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ABSTRACT

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars

from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for

Gravitational Waves. The correlations follow the Hellings–Downs pattern expected for a stochastic

gravitational-wave background. The presence of such a gravitational-wave background with a power-

law–spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
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of 1014, and this same model is favored over an uncorrelated common power-law–spectrum model with
Bayes factors of 200–1000, depending on spectral modeling choices. We have built a statistical back-

ground distribution for these latter Bayes factors using a method that removes inter-pulsar correlations

from our data set, finding p = 10−3 (approx. 3σ) for the observed Bayes factors in the null no-correlation

scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields
p = 5 × 10−5–1.9 × 10−4 (approx. 3.5–4σ). Assuming a fiducial f−2/3 characteristic-strain spectrum,

as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is
2.4+0.7

−0.6 × 10−15 (median + 90% credible interval) at a reference frequency of 1 yr−1. The inferred

gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations

for a signal from a population of supermassive black-hole binaries, although more exotic cosmological

and astrophysical sources cannot be excluded. The observation of Hellings–Downs correlations points

to the gravitational-wave origin of this signal.

Keywords: Gravitational waves – Black holes – Pulsars

1. INTRODUCTION

Almost a century had to elapse between Einstein’s pre-

diction of gravitational waves (GWs, Einstein 1916) and

their measurement from a coalescing binary of stellar-

mass black holes (Abbott et al. 2016). However, their

existence had been confirmed in the late 1970s through

measurements of the orbital decay of the Hulse–Taylor
binary pulsar (Hulse & Taylor 1975; Taylor et al. 1979).

Today, pulsars are again at the forefront of the quest to

detect GWs, this time from binary systems of central

galactic black holes.

Black holes with masses of 105–1010 M⊙ exist at the

center of most galaxies and are closely correlated with

the global properties of the host, suggesting a sym-
biotic evolution (Magorrian et al. 1998; McConnell &

Ma 2013). Galaxy mergers are the main drivers of hi-

erarchical structure formation over cosmic time (Blu-

menthal et al. 1984) and lead to the formation of

close massive–black-hole binaries long after the mergers

(Begelman et al. 1980; Milosavljević & Merritt 2003).

The most massive of these (supermassive black-hole bi-
naries, SMBHBs, with masses 108–1010 M⊙) emit GWs

with slowly evolving frequencies, contributing to a noise-

like broadband signal in the nHz range (the GW back-

ground, GWB; Rajagopal & Romani 1995; Jaffe &

Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004;

McWilliams et al. 2014; Burke-Spolaor et al. 2019). If

all contributing SMBHBs evolve purely by loss of cir-
cular orbital energy to gravitational radiation, the re-
sultant GWB spectrum is well described by a simple

f−2/3 characteristic-strain power law (Phinney 2001).

∗ NASA Hubble Fellowship: Einstein Postdoctoral Fellow
† NANOGrav Physics Frontiers Center Postdoctoral Fellow
‡ Deceased
§ NSF Astronomy and Astrophysics Postdoctoral Fellow

However, GWB signals that are not produced by popu-

lations of inspiraling black holes may also lie within the

nHz band; these include primordial GWs from inflation,

scalar-induced GWs, and GW signals from multiple pro-

cesses arising due to cosmological phase transitions, such

as collisions of bubbles of the post-transition vacuum

state, sound waves, turbulence, and the decay of any

defects such as cosmic strings or domain walls that may

have formed (see, e.g., Guzzetti et al. 2016; Caprini &

Figueroa 2018; Domènech 2021, and references therein).

The detection of nHz GWs follows the template out-

lined by Pirani (1956, 2009), whereby we time the prop-
agation of light to measure modulations in the distance

between freely falling reference masses. Estabrook &
Wahlquist (1975) derived the GW response of electro-

magnetic signals traveling between Earth and distant

spacecraft, sparking interest in low-frequency GW de-

tection. Sazhin (1978) and Detweiler (1979) described

nHz GW detection using Galactic pulsars and (effec-
tively) the solar system barycenter as references, relying

on the regularity of pulsar emission and planetary mo-

tions to highlight GW effects. The fact that pulsars

are such accurate clocks enables precise measurements

of their rotational, astrometric, and binary parameters

(and more) from the times-of-arrival of their pulses,

which are used to develop ever-refining end-to-end tim-

ing models. Hellings & Downs (1983) made the cru-

cial suggestion that the correlations between the time-

of-arrival perturbations of multiple pulsars could reveal

a GW signal buried in pulsar noise; Romani (1989) and

Foster & Backer (1990) proposed that a pulsar timing

array (PTA) of highly stable millisecond pulsars (Backer
et al. 1982) could be used to search for a GWB. Nev-

ertheless, the first multi-pulsar, long-term GWB limits

were obtained by analyzing millisecond-pulsar residuals

independently, rather than as an array (Stinebring et al.

1990; Kaspi et al. 1994).
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From a statistical-inference standpoint, the problem
of detecting nHz GWs in PTA data is analogous to

GW searches with terrestrial and future space-borne

experiments, in which the propagation of light be-

tween reference masses is modeled with physical and

phenomenological descriptions of signal and noise pro-

cesses. It is distinguished by the irregular observation
times, which encourage a time- rather than Fourier-
domain formulation, and by noise sources (intrinsic pul-

sar noise, interstellar-medium–induced radio-frequency–

dependent fluctuations, and timing-model errors) that

are correlated on timescales common to the GWs of in-

terest. This requires the joint estimation of GW sig-

nals and noise, which is similar to the kinds of global

fitting procedures already used in terrestrial GW ex-

periments, and proposed for space-borne experiments.

GW analysts have therefore converged on a Bayesian

framework that represents all noise sources as Gaussian

processes (van Haasteren et al. 2009; van Haasteren &

Vallisneri 2014), and relies on model comparison (i.e.,
Bayes factors, which are ratios of fully marginalized like-

lihoods) to define detection (see, e.g., Taylor 2021). This

Bayesian approach is nevertheless complemented by null

hypothesis testing, using a frequentist detection statis-

tic1 (the “optimal statistic” of Anholm et al. 2009; De-
morest et al. 2013; Chamberlin et al. 2015) averaged

over Bayesian posteriors of the noise parameters (Vige-
land et al. 2018).

The GWB—rather than GW signals from individu-

ally resolved binary systems—is likely to become the

first nHz source accessible to PTA observations (Rosado

et al. 2015). Because of its stochastic nature, the GWB
cannot be identified as a distinctive phase-coherent sig-

nal in the way of individual compact-binary-coalescence
GWs. Rather, as PTA data sets grow in extent and
sensitivity one expects to first observe the GWB as ex-

cess low-frequency residual power of consistent ampli-

tude and spectral shape across multiple pulsars (Ro-

mano et al. 2021; Pol et al. 2021). An observation fol-
lowing this behavior was reported in 2020 (Arzoumanian

et al. 2020, henceforth NG12gwb) for the 12.5-year data
set collected by the North American Nanohertz Observa-

tory for Gravitational waves (NANOGrav, McLaughlin

2013; Ransom et al. 2019), and then confirmed (Gon-

charov et al. 2021a; Chen et al. 2021) by the Parkes

Pulsar Timing Array (PPTA, Manchester et al. 2013)

and the European Pulsar Timing Array (EPTA, Desvi-
gnes et al. 2016), following many years of null results

and steadily decreasing upper limits on the GWB am-

1 See Jenet et al. (2006) for an early example of a cross-correlation
statistic for PTA GWB detection.

plitude. A combined International Pulsar Timing Ar-
ray (IPTA, Perera et al. 2019) data release consisting of

older data sets from the constituent PTAs also confirmed

this observation (Antoniadis et al. 2022). Nevertheless,

the finding of excess power cannot be attributed to a
GWB origin merely by the consistency of amplitude and

spectral shape, which could arise from intrinsic pulsar
processes of similar magnitude (Goncharov et al. 2022;

Zic et al. 2022), or from a common systematic noise such

as clock errors (Tiburzi et al. 2016). Instead, definitive

proof of GW origin is sought by establishing the pres-

ence of phase-coherent inter-pulsar correlations with the

characteristic spatial pattern derived by Hellings and

Downs (1983, henceforth HD): for an isotropic GWB,

the correlation between the GW-induced timing delays

observed at Earth for any pair of pulsars is a universal,

quasi-quadrupolar function of their angular separation

in the sky. Even though this correlation pattern is mod-
ified if there is anisotropy in the GWB—which may be
the case for a GWB generated by a SMBHB population

(Mingarelli et al. 2013; Taylor & Gair 2013; Cornish &

Sesana 2013; Mingarelli & Sidery 2014; Mingarelli et al.

2017; Roebber & Holder 2017)—the HD template is ef-

fective for detecting even anisotropic GWBs in all but

the most extreme scenarios (Cornish & Sesana 2013;

Cornish & Sampson 2016; Taylor et al. 2020; Bécsy et al.

2022; Allen 2023).

In this letter we present multiple lines of evidence

for an excess low-frequency signal with HD correlations

in the NANOGrav 15-year data set (Figure 1). Our

key results are as follows. The Bayes factor between

an HD-correlated, power-law GWB model and a spa-

tially uncorrelated common-spectrum power-law model

ranges from 200 to 1,000, depending on modeling choices

(Figure 2). The noise-marginalized optimal statistic,

which is constructed to be selectively sensitive to HD-

correlated power, achieves a signal-to-noise ratio of ∼ 5

(Figure 3 and Figure 4). We calibrated these detection

statistics by removing correlations from the 15-year data
set using the phase-shift technique, which removes inter-

pulsar correlations by adding random phase shifts to the
Fourier components of the common process (Taylor et al.

2017). We find false-alarm probabilities of p = 10−3 and

p = 5× 10−5 for the observed Bayes factor and optimal

statistic, respectively (see Figure 3).

For our fiducial power-law model (f−2/3 for charac-
teristic strain and f−13/3 for timing residuals) and a

log-uniform amplitude prior, the Bayesian posterior of
GWB amplitude at the customary reference frequency
1 yr−1 is AGWB = 2.4+0.7

−0.6 × 10−15 (median with 90%

credible interval), which is compatible with current as-

trophysical estimates for the GWB from SMBHBs (e.g.,
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Burke-Spolaor et al. 2019; Agazie et al. 2023a). This cor-
responds to a total integrated energy density of Ωgw =

9.3+5.8
−4.0 × 10−9 or ρgw = 7.7+4.8

−3.3 × 10−17 ergs cm−3 (as-

suming H0 = 70 km/s/Mpc) in our sensitive frequency

band. For a more general model of the timing-residual
power spectral density with variable power-law exponent

−γ, we find AGWB = 6.4+4.2
−2.7 × 10−15, and γ = 3.2+0.6

−0.6.
See panel (b) of Figure 1 for AGWB and γ posteriors.

The posterior for γ is consistent with the value of 13/3

predicted for a population of SMBHBs evolving by GW

emission, although smaller values of γ are preferred;

however, the recovered posteriors are consistent with

predictions from astrophysical models (see Agazie et al.

2023a). We also note that, unlike our detection statistics

(which are calibrated under our modeling assumptions),

the estimation of γ is very sensitive to minor details in

the data model of a few pulsars.

The rest of this paper is organized as follows. We
briefly describe our data set and data model in §2. Our

main results are discussed in detail in §3 and §4; they
are supported by a variety of robustness and validation

studies, including a spectral analysis of the excess sig-

nal (§5.2), a correlation analysis that finds no signif-

icant evidence for additional spatially correlated pro-

cesses (§5.3), and cross-validation studies with single-
telescope data sets and leave-one-pulsar-out techniques

(§5.4). In the past two years we have performed an end-
to-end review of the NANOGrav experiment, to iden-

tify and mitigate possible sources of systematic error or

data set contamination: our improvements and consider-

ations are partly described in a set of companion papers:

on the NANOGrav statistical analysis as implemented

in software (Johnson et al. 2023), on the 15-year data

set (Agazie et al. 2023b, hereafter NG15), and on pulsar
models (Agazie et al. 2023c, hereafter NG15detchar).

More companion papers address the possible SMBHB

(Agazie et al. 2023a) and cosmological (Afzal et al. 2023)

interpretations of our results, with several more GW

searches and signal studies in preparation. We look for-

ward to the cross-validation analysis that will become

possible with the independent data sets collected by
other IPTA members.

2. THE 15-YEAR DATA SET AND DATA MODEL

The NANOGrav 15-year data set2 (NG15) con-

tains observations of 68 pulsars obtained between July

2004 and August 2020 with the Arecibo Observatory

2 While the time between the first and last observations we analyze
is 16.03 years, this data set is named “15-year data set” since no
single pulsar exceeds 16 years of observation; we will use this
nomenclature despite the discrepancy.

(Arecibo), the Green Bank Telescope (GBT), and the

Very Large Array (VLA), augmenting the 12.5-year data

set (Alam et al. 2021a,b) with 2.9 years of timing data

for the 47 pulsars in the previous data set, and with

21 new pulsars3. For this paper we analyze narrow-
band times of arrival (TOAs), which are computed sep-

arately for sub-bands of each receiver, and focus on
the 67 pulsars with a timing baseline ≥ 3 years. We

adopt the TT(BIPM2019) timescale and the JPL DE440
ephemeris (Park et al. 2021), which improves Jupiter’s

orbit with ranging and VLBI observations of the Juno

spacecraft. Uncertainties in the Jovian orbit impacted

NANOGrav’s 11-year GWB search (Arzoumanian et al.

2018; Vallisneri et al. 2020), but they are now negligible.

For each pulsar, we fit the TOAs to a timing model

that includes pulsar spin period, spin period derivative,

sky location, proper motion, and parallax. While not

all pulsars have measurable parallax and proper mo-
tion, we always include these parameters because they
induce delays with the same frequencies for all pulsars

(f = 0.5 yr−1 for parallax and f = yr−1 plus a lin-

ear envelope for proper motion), so there is a risk that

a parallax or proper motion signal could be misidenti-

fied as a GW signal. Fitting for these parameters in all

pulsars reduces our sensitivity to GWs at those frequen-

cies; however, this effect is minimal for GWB searches

since these frequencies are much higher than the fre-

quencies at which we expect the GWB to be signifi-

cant. For binary pulsars, the timing model includes also

five orbital elements for binary pulsars and additional

non-Keplerian parameters when these improve the fit as

determined by an F test. We fit variations in disper-
sion measure as a piecewise constant “DMX” function

(Arzoumanian et al. 2015; Jones et al. 2017). The in-

dividual analysis of each pulsar provides best-fit esti-

mates of the timing residuals δt, of white measurement

noise, and of intrinsic red noise, modeled as a power

law (Cordes 2013; Lam et al. 2017; Jones et al. 2017).4

White measurement noise is described by three param-
eters: a linear scaling of TOA uncertainties (“EFAC”),

white noise added to the TOA uncertainties in quadra-
ture (“EQUAD”), and noise common to all sub-bands
at the same epoch (“ECORR”), with independent pa-
rameters for every receiver/backend combination (see

NG15detchar). We summarize white noise by its maxi-

mum a posteriori (MAP) covariance C. See App. A for
more details of our instruments, observations, and data-

3 The data set is available at data.nanograv.org with the code used
to process it.

4 Throughout the paper we use “red noise” to describe noise whose
power spectrum decreases with increasing frequency.
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reduction pipeline: a complete discussion of the data set
can be found in NG15.

In our Bayesian GWB analysis, we model δt as a fi-

nite Gaussian process consisting of time-correlated fluc-

tuations that include intrinsic red pulsar noise and (po-

tentially) a GW signal, along with timing-model uncer-

tainties (van Haasteren et al. 2009; van Haasteren &
Vallisneri 2014; Taylor 2021). The red noise is mod-

eled with Fourier basis F and amplitudes c (Lentati

et al. 2013). All Fourier bases (the columns of F ) are

sines and cosines computed on the TOAs with frequen-

cies fi = i/T , where T = 16.03 yr is the TOA ex-
tent. The timing-model uncertainties are modeled with

design-matrix basis M and coefficients ϵ. The single-

pulsar log likelihood is then

ln p(δt|c, ϵ) = −
1

2

[

rTC−1r + ln det (2πC)
]

, (1)

with

r = δt− Fc−Mϵ. (2)

The prior for the ϵ is taken to be uniform with infinite

extent, so the posterior is driven entirely by the like-

lihood. The set of the {c} for all pulsars take a joint

normal prior with zero mean and covariance

⟨caicbj⟩ = δij (δabφai +Φab,i) ; (3)

here a, b range over pulsars and i, j over Fourier com-
ponents; δij is Kronecker’s delta. The term φai de-

scribes the spectrum of intrinsic red noise in pulsar

a, while Φab,i describes processes with common spec-

trum across all pulsars and (potentially) phase-coherent

inter-pulsar correlations. The {c} prior ties together the

single-pulsar likelihoods (Equation 1) into a joint pos-

terior, p(c, ϵ,η|δt) ∝ p(δt|c, ϵ)p(c, ϵ|η)p(η), where we
have dropped subscripts to denote the concatenation of

vectors for all pulsars, and where η denotes all the hy-
perparameters (such as red-noise and GWB power spec-

trum amplitudes) that determine the covariances. We

marginalize over c and ϵ analytically, and use Markov

chain Monte Carlo techniques (see App. B) to estimate

p(η|δt) for different models of the intrinsic red noise and
common spectrum.

The data-model variants adopted in this paper all
share this probabilistic setup, but differ in the struc-

ture and parametrization of Φab,i. For a model with

intrinsic red noise only (henceforth irn), Φab,i = 0;

for common-spectrum spatially-uncorrelated red noise

(curn), Φab,i = δabΦCURN,i; for an isotropic GWB with
Hellings–Downs correlations (hd), Φab,i = Γ(ξab)ΦHD,i,

with Γ the Hellings–Downs function of pulsar angular

separations ξab

Γ(ξab) =
3

2
x ln(x)−

1

4
x+

1

2
+

1

2
δab, (4)

x =
1− cos ξab

2
. (5)

In NG12gwb we established strong Bayesian evidence for

curn over irn; finding that hd is preferred over curn

would point to the GWB origin of the common-spectrum

signal. We also investigate other spatial correlation pat-

terns, e.g., monopole or dipole, introduced in §5.3.
Throughout this paper, we set the spectral compo-

nents φai of intrinsic pulsar noise (which have units of

s2, as appropriate for the variance of timing residuals)

to a power law,

φai =
A2

a

12π2

1

T

(

fi
fref

)−γa

f−3
ref , (6)

introducing two dimensionless hyperparameters for each

pulsar: the intrinsic-noise amplitude Aa and spectral

index γa. We use log-uniform and uniform priors, re-

spectively, on these hyperparameters; their bounds are

described in App. B. More sophisticated intrinsic-noise

models are discussed in §5.1 and NG15detchar. In mod-

els curnγ and hdγ , the common spectra ΦCURN,i and

ΦHD,i follow Equation 6,

ΦCURN,i =
A2

CURN

12π2

1

T

(

fi
fref

)−γCURN

f−3
ref , (7)

ΦHD,i =
A2

HD

12π2

1

T

(

fi
fref

)−γHD

f−3
ref , (8)

introducing hyperparameters ACURN, γCURN and

AHD, γHD respectively. However, we set γHD = 13/3

for the GWB from a stationary ensemble of inspiraling

binaries, and refer to that fiducial model as hd13/3. For
specific “free spectrum” studies we will instead model

the individual ΦCURN,i or ΦHD,i elements, and refer to
models curnfree and hdfree. Throughout this article we

use frequencies fi = i/T with i = 1–30 for intrinsic noise

(f = 2–59 nHz), covering a frequency range over which

pulsar noise transitions from red-noise–dominated to

white–noise-dominated. For common-spectrum noise,

we limit the frequency range in order to reduce corre-

lations with excess white noise at higher frequencies.

Following NG12gwb, we fit a curnγ model enhanced

with a power-law break to our data, and limit fre-

quencies to the MAP break frequencies (i = 1–14 or

f = 2–28 nHz; see App. C).

3. BAYESIAN ANALYSIS

When fit to the 15-year data set, the curnγ and hdγ

models agree on the presence of a loud time-correlated
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intrinsic pulsar 

noise only (IRN)

common-

spectrum red 

noise (CURNγ)

HD-correlated, 

common spectrum 

red noise (HDγ)

1012.1±0.1 226 ± 70

HDγ + dipole

HDγ + monopole

0.6 ± 0.2

dipole

monopole

HDγ + sin
0.78 ± 0.09

(965 with 5 freqs.)

< 10–7

< 10–8

0.48 ± 0.01

Figure 2. Bayes factors between models of correlated red noise in the NANOGrav 15-year data set (see §5.3 and App. B). All
models feature variable-γ power laws. curnγ is vastly favored over irn (i.e., we find very strong evidence for common-spectrum
excess noise over pulsar intrinsic red-noise alone); hdγ is favored over curnγ (i.e., we find positive evidence for Hellings–Downs
correlations in the common-spectrum process); dipole and monopole processes are strongly disfavored with respect to curnγ ;
adding correlated processes to hdγ is disfavored. While the interpretation of “raw” Bayes factors is somewhat subjective, they
can be given a statistical significance within the hypothesis-testing framework by computing their background distributions and
deriving the p-values of the observed factors, e.g., Figure 3.

stochastic signal with common amplitude and spec-

trum across pulsars5. The joint AHD– γHD Bayesian
posterior is shown in panel (b) of Figure 1, with 1-D

marginal posteriors in the horizontal and vertical sub-

plots. The posterior medians and 5–95% quantiles are

AHD = 6.4+4.2
−2.7 × 10−15 and γHD = 3.2+0.6

−0.6. The thicker

curve in the vertical subplot is the AHD posterior for

the hd13/3 model, for which AHD,13/3 = 2.4+0.7
−0.6×10−15.

These amplitudes are compatible with astrophysical ex-

pectations of a GWB from inspiraling SMBHBs (see

§6). The AHD posterior has essentially no support below
10−15.

The strong AHD– γHD correlation is an artifact of us-

ing the conventional frequency fref = 1yr−1 in Equa-

tion 6, and it largely disappears when fref is moved to

the band of greatest PTA sensitivity; see the dashed con-
tours in panel (b) of Figure 1 for fref = (10 yr)−1. The

γHD posterior is in moderate tension with the theoretical
universal binary-inspiral value γHD = 13/3, which lies at

the 99% credible boundary: smaller values of γHD could

be an indication that astrophysical effects, such as stellar

scattering and gas dynamics, play a role in the evolution

of SMBHBs emitting GWs in this frequency range (see

§6 and Agazie et al. 2023a). This highlights the impor-

tance of measuring this parameter. Furthermore, its es-
timation is sensitive to details in the modeling of intrin-
sic red noise and of interstellar-medium timing delays in

a few pulsars (see the analysis in §5.2). Notably, in the

12.5-year data set γHD = 13/3 was recovered at ∼ 1σ

below the median (NG12gwb); this anomaly is reversed
in the newer data set. It is likely that more expansive

5 See App. B for details about our Bayesian methods, including
the calculation of Bayes factors.

data sets or more sophisticated chromatic noise models,

e.g., next generation Gaussian process models such as

in §5.1 (Goncharov et al. 2021b; Chalumeau et al. 2022;

Lam et al. 2018), will be needed to infer the presence of

possible systematic errors in γHD.
Our Bayesian analysis provides evidence that the

common-spectrum signal includes Hellings–Downs inter-

pulsar correlations. Specifically, the Bayes factor be-

tween the hdγ and curnγ models ranges from 200 (when

14 Fourier frequencies are included in Φi) to 1,000 (when
5 frequencies are included, as in NG12gwb). Results

are similar for hd13/3 vs. curn13/3. Figure 2 recapitu-
lates Bayes factors between a variety of models, includ-

ing some with the alternative spatial-correlation struc-

tures discussed in §5.3. The very peaked AHD posterior

in panel (b) of Figure 1, significantly separated from

smaller amplitudes, supports the very large Bayes fac-
tor between irn and curnγ . The 15-year data set fa-

vors hdγ over curnγ , and over models with monopolar
or dipolar correlations, and it is inconclusive about, i.e.,
gives roughly even odds for, the presence of spatially

correlated signals in addition to hdγ .

We can also regard the hdγ vs. curnγ Bayes factor as

a detection statistic in a hypothesis-testing framework,

and derive the p-value of the observed Bayes factor with
respect to its empirical distribution under the curnγ

model. We do so by computing Bayes factors on 5,000

bootstrapped data sets where inter-pulsar spatial corre-

lations are removed by introducing random phase shifts,

drawn from a uniform distribution from 0 to 2π, to
the common-process Fourier components (Taylor et al.

2017). This procedure alters inter-pulsar correlations to
have a mean of zero, while leaving the amplitudes of in-

trinsic pulsar noise and CURN unchanged, thus provid-
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detected in a larger number of pulsars. For the first time,
we find compelling evidence of Hellings–Downs inter-

pulsar correlations, using both Bayesian and frequen-

tist detection statistics (see Figure 1), with false-alarm

probabilities of p = 10−3 and p = 5× 10−5–1.9× 10−4,
respectively (see Figure 3).

The significance of Hellings–Downs correlations in-
creases as we increase the number of frequency com-

ponents in the analysis up to five, indicating that the

correlated signal extends over a range of frequencies.

A detailed spectral analysis supports a power-law sig-

nal, but at least two frequency bins show deviations

that may skew the determination of spectral slope (Fig-

ure 6). These discrepancies may arise from astrophysi-

cal or systematic effects. Furthermore, slope determi-

nation changes significantly using an alternative DM

model (Figure 5). The study of spatial correlations with

the optimal statistic confirms a Hellings–Downs quasi-
quadrupolar pattern (Figure 7 and panel c of Figure 1),

with some indications of an additional monopolar signal
confined to a narrow frequency range near 4 nHz. How-
ever, the Bayesian evidence for this monopolar signal is
inconclusive, and we could not ascribe it to any astro-

physical or terrestrial source (e.g., an individual SMBHB

or errors in the chain of timing corrections).
The GWB is a persistent signal that should increase in

significance with number of pulsars and observing time

span. This is indeed what we observe by analyzing slices

of the data set (see Figure 9). Furthermore, the signal is

present in multiple pulsars (Figure 8), and can be found

in independent single-telescope data sets (Figure 10).

We are preparing a number of other papers searching
the 15-year data set for stochastic and deterministic sig-

nals, including an all-sky, all-frequency search for GWs
from individual circular SMBHBs. This search, together
with the same analysis of the 12.5-year data set (Arzou-

manian et al. 2023), indicates that the spectrum and

correlations we observe cannot be produced by an indi-

vidual circular SMBHB.
If the Hellings–Downs-correlated signal is indeed an

astrophysical GWB, its origin remains indeterminate.

Among the many possible sources in the PTA frequency

band, numerous studies have focused on the unresolved

background from a population of close-separation SMB-

HBs. The SMBHB population is a direct byproduct

of hierarchical structure formation, which is driven by

galaxy mergers (e.g., Blumenthal et al. 1984). In a
post-merger galaxy, the SMBHs sink to the center of

the common merger remnant through dynamical inter-

actions with their astrophysical environment, eventually

leading to the formation of a binary (Begelman et al.

1980). GW emission from a SMBHB at nHz frequencies

is quasi-monochromatic because the binaries evolve very
slowly. Under the assumption of purely GW-driven bi-
nary evolution, the expected characteristic-strain spec-

trum is ∝ f−2/3 (or f−13/3 for pulsar-timing residuals).

The GWB spectrum may also feature a low-frequency

turnover induced by the dynamical interactions of bi-
naries with their astrophysical environment (e.g., with

stars or gas, see Armitage & Natarajan 2002; Sesana

et al. 2004; Merritt & Milosavljević 2005) or possibly by

non-negligible orbital eccentricities persisting to small

separations (Enoki & Nagashima 2007). We find little

support for a low-frequency turnover in our data (see
App. E).

The GWB amplitude is determined primarily by
SMBH masses and by the occurrence rate of close bi-

naries, which in turn depends on the galaxy merger

rate, the occupation fraction of SMBHs, and the binary

evolution timescale; population models predict ampli-

tudes ranging over more than an order of magnitude

(Rajagopal & Romani 1995; Wyithe & Loeb 2003; Jaffe

& Backer 2003; McWilliams et al. 2014; Sesana 2013),
under a variety of assumptions. Figure 11 displays a

comparison of hdγ parameter posteriors with power-law

spectral fits from an observationally constrained semi-

analytic model of the SMBHB population constructed

with the holodeck package (Kelley et al. 2023). This
particular set of SMBHB populations assumes purely

GW-driven binary evolution, and uses relatively nar-
row distributions of model parameters based on liter-
ature constraints from galaxy-merger observations (see,

e.g., Tomczak et al. 2014). While the amplitude recov-

ered in our analysis is consistent with models derived

directly from our understanding of SMBH and galaxy

evolution, it is toward the upper end of predictions im-

plying a combination of relatively high SMBH masses
and binary fractions. A detailed discussion of the GWB
from SMBHBs in light of our results is given in Agazie

et al. (2023a).

In addition to SMBHBs, more exotic cosmological

sources such as inflation, cosmic strings, phase transi-

tions, domain walls, and curvature-induced GWs can
also produce detectable GWBs in the nHz range (see,
e.g., Guzzetti et al. 2016; Caprini & Figueroa 2018, and

references therein). Similarities in the spectral shapes of

cosmological and astrophysical signals make it challeng-

ing to determine the origin of the background from its

spectral characterization (Kaiser et al. 2022). The ques-

tion could be settled by the detection of signals from
individual loud SMBHBs or by the observation of spa-
tial anisotropies, since the anisotropies expected from
SMBHBs are orders of magnitude larger than those pro-

duced by most cosmological sources (Caprini & Figueroa





18 The NANOGrav Collaboration

Acknowledgments. The NANOGrav collaboration re-
ceives support from National Science Foundation (NSF)

Physics Frontiers Center award numbers 1430284 and

2020265, the Gordon and Betty Moore Foundation, NSF

AccelNet award number 2114721, an NSERC Discovery

Grant, and CIFAR. The Arecibo Observatory is a facil-

ity of the NSF operated under cooperative agreement
(AST-1744119) by the University of Central Florida
(UCF) in alliance with Universidad Ana G. Méndez

(UAGM) and Yang Enterprises (YEI), Inc. The Green

Bank Observatory is a facility of the NSF operated un-

der cooperative agreement by Associated Universities,

Inc. The National Radio Astronomy Observatory is a fa-

cility of the NSF operated under cooperative agreement

by Associated Universities, Inc. This work used the

Extreme Science and Engineering Discovery Environ-

ment (XSEDE), which is supported by National Science

Foundation grant number ACI-1548562. Specifically, it

used the Bridges-2 system, which is supported by NSF

award number ACI-1928147, at the Pittsburgh Super-
computing Center (PSC). This work was conducted us-
ing the Thorny Flat HPC Cluster at West Virginia Uni-
versity (WVU), which is funded in part by National Sci-

ence Foundation (NSF) Major Research Instrumenta-

tion Program (MRI) Award number 1726534, and West

Virginia University. This work was also conducted in

part using the resources of the Advanced Computing
Center for Research and Education (ACCRE) at Van-
derbilt University, Nashville, TN. This work was facili-

tated through the use of advanced computational, stor-

age, and networking infrastructure provided by the Hyak

supercomputer system at the University of Washington.

This research was supported in part through computa-

tional resources and services provided by Advanced Re-
search Computing at the University of Michigan, Ann
Arbor. NANOGrav is part of the International Pul-

sar Timing Array (IPTA); we would like to thank our

IPTA colleagues for their feedback on this paper. We

thank members of the IPTA Detection Committee for

developing the IPTA Detection Checklist. We thank

Bruce Allen for useful feedback. We thank Valentina
Di Marco and Eric Thrane for uncovering a bug in the
sky scramble code. We thank Jolien Creighton and Leo

Stein for helpful conversations about background esti-

mation. L.B. acknowledges support from the National

Science Foundation under award AST-1909933 and from

the Research Corporation for Science Advancement un-
der Cottrell Scholar Award No. 27553. P.R.B. is sup-
ported by the Science and Technology Facilities Council,
grant number ST/W000946/1. S.B. gratefully acknowl-

edges the support of a Sloan Fellowship, and the sup-

port of NSF under award #1815664. The work of R.B.,

R.C., D.D., N.La., X.S., J.P.S., and J.T. is partly sup-

ported by the George and Hannah Bolinger Memorial

Fund in the College of Science at Oregon State Univer-

sity. M.C., P.P., and S.R.T. acknowledge support from

NSF AST-2007993. M.C. and N.S.P. were supported

by the Vanderbilt Initiative in Data Intensive Astro-

physics (VIDA) Fellowship. K.Ch., A.D.J., and M.V.

acknowledge support from the Caltech and Jet Propul-

sion Laboratory President’s and Director’s Research and

Development Fund. K.Ch. and A.D.J. acknowledge

support from the Sloan Foundation. Support for this

work was provided by the NSF through the Grote Reber

Fellowship Program administered by Associated Uni-

versities, Inc./National Radio Astronomy Observatory.
Support for H.T.C. is provided by NASA through the
NASA Hubble Fellowship Program grant #HST-HF2-
51453.001 awarded by the Space Telescope Science In-

stitute, which is operated by the Association of Univer-

sities for Research in Astronomy, Inc., for NASA, under

contract NAS5-26555. K.Cr. is supported by a UBC

Four Year Fellowship (6456). M.E.D. acknowledges sup-
port from the Naval Research Laboratory by NASA
under contract S-15633Y. T.D. and M.T.L. are sup-
ported by an NSF Astronomy and Astrophysics Grant

(AAG) award number 2009468. E.C.F. is supported by

NASA under award number 80GSFC21M0002. G.E.F.,

S.C.S., and S.J.V. are supported by NSF award PHY-

2011772. K.A.G. and S.R.T. acknowledge support from
an NSF CAREER award #2146016. The Flatiron In-
stitute is supported by the Simons Foundation. S.H. is

supported by the National Science Foundation Graduate

Research Fellowship under Grant No. DGE-1745301.

N.La. acknowledges the support from Larry W. Mar-

tin and Joyce B. O’Neill Endowed Fellowship in the

College of Science at Oregon State University. Part
of this research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Ad-

ministration (80NM0018D0004). D.R.L. and M.A.Mc.

are supported by NSF #1458952. M.A.Mc. is sup-

ported by NSF #2009425. C.M.F.M. was supported in
part by the National Science Foundation under Grants
No. NSF PHY-1748958 and AST-2106552. A.Mi. is
supported by the Deutsche Forschungsgemeinschaft un-

der Germany’s Excellence Strategy - EXC 2121 Quan-

tum Universe - 390833306. P.N. acknowledges support

from the BHI, funded by grants from the John Tem-

pleton Foundation and the Gordon and Betty Moore
Foundation. The Dunlap Institute is funded by an en-
dowment established by the David Dunlap family and
the University of Toronto. K.D.O. was supported in

part by NSF Grant No. 2207267. T.T.P. acknowledges



NANOGrav 15-year Gravitational-Wave Background 19

support from the Extragalactic Astrophysics Research
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H. Ögelman & E. P. J. Heuvel (Springer), 113–117

Romano, J. D., Hazboun, J. S., Siemens, X., & Archibald,

A. M. 2021, PhRvD, 103, 063027,

doi: 10.1103/PhysRevD.103.063027

Rosado, P. A., Sesana, A., & Gair, J. 2015, MNRAS, 451,

2417, doi: 10.1093/mnras/stv1098

Sampson, L., Cornish, N. J., & McWilliams, S. T. 2015,

PhRvD, 91, 084055, doi: 10.1103/PhysRevD.91.084055

Sardesai, S. C., & Vigeland, S. J. 2023, arXiv e-prints,

arXiv:2303.09615. https://arxiv.org/abs/2303.09615

Sazhin, M. V. 1978, Soviet Ast., 22, 36

Sesana, A. 2013, MNRAS, 433, L1,

doi: 10.1093/mnrasl/slt034

Sesana, A., Haardt, F., Madau, P., & Volonteri, M. 2004,

ApJ, 611, 623, doi: 10.1086/422185

Sesana, A., Vecchio, A., & Colacino, C. N. 2008, MNRAS,

390, 192, doi: 10.1111/j.1365-2966.2008.13682.x

Siemens, X., Ellis, J., Jenet, F., & Romano, J. D. 2013,

Class. Quant. Grav., 30, 224015,

doi: 10.1088/0264-9381/30/22/224015

Speri, L., Porayko, N. K., Falxa, M., et al. 2023, MNRAS,

518, 1802, doi: 10.1093/mnras/stac3237

Stinebring, D. R., Ryba, M. F., Taylor, J. H., & Romani,

R. W. 1990, PhRvL, 65, 285,

doi: 10.1103/PhysRevLett.65.285

Taylor, J. H., Fowler, L. A., & McCulloch, P. M. 1979,

Nature, 277, 437, doi: 10.1038/277437a0

Taylor, S. R. 2021, Nanohertz Gravitational Wave

Astronomy (Boca Raton, FL: CRC Press)

Taylor, S. R., Baker, P. T., Hazboun, J. S., Simon, J. J., &

Vigeland, S. J. 2018, enterprise extensions.

https://github.com/nanograv/enterprise extensions

Taylor, S. R., & Gair, J. R. 2013, PhRvD, 88, 084001,

doi: 10.1103/PhysRevD.88.084001

Taylor, S. R., Lentati, L., Babak, S., et al. 2017, PhRvD,

95, 042002, doi: 10.1103/PhysRevD.95.042002

Taylor, S. R., Simon, J., Schult, L., Pol, N., & Lamb, W. G.

2022, PhRvD, 105, 084049,

doi: 10.1103/PhysRevD.105.084049

Taylor, S. R., van Haasteren, R., & Sesana, A. 2020,

PhRvD, 102, 084039, doi: 10.1103/PhysRevD.102.084039

Tiburzi, C., Hobbs, G., Kerr, M., et al. 2016, MNRAS, 455,

4339, doi: 10.1093/mnras/stv2143

Tomczak, A. R., Quadri, R. F., Tran, K.-V. H., et al. 2014,

ApJ, 783, 85, doi: 10.1088/0004-637X/783/2/85

Vallisneri, M. 2020, libstempo: Python wrapper for

Tempo2. http://ascl.net/2002.017

Vallisneri, M., Taylor, S. R., Simon, J., et al. 2020, ApJ,

893, 112, doi: 10.3847/1538-4357/ab7b67

van Haasteren, R., Levin, Y., McDonald, P., & Lu, T. 2009,

MNRAS, 395, 1005,

doi: 10.1111/j.1365-2966.2009.14590.x

van Haasteren, R., & Vallisneri, M. 2014, PhRvD, 90,

104012, doi: 10.1103/PhysRevD.90.104012

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., &

Bürkner, P.-C. 2021, Bayesian Analysis, 16, 667 ,

doi: 10.1214/20-BA1221

Vigeland, S. J., Islo, K., Taylor, S. R., & Ellis, J. A. 2018,

PhRvD, 98, 044003, doi: 10.1103/PhysRevD.98.044003

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,

Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2

Wilcox, R. 2012, Introduction to Robust Estimation and

Hypothesis Testing, Statistical Modeling and Decision

Science (Elsevier Science)

Wyithe, J. S. B., & Loeb, A. 2003, ApJ, 590, 691,

doi: 10.1086/375187

Xu, H., Chen, S., Gio, Y., et al. 2023, in preparation

Zic, A., Hobbs, G., Shannon, R. M., et al. 2022, MNRAS,

516, 410, doi: 10.1093/mnras/stac2100





24 The NANOGrav Collaboration

Table 1. Prior distributions used in all analyses performed in this paper.

parameter description prior comments

white noise

Ek EFAC per backend/receiver system Uniform [0, 10] single-pulsar analysis only

Qk [s] EQUAD per backend/receiver system log-Uniform [−8.5,−5] single-pulsar analysis only

Jk [s] ECORR per backend/receiver system log-Uniform [−8.5,−5] single-pulsar analysis only

intrinsic red noise

Ared red-noise power-law amplitude log-Uniform [−20,−11] one parameter per pulsar

γred red-noise power-law spectral index Uniform [0, 7] one parameter per pulsar

all common processes, free spectrum

ρi [s2] power-spectrum coefficients at f = i/T log-Uniform in ρi [−18,−8] one parameter per frequency

all common processes, power-law spectrum

A common process strain amplitude log-Uniform [−18,−14] (γ = 13/3) one parameter for PTA

log-Uniform [−18,−11] (γ varied) one parameter for PTA

γ common process power-law spectral index delta function (γ = 13/3) fixed

Uniform [0, 7] one parameter for PTA

all common processes, broken–power-law spectrum

A broken–power-law amplitude log-Uniform [−18,−11] one parameter for PTA

γ broken–power-law low-freq. spectral index Uniform [0, 7] one parameter per PTA

δ broken–power-law high-freq. spectral index delta function (δ = 0) fixed

fbend [Hz] broken–power-law bend frequency log-Uniform [−8.7,−7] one parameter for PTA

ℓ broken–power-law high-freq. transition sharpness delta function (ℓ = 0.1) fixed

all common processes, t-process spectrum

A power-law amplitude log-Uniform [−18,−11] one parameter for PTA

γ power-law spectral index Uniform [0, 7] one parameter per PTA

xi modification factor Inverse Gamma Distribution one parameter per frequency

all common processes, turnover spectrum

A turnover power-law amplitude log-Uniform [−18,−11] one parameter for PTA

γ turnover power-law high-freq. spectral index Uniform [0, 7] one parameter per PTA

κ turnover power-law low-freq. spectral index Uniform [0, 7] one parameter per PTA

f0 [Hz] turnover power-law bend frequency log-Uniform [−9,−7] one parameter for PTA

all common processes, cross-correlation spline model

y normalized cross-correlation values at spline Uniform [−0.9, 0.9] seven parameters for PTA

knots (10−3, 25, 49.3, 82.5, 121.8, 150, 180)◦

We rely on a variety of techniques to perform Bayesian

model comparison. The first is thermodynamic integra-

tion (e.g., Ogata 1989; Gelman & Meng 1998), which
computes Bayesian evidence integrals directly through

parallel tempering: we run Nβ MCMC chains that ex-

plore variants of the likelihood function raised to dif-

ferent exponents β, then approximate the evidence for

model H as

ln p(d|H) =

∫ 1

0

⟨ln p(d|θ)⟩β dβ ≈
1

Nβ

∑

β

⟨ln p(d|θ)⟩β ,

(B1)

where all likelihoods and posteriors are computed

within model H, θ denotes all of the model’s parame-

ters, and the expectation ⟨ln p(d|θ)⟩β is approximated

by MCMC with respect to the posterior pβ(θ|d) ∝

p(d|θ,H)βp(θ,H). The inverse temperatures β are

spaced geometrically, as is the default in PTMCMC.
To compare nested models, which differ by “freezing”

a subset of parameters, we also use the Savage–Dickey

density ratio (Dickey 1971): if models H and H0 differ

by the fact that (say) θ0 is frozen to 0 in the latter, then

p(d|H0)/p(d|H) = p(θ0 = 0|d,H)/p(θ0 = 0|H).

When comparing disjoint models with different like-
lihoods (e.g., hd versus curn), we use product-space

sampling (Carlin & Chib 1995; Godsill 2001). This

method treats model comparison as a parameter estima-

tion problem, where we sample the union of the unique

parameters of all models, plus a model-indexing param-

eter that activates the relevant likelihood function and

parameter space of one of the sub-models. Bayes fac-
tors are then obtained by counting how often the model
index falls in each activation region and taking ratios of

those counts.

In some situations, it can be difficult to sample a com-

putationally expensive model directly. In these cases,
we sample a computationally cheaper approximate dis-

tribution and reweight those posterior samples to es-
timate the posterior for the computationally expensive
model (Hourihane et al. 2023). The reweighted poste-

rior can be used in the thermodynamic-integration or

Savage–Dickey methods. In addition, the mean of the

weights yields the Bayes factor between the expensive
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and approximate models, which may be of direct interest
(e.g., hd can be approximated by curn). We estimate

Bayes-factor uncertainties using bootstrapping and, for
product-space sampling, with the Markov-model tech-
niques of Cornish & Littenberg (2015) and Heck et al.

(2019).

C. BROKEN POWER-LAW MODEL

As shown in NG12gwb, the simultaneous Bayesian es-

timation of white measurement noise and of red-noise

processes described by power laws biases the recovery

of the spectral index of the latter (Lam et al. 2017;

Hazboun et al. 2019). Just as in NG12gwb and An-

toniadis et al. (2022), we impose a high-frequency cutoff

on the red-noise processes. To choose the cutoff fre-

quency, we perform inference on our data with a curnγ

model modified so that the common process has power

spectral density

S(f) =
A2

12π2

(

f

fref

)−γ
[

1 +

(

f

fbreak

)1/ℓ
]ℓγ

f−3
ref ;

(C2)
then set the cutoff to the MAP fbreak. Equation C2 is

fairly generic, allowing for separate spectral indices at
low (γ) and high (δ) frequencies. The break frequency

fbreak dictates where the broken power law changes spec-

tral index, while ℓ (which we set to 0.1) controls the

smoothness of the transition.

The marginal posterior for fbreak, obtained in the
factorized-likelihood approximation using the tech-

niques of Lamb et al. (2023), has median and 90% cred-
ible region of 3.2+5.4

−1.2 × 10−8 Hz, and a MAP value of

2.75× 10−8 Hz. The latter is close to f14 = 14/T in our

frequency basis (with T the total span of the data set),

so we use 14 frequencies to model common-spectrum

noise processes (see §2 and NG12gwb).

D. T -PROCESS SPECTRUM MODEL

The free-spectrum analysis of our data (§5.2 and Fig-

ure 6) shows that the frequency bins at f1, f6, f7, and

f8 appear to be in tension with a pure power law, skew-

ing the estimation of γ and reducing the hd13/3 vs.
curn13/3 Bayes factor. Assuming that those frequency

components reflect unmodeled systematics or stronger-

than-expected statistical fluctuations, we can make our

inference more robust to such outliers with a “fuzzy”

power-law model that allows the individual Φi to vary
more freely around their expected values. To wit, we

introduce the t-process spectrum (TPS)

ΦTPS,i = xiΦpowerlaw,i with x ∼ invgamma(xi; 1, 1),

(D3)

where Φpowerlaw,i follows Equation 6 and x follows the
inverse gamma distribution with parameters α = β = 1;

the resulting Gaussian mixture yields a Student’s-t dis-

tribution for the ΦTPS,i. Figure 13 shows curnγ power-

law posteriors and curnTPS modified power-law posteri-

ors, obtained in the factorized-likelihood approximation

(Taylor et al. 2022; Lamb et al. 2023) and compared
to curnfree bin variances. The TPS model is spread

more widely and deviates from the perfect power law at

bins f1, f6, f7, and f8, as expected. The right panel of

Figure 13 shows the joint log10 A, γ posteriors for curnγ

and curnTPS. The latter is more consistent with steeper
power laws, and it includes γ = 13/3 at 1σ credibility.

E. TURNOVER MODEL

The final parameterized spectral model that we in-

vestigate is motivated by the idea that the dynamics

of SMBHBs are influenced by their environments at

sub-parsec separations (Armitage & Natarajan 2002;

Sesana et al. 2004; Merritt & Milosavljević 2005). These

interactions affect binary evolution and the resulting

spectrum of the GWB. The process of bringing two

SMBHs together after galaxy mergers involves a com-

plex chain of interactions: despite significant theoretical

work, the lack of observational constraints makes it dif-

ficult to draw any conclusions. PTAs, however, provide

a unique opportunity to probe the timescale over which

two SMBHs evolve from the merger of their galaxies to

a bound binary that produces GW signals in the PTA

sensitivity band.

When dynamical interactions dominate orbital evo-

lution, binaries will traverse the GW spectrum more

quickly, reducing GW emission compared to a GW-

driven inspiral. This kind of behavior is captured by

the turnover model (Sampson et al. 2015):

S(f) =
A2

12π2

(

f

fref

)−γ [

1 +

(

f0
f

)κ]−1

f−3
ref . (E4)

This is qualitatively similar to the broken power law dis-

cussed earlier, except that here f0 represents the GW
frequency at which typical binary evolution transitions

from environmentally dominated (at lower frequencies
and wider separations) to GW-dominated (at higher fre-
quencies and smaller separations). The parameter κ

controls the shape of the spectrum below f0, and de-

pends on the orbital-evolution mechanism. Note that
the actual turning point of the spectrum is not at f0
but at fbend = f0 × (3κ/4− 1)1/κ (NG9gwb).

Applying this model to our data, we find hints of de-
partures from a pure power law: the transition frequency

f0 lies below 10 nHz with 65% credibility, while the

bend frequency lies below 10 nHz with 75% credibility.
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a stronger Bayesian flavor, evaluating the MCOS on
a population of data replications created using hd13/3

as a generative model with noise hyperparameters η

drawn from the hd13/3 real-data posterior. This can be

seen also as a Bayesian model-checking exercise (Gelman

et al. 1996, 2013): if we find that the summary statis-

tic of interest (the monopole MCOS) has a much more
extreme value in real data than in data replications,
we should suspect that the data model (here hd13/3)

is missing something.

We perform the test by drawing 500 parameter vectors

{η(k)} from the hd13/3 real-data posterior; for each η(k)

we simulate a data set δtsim,(k) ∼ p(δt|η(k)) and com-

pare MCOS(δtsim,(k);η(k)) with MCOS(δt;η(k)). Our
notation emphasizes the dependence of the MCOS on
the pulsar noise parameters through the P matrices in

Equation 9. Figure 18 shows the resulting distribution

of monopole S/Ns. The replicated monopole S/N is

greater than its observed counterpart for 11% of the

draws. Thus, it is plausible that the MCOS could mea-

sure the observed monopole S/N in data that contain

only a HD-correlated GWB. Conversely, the observed

monopole S/N does not by itself suggest that hd13/3 is

misspecified.
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