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ABSTRACT

Evidence for a low-frequency stochastic gravitational wave background has recently been reported

based on analyses of pulsar timing array data. The most likely source of such a background is a
population of supermassive black hole binaries, the loudest of which may be individually detected

in these datasets. Here we present the search for individual supermassive black hole binaries in the
NANOGrav 15-year dataset. We introduce several new techniques, which enhance the efficiency and

modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals,

one with a gravitational-wave frequency of ∼4 nHz, and another at ∼170 nHz. The significance of

the low-frequency candidate was greatly diminished when Hellings-Downs correlations were included

in the background model. The high-frequency candidate was discounted due to the lack of a plausible
host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support

comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for

signals from individual binary systems, we place upper limits on the strain amplitude of gravitational
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waves emitted by such systems. At our most sensitive frequency of 6 nHz we place a sky-averaged
95% upper limit of 8 × 10−15 on the strain amplitude. We also calculate an exclusion volume and a

corresponding effective radius, within which we can rule out the presence of black hole binaries emitting

at a given frequency.

Keywords: Gravitational waves – Methods: data analysis – Pulsars: general

1. INTRODUCTION

Nanohertz gravitational waves (GWs) can be probed
by regularly monitoring millisecond pulsars and mea-

suring the times-of-arrival of their radio pulses (for a

review see e.g., Burke-Spolaor et al. 2019; Taylor 2021).

Three such pulsar timing arrays (PTAs) have the re-

quired decade-long datasets to probe the nHz band: the

North American Nanohertz Observatory for Gravita-
tional Waves (NANOGrav - Agazie et al. 2023a); the

European Pulsar Timing Array (EPTA - Antoniadis

et al. 2023a); and the Parkes Pulsar Timing Array

(PPTA - Zic et al. 2023). All three of these collabora-

tions found a low-frequency stochastic process in their

data (Agazie et al. 2023b; Antoniadis et al. 2023b; Rear-

don et al. 2023). They also found various levels of evi-
dence for Hellings-Downs (HD, Hellings & Downs 1983)

spatial correlations between pulsars, which points to the

origin of this process being a stochastic gravitational-

wave background (GWB). The upcoming combination

of these datasets, along with data from the Indian Pul-

sar Timing Array (InPTA Tarafdar et al. 2022), will

constitute the next dataset of the International PTA
(IPTA), which is expected to be more conclusive than
any individual PTA.

The canonical explanation of such a GWB is that it is

built up from the combined signals from a collection of
millions of supermassive black hole binaries (SMBHBs)

throughout the observable Universe (see Agazie et al.

2023c and references therein). These systems naturally
form in galaxy mergers, since every massive galaxy hosts

a supermassive black hole (Kormendy & Ho 2013), with

mass of 106 − 1010M⊙. Their existence has been hy-

pothesized for decades (Begelman et al. 1980), but they

have remained observationally elusive despite their ex-

pected abundance (De Rosa et al. 2019). It is expected

that some of the loudest binaries could also be individ-
ually detected (Sesana et al. 2009; Rosado et al. 2015;

Kelley et al. 2018; Bécsy et al. 2022). Several previ-
ous searches have been carried out to look for these

∗ NASA Hubble Fellowship: Einstein Postdoctoral Fellow
† NANOGrav Physics Frontiers Center Postdoctoral Fellow
‡ Deceased
§ NSF Astronomy and Astrophysics Postdoctoral Fellow

sources, which have set increasingly stringent upper lim-

its over the years (Yardley et al. 2010; Arzoumanian

et al. 2014; Zhu et al. 2014; Babak et al. 2016; Aggar-

wal et al. 2019; Arzoumanian et al. 2023; Falxa et al.

2023), including stringent mass ratio upper limits on

tentative binaries in several nearby galaxies (Schutz &
Ma 2016; Arzoumanian et al. 2021). Most recently, Ar-

zoumanian et al. (2023) searched for individual binaries

in the NANOGrav 12.5-year dataset (Alam et al. 2021).

Here we describe a Bayesian search for individual bi-
naries in the NANOGrav 15-year dataset (Agazie et al.

2023a). The plan of this paper is as follows. In Section 2,
we describe the search methods, which are based upon

those in Arzoumanian et al. (2023), but to which we

have introduced several improvements. We present our

search results in Section 3 and upper limits in Section

4. We discuss conclusions and future work in Section 5.

2. METHODS

2.1. The NANOGrav 15-year Data Set

We analyze the NANOGrav 15-year dataset1, which

consists of times-of-arrival and timing models of 68 mil-

lisecond pulsars based on observations made between

July 2004 and August 2020. Similar to Agazie et al.
(2023b), we only analyze data from pulsars which have
a timing baseline longer than three years. This results

in the exclusion of PSR J0614−3329 and brings the to-

tal number of analyzed pulsars to 67. Compared to

the analysis of the 12.5-year dataset, where the data

from only 45 pulsars were analyzed (Arzoumanian et al.

2023), this represents an almost 50% increase in the

number of pulsars, and more than 20% increase in tim-
ing baseline. In addition, we also benefit from improved

timing solutions as the new dataset is a complete reanal-

ysis of all previous data. A more detailed description of

the dataset can be found in Agazie et al. (2023a).

2.2. Models

We model timing residuals in each pulsar as:

δt =Mϵ+ nWN + nRN + nCURN + s, (1)

1 While the time between the first and last observations we analyze
is 16.03 years, this data set is named “15-year data set” since no
single pulsar exceeds 16 years of observation; we will use this
nomenclature despite the discrepancy.
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where M is the design matrix that describes the lin-
earized timing model and ϵ are the offsets from the nom-

inal timing model parameters. The parameters nWN

and nRN describe the white and red noise respectively

in a particular pulsar, while nCURN represents a com-
mon (spatially) uncorrelated red noise (CURN) signal

present in all pulsars. More details on these noise mod-
els can be found in Agazie et al. (2023d). The GW signal

of an individual binary (often called a continuous wave

signal, or CW, due to its minimal frequency evolution)

can be expressed as (see e.g., Arzoumanian et al. 2023):

s(t)=F+(θ, ϕ, ψ) [s+(tp)− s+(t)]

+F×(θ, ϕ, ψ) [s×(tp)− s×(t)] , (2)

where s+,×(t) and s+,×(tp) correspond to the so called

Earth and pulsar terms, respectively; t is the time mea-
sured at the Solar System barycenter; tp is the corre-

sponding time at the pulsar, which depends on both the

sky location and the distance of the pulsar; and F+,×

is the antenna pattern function, which depends on the

sky location of the binary (θ, ϕ) and the GW polariza-

tion angle (ψ), and describes how the signal appears in
a given pulsar (see eq. (5) of Arzoumanian et al. 2023).

For a circular binary, at zeroth post-Newtonian (0-

PN) order, s+,× is given by:

s+(t)=−
M5/3

dL ω(t)1/3
sin 2Φ(t)

(

1 + cos2 ι
)

, (3)

s×(t)=
M5/3

dL ω(t)1/3
2 cos 2Φ(t) cos ι , (4)

where ι is the inclination angle of the SMBHB, dL
is the luminosity distance to the source, and M ≡

(m1m2)
3/5/(m1 +m2)

1/5 is a combination of the black

hole masses m1 and m2 called the “chirp mass”.

The reference angular frequency of the Earth term is
denoted as ω0 = ω(t0) = 2πfGW. The time-dependent

angular frequency is given by:

ω(t) = ω0

[

1−
256

5
M5/3ω

8/3
0 (t− t0)

]−3/8

. (5)

The frequency evolution within the observing time span

is typically small. However, the pulsar terms are effec-

tively sampling the waveform at earlier times depending

on the pulsar distance and the relative position of the

pulsar and the source on the sky. This means that the

pulsar terms can have significantly lower frequencies, es-

pecially for high M and fGW values. Note that both M

and ω(t) are observer-frame quantities, which are related

to their rest-frame equivalents as Mr = M/(1 + z) and

ωr = ω(1 + z).

The phases in eq. (3) and (4) are given by:

Φ(t)=Φ0 +
1

32
M−5/3

[

ω
−5/3
0 − ω(t)−5/3

]

, (6)

where Φ0 is the initial Earth term phase, and a simi-

lar expression holds for each pulsar phase with initial

pulsar phases Φi. We can also define the overall signal

amplitude as:

h0 =
2M5/3(πfGW)2/3

dL
. (7)

Thus the signal model can be described with eight global

parameters (θ, ϕ, ψ, ι, Φ0, fGW, M, h0) and two ad-
ditional parameters for each pulsar: the distance to the

pulsar (Li), and the phase of the signal at the pulsar

(Φi).

The white noise is modeled separately for each pul-

sar and backend-receiver combination and is described

by three parameters (EFAC, EQUAD, ECORR), which

we fix to their best-fit values found without modeling
an individual binary, following previous searches (see
e.g., Arzoumanian et al. 2023). We allow individual pul-

sar red noise to vary. An improvement over the previous

search is that we also marginalize over the parameters

of a CURN process.

2.3. Sampler

A key improvement over previous searches comes from

using QuickCW (Bécsy et al. 2022; Bécsy et al. 2023), a

software package that builds on the enterprise (Ellis
et al. 2019) and enterprise extensions (Taylor et al.

2021) libraries, but uses a custom likelihood calculation

and a Markov chain Monte Carlo (MCMC) sampler tai-
lored to the search for individual binaries. The idea is

that the expensive-to-calculate inner products needed

for the likelihood can be stored and reused to calculate

the likelihood at different values of the so-called projec-

tion parameters (ψ, ι, Φ0, h0, Φi), when the rest of the

parameters (shape parameters: θ, ϕ, fGW, M, Li) are
held fixed. This results in an O(104) speed-up when up-

dating projection parameters, which roughly translates

to a 100-fold speed-up of the entire search. For more

details see Bécsy et al. (2022).

This increased efficiency also allows us to improve the

search in several ways that were previously computa-

tionally prohibitive:

1. Instead of fixing the amplitude and spectral index

of the common red noise process as was done in Ar-

zoumanian et al. (2023), we can marginalize over
those parameters. This is important due to the

strong covariance between a low-frequency binary

and the GWB.



NANOGrav 15-year Individual Binary Limits 5

2. Instead of searching for binaries at a set of dis-
crete frequencies as was done, e.g., in Arzouma-

nian et al. (2023), we directly sample the GW fre-

quency parameter in our MCMC. This makes our

search fully Bayesian by removing a grid-based el-

ement of the previous search, and has the advan-

tage of allowing the frequency parameter to take
any value in the prior range.

3. The improved efficiency makes it possible to re-

peat the analysis multiple times with various set-

tings and to carry out more extensive tests of the

algorithm (see Appendix A), both of which make

the results more robust.

While the frequencies are no longer tied to a grid,

so in principle one could do a search over the whole

prior range with a single MCMC run, in practice it can

be beneficial to break the analysis up into frequency

bands that are analyzed separately. The main reason

for doing this is to ensure that all frequencies are well

sampled; the sampler tends to favor some frequencies

over others. In addition, it allows the analysis to be

spread over the available computing resources. For the
search (see Section 3) we performed several independent

MCMC runs either at low (≤ 25 nHz) or high (≥ 25

nHz) GW frequencies. This helped convergence sub-

stantially, since the model behaves differently in these

two regimes. At low frequencies, there is a strong co-

variance with the CURN, but the CW signals evolve

very little in frequency, so the pulsar distance parame-
ters are practically irrelevant. At high frequencies, the
red noise has no effect, but the signals can be strongly
evolving, so the chirp mass and pulsar distance parame-

ters become important. For the upper limit analysis (see

Section 4.1), we further subdivided the frequency range
and performed analysis over nine overlapping frequency

bins. This was necessary to get enough samples in each

frequency bin, since the uniform amplitude prior used

for these runs makes it harder to explore all frequen-

cies compared to the uniform amplitude runs used to

calculate Bayes factors.

2.4. Priors

We impose uninformative uniform priors on most

model parameters to represent our lack of knowledge

about them. For the common and individual pulsar red

noise amplitudes, we use a log-uniform prior, which al-

lows the sampler to explore amplitudes over many orders

of magnitude. For the amplitude of the individual bi-
nary signal, we use a log-uniform prior when calculating
Bayes factors, and a uniform prior for calculating upper

limits.

The pulsar distances are the only parameters where

we do have prior knowledge. For these we adopt the ap-
proach introduced in Arzoumanian et al. (2023) of using

the best available distance measurements to set up our

priors for each pulsar. The form of these priors depend

on the source of the distance measurement. For pul-

sars with a precise parallax measurement,2 we assume a

Gaussian distribution on the parallax, which results in
a skewed prior distribution of the distance (see eq. (20)
in Arzoumanian et al. 2023). For other pulsars we con-

verted the measured dispersion measure value to a dis-

tance estimate using the NE2001 electron density map

(Cordes & Lazio 2002). Following Arzoumanian et al.

(2023) we assumed a 20% error on these estimates and
set the prior distribution to be uniform between 80%

and 120% of the measured value with Gaussian tails on

either side with standard deviation of 5% of the mea-

sured value (see eq. (21) in Arzoumanian et al. 2023).

We list the parameters we used for each pulsar in Table
2 in Appendix B.

Note that these are the same priors as used in the
NANOGrav 12.5-year individual binary search (see Ta-

ble 1 in Arzoumanian et al. 2023), except that: i) we

use a log-uniform prior on the GW frequency instead of

fixing its value on a grid; ii) we vary the parameters of

the common red noise instead of fixing them; and iii) we

updated our pulsar distances to include recent parallax

measurements (see Table 2).

2.5. Accounting for HD Correlations with Resampling

The common red noise process was shown to have cor-

relations between pulsars that follow HD correlations

(Agazie et al. 2023b), so for a fully consistent modeling,

we should include those correlations when searching for
an individual binary. However, it is currently computa-

tionally prohibitive to directly model those correlations
while also searching for signals from individual binaries.
Instead, we model the background as uncorrelated com-
mon red noise and take the correlations into account in

post-processing.

We do so by using the likelihood reweighing technique
introduced to PTA data analysis by Hourihane et al.

(2022). The idea is to take a thinned set of posterior
samples assuming a CURN, and calculate importance

weights based on the ratio of the likelihood with (HD)

and without correlations (CURN). These weights can be

used with importance sampling to produce correct pos-

terior samples with correlations taken into account. As

a result, we have four different models to explore, which

2 Based on the list of pulsar parallax measurements maintained at:
http://hosting.astro.cornell.edu/∼shami/parallax/
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the Eötvös Loránd Research Network (ELKH), which
was used during the development of this research.

S.M.R. and I.H.S. are CIFAR Fellows. Portions of this

work performed at NRL were supported by ONR 6.1 ba-

sic research funding. J.D.R. also acknowledges support

from start-up funds from Texas Tech University. J.S.

is supported by an NSF Astronomy and Astrophysics

Postdoctoral Fellowship under award AST-2202388, and

acknowledges previous support by the NSF under award

1847938. S.R.T. acknowledges support from an NSF

CAREER award #2146016. C.U. acknowledges support

from BGU (Kreitman fellowship), and the Council for

Higher Education and Israel Academy of Sciences and

Humanities (Excellence fellowship). C.A.W. acknowl-

edges support from CIERA, the Adler Planetarium, and

the Brinson Foundation through a CIERA-Adler post-

doctoral fellowship. O.Y. is supported by the National

Science Foundation Graduate Research Fellowship un-

der Grant No. DGE-2139292. This work was conducted

in part using the resources of the Advanced Computing

Center for Research and Education (ACCRE) at Van-

derbilt University, Nashville, TN.

Facilities: Arecibo, GBT, VLA
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APPENDIX

A. SOFTWARE CONSISTENCY CHECKS AND REPRODUCIBILITY

To help make our results easily reproducible, we prepared tutorials that give all technical details needed to verify

our main results (NANOGrav Collaboration 2023). To ensure the credibility of our results, we also carried out several

tests on the QuickCW software used to produce the results presented in this paper. We followed procedures outlined in
Johnson et al. (2023), and carried out the following tests, all of which indicated QuickCW was working as intended:

1. We compared the likelihood values calculated by QuickCW with the ones directly from the enterprise software

package. We obtained good agreement throughout an entire MCMC run, with differences consistent with the

expected numerical precision.

2. We performed prior recovery tests on all sampled parameters. We found that when setting the likelihood to a

constant the sampler recovered the priors ensuring sufficient exploration of the entire parameter space.

3. We carried out a p-p test, which ensures that the sampler gives unbiased estimates of model parameters. We
created 40 realizations of a reduced dataset with the 10 longest-timed pulsars with simulated noise made to

resemble the real data and a simulated binary with parameters drawn from their priors. Then we analyzed

each dataset with a lightweight version of the analysis we used for the real data (significantly fewer iterations).

These differences compared to production settings were necessary to make this test computationally feasible. In

Figure 10 we show a so called p-p plot, which shows the cumulative fraction of realizations where the true value
of the parameter is at some p-value in the recovered posterior. A diagonal line would mean perfect unbiased

recovery, and the gray bands show the 68.3/95.5/99.7% confidence intervals expected from the finite number
of simulations done. We can see that all curves stay within the 99.7% confidence interval, indicating unbiased

parameter recovery.

B. PULSAR DISTANCE VALUES
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Table 2. Compiled pulsar distance values and uncertainties for each
pulsar used for the analysis presented in this paper. The second column
indicates whether the distance value is from dispersion measure (DM)
or parallax (PX) measurements.

Pulsar Prior Distance [kpc] Error [kpc] References

J1012+5307 PX 0.862 0.022 Ding et al. (2023, 2020); Lazaridis et al. (2009)

J1012−4235 DM 2.50 0.50

J1022+1001 PX 0.706 0.019 Deller et al. (2019a); Verbiest et al. (2009); Hotan et al. (2006, 2004);
Agazie et al. (2023a)

J1024−0719 PX 1.080 0.042 Ding et al. (2023); Guillemot et al. (2016); Agazie et al. (2023a)

J1125+7819 DM 0.63 0.13

J1312+0051 DM 0.84 0.17

J1453+1902 DM 1.15 0.23

J1455−3330 PX 1.01 0.22 Guillemot et al. (2016)

J1600−3053 PX 1.84 0.26 Agazie et al. (2023a)

J1614−2230 PX 0.699 0.026 Guillemot et al. (2016); Abdo et al. (2013); Agazie et al. (2023a)

J1630+3734 PX 0.089 0.024 Agazie et al. (2023a)

J1640+2224 PX 1.404 0.095 Ding et al. (2023)

J1643−1224 PX 0.835 0.059 Ding et al. (2023); Verbiest et al. (2009)

J1705−1903 DM 1.62 0.32

J1713+0747 PX 1.138 0.019 Verbiest et al. (2009); Chatterjee et al. (2009); Hotan et al. (2006);
Splaver et al. (2005); Agazie et al. (2023a)

J1719−1438 DM 1.21 0.24

J1730−2304 PX 0.529 0.022 Ding et al. (2023); Guillemot et al. (2016); Agazie et al. (2023a)

J1738+0333 PX 1.64 0.10 Ding et al. (2023); Freire et al. (2012); Agazie et al. (2023a)

J1741+1351 PX 2.36 0.56 Agazie et al. (2023a)

J1744−1134 PX 0.4141 0.0093 Verbiest et al. (2009); Hotan et al. (2006); Toscano et al. (1999); Agazie
et al. (2023a)

J1745+1017 DM 1.27 0.25

J1747−4036 DM 3.50 0.70

J1751−2857 DM 1.11 0.22

J1802−2124 DM 2.96 0.59

J1811−2405 DM 1.79 0.36

J1832−0836 PX 2.00 0.47 Agazie et al. (2023a)

J1843−1113 DM 1.72 0.34

J1853+1303 PX 1.91 0.17 Ding et al. (2023); Agazie et al. (2023a)

J1903+0327 DM 6.49 1.30

J1909−3744 PX 1.159 0.013 Verbiest et al. (2009); Hotan et al. (2006); Jacoby et al. (2005); Agazie
et al. (2023a)

J1910+1256 PX 3.52 0.41 Ding et al. (2023)

J1911+1347 DM 2.08 0.42

J1918−0642 PX 1.44 0.11 Ding et al. (2023); Agazie et al. (2023a)

J1923+2515 PX 0.94 0.21 Agazie et al. (2023a)

J1944+0907 PX 1.38 0.36 Agazie et al. (2023a)

J1946+3417 DM 5.12 1.02

J2010−1323 PX 1.94 0.41 Agazie et al. (2023a)

J2017+0603 DM 1.57 0.31

J2033+1734 DM 1.99 0.40

J2043+1711 PX 1.58 0.11 Agazie et al. (2023a)

J2124−3358 PX 0.413 0.055 Verbiest et al. (2009); Agazie et al. (2023a)
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Table 2. Compiled pulsar distance values and uncertainties for each
pulsar used for the analysis presented in this paper. The second column
indicates whether the distance value is from dispersion measure (DM)
or parallax (PX) measurements.

Pulsar Prior Distance [kpc] Error [kpc] References

J2145−0750 PX 0.624 0.022 Deller et al. (2019b); Verbiest et al. (2009); Agazie et al. (2023a)

J2214+3000 DM 1.54 0.31

J2229+2643 DM 1.43 0.29

J2234+0611 PX 1.23 0.17 Agazie et al. (2023a)

J2234+0944 DM 1.00 0.20

J2302+4442 DM 1.18 0.24

J2317+1439 PX 1.57 0.29 Agazie et al. (2023a)

J2322+2057 PX 1.00 0.21 Agazie et al. (2023a)

C. EFFECTS OF NOISE MODELING ON HIGH-FREQUENCY CANDIDATE

It is well known that PTA datasets can be prone to having unmodeled high-frequency noise. E.g., this is why
the number of frequency components used to model the GWB is usually limited to avoid contamination from higher

frequencies (see e.g., Agazie et al. 2023b,d). It has also been shown that including advanced noise models can help
alleviate these problems (Goncharov et al. 2021; Falxa et al. 2023; Simon et al. 2023). To test if these models can

also help explaining the high-frequency candidate we found, we used advanced noise models for some of the pulsars

using the maximum likelihood parameter values of these models derived based on the NANOGrav 12.5-year dataset

(Simon et al. 2023). To decide which pulsars to use these models for, we created an ordered list of them based on

how informative the given pulsar’s pulsar phase posteriors were. This is an indicator of how much they support
the presence of the candidate, and can be measured by the Kullback–Leibler divergence between the prior and the

posterior. The top nine pulsars in this measure were: J1713+0747, B1937+21, J1909−3744, J1012+5307, J2317+1439,
J1918−0642, J1640+2224, J1741+1351, J0613−0200. However, we did not have advanced noise models available for

PSR J1918−0642, leaving us with eight pulsars to include advanced noise models for. We did three different runs: (1)

where only PSR J1713+0747 had an advanced noise model included; (2) where the four top pulsars listed above had

advanced noise models included; and (3) where all eight top pulsars listed above had advanced noise models included.

The corresponding Bayes factors are shown in Figure 11 in blue, aqua and purple, respectively. Including advanced
noise models decreases the Bayes factors of this high-frequency candidate, but it is still the largest Bayes factor we

see in the whole search. The significant variation in the Bayes factors with changes in the noise model for these high
frequency candidates suggests that more work needs to be done to understand the noise in this frequency band.

D. EFFECTS OF PRIOR CHOICE AND CORRELATIONS ON UPPER LIMITS

In Figure 12 we show the amplitude upper limits as a function of frequency we get with uniform (red) and log-
uniform (orange) amplitude priors. As expected, the upper limit using the uniform prior is consistently higher than

the one using the log-uniform prior. Note that around the low-frequency candidate discussed in Section 3.1 (∼ 4 nHz)

and around the high-frequency candidate discussed in 3.2 (∼ 200 nHz), the two curves are closer to each other. This

indicates that once the presence of a signal is preferred and the posterior is likelihood-dominated, the amplitude prior

choice has a smaller effect on the upper limits. As we can see, the upper limits depend on our prior choices. However,
the uniform amplitude prior has the desirable property that the upper limit is independent of the lower and upper

prior bounds used, since the posterior diminishes towards both limits. This is not true for the log-uniform prior, for

which the posterior often extends all the way to the lower prior bound, resulting in an upper limit that depends on

the chosen lower prior bound.

Figure 12 also shows the upper limits after taking the HD-correlations into account with resampling. Note that the

correlations make a difference for the log-uniform amplitude prior run, but not for the uniform amplitude prior run.
This is most likely due to the fact that the latter biases the CW amplitude high, so that it is less affected by the

GWB, and whether that has correlations or not makes less difference. We also show the amplitude and frequency of

the low-frequency candidate, which is consistent with the upper limits regardless of the priors used.
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