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ABSTRACT: Organic electrode materials (OEMs) provide sustainable alter-
natives to conventional electrode materials based on transition metals. However,
the application of OEMs in lithium-ion and redox flow batteries requires either
low or high solubility. Currently, the identification of new OEM candidates relies
on chemical intuition and trial-and-error experimental testing, which is costly and
time intensive. Herein, we develop a simple empirical model that predicts the
solubility of anthraquinones based on functional group identity and substitution
pattern. Within this statistical scaffold, a training set of 18 anthraquinone
derivatives allows us to predict the solubility of 808 quinones. Internal and
external validations show that our model can predict the solubility of
anthraquinones in battery electrolytes within log S ± 0.7, which is a much
higher accuracy than existing solubility models. As a demonstration of the utility
of our approach, we identified several new anthraquinones with low solubilities
and successfully demonstrated their utility experimentally in Li-organic cells.

Because fossil fuels represent the largest source of CO2
emissions, harnessing clean, renewable resources for

energy generation has become a global priority in the effort
to reach net-zero carbon emissions. Due to the intermittent
nature of renewable resources, such as wind, sunlight, and
water, a key challenge in the transition to a clean energy
economy is the development of grid-scale energy storage
systems, such as Li-ion batteries (LIBs)1 or redox flow
batteries (RFBs).2−4 Organic electrode materials (OEMs) are
promising energy storage media in both LIB and RFB systems
due to their high structural diversity and synthetic
tunability.5−7 In practice, however, the vast number of OEM
variants makes it challenging to identify suitable OEMs with
optimal stability, solubility, and redox potentials. Modifications
of functional group identity and substitution patterns can result
in drastic changes in electronic structures, intra- and
intermolecular interactions, and solid-state structure, which
influence the performance of OEMs in nonintuitive ways.
Currently, the identification of new OEMs requires trial-and-

error synthesis and electrochemical testing (Figure 1A), which
are inherently costly and time intensive. To address this issue,
quantum chemical calculation, cheminformatic, and machine
learning approaches8,9 have been developed to predict
physicochemical properties of OEM candidates, such as
redox potentials,10−13 solubility,10,13−15 and stability (Figure
1B).16−19 While the redox potentials of OEMs can be
calculated with high precision (often within 50 mV of the
experimental values), it is still difficult to forecast the solubility
and stability of OEM candidates with reasonable accuracy
(Figure 1B). It is a long-standing challenge to predict the

solubility of organic molecules. Yet, solubility in the electrolyte
is one of the most critical parameters to consider when
designing OEMs for LIB and RFB applications�LIBs require
OEMs with low solubility to prevent redox shuttling, while
RFBs require OEMs with high solubilities to maximize energy
density.
Solubility of an organic solid (S0) is a function of the Gibbs

free energy of dissolution (ΔGdis), which is the sum of
sublimation energy (ΔGsub) and solvation energy for
interactions between solvent and solute (ΔGsol).

20Vm is the
molar volume of the crystal (see Supporting Information).

G G G RT S V2.303 log( )dis sub sol 0 m= + = (1)

Due to a lack of reported crystal structures, estimation of
ΔGsub from first-principles is prohibitively costly; therefore,
ΔGsol is often used as a proxy for intrinsic solubility due to the
ease of calculating solvation energy with quantum chemical
methods.15 However, this approximation leads to poor
accuracy, as shown by the work of Cappillino and Mayes et
al.21 To avoid the first principle calculation of ΔGdis altogether,
classical cheminformatics methods for predicting the solubility
of pharmaceuticals in aqueous environments have also been
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applied to select OEM candidates.10,22 Recently, machine
learning has been applied to predict the solubility of solids in
aqueous23−25 and nonaqueous environments.26,27 However,
the accuracy of these models in battery electrolytes has not
been verified with experimental solubility data. Sigman and
Sanford et al. reported a rare example of an experimentally
validated statistical model that predicts the solubility of
cyclopropenium dications with high accuracy.14 However, the
parametrization of OEM structures requires sampling and
optimization of multiple conformers, making it difficult to
forecast new OEMs at a fast pace.
Herein, we develop a statistical model that predicts the

solubility of OEMs under battery cycling conditions by
considering the influence of functional group identity and
substitution pattern on Gibbs free energy of dissolution
(ΔGdis). We demonstrate its application with anthraquinone
derivatives, a class of redox-active molecules with large
structural diversity (>13 000 with reported syntheses). Within
this statistical model, the experimental solubilities of 18
quinones allow us to predict that of more than 800 quinones
with high confidence without extensive computational
calculations. As a demonstration of the utility of this model,
we identified several new anthraquinone derivatives with low
solubility and successfully demonstrated their utility in Li-
organic cells.
Anthraquinone was chosen as the model compound for this

study due to its reversible redox behavior and extensive
structural diversity. During battery cycling, neutral anthraqui-
none undergoes a reversible two-electron redox to anthraqui-
none radical anion and anthraquinone dianion, providing a
high theoretical energy storage capacity (Scheme 1). Addi-
tionally, the structure of anthraquinone is highly tunable, with
up to eight positions that can be synthetically modified and
over 13,000 possible substitution patterns and functional group
combinations with reported syntheses. This structural
tunability ultimately leads to anthraquinone derivatives with
a wide range of reported solubilities from ca. 0.61 mM to ca. 1

M in dimethoxyethane (DME),28,29 suggesting that statistical
modeling would be instrumental in accelerating the discovery
of promising anthraquinone-based OEM candidates for both
LIBs and RFB applications.
First, we set out to experimentally measure the solubility of

anthraquinone derivatives with a range of functional groups
and substitution patterns. To maintain stable cycling in solid-
state, the anthraquinone-based OEM candidates must remain
insoluble at all redox states. Since the anthraquinone dianion
salt generally has a lower solubility than its neutral counter-
part,30−32 the solubility of the neutral anthraquinone species is
considered the limiting factor for the application of
anthraquinone in solid-state LIBs in this case.30,33 The
experimental solubilities of a set of 38 anthraquinones (Figure
2) with various substitution patterns and functional groups
were measured in a common ether-based battery electrolyte (1
M LiTFSI, 0.2 M LiNO3 in 1:1 DME:DOL) using UV−vis
spectroscopy (see Supporting Information).
With the solubility of a wide range of anthraquinones under

battery cycling conditions in hand, we examined the perform-
ance of previous solubility models derived from the Born−
Haber cycle of a dissolution process (eq 1).34 The relationship
between the intrinsic solubility (S0) of an organic solid and the
Gibbs free energy of dissolution (ΔGdis) is defined in eq 1.
This correlation has been widely applied in understanding the
solubility of drug molecules35−38 and energy storage materials,
such as metal complexes,21 LiO2, and Li2O2.

39 However, while
eq 1 is chemically accurate, its practical application is difficult,
as the ΔGsub term is computationally expensive and challenging
to calculate without a crystal structure.40 Consequently, many

Figure 1. (A) Traditional trial-and-error approach for identifying new OEMs. Small batches of OEM candidates are tested in an iterative process,
which is costly and time intensive. (B) Computation-assisted approaches for identifying new OEMs. Relevant properties are computed for vast
numbers of OEMs, and candidates with desirable properties are selected for testing. These approaches can predict the redox potential of OEMs
with good accuracy but often fail to predict solubility and cycling stability with reasonable accuracy.

Scheme 1. Reversible Redox of Anthraquinone
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quantitative structure−activity relationships (QSAR) and
statistical models ignore ΔGsub and rely on computationally
calculated ΔGsol values to estimate solubility.15,34,41

Alternatively, some cheminformatics approaches have been
developed to predict solubility with experimentally measurable
properties. One of the most widely used empirical solubility
models in the pharmaceutical industry is the general solubility
equation (GSE, eq 2):

S T Plog 0.5 0.01( 25) logGSE m= (2)

where SGSE is the solubility based on the GSE, Tm is the
melting point of the compound, and P is the partition
coefficient between an organic solvent and water (see
Supporting Information).34 Another classical empirical sol-
ubility model is the Hansen solubility parameters, which
estimate the solubility of organic polymers based on their

“likeness” to the solvent of choice (Ra), a qualitative expression
of the “like-dissolves-like” principle.42

Considering the prevalence of these approaches in the
literature, we examined the correlation of ΔGsol, SGSE, Tm, log
P, and Ra with our experimental solubility data log S in the
battery electrolyte. The ΔGsol, ΔGhydr, and log P values were
computationally determined for all anthraquinones at a
B3LYP/6-31G(d) level of theory with a GD3 empirical
dispersion model and an SMD solvent model with either
water or 1:1 DME:DOL as the solvents where applicable
(Table S2).41 The Tm values were obtained from literature; log
SGSE values were calculated using eq 2. Ra values were
calculated using established group contribution methods (see
Supporting Information, Tables S2 and S3).43

Subsequently, the experimental anthraquinone solubilities
were plotted as a function of ΔGsol, log SGSE, log P, Tm, and Ra.
As shown in Figure 3A−E, these commonly utilized solubility

Figure 2. Experimentally determined solubilities (mM) of 38 anthraquinone derivatives in battery electrolyte (1 M LiTFSI, 0.2 M LiNO3 in 1:1
DME:DOL), including the 2-substituted anthraquinones (highlighted in gray) and hydroxy-substituted anthraquinones (outlined in black) used to
define substitution identity factor (SIF) and substitution position factor (SPF).
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descriptors correlate poorly with our experimental anthraqui-
none solubilities (R2 = 0.12−0.60), suggesting that they do not
predict the solubility of these compounds in battery electro-
lytes very well. Additionally, we evaluated the machine learning
solubility model recently reported by Green,26 which utilizes
simplified molecular-input line-entry system (SMILES) chem-
ical notation inputs to predict the solubility of organic solids.
Unfortunately, the parity plot of the model’s predictions at 298
K in a 1:1 mixture of DOL and DME against our experimental
solubility values shows a low R2 value of 0.07 (Figure 3F). This
method has been shown to be highly successful at predicting
the solubility of solids in pure organic solvents; in our case, its
poor accuracy is perhaps due to the complex nature of battery
electrolyte, which includes lithium salts (e.g., LiTFSI and
LiNO3).
As current solubility descriptors, such as ΔGsol, log SGSE, log

P, Tm, and Ra, and a universal machine learning model failed to
capture the experimental solubility of anthraquinones, we
considered developing a new method to parametrize the
influence of functional groups and substitution pattern on the
Gibbs free energy of dissolution (ΔGdis). As shown in Figure 2,

the solubility of 2-substituted anthraquinones varies by a factor
of 578 from 2.3 mM (R = SO3Na) to 1330 mM (R = tBu,
Figure 2, highlighted in gray). Generally, lower solubility values
are observed with more polar and ionic functional groups,
consistent with previous studies that show OEMs with strong
intermolecular interactions are generally more stable in
LIBs.44,45 However, it is difficult to rationalize the influence
of substitution patterns. For example, the solubility of
dihydroxyl quinones varies by as much as 20-fold from 3.2
mM (2,6-dihydroxyanthraquinone, 15) to 65.9 mM (1,2-
dihydroxyanthraquinone, 10), an observation that cannot be
easily explained with chemical principles (Figure 2, outlined in
black).
Since no intuitive global trend was observed, we considered

developing a multivariate linear regression model by para-
metrizing functional group identity and substitution pattern
based on eq 1. Given the small number of data points, we
choose to fit the data with a simple straightforward linear
model. Our approach was inspired by classical Hammett
analysis, which describes reaction rates of a series of related
reactions differing only by the substituent of the reactants. In a
typical Hammett analysis, only two factors are considered�
the substitution position of the functional group (meta or
para) and a constant based on functional group identity (σ
value). Although σ values do not carry concrete physical
meaning, the Hammett analysis is successful in capturing the
trends of a series of chemical reactions that differ only by the
identity and pattern of substituents.
Analogously, functional group identity and substitution

patterns are expected to influence ΔGdis to different degrees.
Therefore, we describe their corresponding contribution to
free energy of dissolution solubility (ΔGdis) with eq 3 below:

G SPF SIFdis = + + (3)

where SPF is the substituent position factor, SIF is the
substituent identity factor, α, β, and γ are numerical constants
that must be calibrated with experimental data such that ΔGdis
is the linear combination of SPF and SIF. Since the solubility
of organic molecules (SFG, solubility with a certain FG =
functional group) is related to ΔGdis as below:

G S Vlog( )dis FG m=

Therefore,

S Vlog( ) SPF SIF log( )FG m
1= + + + (4)

Next, SPF and SIF are defined using a Hammett-type
approach by referencing the experimental solubility of
functionalized anthraquinones to that of unsubstituted
anthraquinone 18. Due to the commercial availability of
hydroxy-substituted anthraquinones, we chose to define SPF
using a set of ten hydroxy-substituted anthraquinones with
various substitution patterns (Figure 2, outlined in black).
Similar to the Hammett equation, SPF is expressed as the
logarithm of the solubility of a substituted anthraquinone with
a particular substitution pattern relative to the solubility of
unsubstituted anthraquinone:

S
S

SPF log SP

H
=

(5)

where SSP is the solubility (mM) of the hydroxy-substituted
anthraquinone with a specified substitution pattern (SP) and
SH is the solubility (mM) of the unsubstituted anthraquinone.

Figure 3. Plots of common solubility descriptors as a function of
experimental anthraquinone solubility in 1 M LiTFSI: 0.2 M LiNO3
in 1:1 DME: DOL (Tables S2 and S3). (A) DFT-computed solvation
energy ΔGsol, (B) general solubility equation, (C) DFT-computed log
P, (D) experimental melting point Tm, (E) Hansen solubility
parameter Ra, and (F) solubility predicted by ML-model developed
by Green et al., log SML.
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For example, the SPF of 1-amino-2-methylanthraquinone 23
can be calculated by the solubility of 1,2-dihydroxyanthraqui-
none 10 (65.9 mM) and solubility of unsubstituted
anthraquinone 18 (8.96 mM). The solubility of 1,2-
dihydroxyanthraquinone is used here because it has the same
1,2-substitution pattern as 23 (Figure 4A). The rationale of
this approximation is that the molecular shapes of 23 and 10
are similar, which should impact their solubilities to a
comparable degree.

Similarly, SIF is defined using a set of eight 2-subsitituted
anthraquinones with varying functional groups (−CH3,
−CH(CH3)3, −NH2, −OH, −Cl, −Br, −COOH,
−SO3

−Na+). We express SIF as the average of the logarithm
of the solubility of a substituted anthraquinone with a
particular substituent relative to the solubility of unsubstituted
anthraquinone:

SIF
log ... log

n

S

S

S

S
nSI1

H

SI

H=
+ +

(6)

where SSI is the solubility (mM) of the substituted
anthraquinone with a specified substituent identity (SI) and
n is the number of substituents. Here, the average is taken to
describe the average effect of all substituents on intermolecular
and solvent interactions. For example, the SIF of 1-amino-2-
methylanthraquinone 23 is calculated with the solubility of 2-
aminoanthraquinone 3 (SNHd2

= 32.2 mM) and the solubility of
2-methylanthraquinone 1 (SCHd3

= 204 mM) with n = 2 (Figure
4A). The solubilities of 2-aminoanthraquinone and 2-
methylanthraquinone are used to calculate SIF for 23 because
they contain the same functional groups. A sample workflow
for parametrizing 23 is depicted in Figure 4A. The
experimentally determined SPF and SIF values for the
fundamental set of anthraquinones are tabulated in Figure 4B.
Using the fundamental set of 18 anthraquinones (1−18,

Figure 2, highlighted in gray and black), we fit the set of
parameters [α, β, γ] to build an initial model. Linear regression
was performed on the initial model predictions versus the
experimental values, as shown in Figure 2A. The model found
is eq 7.

S Vlog 0.901 SIF 0.946 SPF 3.38 log(1/ )m= · + · +
(7)

The regression yields an R2 value of 0.997 (Figure 5A). We
next used the initial model to predict the solubilities of 20
additional anthraquinones not in the fundamental set (Figure
5A, red points). This external validation shows the model has a
R2 value of 0.816, a slope close to unity (0.98), and an
intercept close to 0 (Figure 5A). The robustness of the model
was assessed with 3- and 6-fold cross-validation, which affords
Q2 values of 0.639 and 0.563, respectively. These cross-
validations consist of dividing the data set into n folds, fitting
the model n times on n − 1 folds and scoring the model n
times on the held-out fold (Figure 5B). The Q2 values are
computed from an n-fold cross-validation using the R2 scoring
metric and reported using an average over the n scores. The
high Q2 values show that the model has a high prediction
accuracy on held-out testing points, regardless of which
anthraquinones are used for training. Overall, these internal
and external validations show that our model can predict
solubility with much higher accuracy than general solubility
models reported in the literature (Figure 3).
The most practical feature of eq 7 is the separate

consideration of substitution pattern and functional group
identity. If a small set of solubility values for anthraquinones
with various functional groups and various substitution
positions can be measured, the solubility of a large set of
anthraquinones can be predicted by this simple formula. To
demonstrate the effectiveness of this model, we built a data set
of 808 anthraquinones for which this model can predict
solubility. RDKit was used to find the substitution pattern and
substituent identities of each molecule to identify the SPF and
SIF. The predicted solubility of 808 anthraquinones is
presented in Table S4.
Examination of Table S4 revealed several quinones with very

low solubility in our nonaqueous electrolyte, suggesting they
could be suitable for LIB application. Theoretically, for OEMs
employed in solid-state batteries, low solubility in battery
electrolytes should correlate with high cycling stability. Perhaps
unsurprisingly, functional groups, such as SO3Na, COOH, and
NH2, are common in the least soluble anthraquinones
predicted by the model due to the effect of intermolecular

Figure 4. (A) Workflow of parametrization of anthraquinone
derivatives based on substituent position factors (SPF) and
substituent identity factor (SIF). (B) Summary of experimentally
determined SPF and SIF for calculating solubility of anthraquinone
derivatives.
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interactions. However, the model also describes the convoluted
influences of substitution patterns and functional groups,
which are not obvious based on chemical intuition. Some
candidates recommended by our statistical model, such as 17,
22, 27, and 35, have already shown excellent stability and long
cycling lifetimes as OEMs,46−49 supporting the application of
this model for identifying promising OEM candidates.
To further validate our model, we investigated its ability to

predict how substitution patterns of OEMs influence solubility,
which is a challenging task based on chemical intuition alone.
For example, chemical intuition suggests that diaminoanthra-
quinones should have low solubility due to hydrogen bonding.
However, it is unclear which substitution patterns can afford
the lowest solubility. Indeed, preliminary coin cell testing of a
series of diaminoanthraquinones shows most of them
performed poorly in LIBs (Figure 6A). Therefore, chemical
intuition alone is not sufficient in identifying the best candidate
from a large pool of organic compounds with unknown
solubility.

The search process is significantly improved with our model.
Our model predicts that the solubility of five diaminoan-
thraquinones ranks as the following: 2,7- < 2,6- < 1,5- < 1,4- <
1,2-, suggesting that 2,7-diaminoanthraquinone should be
prioritized in testing. Indeed, galvanostatic cycling of these
diaminoanthraquinone isomers shows that the cycling stability
in a Li coin-cell (anode: Li metal, electrolyte: 1 M LiTFSI, 0.2
M LiNO3 in 1:1 DME:DOL) trends with the predicted
solubility (Figure 6A, 6B). As the predicted solubilities of the
diaminoanthraquinones in battery electrolyte decrease, their
stabilities in Li coin cells increase (Figure 6B). Although the
stability of organic molecules as cathodes in lithium-ion
batteries is influenced by many factors, our work demonstrates
that our solubility model can identify promising candidates
from a large set of compounds with unknown solubility.
As our model recommends the commercially available 2,7-

diaminoanthraquinone as a promising candidate, the cycling
conditions in a coin cell were further optimized by tuning the
electrode recipe, including conductive carbon and binder.
Under optimized conditions (see Supporting Information),
galvanostatic cycling was performed at a rate of 0.3C within a
voltage window of 1.6−3.0 V. The Li-cell exhibits reversible
two-electron cycling with an initial capacity of 235.9 mAh g−1,
of which 76.2% was retained after 100 cycles (Figure 6C),
representing one of the best-performing anthraquinone
cathode materials in LIBs.
In summary, we demonstrated a complete workflow of

identifying new organic electrode materials for Li-ion batteries
using a simple solubility model. The model can predict the
solubility of anthraquinones in a common LIB electrolyte using

Figure 5. Evaluation of the statistical model for predicting the
solubility of anthraquinone. (A) The 18 data points (1−18) used to
define the SIF and SPF are in black. The 20 data points (19−38) used
to validate the model are in red. (B) The data points are color coded
based on substitution pattern. The blue region represents 95%
confidence interval for the estimated regression line.

Figure 6. (A) Comparison of cycling stability for diamino
anthraquinone derivatives. (B) Table of predicted solubility and
normalized specific capacity values for diamino anthraquinone
derivatives after 30 cycles. (C) Galvanostatic cycling data for 1:2
weight ratio of 2,7-NH2: CMK3 at rate of 0.3C (225.03 mAh g−1).
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two easily interpretable structure-based descriptors, substitu-
tion position factor (SPF) and substitution identity factor
(SIF). The good precision of our model in modeling the
solubility of anthraquinones suggests the contribution of the
functional group identity and position to ΔGsub and ΔGsolv can
be considered separately with a QSAR-type of analysis.
Importantly, this experimentally calibrated model can be
used to predict the solubility of a wide range of anthraquinones
with great diversity, including 808 mono-, di-, and trisub-
stituted anthraquinones that were not measured experimen-
tally. The model and structure-based descriptors defined in this
work are straightforward and can be utilized to strategically
design anthraquinone structures with both high and low
solubilities. Furthermore, this model can potentially be used
with other solvents (e.g., aqueous or other nonaqueous
solvents) to identify anthraquinone structures suitable for a
variety of applications, including both LIBs and RFBs, by
measuring α, β, γ, SIF, and SPF in other electrolyte systems.
This will be the subject of our future study.
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