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ABSTRACT

This paper introduces nonblocking transaction composition (NBTC),
a new methodology for atomic composition of nonblocking op-
erations on concurrent data structures. Unlike previous software
transactional memory (STM) approaches, NBTC leverages the lin-
earizability of existing nonblocking structures, reducing the num-
ber of memory accesses that must be executed together, atomically,
to only one per operation in most cases (these are typically the
linearizing instructions of the constituent operations).

Our obstruction-free implementation of NBTC, which we call
Medley, makes it easy to transform most nonblocking data struc-
tures into transactional counterparts while preserving their live-
ness and high concurrency. In our experiments, Medley outper-
forms Lock-Free Transactional Transform (LFTT), the fastest prior
competing methodology, by 40-170%. The marginal overhead of
Medley’s transactional composition, relative to separate operations
performed in succession, is roughly 2.2x.

For persistent data structures, we observe that failure atomicity
for transactions can be achieved “almost for free” with epoch-based
periodic persistence. Toward that end, we integrate Medley with
nbMontage, a general system for periodically persistent data struc-
tures. The resulting txMontage provides ACID transactions and
achieves throughput up to two orders of magnitude higher than
that of the OneFile persistent STM system.
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1 INTRODUCTION

Nonblocking concurrent data structures, first explored in the 1970s,
remain an active topic of research today. In such structures, there
is no reachable state of the system that can prevent an individual
operation from making forward progress. This liveness property is
highly desirable in multi-threaded programs that aim for high scal-
ability and are sensitive to high tail latency caused by inopportune
preemption of resource-holding threads.

Many multi-threaded systems, including those for finance, trav-
el [30], warehouse management [6], and databases in general [39],
need to compose operations into transactions that occur in an all-
or-nothing fashion (i.e., atomically). Concurrent data structures,
however, ensure atomicity only for individual operations; compos-
ing a transaction across operations requires nontrivial program-
ming effort and introduces high overhead. Preserving nonblocking
liveness for every transaction is even more difficult.

One potential solution can be found in software transactional
memory (STM) systems, which convert almost arbitrary sequential
code into speculative transactions. Several STM systems provide
nonblocking progress [10, 19, 25, 26, 37]. Most instrument each
memory access and arrange to restart operations that conflict at
the level of individual loads and stores. The resulting programming
model is attractive, but the instrumentation typically imposes 3—
10x overhead [34, Sec. 9.2.3].

Inspired by STM, Spiegelman et al. [36] proposed transactional
data structure libraries (TDSL), which introduce (blocking) trans-
actions for certain hand-modified concurrent data structures. By
observing that reads need to be tracked only on critical nodes whose
updates may indicate semantic conflicts, TDSL reduces read set size
and achieves better performance than general STMs.

Herlihy and Koskinen [18] proposed transactional boosting, a
(blocking) methodology that allows an STM system to incorporate
operations on existing concurrent data structures. Using a system
of semantic locks (e.g., with one lock per key in a mapping), trans-
actions arrange to execute concurrently so long as their boosted
operations are logically independent, regardless of low-level con-
flicts. A transaction that restarts due to a semantic conflict (or to
a low-level conflict outside the boosted code) will roll back any
already-completed boosted operations by performing explicitly
identified inverse operations. An insert(k,v) operation, for example,
would be rolled back by performing remove(k). Transactional boost-
ing leverages the potential for high concurrency in existing data
structures, but is intrinsically lock-based, and is not fully general:
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operations on a single-linked FIFO queue, for example, have no
obvious inverse.

In work concurrent to TDSL, Zhang et al. [43] proposed the Lock-
Free Transactional Transform (LFTT), a nonblocking methodology
to compose nonblocking data structures, based on the observation
that only certain nodes—those critical to transaction semantics—
really matter in conflict management. Each operation on an LFTT
structure publishes, on every critical node, a description of the
transaction of which it is a part, so that conflicting transactions can
see and help each other. A remove(7) operation, for example, would
publish a description of its transaction on the node in its structure
with key 7. Initially, LFT T supported only static transactions, whose
constituent operations were all known in advance. Subsequently,
LaBorde et al. [23] proposed a Dynamic Transactional Transform
(DTT) that generalizes LFTT to dynamic transactions (specified
as lambda expressions). Concurrently, Elizarov et al. [8] proposed
LOFT, which is similar to LFTT but avoids incorrectly repeated
helping.

Unfortunately, as in transactional boosting, the need to identify
critical nodes tends to limit LFTT and DTT to data structures rep-
resenting sets and mappings. DTT’s publishing and helping mecha-
nisms also require that the “glue” code between operations be fully
reentrant (to admit concurrent execution by helping threads [23])
and may result in redundant work when conflicts arise. Worse, for
read-heavy workloads, LFTT and DTT require readers to be visible
to writers, introducing metadata updates that significantly increase
contention in the cache coherence protocol.

In our work, we propose NonBlocking Transaction Composition
(NBTC), a new methodology that can create transactional versions
of a wide variety of concurrent data structures while preserving
nonblocking progress and incurring significantly lower overhead
than traditional STM. The intuition behind NBTC is that in al-
ready nonblocking structures, only critical memory accesses—for
the most part, the linearizing load and compare-and-swap (CAS)
instructions—need to occur atomically, while most pre-linearization
memory accesses can safely be executed as they are encountered,
and post-linearization accesses can be postponed until after the
transaction commits.

In comparison to STM, NBTC significantly reduces the number
of memory accesses that must be instrumented—typically to only
one per constituent operation. Unlike transactional boosting and
transactional transforms, NBTC brings the focus back from seman-
tics to low-level memory accesses, thereby enabling mechanical
transformation of existing structures and accommodating almost
arbitrary abstractions—much more than sets and mappings. NBTC
also supports dynamic transactions, invisible readers, and non-
reentrant “glue” code between the operations of a transaction. The
one requirement for compatibility is that the linearization points
of constituent operations must be immediately identifiable: each
update operation must be able to tell when it has linearized at run
time, without performing any additional shared-memory accesses.
Most nonblocking structures in the literature appear to meet this
requirement.

To assess the practicality of NBTC, we have built an obstruction-
free implementation, Medley, that uses a variant of Harris et al’s
multi-word CAS [16] to execute the critical memory accesses of
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each transaction atomically, eagerly resolving conflicting transac-
tions as they are discovered. Using Medley, we have created NBTC
versions of Michael and Scott’s queue [29], Fraser’s skiplist [10],
the rotating skiplist of Dick et al. [7], Michael’s chained hash ta-
ble [28], and Natarajan and Mittal’s binary search tree [31]. All of
the transformations were straightforward.

In the traditional language of database transactions [15], Med-
ley provides isolation and consistency. Building on recent work
on persistent memory, we have also integrated Medley with our
nbMontage system [2] to create a system, txMontage, that provides
failure atomicity and durability as well—i.e., full ACID transactions.
Specifically, we leverage the epoch system of nbMontage, which
divides time into coarse-grain temporal intervals and recovers, on
failure, to the state of a recent epoch boundary. By folding a check
of the epoch number into its multi-word CAS, txMontage ensures
that operations of the same transaction always linearize in the same
epoch, thereby obtaining failure atomicity and durability “almost
for free”

Summarizing contributions:

o (Section 2) We introduce nonblocking transaction composition
(NBTC), a new methodology with which to compose the opera-
tions of nonblocking data structures.

(Section 3) Deploying NBTC, we implement Medley, a general
system for transactional nonblocking structures. Medley’s easy-
to-use API and mechanical transform make it easy to convert
compatible nonblocking structures to transactional form.

(Section 4) We integrate Medley with nbMontage to create txMon-
tage, providing not only transactional isolation and consistency,
but also failure atomicity and durability.

(Section 5) We argue that using Medley, transactions composed of
nonblocking structures are nonblocking and strictly serializable.
We also argue that transactions with txMontage provide a per-
sistent variant of strict serializability analogous to the buffered
durable linearizability of Izraelevitz et al. [21].

(Section 6) We present performance results, confirming that Med-
ley imposes relatively modest overhead and scales to large num-
bers of threads. Specifically, Medley outperforms LFTT by 1.4x
to 2.7X and outperforms TDSL and the OneFile nonblocking
STM [33] system by an order of magnitude. On persistent mem-
ory, txMontage outperforms nonblocking persistent STM by two
orders of magnitude.

2 NONBLOCKING TRANSACTION
COMPOSITION

Nonblocking transaction composition (NBTC) is a new methodology
that fully leverages the linearizability of nonblocking data struc-
ture operations. NBTC obtains strict serializability by atomically
performing only the critical memory accesses of composed opera-
tions. It supports a large subset of the nonblocking data structures
in the literature (characterized more precisely below), preserving
the high concurrency and nonblocking liveness of the transformed
structures.
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2.1 NBTC Composability

The key to NBTC composability is the immediately identifiable
linearization point. Specifically:

Definition 2.1. A data structure operation has an immediately
identifiable linearization point if:

(1) statically, we can identify every instruction that may potentially
serve as the operation’s linearization point. Such an instruction
must be a load (for a read-only operation) or a compare-and-
swap (CAS);

(2) dynamically, after executing a potentially linearizing instruc-
tion, we can determine whether it was indeed the linearization
point. A linearizing load must be identified before the operation
returns; a potentially linearizing CAS will be the linearization
point if and only if it succeeds.

An operation can be determined to be read-only during its exe-
cution, typically after checking the return value of a load or failed
CAS. Unlike an immediately identifiable linearizing CAS, a lineariz-
ing load can be identified retroactively, as late as the point at which
the operation returns (more on this at the end of Section 2.2). There
can be more than one potential linearization point in the code of
an operation, but only one of them will constitute the linearization
point in any given invocation.

Definition 2.2. A nonblocking data structure is NBTC-composable
if each of its operations has an immediately identifiable linearization
point.

While it may be possible to relax this definition, the current
version accommodates a very large number of existing nonblocking
structures.

2.2 The Methodology

It is widely understood that most nonblocking operations comprise
a “planning” phase and a “cleanup” phase, separated by a linearizing
instruction [11, 38]. Executing the planning phase does not commit
the operation to success; cleanup, if needed, can be performed by
any thread. The basic strategy in NBTC is to perform the planning
for all constituent operations of the current transaction, then lin-
earize all those operations together, atomically, and finally perform
all cleanup. Our survey of existing data structures and composition
patterns reveals two principle complications with this strategy.
The first complication involves the notion of a publication point,
where an operation may become visible to other threads but not
yet linearize. Because publication can alter the behavior of other
threads, it must generally (like a linearization point) remain specula-
tive until the entire transaction is ready to commit. An example can
be seen in the binary search tree of Natarajan and Mittal [31], where
an update operation o may perform a CAS that publishes its intent
to linearize soon but not quite yet. After this publication point,
either o itself or any other update that encounters the publication
notice may attempt to linearize o (in the interest of performance, a
read operation will ignore it). Notably, CAS instructions that serve
to help other (already linearized) operations, without revealing the
nature of the current operation, need not count as publication.
The second complication arises when a transaction, ¢, performs
two or more operations on the same data structure and one of the
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later operations (call it 02) depends on the outcome of an earlier
operation (call it 01). Here the thread executing t must proceed as
if 01 has completed. If 01 requires cleanup (something that NBTC
will normally delay until after transaction commit), o2 may need to
help o before it can proceed, while other threads and transactions
should not even be aware of 01’s existence.

Both complicating cases can be handled by introducing the no-
tion of a speculation interval in which CAS instructions must be
completed together for an operation to take effect as part of a trans-
action. This is similar to the CAS executor phase in a normalized
nonblocking data structure [38], but not the same, largely due to the
second complication. For an operation that becomes visible before
its linearization point, it suffices to include in the speculation inter-
val all CAS operations between the publication and linearization
points, inclusive. For an operation o that needs to see an earlier
operation o0; in the same transaction, it suffices to track the trans-
action’s writes and to start 02’s speculation interval no later than
the first instruction that accesses a location written by o5.

Definition 2.3. A bit more precisely, we say:

o A CASinstruction in operation o of thread ¢ in history H is benign
if there is no extension H’ of H such that ¢ executes no more
instructions in H’ and yet o linearizes in H’ nonetheless.

o The first CAS instruction of o that is not benign is o’s publication
point (this will often be the same as its linearization point).

o The speculation interval of o begins either at the publication point
or at the first instruction that sees a value speculatively written
by some earlier operation in the same transaction (whichever
comes first) and extends through o’s linearization point.

o A CAS in an update operation is critical if it lies in the speculation
interval. A load in a read-only operation is critical if it is the
immediately identifiable linearization point of the operation.

Without loss of generality, we assume that all updates to shared
memory (other than initialization of objects not yet visible to other
threads) are effected via CAS.

Given these definitions, the NBTC methodology is straightfor-
ward: To atomically execute a set of operations on NBTC-composable
data structures, we transform every operation such that (1) instruc-
tions prior to the speculation interval and non-critical instructions
in the speculation interval are executed on the fly as a transaction
encounters them; (2) critical instructions are executed in a specula-
tive fashion, so they will take effect, atomically, only on transaction
commit; and (3) instructions after the speculation interval are post-
poned until after the commit.

Immediately identifying a critical CAS by its return value is
necessary, as we need to decide, in the moment, whether to execute
it speculatively or “for real” A load, on the other hand, is always side-
effect free, so identifying it retroactively, as late as its operation’s
return, never compromises the speculativity of the transaction as a
whole.

3 THE MEDLEY SYSTEM

To illustrate NBTC, we have written a system, Medley, that (1) in-
struments critical instructions, executes them speculatively, and
commits them atomically using M-compare-N-swap, our variant of
the multi-word CAS of Harris et al. [16]; (2) identifies and eagerly
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1 template <class T> class CASObj { // Augmented atomic object

2 T nbtcLoad();

3 bool nbtcCAS(T expected, T desired, bool linPt, bool pubPt);

4 /% Regular atomic methods: */

5 T load(); void store(T desired); bool CAS(T expected, T desired);
6 };

7 class Composable { // Base class of all transactional objects

8  template <class T> void addToReadSet(CASObj<T>*,T); // Register load
9  void addToCleanups(function); // Register post-critical work

10 template <class T> Tx tNew(...); // Create a new block

1 template <class T> void tDelete(T*); // Delete a block

12 template <class T> void tRetire(T*); // Epoch-based safe retire
13 TxManager* mgr; // Tx metadata shared among Composables

14 struct OpStarter { OpStarter(TxManagerx); } // RAIIL op starter
15 3

16 class TxManager { // Manager shared among composable objects

17 void txBegin(); // Start a transaction

18 void txEnd(); // Try to commit the transaction

19 void txAbort(); // Explicitly abort the transaction

20 void validateReads(); // Optional validation for opacity

21 };

struct TransactionAborted : public std::exception{ };

~
N

Figure 1: C++ API of Medley for transaction composition.

resolves transaction conflicts; and (3) delays non-critical cleanup
until transaction commit.

3.1 API

Figure 1 summarizes Medley’s APIL Using this API, we transform
an NBTC-composable data structure into a transactional structure
as follows:

(1) Derive the data structure class from Composable.

(2) Declare fields to which critical accesses may be made using the
CASObj template. Replace loads and CASes to such fields with
nbtcLoad and nbtcCAS, respectively.

(3) Invoke addToReadSet for the critical load in a read operation,
recording the address and the loaded value.

(4) Register each operation’s post-critical work via addToCleanups.

(5) In each operation, replace every new and delete with tNew and
tDelete, and replace every retire (for safe memory reclamation—
SMR) with tRetire.

(6) Declare an OpStarter object at the beginning of each operation.

CASObj<T> augments each CAS-able 64-bit word (e.g., atomic-
<Node*>) with additional metadata bits for speculation tracking
(details in Section 3.2). It provides specialized load and CAS opera-
tions, as well as the usual methods of atomic<T>. To dynamically
identify the speculation interval, nbtcCAS takes two extra argu-
ments, linPt and pubPt, that indicate whether this call, should it
succeed, will constitute its operation’s linearization or/and publica-
tion point. In a similar vein, addToReadSet can be called after an
nbtcLoad to indicate that this was (or is likely to have been) the
linearizing load of a read-only operation, and should be tracked for
validation at commit time.

Composable is a base class for transactional objects. It provides a
variety of NBTC-related methods, including support for safe mem-
ory reclamation (SMR), used to ensure that nodes are not reclaimed
until one can be certain that no references remain among the pri-
vate variables of other threads. Our current implementation of SMR
uses epoch-based reclamation [10, 17, 27]. For the sake of generality,
Composable also provides an API for transactional boosting, which
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can be used to incorporate lock-based operations into Medley trans-
actions (at the cost, of course, of nonblocking progress). We do not
discuss this mechanism further in this paper.

The TxManager class manages transaction metadata and pro-
vides methods to initiate, abort, and complete a transaction. A
TxManager instance is shared among all Composable instances
intended for use in the same transactions. In each operation call,
the manager distinguishes (via OpStarter) whether execution is
currently inside or outside a transaction. If outside, all transactional
instrumentation is elided; if inside, instrumentation proceeds as
specified by the NBTC methodology.

Given that nonblocking operations can execute safely in any
reachable state of the system, there is usually no need to stop the
execution of a doomed-to-abort transaction as soon as a conflict
arises—i.e., to guarantee opacity [14]. In exceptional cases (e.g.,
when later operations of a transaction cannot be called with certain
combinations of parameters, or when aborts are likely enough that
delaying them may compromise performance), the validateReads
method can be used to determine whether previous reads remain
correct.

To illustrate the use of Medley, Figure 2 highlights lines of code
in Michael’s nonblocking hash table [28] that must be modified for
NBTGC; Figure 3 then shows an example transaction that modifies
two hash tables. In a real application, the catch block (written
by the programmer) for TransactionAborted would typically loop
back to the beginning of the transaction code to try again, possibly
with additional code to avoid livelock (e.g., via backoff or hints
to the underlying scheduler). In contrast to STM systems, Medley
does not instrument the intra-transaction “glue” code between data
structure operations. This “glue” code is always executed as regular
code outside a transaction and is not managed by Medley; if it
has side effects, the catch block for aborted transactions should
compensate for these before the programmer chooses to retry or
give up.

3.2 M-Compare-N-Swap

To execute the critical memory accesses of each transaction atomi-
cally, we employ a software-emulated M-compare-N-swap (MCNS)
operation that builds on the double-compare-single-swap (RDCSS)
and multi-word CAS (CASN) of Harris et al. [16]. Each transaction
maintains a descriptor that contains a read set, a write set, and a
64-bit triple of thread ID, serial number, and status, as shown in
Figure 4. Descriptors are pre-allocated on a per-thread basis within
a TxManager instance, and are reused across transactions. A status
can be InPrep (initial state), InProg (ready to commit), Committed
(after validation succeeds when InProg), or Aborted (explicitly by
another thread when InPrep or due to failed validation).

Each originally 64-bit word at which a critical memory access
may occur is augmented with a 64-bit counter, together comprising
a 128-bit CASODbj. Each critical CAS installs a pointer to its descrip-
tor in the CASObj and increments the counter; upon commit or
abort, the descriptor is uninstalled and the counter incremented
again. We leverage 128-bit CAS instructions on the x86 to change
the original word and the counter together, atomically. The counter
is odd when CASODbj contains a pointer to a descriptor and even
when it is a real value.
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class MHashTable : public Composable {
struct Node { K key; V val; CASObj<Node*> next; };
// from p, find ¢ >= k; nbtcLoad and tRetire may be used
bool find(CASObj<Nodex>* &p, Node* &c, Node* &n, K k);
optional<V> get(K key) {
OpStarter starter(mgr); CASObj<Nodex>* prev = nullptr;
Node *curr, *next; optional<V> res = {};
if (find(prev,curr,next,key)) res = curr->val;
9 addToReadSet(prev,curr);
1@ return res;
1}
12 optional<V> put(K key, V val) { // insert or replace if key exists
13 OpStarter starter(mgr);
14 CASObj<Node*>* prev = nullptr; optional<V> res = {};
15 Node *newNode = tNew<Node>(key, val), *curr, *next;
16 while(true) {

® N o R w N =

17 if (find(prev,curr,next,key)) { // update

18 newNode->next.store(curr);

19 if (curr->next.nbtcCAS(next,mark(newNode),true,true)) {
20 res = curr->val;

21 auto cleanup = [10{

22 if (prev->CAS(curr,newNode)) tRetire(curr);

23 else find(prev,curr,next,key);

24 i

25 addToCleanups(cleanup); // execute right away if not in tx
26 break;

27 }

28 } else { // key does not exist; insert

29 newNode->next.store(curr);

30 if (prev->nbtcCAS(curr,newNode, true,true)) break;

31 3

32 )

33 return res;

34 1}

Figure 2: Michael’s lock-free hash table example
(Medley-related parts highlighted).

void doTx(MHashTablex ht1, MHashTablex ht2, V v, K al, K a2) {

TxManager* mgr=ht1->mgr; assert(mgr==ht2->mgr);

try { // transfer °v' from account ‘al' in “ht1' to ‘a2' in ‘ht2'
mgr->txBegin();
V vl = ht1->get(al); V v2 = ht2->get(a2);
if (!vl.hasValue() or vi.value() < v) mgr->txAbort();
ht1->put(al, vl.value() - v); ht2->put(a2, v + v2.valueOr(9));
mgr->txEnd();

} catch (TransactionAborted) { /* transaction aborted */ }

3

S © o N o R w N =

Figure 3: Transaction example on Michael’s hash table.

1 struct Desc {

2 map<CASObj* addr,{uint64 val,cnt}>* readSet;

3 map<CASObj* addr,{uint64 oldVal,cnt,newVal}>* writeSet;

4 atomic<uint64> status;//63..50 tid; 49..2 serialNumber; 1..0 status
5  enum STATUS { InPrep=0, InProg=1, Committed=2, Aborted=3 };

6 };

7 struct CASObj { atomic<uint128> val_cnt; };

Figure 4: Descriptor and CASObj structures.

Each instance of MCNS proceeds through phases that install
descriptors, finalize status, and uninstall descriptors. The first two
phases are on the critical path of a data structure operation. A
new transaction initializes metadata in its descriptor (at txBegin):
it clears the read and write sets, increments the serial number,
and resets the status to InPrep. The installing phase then occurs
over the course of the transaction: Each critical load records its
address, counter, and value in the read set. Each critical CAS records
its address, old counter, old value, and desired new value in the
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void TxManager::txBegin() {

1

2 desc->readSet->clear(); desc->writeSet->clear();

3 status.store((status.load() & ~3) + 4);

4%

5 T CASObj::nbtcLoad() {

6 retry:

7 {val,cnt} = val_cnt.load();

8 if (ent % 2) { // is descriptor

9 if (val == desc) {

10 startSpeculativelnterval();

1 return desc->writeSet[this].newval;

12 } else val->tryFinalize(this, {val,cnt});

13 goto retry; // until object has real value

4}

15 ... /% Record “this' and ‘cnt' to be added to readSet x/
16 return val;

17 3

18 void Composable::addToReadSet(CASObj<T>* obj, T val) {
19 ... /* Retrieve “cnt' by ‘obj */

20 mgr->readSet[obj] = {val,cnt};

21 3}

22 bool CASObj::nbtcCAS(T expected,T desired,bool linPt,bool pubPt){
23 retry:

24 {val,cnt} = val_cnt.load();
25 if (ent % 2) { // is descriptor

26 if (val != desc) { // not own descriptor

27 val->tryFinalize(this, {val,cnt});

28 goto retry; // until object has real value
29 3

30 startSpeculativelInterval();

31 } else if (val != expected) return false;
32 if (pubPt) startSpeculativelnterval();
33 if (inSpeculativelnterval()) { // Is critical CAS

34 desc->writeSet[this] = {val,cnt,desired};

35 bool ret = true;

36 if (!(ent % 2)) ret = this->CAS({val,cnt},{desc,cnt+1});
37 if (!ret) desc->writeSet.remove(this);

38 if (linPt and ret) endSpeculativelnterval();

39 return ret;

40 } else return CAS(expected, desired);

Figure 5: Pseudocode for installing phase of MCNS.

write set; it then installs a pointer to the descriptor in the CASOb;j.
Pseudocode for the installing phase appears in Figure 5.

To spare the programmer the need to reason about counters,
nbtcLoad makes a record of its (counter, object) pair (line 15 in
Fig. 5); addToReadSet then adds this pair (and the specified CASODbj)
to the transaction’s read set (line 20).

When a thread encounters its own descriptor, nbtcLoad returns
the speculated value from the write set (line 11 in Fig. 5). Likewise,
nbtcCAS updates the write entry (line 34). Such encounters au-
tomatically initiate the speculation interval (lines 10, 30, and 32),
which then extends through the linearization point of the current
operation (line 38).

If an operation encounters the descriptor of some other thread, it
gets that descriptor out of the way by calling tryFinalize (Fig. 6). This
method aborts the associated transaction if the descriptor is InPrep,
helps complete the commit if InProg, and in all cases uninstalls the
descriptor from the CASObj in which it was found. Similar actions
occur when a thread is forced to abort or reaches the end of its
transaction and attempts to commit (lines 39-58 in Fig. 6). Whether
helping or acting on its own behalf, a thread performing an MCNS
must verify that the descriptor is still responsible for the CASObj
through which it was discovered (line 9) and (if committing) that the
values in the read set are still valid (line 25). After CAS-ing the status
to Committed or Aborted, the thread uninstalls the descriptor from
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1 bool Desc::stsCAS(uint64 d, STATUS expected, STATUS desired) {

2 d =d & ~3; return status.CAS(d + expected, d + desired);

3}

4 bool Desc::setReady(){return stsCAS(status.load(),InPrep,InProg);}
5 bool Desc::commit(uint64 d){return stsCAS(d,InProg,Committed);}

6 bool Desc::abort(uint64 d){return stsCAS(d,d & 1,Aborted);}

7 void Desc::tryFinalize(CASObj* obj, uint128 var) {

8 uint64 d = status.load();

9

if (obj->val_cnt.load() != var) // ensure d refers to right tx
10 return;
1 if (d & 3 == InPrep) {
12 abort(d);
13 uint64 newd = status.load();
14 if (newd & ~3 != d & ~3) return; // serial number mismatch
15 d = newd;
16}
17 if (d & 3 == InProg) {
18 if (validateReads(d)) commit(d);
19 else abort(d);
20 3}

~

uninstall(status.load());
22 }

23 bool Desc::validateReads() {
24  for (e:*readSet)

25 if ({e.val,e.cnt} != e.addr->load()) return false;
26 return true;
27 %

28 void Desc::uninstall(uint64 d) {
29 if (d & 3 == Committed)

30 for (e:*writeSet)

31 e.addr->CAS({this,e.cnt+1}, {e.newval,e.cnt+2});
32 else // Aborted

33 for (e:*writeSet)

34 e.addr->CAS({this,e.cnt+1}, {e.oldval,e.cnt+2});
35 %}

36 struct TxManager {

37 threadLocal vector<Function> cleanups, allocs;
38  threadlLocal Desc* desc;

39 void txAbort() {

40 uint64 d = desc->status.load();

41 desc->abort(d);

42 desc->uninstall(d);

43 for (f:allocs) f(); // undo tNew

44 throw TransactionAborted();

45 3}

46 void txEnd() {

47 if (!desc->setReady()) txAbort();

48 else {

49 uint64 d = desc->status.load();

50 if (!desc->validateReads()) desc->abort(d);
51 else if (d & 3 == InProg) desc->commit(d);
52 d = desc->status.load();

53 if (d & 3 == Committed) {

54 desc->uninstall(d);

55 for (f:cleanups) fQ);

56 } else txAbort();

57 3}

58 3}

59 };

Figure 6: Pseudocode of methods that finalize transactions.

all associated CASObjs, replacing pointers to the descriptor with
the appropriate updated values (lines 31 and 34). Once uninstalling
is complete, the owner thread calls cleanup routines (line 55) for a
commit or deallocates tNew-ed blocks (line 43) for an abort.

Our design adopts invisible readers and eager contention man-
agement for efficiency and simplicity. Eager contention manage-
ment admits the possibility of livelock—transactions that repeatedly
abort each other—and therefore guarantees only obstruction free-
dom. Lazy (commit-time) contention management along with some
total order of descriptor installment might allow us to preserve lock
freedom for structures that provide it [35], but would significantly
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complicate the tracking and retrieving of uncommitted changes,
and would not address starvation, which may be a bigger problem
than livelock in practice; we consider these implementation choices
orthogonal to the effectiveness of the NBTC methodology, and defer
them to future work.

4 PERSISTENT MEMORY

Transactions developed, historically, in the database community;
transactional memory (TM) adapted them to in-memory structures
in multithreaded programs. The advent of cheap, low-power, byte-
addressable nonvolatile memory (NVM) presents the opportunity
to merge these two historical threads in a way that ideally leverages
NBTC. Specifically, where TM aims to convert sequential code to
thread-safe parallel code, NBTC assumes—as in the database world—
that we are already in possession of efficient thread-safe structures
and we wish to combine their operations atomically and durably.
Given this assumption, it seems appropriate (as described at the
end of Sec. 3.1) to assume that the programmer is responsible for
the “glue” code between operations, and to focus on the atomicity
and durability of the composed operations.

4.1 Durable Linearizability

On machines with volatile caches, data structures in NVM will
generally be consistent after a crash only if programs take pains to
issue carefully chosen write-back and fence instructions. To char-
acterize desired behavior, Izraelevitz et al. [21] introduced durable
linearizability as a correctness criterion for persistent structures.
A structure is durably linearizable if it is linearizable during crash-
free execution and its long-term history remains linearizable when
crash events are elided. Equivalently [12], each operation should
persist between its invocation and response, and the order of per-
sists should match the linearization order.

Many durably linearizable nonblocking data structures have
been designed in recent years [3, 9, 12, 44]. Several groups have also
proposed methodologies by which existing nonblocking structures
can be made durably linearizable [11, 13, 21]. Other groups have
developed persistent STM systems, but most of these have been
lock-based [4, 5, 24, 40]. OneFile [33] and QSTM [1] are, to the best
of our knowledge, the only nonblocking persistent STM systems.
OneFile serializes transactions using a global sequence number,
eliminating the need for a read set and improving read efficiency,
but introducing the need for invasive data structure modifications
and a 128-bit wide CAS. QSTM employs a global persistent queue for
active transactions, avoiding the need for wide CAS and invasive
structural changes, but with execution that remains inherently
serial.

4.2 Lowering Persistence Overhead

Unfortunately, write-back and fence instructions tend to have high
latency. Given the need for operations to persist before returning,
durable linearizability appears to be intrinsically expensive. Im-
mediate persistence for STM introduces additional overhead, as
metadata for transaction concurrency control must also be eagerly
written back and fenced.

To move high latency instructions off the application’s critical
path, Izraelevitz et al. [21] introduced the notion of buffered durable
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linearizability (BDL). By allowing a modest suffix of pre-crash exe-
cution to be lost during post-crash recovery (so long as the overall
history remains linearizable), BDL allows write-back and fence in-
structions to execute in batches, off the application’s critical path.
Applications that need to ensure persistence before communicating
with the outside world can employ a sync operation, reminiscent
of those in traditional file systems and databases.

First proposed in the context of the Dali persistent hash table [32],
periodic persistence was subsequently adopted by nbMontage [2],
our general-purpose system to create BDL versions of existing
nonblocking structures. The nbMontage system divides wall-clock
time into “epochs” and persists operations in a batch at the end of
each epoch. In the wake of a crash in epoch e, the system recovers
all structures to their state as of the end of epoch e — 2. To maximize
throughput in the absence of crashes, nbMontage also distinguishes
between data that are semantically significant (a.k.a. “payloads”)
and data that are merely performance enhancing (e.g., indices); the
latter can be kept in DRAM and rebuilt during recovery. As an
example, the payloads of a mapping are simply a pile of key-value
pairs; the associated hash table, tree, or skiplist resides in transient
DRAM. The payloads of a queue are (serial number, item) pairs.

To ensure that post-crash recovery always reflects a consistent
state of each structure, every nbMontage operation is forced to
linearize in the epoch with which its payloads have been labeled.
Operations that take “too long” to complete may be forced to abort
and start over. The nbMontage system as a whole is lock free; sync
is actually wait free.

4.3 Durable Strict Serializability

Linearizability, of course, is not suitable for transactions, which
must remain speculative until all operations can be made visible
together. STM systems typically provide strict serializability instead:
transactions in a crash-free history appear to occur in a sequential
order that respects real time (if A commits before B begins, then A
must serialize before B) [34, Sec. 3.1.2]. For a persistent version of
NBTC, we need to accommodate crashes.

Like Izraelevitz et al. [21], we assume a full-system crash failure
model: data structures continue to exist after a crash, but are ac-
cessed only by new threads—the old threads disappear. Under this
model:

Definition 4.1. An execution history H displays durable strict
serializability (DSS) if it is strictly serializable when crash events
are elided.

Like durable linearizability, this definition requires all work com-
pleted before a crash to be visible after the crash. The buffered
analogue is similar:

Definition 4.2. An execution history H displays buffered durable
strict serializability (BDSS) if there exists a happens-before-consistent
cut of each inter-crash interval such that H is strictly serializable
when crash events are elided along with the post-cut suffix of each
inter-crash interval.

4.4 Merging Medley with nbMontage

The epoch system of nbMontage provides a natural mechanism
with which to provide failure atomicity and durability for Medley
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transactions: if operations of the same transaction always occur in
the same epoch, then they will be recovered (or lost) together in
the wake of a crash.

Building on this observation, we merge the two systems to create
txMontage. Payloads of all operations in a given transaction are
labeled with the same epoch number. That number is then validated
along with the rest of the read set during Medley-style MCNS
commit, ensuring that the transaction commits in the expected
epoch. With nbMontage-style periodic persistence, those payloads
are guaranteed to become persistent atomically.

While nbMontage itself is quite complex, this additional epoch
number validation is all that is required to graft it (and all its con-
verted, persistent data structures from the nbMontage code suite)
onto Medley: persistence comes into transactions “almost for free”
The transform from an nbMontage data structure into a transac-
tional txMontage structure is the same as in Medley discussed at
the beginning of Sec. 3.1.

5 CORRECTNESS

In this section, we argue that histories comprising well-formed
Medley transactions are strictly serializable, that Medley is ob-
struction free, and that txMontage provides buffered durable strict
serializability.

Definition 5.1. A Medley transaction is well-formed if

(1) it starts with txBegin and ends with txEnd, optionally with
txAbort in between;

(2) it contains operations of Medley-transformed data structures;
and

(3) all other intra-transaction “glue” code is nonblocking and free
from any side effects not managed by handlers for the Transac-
tionAborted exception.

5.1 Strict Serializability

LEMMA 1. At the implementation level (operating on the array of
words that comprises system memory), nbtcLoad, nbtcCAS, tryFinal-
ize, txAbort, and txEnd (MCNS) are linearizable operations.

Proor (skeTcH). Follows directly from Harris et al. [16]. Their
RDCSS compares (without changing) only a single location, and
their CASN supports the update of all touched words, but the
proofs adapt in a straightforward way. In particular, as in RDCSS,
an unsuccessful tryFinalize or txEnd can linearize on a (failed)
validating read or a failed CAS of its status word. A tryFinalize or
txEnd whose status CAS is successful linearizes “in the past,” on the
first of its validating reads. (Ironically, this means that MCNS, at the
implementation level, does not have an immediately identifiable
linearization point.) O

LEmMA 2. In any history in which transaction t performs an nbt-
cLoad or nbtcCAS operation x on CASObj o, and in which t’s txEnd
operationy succeeds, no tryFinalize or txEnd for a different transaction
that modifies o succeeds between x and y.

PROOF (SKETCH). Suppose the contrary, and call the transaction
with the conflicting tryFinalize or txEnd u. If u’s nbtcCAS of o
occurs between x and y, it will abort and uninstall #’s descriptor, or
cause read validation to fail in y, contradicting the assumption that
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t’s txEnd succeeds. If u’s nbtcCAS of o occurs before x, then x will
abort and uninstall u’s descriptor, contradicting the assumption
that u’s tryFinalize or txEnd succeeds after x. O

THEOREM 3. Histories comprising well-formed Medley transactions
are strictly serializable.

PRroOF (SKETCH). In an Medley-transformed data structure, all
critical memory accesses will be performed using nbtcLoad or nbtc-
CAS. These will be followed, at some point, by a call to txEnd. If
that call succeeds, no conflicting tryFinalize or txEnd succeeds in
the interim, by Lemma 2. This in turn implies that our Medley
history is equivalent to a sequential history in which each opera-
tion takes effect at the nbtcLoad or nbtcCAS corresponding to the
linearization point of the original data structure operation, prior to
NBTC transformation. Moreover, all operations of the same trans-
action are contiguous in this sequential history—that is, our Medley
history is strictly serializable. O

5.2 Obstruction Freedom

THEOREM 4. When used to build well-formed transactions that
retry on abort, Medley is obstruction free.

Proor (skeTCH). In any reachable system state, if one thread
continues to execute while others are paused, every nbtcLoad or
nbtcCAS that encounters a conflict will first finalize (commit or
abort) the encountered descriptor, uninstall it, and install its own
descriptor. If the thread encounters its own descriptor, a nbtcLoad
will return the speculated value and a nbtcCAS will update the write
set if the argument matches the previous new value in the write
set. In either case, the MCNS will make progress. If it eventually
aborts, it may repeat one round of a brand new MCNS which, with
no newly introduced contention, must commit. O

5.3 Buffered Durable Strict Serializability

THEOREM 5. Histories comprising well-formed txMontage transac-
tions exhibit buffered durable strict serializability.

Proor (skeTcH). Each transaction reads the current epoch, e, in
txBegin. It then validates this epoch number during MCNS commit.
Per Lemma 1, this MCNS must linearize inside e. With nbMontage-
provided failure atomicity of all operations in the same epoch, the
theorem trivially holds. O

6 PERFORMANCE RESULTS

As noted in Section 1, we have used Medley to create NBTC ver-
sions of Michael and Scott’s queue [29], Fraser’s skiplist [10], the
rotating skiplist of Dick et al. [7], Michael’s chained hash table [28],
and Natarajan and Mittal’s binary search tree [31]. All of the trans-
formations were straightforward. In this section we report on the
performance of Medley and txMontage hash tables and skiplists,
comparing them to various alternatives from the literature. Source
code for Medley, txMontage, and the experiments is available at
https://github.com/urcs-sync/Medley.
Specifically, we tested the following transient systems:

Medley - as previously described (hash table and skip list)
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OneFile - transient version of the lock-free STM of Ramalhete et
al. [33] (hash table and skip list)

TDSL - transactional data structure library of Spiegelman et al. [36]
(authors’ skiplist only)

LFTT - lock-free transactional transform of Zhang et al. [43] (au-
thors’ skiplist only)

We also tested the following persistent systems:

txMontage — Medley + nbMontage (hash table and skiplist)
POneFile - persistent version of OneFile [33] (hash table and
skiplist)

6.1 Experimental Setup

We report throughput for hash table and skiplist microbenchmarks
and for skiplists used to run a subset of TPC-C [6]. We also measure
latency for skiplists. All code will be made publicly available prior
to conference publication.

All tests were conducted on a Linux 5.3.7 (Fedora 30) server with
two Intel Xeon Gold 6230 processors. Each socket has 20 physical
cores and 40 hyperthreads, totaling 80 hyperthreads. Threads in all
experiments were pinned first one per core on socket 0, then on the
extra hyperthreads of that socket, and then on socket 1. Each socket
has 6 channels of 32 GB DRAMs and 6 channels of 128 GB Optane
DIMMs. We mount NVM from each socket as an independent ext4
file system. In all experiments, DRAM is allocated across the two
sockets according to Linux’s default policy; in persistent data struc-
tures, only NVM on socket 0 is used, in direct access (DAX) mode.
In all cases, we report the average of three trials, each of which
runs for 30 seconds.

Our throughput and latency microbenchmark begins by pre-
loading the structure with 0.5 M key-value pairs, drawn from a
key space of 1M keys. Both keys and values are 8-byte integers.
In the benchmarking phase, each thread composes and executes
transactions comprising 1 to 10 operations each. Operations (on
uniformly random keys) are chosen among get, insert, and remove
in a ratio specified as a parameter (0:1:1, 2:1:1, or 18:1:1 in our
experiments).

In OneFile, we use a sequential chained hash table parallelized
using STM. In Medley, we use an NBTC-transformed version of
Michael’s lock-free hash table [28]. Each table has 1 M buckets. In
OneFile and TDSL, skiplists are derived from Fraser’s STM-based
skiplist [10]. In LFTT and Medley, they are derived from Fraser’s
CAS-based nonblocking skiplist [10]. Each skiplist has up to 20
levels.

For TPC-C, we are limited by the fact that Fraser’s skiplists do
not support range queries. Following the lead of Yu et al. [42] in
their experiments with DBx1000[42], we limit our experiments to
TPC-C’s newOrder and payment transactions, which we perform in
a 1:1 ratio. These are the dominant transactions in the benchmark;
neither performs a range query.

6.2 Throughput (Transient)

Throughput results for the hash table and skiplist microbenchmarks
appear in Figures 7 and 8, respectively. Solid lines represent transac-
tions on transient data structures; dotted lines represent persistent
transactions. Considering only the transient case for now, Medley
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consistently outperforms the transient version of OneFile by more
than an order of magnitude, on both hash tables and skiplists, for
anything more than a trivial number of threads. The gap becomes
larger when the workload has a higher percentage of writes. De-
spite its lack of scalability, OneFile performs well at small thread
counts, especially with a read-mostly workload. We attribute this
fact to its serialized transaction design, which eliminates the need
for read sets.

As described in Section 1, TDSL provides (blocking) transactions
over various specially constructed data structures. While conflicts
still occur on writes, read sets are limited to only semantically
critical nodes, and the authors report significant improvements
in throughput relative to general-purpose STM [36]. As shown in
Figure 8, however, TDSL, like OneFile, has limited scalability, and
is dramatically outperformed by Medley. Somewhat to our surprise,
TDSL also fails to outperform OneFile on this microbenchmark,
presumably because of the latter’s elimination of read sets.

Among the various skiplist competitors, LFT'T comes closest to
rivaling Medley, but still trails by a factor of 1.4-2x in the best
(write-only) case. Re-executing entire transactions in LFTT intro-
duces considerable redundant work—planning in particular. On
read-mostly workloads, where Medley benefits from invisible read-
ers, LFTT trails by a factor of 2-2.7x.

As a somewhat more realistic benchmark, we repeated our com-
parison of Medley, OneFile, and TDSL on the newOrder and pay-
ment transactions of TPC-C. We were unable to include LFTT in

these tests because it supports only static transactions, in which the
set of data structure operations is known in advance—nor could we
integrate its dynamic variant (DTT [23]), as the available version of
the code does not allow arbitrary key and value types. LaBorde et al.
[23] report, however, that DTT’s performance is similar to that of
LFTT on simple transactions. Given that DTT has to publish the
entire transaction as a lambda expression on all its critical nodes,
we would expect DTT’s performance to be, if anything, somewhat
worse on the large transactions of TPC-C, and LFTT was already
about 2X slower than Medley on the microbenchmark.

TPC-C throughput for Medley, (transient) OneFile, and TDSL
appears in Figure 9. Because transactions on TPC-C are large, One-
File is impacted severely. By ensuring the atomicity of only critical
accesses, Medley still scales for large numbers of threads and out-
performs the competition by as much as 45x.

6.3 Latency (Transient)

In an attempt to assess the marginal cost of transaction composi-
tion, we re-ran our microbenchmark on Fraser’s original skiplist
(Original—no transactions), the NBTC-transformed skiplist with-
out transactions (TxOff—no calls to txBegin or txEnd), and the
NBTC-transformed skiplist with transactions (TxOn—as in Fig-
ure 8).

Figure 10a reports latency for structures placed in DRAM. With-
out transactions, the transformed skiplist is 1.8 slower than the
original. With transactions turned on, it’s about 2.2x slower. These
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results suggest that the more-than-doubled cost of CASes (installing
and uninstalling descriptors) accounts for about /3 of Medley’s
overhead.

6.4 Persistence

To evaluate the impact of failure atomicity and durability on the
throughput of txMontage, we can return to the dotted lines of
Figures 7, 8, and 9.

Throughput. In the microbenchmark tests, with strict persistence
and eager cache-line write-back, persistent OneFile is an order of
magnitude slower than its transient version. With periodic persis-
tence, however, the txMontage hash table achieves half the through-
put of Medley at 40 threads on the write-only workload—almost
two orders of magnitude faster than POneFile. With a read-mostly
workload on the hash table, or with any of the workloads on the
skiplist (with its lower overall concurrency), txMontage is almost as
fast as Medley. In the extreme write-heavy case (80 threads on the
0:1:1 hash table workload), we attribute the roughly 4x slowdown
of txMontage to NVM’s write bottleneck [22]—in particular, to the
phenomenon of write amplification [20, 41].

Results are similar in TPC-C (Fig. 9). Transactions here are both
large and heavy on writes; allocating payloads on NVM limits
txMontage’s throughput to roughly a fifth of Medley’s, but that is
still about 4x faster than transient OneFile. POneFile, for its part,
spent so long on the warm-up phase of TPC-C that we lost patience
and killed the test.

Latency. Figure 10b shows the latency of skiplist transactions when
txMontage payloads are allocated on NVM (and indices on DRAM)
but persistence is turned off (no epochs or explicit cache line write-
back). For comparison, we have also shown the latency of the
original, non-transactional skiplist with all data placed in NVM.
Figure 10c shows the corresponding latencies for fully operational
txMontage.

Comparing Figures 10a and 10b, we see lower marginal overhead
for transactions when running on NVM. This may suggest that the
hardware write bottleneck is reducing overall throughput and thus
contention.

On the write-only workload (leftmost groups of bars), moving
payloads to NVM introduces an overhead of almost 50% (Fig. 10a
versus Fig. 10b). On the read-mostly workload (rightmost bars),
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this penalty drops to 5%. Again, we attribute the effect to NVM’s
write bottleneck. The high latency of the original skiplist entirely
allocated on NVM (green bars in Figure 10b) appears to confirm
this hypothesis.

Comparing Figures 10b and 10c, txMontage pays less than 5%,
relative to Medley on NVM, for failure atomicity and durability.

7 CONCLUSION

We have presented nonblocking transaction composition (NBTC),
a new methodology that leverages the linearizability of existing
nonblocking data structures when building dynamic transactions.
As concrete realizations, we introduced the Medley system for tran-
sient structures and the txMontage system for (buffered) persistent
structures. Medley transactions are isolated and consistent; txMon-
tage transactions are also failure atomic and durable. Both systems
are quite fast: where even the best STM has traditionally suffered
slowdowns of 3-10%, Medley incurs more like 2.2X; txMontage, for
its part, adds only 5-20% to the overhead of nbMontage, allowing
it to outperform existing nonblocking persistent STM systems by
nearly two orders of magnitude.

Given their eager contention management, Medley and txMon-
tage maintain obstruction freedom for transactions on nonblock-
ing structures. In future work, we plan to explore lazy contention
management, postponing installment of descriptors until transac-
tions are ready to commit. By sorting and installing descriptors in
canonical order, the resulting systems would preserve lock freedom.
Lazy contention management would also facilitate helping, as any
installed descriptor would have status == InProg, and any other
thread could push it to completion.

As currently defined in NBTC, speculation intervals are easy to
identify, but may unnecessarily instrument certain harmless helping
instructions between publication and linearization. We are currently
working to develop a more precise but still tractable definition of
helping in order to reduce the number of “critical” memory accesses
that must be performed atomically in each transaction.
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