4.3) 

86.1 
90.0 (+3.9) 

82.3 
85.3 (+3.0) 

COCO∗ YoLoX 51.2 69.6 55.7 
∗Due to the lack of benchmarks, we provide YoloX’s performances on COCO as a 
reference. However, it does not serve as a comparative baseline. 

detecting players. Furthermore, all the APs increase after applying 
the post-processing step, which shows that the post-processing step 
is useful and can complement the detector to improve its results. 

Table 4: Time cost of each step. 

Step Time (ms) 

Player Detection 31.98 
Post-Processing 2.40 
Pose Estimation 121.00 
Semantic Seg.∗ 3674.96 
∗Semantic Segmentation can run in parallel with other steps. 

In terms of time performance, Table. 4 shows the average time 
in milliseconds (ms) each step takes to process a video frame. We 
tested the pipeline on a machine with a Nvidia Tesla V100 graphic 
card and only counted the inference time of the models by excluding 
the model and dataset loading time. Overall, the Player Detection 
and Post-processing steps use 34ms for one frame, almost achieving 
30FPS. Other steps, especially the Semantic Segmentation step, need 
longer to process one frame. These results show that the semantic 
segmentation model we used is the bottleneck for extending the 
pipeline to support real-time scenarios. 

4.4 Extendibility, Generalizability, and 
Limitations 

The contribution of our pipeline does not lie in the individual com-
ponents but a workable solution that shows which CV models are 
required and how they can be composited together to process bas-
ketball videos for the purpose of embedding visualizations into 
videos. To inspire future research, we further discuss the extendibil-
ity, generalizability and limitations of the pipeline: 

Extendibility. Our pipeline can be extended for better perfor-
mance. To improve the accuracy, we can try using better models or 
adding extra components to the post-processing step to improve 
the detections. For example, in our implementation, we further 
interpolated and smoothed the bounding boxes for the user study. 
To improve the efciency, we can use faster models, more pow-
erful graphic cards, or remove the Semantic Segmentation step if 
visualizations on the ground are not needed. Overall, our pipeline 
can serve as a reference for other researchers to develop their own 
systems for their specifc scenarios, videos, and tasks. 

Generalizability. The CV pipeline can be applied to other basket-
ball videos and even other team sports videos. For example, there 
are about 450 players in the NBA [49]. To generalize the pipeline 
to other NBA game videos, we need to develop a player dataset of 



CHI ’23, April 23–28, 2023, Hamburg, Germany Zhutian Chen, Qisen Yang, Jerry Shan, Tica Lin, Johanna Beyer, Haijun Xia, and Hanspeter Pfister 

these 450 players to fne-tune the detector. Note that it is not nec-
essary to develop a player dataset for each video. Our experiments 
showed that the detector could detect players on unseen testing 
clips even if it was trained only on the training clips. If the player 
dataset is large enough, the detector fne-tuned on it can be applied 
to any NBA game video. This is not impossible as modern deep 
learning-based image classifers can achieve superhuman perfor-
mance on tasks with more than 1000 classes [82] and many priors 
can be used to optimize the model results, e.g., there are no more 
than 24 players in a game. 

Limitations. The pipeline and the evaluation have a few limita-
tions. First, as shown in Table. 4, the processing time of our pipeline 
for one frame is about 4 seconds. While the Semantic Segmentation 
step can run in parallel with others, our implementation can only 
pre-process the game videos instead of running in real-time. Second, 
our pipeline only extracts 2D information from the video, limiting 
the design space of available embedded visualizations. For example, 
without the camera parameters, we cannot display visualizations 
that are static relative to the ground, such as trajectories. In reality, 
the camera parameters can be provided by the producer of the video 
or estimated using camera calibration techniques (e.g., [34, 61]). In 
our implementation, similar to prior research [15, 16], we treated 
the camera parameters as partially known meta information to 
display visualizations that are static relative to the players. Third, 
we only evaluated the pipeline on G1 and G2. A larger video dataset 
with more ground truth labels is required to fully test the pipeline. 
We consider developing such a sports video dataset beyond the 
scope of this work and leave it for the future. 

5 GAZE-MODERATED EMBEDDED 
VISUALIZATIONS 

Based on the identifed design requirements from the formative 
study, we designed a set of gaze interactions that can naturally guide 
and respond to the user’s attention through gaze tracking without 
explicit user input. Our gaze-moderated embedded visualizations 
1) guide audiences’ attention and 2) reveal players’ ofensive and 

defensive abilities and 3) update the embedded visualizations based 
on gaze. The system fow is shown in Fig. 5a-c. 

5.1 Guiding Audiences’ Attention 
To help casual fans identify the important players (R1), we frst 
ranked the players’ importance levels according to die-hard fans’ 
suggestions and then highlighted the players accordingly. 

5.1.1 Ranking Players’ Importance Levels 
Based on the formative study, we adopted an ofensive-frst method 
to rank the players’ importance into three levels: 
Lv3 - Key ofensive players: The player with the ball, the next 

ball receiver, and the players with open spaces are consid-
ered as the most important ofensive players. When pre-
processing the game videos, we used positional tracking 
data [67] to identify which players had the ball or were with 
open spaces in each frame. Meanwhile, we looked ahead 1.8 
seconds (selected empirically) to fnd the next ball receiver. 
To extend our system to livestream scenarios in the future, 
potential approaches could be to use machine learning mod-
els [60] or the bufer time in video streaming to detect the 
next ball receiver. 

Lv2 - Key defensive players: The players who are defending the 
player with the ball are considered as the important defend-
ers. In our implementation, inspired by previous work [72], 
we detect important defenders by checking which defenders 
were closest to the player with the ball within a time interval. 

Lv1 - Other players: All other players who do not belong to Lv3 
and Lv2 fall into this level. 

To detect if a player is in ofense or defense, we also used the po-
sitions of the players and the ball. If a player or one of her/his 
teammates is the closest player to the ball within a predefned time 
interval (0.5s in our implementation), she/he is in ofense; otherwise, 
in defense. Note that we deliberately ignored some important play-
ers, such as those who play screens or specifc tactics, since casual 
fans usually cannot understand why these players are important. 

Rank Player Importance Visualize Importance

Gaze Focus Gaze Filter

Visualization

Gaze-moderated Embedded Vis

Raw Footage

Tracking 
Data

Game Data

Visualize Ability

CV Processing Pipeline

Historical 
Stats

Foreground / Background

a

b

c

Measure Player Ability

Figure 5: The system takes positional tracking data and historical stats as input to calculate the players’ importance and 
ofensive and defensive abilities. Only the important players and their ofensive and defensive abilities will be highlighted 
and visualized in the video. The user can use gaze points to adjust the players’ importance levels, as well as controlling whose 
abilities to show. 
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Lv1 Lv2 Lv2.5 Lv3 PaulPaul

Figure 6: Visualization of various importance levels: Lv3, key ofensive players, highlighted by a sportlight; Lv2.5, players of 
interest to the user, triggered by Gaze Focus, highlighted by a glowing efect (will be introduced in Sec. 5.3); Lv2, key defensive 
players, highlighted by extra brightness; Lv1, other players, no highlighting. 

5.1.2 Visualizing Importance Levels 
We designed multiple highlight efects to guide user attention to 
players at diferent importance levels (Fig. 6). We considered the 
efectiveness and aesthetics of the visualizations and iterate our 
designs to make them intuitive and distinguishable, i.e., the one for 
a higher importance level is more attractive. We displayed the name 
of players with importance levels greater than Lv2. We also colored 
the name of “star” players in gold with an icon showing their roles 
(i.e., for good shooter and for good defender). Furthermore, 
Lv3 spotlight encodes the diferent ofense roles with color, green for 
players with open space and white for other key ofensive players. 

5.2 Revealing Players’ Abilities 
To help casual fans understand the players’ abilities (R2), we com-
puted and visualized two location-based metrics of the players 
whose attention level is higher than Lv1 (Fig. 5b). 

5.2.1 Measuring Players’ Ofensive and Defensive Abilities 
We used two well-established metrics to indicate the players’ ofen-
sive and defensive abilities: 

• Ofense - Expected Point Value (EPV) measures how 
many points a player is expected to make if he/she shoots 
from the current position. In basketball, it is a value between 
0 and 3. Fundamentally, the goal of ofensive tactics in bas-
ketball games is to maximize the EPV of the shooter. Thus, 
visualizing the EPV can help casual fans better understand 
and evaluate the in-game decisions of ofensive players (e.g., 
pass or shoot). We obtained the EPV for each player based 
on their historical shot records. Specifcally, we created a 
hexbin shot chart [71] for each player based on their histori-
cal shot records, in which the bins are grouped based on the 
shooting regions (defned by Ofcial NBA Stats [5]). We then 
calculated the EPV per region by multiplying the player’s 
feld goal percentage and points they can make in the region. 
The results were cached as an EPV map for efcient access 
in each frame. Figure 7 shows an example EPV map. 

• Defense - Percentage Points Diference (DIFF%) is a 
measure of a defender’s ability to afect a shooter’s shot 
percentage. Good defenders will have a negative DIFF% since 
they hold their opponent to a lower percentage than normal. 
For example, Stephen Curry’s DIFF% is −3.6%, which means 
on average, a shooter’s shot percentage will decease by 3.6% 
when being guarded by Curry. We acquired DIFF% by regions 

Figure 7: An EPV map of Stephen Curry based on his shooting 
records in the 2015-16 season. A darker color indicates a 
higher EPV. 

for each player directly from NBA Stats [5]. Besides DIFF%, 
the distance between a defender and the ofensive player 
with the ball (DIST) is critical to the defensive performance. 
We calculated DIST based on the positional tracking data. 

5.2.2 Visualizing Players’ Ofensive and Defensive Abilities 
Grounded in the design space proposed by prior work [41], we 
designed three embedded visualizations to present the ofensive 
(EPV) metric, defensive (DIFF% and DIST) metric, and the one-on-
one relationship between the defenders and the ofensive player 
with the ball: 

• Ofense Ring (Fig. 8a) presents the player’s location-based 
EPV, where a larger ring with darker color indicates better 
ofensive ability. The inner and outer rings represent the 
minimum and maximum of possible EPV (i.e., 0 and 3). We 
used both the size and color of the middle ring to encode the 
player’s EPV at the current position for easier interpretation. 

• Defense Shield (Fig. 8b) represents the defender’s location-
based DIFF% and DIST in an arc shape, where a thicker and 
longer arc indicates better defensive ability. The thickness of 
the “shield” encodes the inverse DIFF% (a negative value) to 
make the visualization intuitive. The arc length of the “shield” 
encodes the subtraction of DIST from maximum guarding 
distance, since a larger DIST indicates lower pressure from 
the defender to the player with the ball. We displayed an 
outer border of the “shield” to show the maximal guarding 
distance (empirically selected as 12 feet) for comparison. 
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Figure 8: Three embedded visualizations for in-game data: a) Ofense Ring shows the ofensive performance of an ofensive 
player. The darker, larger, the better. b) Defense Shield shows the defensive performance of the defender. The thicker, longer, 
the better. c) One-on-one Line shows the one-on-one relationship between the ofensive player with the ball and the defenders. 

• One-on-one Line (Fig. 8c) visualize the one-on-one rela-
tionship between the key defenders and the ofensive player 
with the ball. The player with the ball can be defended by 
multiple defenders. 

All these three visualizations are updated dynamically in the game 
based on the players’ positions. We also darkened the background 
image to provide enough contrast for reading the visualizations. 

5.2.3 Design Process and Alternatives 
We fnalized our designs through multiple rounds of iterations, es-
pecially for Ofense Ring. Two considerations mainly drove our de-
cision to use a ring placed on the ground — the visualization should 
1) tightly connect with the target player and 2) avoid occluding 
other objects. Similar designs were used in previous research [41] 
and basketball video games [50]. Figure. 9a-c show some alternative 
designs we explored but none of them were satisfactory. 

When designing the visual encoding of Ofense Ring, we frst 
used the size of the ring to encode a player’s shooting frequency 
and a divergent color scale to encode the player’s EPV, with the 

league average EPV as the midpoint. Figure. 9d shows an EPV map 
we created based on this encoding schema. However, in a pilot 
study, we found that this encoding schema was too complex to 
interpret for casual fans. For example, when the size of the ring is 
small (low shooting frequency) but the color is dark blue (high EPV), 
casual fans cannot judge if this is a good chance for the player to 
shoot or not. Thus, we decided to remove the encoding of shooting 
frequency and use both size and color to encode EPV. However, this 
could still be confusing as the size scale is sequential but the color 
scale is divergent. Consequently, we decided to use a sequential 
color scale instead of a conventional divergent one. This design was 
found to be easy to understand with clear messages (i.e., the bigger 
and darker, the better) to improve game understanding for casual 
fans. Diferent design decisions could be made for other purposes 
or fans, e.g., for analytic purposes or die-hard fans [41]. 

5.3 Gaze-based Interactions 
To help casual fans seamlessly and efciently access data of players 
they are interested in while watching the game (R3), we explored 

a b c d

Figure 9: Left: Three design alternatives for Ofense Ring. a) Displaying the data on top of the player can occlude other players. 
b) Moving the visualization higher (e.g., the design in CourtVision [19]) can make it hard to connect to the target player. 
c) Displaying the data aside of the players (e.g., the shot meter in NBA 2K [50]) can also occlude other players. Right: An 
experimental EPV map of Steven Curry encodes his shooting frequency and EPV by using the size and divergent color scale. 
Diferent from Fig. 7, the bins in this EPV map are not grouped by regions. 
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Gaze-Filter downgrades a player from Lv3 to Lv1

The user’s gaze
Gaze-Focus upgrades a player from Lv1 to Lv2.5a

b

Figure 10: Two gaze interactions to adjust the embedded visualizations: a) Gaze Focus lifts the importance level and shows 
in-game data of players that are of interest to the user. b) Gaze Filter drops the importance level of video objects who are not 
the user’s focus (e.g., open players and audiences out of focus). 

using gaze as an input signal and designed two gaze interactions 
(Fig. 5c). The fans can still be guided by the visualizations to identify 
important ofensive players. 

5.3.1 Gaze Focus – Fetching Data of Players of Interest to the 
User 

Gaze Focus allows the user to express their interests in players 
through gaze dwelling, which lifts the importance level of the play-
ers. Gaze Focus comprises the following three considerations: 

• Trigger: According to our formative study, the users’ gaze 
can move rapidly between, and across, players. To avoid 
showing data of players glanced over by the user accidentally, 
we defned a “dwell time” [54] for the interaction. The user 
needs to dwell her/his gaze on a player for 0.25 seconds to 
trigger the interaction. 

• Visual feedback: To help the user realize that she/he is 
gazing at a player and triggering the interaction, we designed 
a highlight efect (Fig. 6c) in which the glow of the player will 
gradually increase when the user is gazing at the player, until 
the interaction is triggered. This design provides continuous 
visual feedback for the user while conforming with the visual 
design of importance levels. 

• Outcome: Once the user triggers the interaction, iBall lifts 
the targeted player to Lv2.5 if she/he is currently at a lower 
level (Fig. 10a). As a result, the system will also visualize the 
name and ofensive or defensive data of the player. Lastly, 
when the user moves her/his gaze away from the player, 
the player will stay in Lv2.5 for 1.8s (selected empirically) 
before reverting to their original player importance level. 
We designed such a lasting duration to cope with the users’ 
rapid saccade in game watching. 

5.3.2 Gaze Filter – De-emphasizing Video Objects Out of the 
Sight 

To prevent users from being overwhelmed by too many Lv3 players, 
we designed Gaze Filter to turn of the green spotlights of open 
players beyond a pre-defned flter radius. Gaze Filter incorporates 
three considerations: 

• Trigger: Generally speaking, the system should always avoid 
overwhelming the user. Thus, Gaze Filter is consistently trig-
gered and updated when the user moves his/her gaze. It 
centers at the user’s gaze point with a flter radius of 650px 
(empirically selected). 

• Visual feedback: To indicate the user that the interaction 
is being triggered, we designed a radial blurring efect that 
darkens the audience outside the flter radius and updates 
dynamically. We smooth the movement of the radial blurring 
efect to prevent it from abruptly changing location due to 
the user’s saccade. Note that the blurring efect will not be 
applied to players and the court to ensure their readability. 
This visual feedback can notify the user about the existence 
of the interaction while also creating a theater mode that 
helps the user to focus on and engage with the game. 

• Outcome: The green spotlights, which are used to highlight 
ofensive players with open spaces, outside the flter radius 
will be turned of (Fig. 10b). An ease-in-out efect is applied 
to the change. 

6 USER STUDY 
To assess the usefulness, usability, and engagement of using our 
gaze-moderated embedded visualizations in watching basketball 
videos, we conducted a comparative study between three modes – 
watch with raw footage (RAW), with solely embedded visualizations 
(AUG), and with gaze-moderated embedded visualizations (FULL). 
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6.1 Study Setup 
6.1.1 Participants and Apparatus 
We recruited 16 casual fans (F1-F16; M = 10, F = 6; Age: 18 - 35) 
through university mailing lists and forums after screening for their 
fandom levels and basketball knowledge. All participants watched 
“less than 10 games per year” and only “know the basic rules” of 
basketball. All participants had not participated in our formative 
study. The study was conducted in the lab with a 24-inch monitor. 
We followed the same ergonomic settings in the formative study 
but changed to use a Tobii eye tracker 5 (133Hz) [74] for more 
accurate gaze interactions. The study took about one hour and each 
participant was compensated with a $20 gift card. 

6.1.2 Design and Procedure 
The study consisted of two tasks, namely, Task1 - RAW vs. AUG, 
and Task2 - AUG vs. FULL. Each task compared two modes. For 
each task, we used a game video from the formative study and 
evenly split it into two video clips (each lasting around 4.5 minutes) 
for each mode. The videos and the order of modes in each task 
were counterbalanced across participants. Each session included 
the following phases: 

Phase 1. Introduction (10mins). The study started with an intro-
duction of the research motivation, the purpose of the study, and the 
protocol. After the participant signed a consent form, we conducted 
a warm-up interview about basketball game-watching experiences. 

Phase 2. Comparative Tasks (40mins). We asked participants to 
fnish two comparative tasks (each lasted 20 mins): In Task1 -RAW 
vs. AUG, the participants watched two video clips in RAW and AUG 
modes, respectively. Before AUG mode, we conducted a training 
session to walk the participant through the four embedded visual-
izations in a separate video (about 20 seconds). We only proceeded 
to the task when participants were clear and confdent enough to 
use the embedded visualizations. In Task2 - AUG vs. FULL, the 
participants watched another two video clips in AUG and FULL 
mode, respectively. Again, a training session was conducted before 
starting FULL mode to ensure the participant were confdent to 
use the gaze interactions. Participants were encouraged to think 
aloud about their game observations when watching the videos. At 
the end of each video clip, we performed a post-video interview to 
collect the participants’ feedback on the mode they had just experi-
enced. At the end of each task, participants flled out a post-task 
questionnaire to rate their experiences. 

Phase 3. Post-study Questionnaire (10mins). We asked participants 
to complete a post-study questionnaire of their subjective ratings 
on the overall system, rank the three modes, and provide feedback 
on the entire system. 

6.1.3 Measures 
We collected quantitative measurements of user subjective ratings 
in the post-task and post-study questionnaires. At the end of each 
task, participants were asked to rate the usefulness, engagement, 
and usability of the features they had just experienced, including 
the four visualizations (i.e., Player Highlight, Ofense Ring, Defense 
Shield, and One-on-one Line) in Task1 and the two gaze interac-
tions (i.e., Gaze Focus and Gaze Filter) in Task2, on a 7-point Likert 
scale. In the post-study questionnaires, we asked participants to 
rate the overall system on fve questions about system usefulness 
and engagement [52] and ranked the three modes. 

6.2 Study Results 
We frst report the ratings of the overall system and the rankings 
of the three modes, and then discuss the feedback on the useful-
ness, engagement, and usability of individual visualizations and 
interactions. 

6.2.1 The overall user experience of iBall was predominantly 
positive, with FULL being most preferred 

Figure 11 left shows that the majority rated iBall as “helpful” and 
“fun”, felt “in control” and “encouraged” when using the system, and 
were “likely to use” it for watching basketball games. Figure 11 right 
presents the rankings of the three modes, showing that FULL was 
the most preferred mode by 12 participants, followed by AUG by 
4 and RAW by none. The four participants who didn’t rank FULL 
as the best were mainly concerned about the blurring efect of the 
audience in Gaze Filter, stating that a game video without audiences 
seemed abnormal. However, they agreed that the fltering of open 
players (highlighted in green) was useful. Thus, the system should 
allow users to turn of the blurring efect. 

6.2.2 Embedded visualizations are more useful if they are 
more atractive and informative 

Participants rated positively on the usefulness of each visualization 
(Fig. 12a). Among the four embedded visualizations, Player High-
light was considered to be the most useful in “predicting the ball 
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Figure 11: Left: Ratings on the overall system. Right: Rankings of diferent modes, i.e., RAW – watch with raw footage, AUG – 
watch with embedded visualizations solely, FULL – watch with gaze interaction and embedded visualizations. 
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Figure 12: Ratings on the usefulness, engagement, and usability of the embedded visualizations and gaze interactions in iBall.

receiver” at the next pass, “highlighting the open players”, and thus
“making the game much clearer”, as mentioned by the participants.

Participants also rated Ofense Ring and Defense Shield as useful
to understand players’ in-game decisions. For example, F8 thought
that Ofense Ring could “help me expect when he’s gonna shoot. Oth-
erwise, it’s just like this person can shoot anytime.” ; F3 commented
that Defense Shield clearly showed “who’s able to defend” and ex-
plained why “James can easily score on Iguodala”. However, some
participants found them less useful since the visualizations were
placed on the ground, diferent from the ball at hand-height, and
thus often hard to notice in a tense game. Nevertheless, most of
the participants agreed that “it was nice to have” Ofense Ring and
Defense Shield in the system.

One-on-one Line was controversial in terms of usefulness. Some
participants considered it helpful “to follow the game and to see who
was involved [in defending]” (F6) while others felt it sufers from the
same limitations as Ofense Ring and Defense Shield (i.e., cannot be
noticed) with less useful information that was already “clear from
the video.” (F1)

6.2.3 Gaze interactions are useful as they satisfy audiences’
personal information and cognitive needs

Both Gaze Focus and Gaze Filter received very positive ratings
regarding usefulness (Fig. 12a). All participants enjoyed using Gaze
Focus as it could help them immediately “know the name of the
player [who I am looking at]” with simple and efective interaction.
Gaze Filter also improved the game understanding of participants
as it could “make the scene tidier” (F2) and “focus the information on
what I’m looking [at].” (F4)

6.2.4 Embedded visualizations are engaging since they pro-
vide a deeper epistemic pleasure

The participants felt that the embedded visualizations were engag-
ing (Fig. 12b) since they could help them “understand and follow the
game”. This is also refected in the positive relationship between
the usefulness and engagement of the embedded visualizations –
the more useful, the more engaging. For example, F1 commented
that “it is nice to know who the star players are because otherwise,
they all look like regular players to me.” F5 remarked that he “always
tried to predict the receiver of a pass but always failed.” With the vi-
sualizations, he felt much more confdent in predicting the receiver
and felt quite a sense of accomplishment whenever he was correct.

6.2.5 Gaze interactions are engaging since they promote proac-
tive game viewing experiences

Gaze interactions are also engaging (Fig. 12b) since they make the
passive watching experience interactive and proactive. F2 said when
the video scene responded to her gaze, she felt that she was “a part
of the game.” F4 particularly enjoyed using the gaze interactions,
which made him “almost feel like I’m there.” Moreover, participants
provided that using the gaze interactions was “natural” and would
not add further cognitive cost to the game watching since “you
can actively control it ... you don’t have to [use it]” (F5). Overall, the
participants’ feedback provides a strong hint that the engagement of
watching sports videos can be improved if video content responds
to the audience’s gaze.

6.2.6 The gaze-moderated embedded visualizations are easy
to understand and use

All participants confrmed the usability of the embedded visualiza-
tions and gaze interactions in iBall (Fig. 12c). They thought both
the visualizations and gaze interactions were “easy to understand”
and “use”. We noticed that while some participants thought that
One-on-one Line was not that useful, they still agreed that it was
easy to understand.

6.3 Implications for Designing Gaze-moderated
Embedded Visualizations

We now discuss the design implications we learned from the feed-
back and observations in the user study.

6.3.1 Visual atention maters when designing embedded vi-
sualizations

Instead of being overwhelmed by the embedded visualizations,
some participants sometimes even could not notice several of them.
This may be due to a phenomenon known as Inattentional Blind-
ness [33], in which viewers can fail to perceive visually salient
objects or activities. This fnding implies that designers should
consider how to properly direct the user’s attention when
designing embedded visualizations to efectively convey infor-
mation and avoid overwhelming the user. For instance, F5 sug-
gested that we should highlight Ofense Ring, instead of players, to
help audiences efciently identify the player with the highest EPV;
Highlighting visualizations that are linked to immediate actions
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can increase the information salience, e.g., highlighting the Ofense 
Ring when a player is about to shoot. 

6.3.2 Synchronization of seeing and hearing maters when 
designing embedded visualizations 

F4 mentioned that he paid less attention to the commentaries in 
AUG mode but listened to them more carefully in RAW mode, which 
implied that the embedded visualizations could “overlay” the com-
mentaries. In FULL mode, several participants reported using gaze 
interactions to search for players mentioned in the commentaries. 
These observations indicate that there is an interaction between 
the participants’ perception of the embedded visualizations and the 
commentaries. Such an interaction between vision and hearing has 
long been identifed (e.g., McGurk efect [73]). This highlights the 
importance of synchronizing the embedded visualizations and 
the commentaries to create a consistent watching experience. 
Some participants suggested leveraging the commentaries to create 
embedded visualizations, as explored in a recent paper [15]. 

6.3.3 Gaze interactions shif the game from explanatory to 
exploratory 

In FULL mode, the participants spent more time using their gaze 
to highlight players, while in AUG mode, participants tended to 
follow the players highlighted by the system. This diference sug-
gests that AUG mode is more explanatory while the addition of 
gaze interactions can shift it towards exploratory. This is not sur-
prising, as the gaze interactions allows the audiences to actively 
explore the game more. When designing gaze interactions for game 
viewing systems or, broadly speaking, any situated visualization 
systems that involve visual guidance, designers must consider the 
ultimate goal of the systems and strike a balance between 
explanatory and exploratory. 

6.3.4 Gaze interactions enable active learning in game watch-
ing 

The gaze interactions can also help audiences learn basketball 
knowledge progressively. For example, Gaze Filter only highlights 
open players with green spotlights when the players are near the 
user’s gaze. F3 used this feature to verify his hypotheses of team 
tactics by moving his gaze to some areas and seeing if the sys-
tem “showed green [highlighting]” there. F15 elaborated that Gaze 
Focus helped him better recognize players by showing the name 
of a player to confrm that he was looking at the right person. 
Such a hypothesis-testing process made the participants feel more 
confdent in interpreting the game. We see this as an interesting op-
portunity to leverage gaze-moderated embedded visualization 
to develop long-term impact for the users beyond improving 
their watching experience within individual games. 

6.3.5 Suggestions 
While the participants generally spoke highly of iBall, they did men-
tion a few limitations related to the system implementations. For 
example, F8 disliked the visual artifacts introduced by the imperfect 
segmentation model; some participants said that Gaze Focus was 
not accurate when the players crowded together. These limitations 
can potentially be resolved with more advanced models or eye 
trackers. The participants also suggested several improvements for 
iBall, such as providing more customization options (e.g., for the 

visualizations and gaze interactions) through a “Preference” panel 
and allowing the visualizations to adapt to the pace of the game 
(e.g., e.g., showing more details in slow-paced and less in fast-paced 
situations). Another point worth mentioning is that a few partici-
pants wished the system could generate play-by-play replays with 
embedded visualizations to explain the game in detail. This could 
be an interesting direction for future research. 

6.4 Feedback from Broader Users 
While iBall is designed for casual fans, we also conducted a follow-
up study with die-hard fans to explore its potential use beyond our 
original target users. We recruited 8 die-hard fans (D1-D8; M = 8; 
Age: 18 - 35), who knew “basketball tactics and pros and cons of 
specifc players” and watched “at least 1 game per week”. No female 
die-hard fan responded to us. We followed the same process as 
in Sec. 6.1 to help the die-hard fans experience our system with 
a focus on collecting feedback on the real-world use of iBall. We 
discuss their major opinions that difered from those of the casual 
fans, as well as how iBall can be further improved. 

6.4.1 iBall can improve game understanding and engagement 
for die-hard fans 

All die-hard fans confrmed the usefulness of iBall in watching 
basketball videos. Unlike the casual fans (F1-F16), the die-hard fans 
could gain a deeper understanding of the game with the embed-
ded visualizations. For example, they could further recognize the 
ofensive tactics of the team from the highlighted open players. For 
some die-hard fans, the usefulness of iBall extends beyond under-
standing the games. D4 - D7, for example, were basketball players 
themselves and believed that iBall could help them improve their 
in-game decisions and tactics. On the other hand, the die-hard fans 
did request extra in-depth data that were currently not supported 
by iBall, such as the trajectories of the players’ of-ball movements. 
Besides game understanding, the die-hard fans also agreed that 
iBall could enhance their engagement in game watching, especially 
the gaze interactions, which gave them a feeling of “participating 
in the game.” (D1) 

6.4.2 Customization is indispensable for the die-hard fans 
The feedback from the die-hard fans indicates that there is no 
one-size-fts-all design that will satisfy everyone. Compared to the 
casual fans, the die-hard fans had more diverse opinions on the 
features. For instance, D5 preferred highlighting fewer open players, 
while D6 preferred highlighting more; D1 thought that showing the 
names could help him learn about unfamiliar players, while some 
participants only cared about the “star” players; D7 and D2 wanted 
more gaze interactions, but D4 found them distracting. While their 
preferences vary, they all agreed that there are valid reasons for 
the diferent design choices and that the best solution is to give 
users the option to customize the system, which is aligned with 
fndings by Lin et al. [41]. One interesting question is how to help 
users efciently express their preferences for customization, as the 
range of possible confgurations can be very large. 

6.4.3 Embedded visualizations do not need to be displayed 
throughout the entire game 

Seven out of 8 die-hard fans thought that they did not need the 
embedded visualizations to be displayed throughout the entire game. 
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They explained that iBall is most useful when players are executing 
the coach’s strategy, such as in the frst two quarters. However, 
when the game is decided by the “star” players’ in-game states and 
improvisations (during crunch time), the embedded visualizations 
may be less useful. In addition, some participants (e.g., D4, D5) felt 
that watching a full game with gaze interactions can be exhausting, 
as they would “keep using the interactions”. This echoes our fnding 
in Sec. 6.3.3 that gaze interactions promote proactive analysis. The 
participants suggested that the system should allow users to decide 
when to display the embedded visualizations. 

6.4.4 Gaze interactions should provide more adaptive data 
for the die-hard fans 

When using the gaze interactions, the die-hard fans wanted more 
adaptive data for diferent teams, players, and game events. For 
example, the retrieved data for the Golden State Warriors could 
focus on teamwork, while the data for the Cleveland Cavaliers could 
emphasize the performance of their “star” players. When gazing two 
“star” players facing of against each other, such as LeBron James vs. 
Steph Curry, the system could display their historical one-on-one 
records. Besides, the data could adapt to specifc game events, such 
as dunking, or the intensity of the game. These suggestions, which 
would require a more intelligent and sophisticated system, are left 
for future research. 

7 DISCUSSIONS 
In this section, we will discuss potential future research directions 
and limitations of our current study. 

Reproducible Environments For Embedded Visualizations 
Research. Compared to traditional web-based visualizations, em-
bedded or situated visualizations are particularly challenging to 
research since the physical context where they are registered in 
is inherently difcult to reproduce, distribute, and benchmark. It 
can be more difcult, or even impossible, to reproduce the physical 
context if it is dynamic (e.g., sports scenarios). This perhaps is the 
major reason why most existing research [41, 80] uses reproducible 
simulated environments (e.g., virtual reality) to study embedded 
visualizations. In this work, we use videos to explore the design of 
interactive embedded visualizations in dynamic, complex scenar-
ios. To advance research in embedded visualizations, we will open 
source our video-based environments (i.e., code and data) so that 
others can reproduce our system and develop their own. 

Gaze Interactions for Embedded Visualizations. In recent 
years, eye-tracking technology has become increasingly afordable. 
Compared to other input modalities such as keyboard, mouse, and 
voice, gaze input can enable fast, intuitive, and implicit interactions. 
In fact, gaze interactions are widely supported in head-mounted 
displays [75] for augmented or virtual reality (AR/VR), which are 
the main scenarios for using embedded visualizations. Our research 
shows that even only using simple gaze data (i.e., the 2D position of 
the gaze point on the screen) can signifcantly increase the useful-
ness and engagement of embedded visualizations. However, gaze 
interactions have their own limitations, such as that they cannot be 
used in multi-viewers scenarios (e.g., TV in living rooms). Besides, 
we have not yet explored using advanced gaze events (e.g., fxation, 
saccade, pursuit) or combining gaze with other input modalities 

(e.g., speech) to achieve more adaptive or customized embedded 
visualizations, which we consider as promising future directions. 

Towards Augmenting Live Game Viewing. In Sec. 4.4, we 
discussed the technical challenges and potential solutions for ex-
tending the CV pipeline to livestreams. Additionally, to support the 
embedded visualizations in livestreams, the system also requires 
real-time tracking data of the players. If this data is unavailable, a 
potential solution is to use camera calibration techniques [34, 61] 
to estimate the camera parameters, which can be used to estimate 
the players’ positions and calculate the ofensive and defensive 
metrics. On the other hand, real-world scenarios also provide addi-
tional resources for improving the system, including videos with a 
higher resolution and framerate, bufer time in streaming, camera 
parameters, and steering from human experts. Thus, we believe our 
system can be extended to live game videos by the broadcasters or 
researchers once these additional resources are available. 

Augmenting Real-world Games Beyond Videos. With the 
development of sensing techniques and AR devices such as head-
mounted displays, it becomes increasingly possible to augment real-
world games with digital information. While our research provides 
a step-stone towards augmenting real-world environments, several 
issues must be taken into account when adopting it to AR, including 
the limited feld of view, the efect of stereoscopy vision and depth 
perception, and the ability to freely change viewing perspective. We 
hope that the lessons learned from the present research can inspire 
and provide a solid foundation for future research on augmenting in-
person game watching scenarios, ultimately generalizing embedded 
visualizations to general real-world environments. 

Study Limitations. Our user study only evaluated the system 
on G1 and G2 rather than videos of entire basketball games. The 
study results, including the ratings and gaze distributions, only 
provide qualitative evidences. The designs of the embedded visual-
izations and gaze interactions in iBall are derived based on the 16 
participants in our formative study. Further explorations are thus 
suggested for diferent scenarios and user groups. 

8 CONCLUSION 
This work explores using gaze-moderated embedded visualizations 
to facilitate game understanding and engagement of casual fans. We 
compared the game-watching behaviors of casual and die-hard fans 
in a formative study to identify the particular pain points of casual 
fans in watching basketball videos. Based on the fndings, we de-
veloped a CV pipeline to support iBall, a basketball video-watching 
system equipped with gaze-moderated embedded visualizations. 
With iBall, casual fans can efectively identify key players, under-
stand their in-game decisions, and personalize the game-viewing 
experiences through natural gaze interactions. We evaluated the 
CV pipeline with computational experiments. A user study with 16 
casual fans confrmed the usefulness, engagement, and usability of 
iBall. We further collected feedback on iBall from 8 die-hard fans. 
The feedback of these 24 participants provides useful suggestions 
to improve iBall and insightful implications for future research in 
interactive embedded visualizations for sports game viewing. 
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Table 5: Statistics for our player dataset. 

Num of Frames Num of Labels 

G1 - train 
G1 - test 
G2 - train 
G2 - test 

9552 
4029 
8312 
3485 

8837 
3596 
6530 
3485 

Zhutian Chen, Qisen Yang, Jerry Shan, Tica Lin, Johanna Beyer, Haijun Xia, and Hanspeter Pfister 

were in the scene. In total, there are 13 and 15 unique IDs (i.e., 
classes) in G1 and G2, respectively. Table. 5 shows an overview 
statistics of our dataset. Table. 6 and Table. 7 provide a detailed 
breakdown of the number of labeled instances the datasets have 
for each class. The frst letter of the class names (except Negative) 
indicates the player’s team (where G = Golden State, C = Cleveland, 
O = Oklahoma City, and L = Los Angeles), and the number that 
follows is the number of the player’s labels. 

Table 6: Number of labeled instances for each player class in G1. 

Class Label # of instances 
G30 12574 
G9 12953 
G23 12404 
C0 12418 
C8 12461 
C23 12354 
G11 11760 
G34 11834 
C4 10629 
C2 6663 
C5 5268 
C13 1508 
G31 643 

Table 7: Number of labeled instances for each player class in G2. 

Class Label # of instances 
O0 10375 
L3 11115 
O9 9761 
O3 9407 
O35 9194 
L6 9774 
L32 9401 
O12 9235 
L1 5576 
L11 5632 
L12 3864 
L4 3632 
O21 653 
L33 642 
O2 506 

We created a dataset for the two videos (G1 and G2) used in our 
formative study. For both videos, we frst removed all transition 
scenes (e.g., replays) since transition scenes typically show close-up 
views of the players and can be noise for the detector. We gathered 
13581 and 11797 frames for G1 and G2, respectively. For each frame, 
we identifed the players with at least half of the body in the scene 
and labeled their bounding boxes with the players’ unique IDs. 
Occluded players were also labeled if at least half of their bodies 
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