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ABSTRACT

We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars
from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for
Gravitational Waves. The correlations follow the Hellings—Downs pattern expected for a stochastic
gravitational-wave background. The presence of such a gravitational-wave background with a power-
law—spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess
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of 10, and this same model is favored over an uncorrelated common power-law-spectrum model with
Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical back-
ground distribution for these latter Bayes factors using a method that removes inter-pulsar correlations
from our data set, finding p = 10~ (approx. 30) for the observed Bayes factors in the null no-correlation
scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields
p=>5x10"5-1.9 x 10~* (approx. 3.5-40). Assuming a fiducial f~2/% characteristic-strain spectrum,
as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is
24107 x 1071% (median 4+ 90% credible interval) at a reference frequency of 1 yr~!. The inferred
gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations
for a signal from a population of supermassive black-hole binaries, although more exotic cosmological
and astrophysical sources cannot be excluded. The observation of Hellings—Downs correlations points
to the gravitational-wave origin of this signal.

Keywords: Gravitational waves — Black holes — Pulsars

1. INTRODUCTION

Almost a century had to elapse between Einstein’s pre-
diction of gravitational waves (GWs, Einstein 1916) and
their measurement from a coalescing binary of stellar-
mass black holes (Abbott et al. 2016). However, their
existence had been confirmed in the late 1970s through
measurements of the orbital decay of the Hulse—Taylor
binary pulsar (Hulse & Taylor 1975; Taylor et al. 1979).
Today, pulsars are again at the forefront of the quest to
detect GWs, this time from binary systems of central
galactic black holes.

Black holes with masses of 10°-10'C M, exist at the
center of most galaxies and are closely correlated with
the global properties of the host, suggesting a sym-
biotic evolution (Magorrian et al. 1998; McConnell &
Ma 2013). Galaxy mergers are the main drivers of hi-
erarchical structure formation over cosmic time (Blu-
menthal et al. 1984) and lead to the formation of
close massive-black-hole binaries long after the mergers
(Begelman et al. 1980; Milosavljevié¢ & Merritt 2003).
The most massive of these (supermassive black-hole bi-
naries, SMBHBs, with masses 103-10'° M) emit GWs
with slowly evolving frequencies, contributing to a noise-
like broadband signal in the nHz range (the GW back-
ground, GWB; Rajagopal & Romani 1995; Jaffe &
Backer 2003; Wyithe & Loeb 2003; Sesana et al. 2004;
McWilliams et al. 2014; Burke-Spolaor et al. 2019). If
all contributing SMBHBs evolve purely by loss of cir-
cular orbital energy to gravitational radiation, the re-
sultant GWB spectrum is well described by a simple
f~2/3 characteristic-strain power law (Phinney 2001).
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However, GWB signals that are not produced by popu-
lations of inspiraling black holes may also lie within the
nHz band; these include primordial GWs from inflation,
scalar-induced GWs, and GW signals from multiple pro-
cesses arising due to cosmological phase transitions, such
as collisions of bubbles of the post-transition vacuum
state, sound waves, turbulence, and the decay of any
defects such as cosmic strings or domain walls that may
have formed (see, e.g., Guzzetti et al. 2016; Caprini &
Figueroa 2018; Domenech 2021, and references therein).

The detection of nHz GWs follows the template out-
lined by Pirani (1956, 2009), whereby we time the prop-
agation of light to measure modulations in the distance
between freely falling reference masses. Estabrook &
Wahlquist (1975) derived the GW response of electro-
magnetic signals traveling between Earth and distant
spacecraft, sparking interest in low-frequency GW de-
tection. Sazhin (1978) and Detweiler (1979) described
nHz GW detection using Galactic pulsars and (effec-
tively) the solar system barycenter as references, relying
on the regularity of pulsar emission and planetary mo-
tions to highlight GW effects. The fact that pulsars
are such accurate clocks enables precise measurements
of their rotational, astrometric, and binary parameters
(and more) from the times-of-arrival of their pulses,
which are used to develop ever-refining end-to-end tim-
ing models. Hellings & Downs (1983) made the cru-
cial suggestion that the correlations between the time-
of-arrival perturbations of multiple pulsars could reveal
a GW signal buried in pulsar noise; Romani (1989) and
Foster & Backer (1990) proposed that a pulsar timing
array (PTA) of highly stable millisecond pulsars (Backer
et al. 1982) could be used to search for a GWB. Nev-
ertheless, the first multi-pulsar, long-term GWB limits
were obtained by analyzing millisecond-pulsar residuals
independently, rather than as an array (Stinebring et al.
1990; Kaspi et al. 1994).
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Figure 1. Summary of the main Bayesian and optimal-statistic analyses presented in this paper, which establish multiple lines
of evidence for the presence of Hellings-Downs correlations in the 15-year NANOGrav data set. Throughout we refer to the
68.3%, 95.4%, and 99.7% regions of distributions as 1/2/3c regions, even in two dimensions. (a): Bayesian “free-spectrum”
analysis, showing posteriors (gray violins) of independent variance parameters for a Hellings—Downs-correlated stochastic process
at frequencies i/T', with T the total data set time span. The blue represents the posterior median and 1/20 posterior bands®
for a power-law model; the dashed black line corresponds to a v = 13/3 (SMBHB-like) power-law, plotted with the median
posterior amplitude. See §3 for more details. (b): Posterior probability distribution of GWB amplitude and spectral exponent
in a HD power-law model, showing 1/2/3c credible regions. The value yaws = 13/3 (dashed black line) is included in the 99%
credible region. The amplitude is referenced to frer = Lyr~* (blue) and 0.1yr~' (orange). The dashed blue and orange curves
in the log;, Agws subpanel shows its marginal posterior density for a v = 13/3 model, with fref = 1yr~' and fref = 0.1yr ™},
respectively. See §3 for more details. (c): Angular-separation—binned inter-pulsar correlations, measured from 2,211 distinct
pairings in our 67-pulsar array using the frequentist optimal statistic, assuming maximum-a-posteriori pulsar noise parameters
and v = 13/3 common-process amplitude from a Bayesian inference analysis. The bin widths are chosen so that each includes
approximately the same number of pulsar pairs, and central bin locations avoid zeros of the Hellings—Downs curve. This binned
reconstruction accounts for correlations between pulsar pairs (Romano et al. 2021; Allen & Romano 2022). The dashed black
line shows the Hellings—Downs correlation pattern, and the binned points are normalized by the amplitude of the v = 13/3
common process to be on the same scale. Note that we do not employ binning of inter-pulsar correlations in our detection
statistics; this panel serves as a visual consistency check only. See §4 for more frequentist results. (d): Bayesian reconstruction
of normalized inter-pulsar correlations, modeled as a cubic spline within a variable-exponent power-law model. The violins plot
the marginal posterior densities (plus median and 68% credible values) of the correlations at the knots. The knot positions are
fixed, and are chosen on the basis of features of the Hellings-Downs curve (also shown as a dashed black line for reference): they
include the maximum and minimum angular separations, the two zero crossings of the Hellings—-Downs curve, and the position
of minimum correlation. See §3 for more details.
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From a statistical-inference standpoint, the problem
of detecting nHz GWs in PTA data is analogous to
GW searches with terrestrial and future space-borne
experiments, in which the propagation of light be-
tween reference masses is modeled with physical and
phenomenological descriptions of signal and noise pro-
cesses. It is distinguished by the irregular observation
times, which encourage a time- rather than Fourier-
domain formulation, and by noise sources (intrinsic pul-
sar noise, interstellar-medium—induced radio-frequency—
dependent fluctuations, and timing-model errors) that
are correlated on timescales common to the GWs of in-
terest. This requires the joint estimation of GW sig-
nals and noise, which is similar to the kinds of global
fitting procedures already used in terrestrial GW ex-
periments, and proposed for space-borne experiments.
GW analysts have therefore converged on a Bayesian
framework that represents all noise sources as Gaussian
processes (van Haasteren et al.
Vallisneri 2014), and relies on model comparison (i.e.,
Bayes factors, which are ratios of fully marginalized like-
lihoods) to define detection (see, e.g., Taylor 2021). This
Bayesian approach is nevertheless complemented by null
hypothesis testing, using a frequentist detection statis-
tict (the “optimal statistic” of Anholm et al. 2009; De-
013; Chamberlin et al. 2015) averaged
over Bayesian posterlors of the noise parameters (Vige-
land et al. 2018).

The GWB—rather than GW signals from individu-
ally resolved binary systems—is likely to become the
first nHz source accessible to PTA observations (Rosado
et al. 2015). Because of its stochastic nature, the GWB
cannot be identified as a distinctive phase-coherent sig-
nal in the way of individual compact-binary-coalescence
GWs. Rather, as PTA data sets grow in extent and
sensitivity one expects to first observe the GWB as ex-
cess low-frequency residual power of consistent ampli-
tude and spectral shape across multiple pulsars (Ro-
mano et al. 2021; Pol et al. 2021). An observation fol-
lowing this behavior was reported in 2020 (Arzoumanian
et al. 2020, henceforth NG12gwbh) for the 12.5-year data
set collected by the North American Nanohertz Observa-
tory for Gravitational waves (NANOGrav, McLaughlin
2013; Ransom et al. 2019), and then confirmed (Gon-
charov et al. 2021a; Chen et al. 2021) by the Parkes
Pulsar Timing Array (PPTA, Manchester et al. 2013)
and the European Pulsar Timing Array (EPTA, Desvi-
gnes et al. 2016), following many years of null results
and steadily decreasing upper limits on the GWB am-

)09; van Haasteren &

morest et al.

L See Jenet et al. (2006) for an early example of a cross-correlation

statistic for PTA GWB detection.

plitude. A combined International Pulsar Timing Ar-
ray (IPTA, Perera et al. 2019) data release consisting of
older data sets from the constituent PTAs also confirmed
this observation (Antoniadis et al. 2022). Nevertheless,
the finding of excess power cannot be attributed to a
GWB origin merely by the consistency of amplitude and
spectral shape, which could arise from intrinsic pulsar
processes of similar magnitude (Goncharov et al. 2022;
Zic et al. 2022), or from a common systematic noise such
as clock errors (Tiburzi et al. 2016). Instead, definitive
proof of GW origin is sought by establishing the pres-
ence of phase-coherent inter-pulsar correlations with the
characteristic spatial pattern derived by Hellings and
Downs (1983, henceforth HD): for an isotropic GWB,
the correlation between the GW-induced timing delays
observed at Earth for any pair of pulsars is a universal,
quasi-quadrupolar function of their angular separation
in the sky. Even though this correlation pattern is mod-
ified if there is anisotropy in the GWB—which may be
the case for a GWB generated by a SMBHB population
(Mingarelli et al. 2013; Taylor & Gair 2013; Cornish &
Sesana 2013; Mingarelli & Sidery 2014; Mingarelli et al.
2017; Roebber & Holder 2017)—the HD template is ef-
fective for detecting even anisotropic GWBs in all but
the most extreme scenarios (Cornish & S‘( sana 2013;
Cornish & Sampson 2016; Taylor et al. 2020; Bécsy et al.
2022; Allen 2023).

In this letter we present multiple lines of evidence
for an excess low-frequency signal with HD correlations
in the NANOGrav 15-year data set (Figure 1). Our
key results are as follows. The Bayes factor between
an HD-correlated, power-law GWB model and a spa-
tially uncorrelated common-spectrum power-law model
ranges from 200 to 1,000, depending on modeling choices
(Figure 2). The noise-marginalized optimal statistic,
which is constructed to be selectively sensitive to HD-
correlated power, achieves a signal-to-noise ratio of ~ 5
(Figure 3 and Figure 4). We calibrated these detection
statistics by removing correlations from the 15-year data
set using the phase-shift technique, which removes inter-
pulsar correlations by adding random phase shifts to the
Fourier components of the common process (Taylor et al.
2017). We find false-alarm probabilities of p = 1073 and

=5 x 107? for the observed Bayes factor and optnnal
statistic, respectively (see Figure 3).

For our fiducial power-law model (f~2/3 for charac-
teristic strain and f~'3/3 for timing residuals) and a
log-uniform amplitude prior, the Bayesian posterior of
GWB amplitude at the customary reference frequency
1yrtis Agws = 24757 x 10715 (median with 90%
credible interval), which is compatible with current as-
trophysical estimates for the GWB from SMBHBs (e.g.,
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Burke-Spolaor et al. 2019; Agazie et al. 2023a). This cor-
responds to a total integrated energy density of Qg =
9.3 X 1079 or pay = 7.7135 x 107 Tergscm ™3 (as-
suming Hy = 70 km/s/Mpc) in our sensitive frequency
band. For a more general model of the timing-residual
power spectral density with variable power-law exponent
—v, we find Agwp = 6.4752 x 10715, and v = 3.270¢.
See panel (b) of Figure 1 for Agwp and 7 posteriors.
The posterior for 7 is consistent with the value of 13/3
predicted for a population of SMBHBs evolving by GW
emission, although smaller values of = are preferred;
however, the recovered posteriors are consistent with
predictions from astrophysical models (see Agazie et al.
2023a). We also note that, unlike our detection statistics
(which are calibrated under our modeling assumptions),
the estimation of v is very sensitive to minor details in
the data model of a few pulsars.

The rest of this paper is organized as follows. We
briefly describe our data set and data model in §2. Our
main results are discussed in detail in §3 and §4; they
are supported by a variety of robustness and validation
studies, including a spectral analysis of the excess sig-
nal (§5.2), a correlation analysis that finds no signif-
icant evidence for additional spatially correlated pro-
cesses (§5.3), and cross-validation studies with single-
telescope data sets and leave-one-pulsar-out techniques
(§5.4). In the past two years we have performed an end-
to-end review of the NANOGrav experiment, to iden-
tify and mitigate possible sources of systematic error or
data set contamination: our improvements and consider-
ations are partly described in a set of companion papers:
on the NANOGrav statistical analysis as implemented
in software (Johnson et al. 2023), on the 15-year data
set (Agazie et al. 2023b, hereafter NG15), and on pulsar
models (Agazie et al. 2023¢, hereafter NG15detchar).
More companion papers address the possible SMBHB
(Agazie et al. 2023a) and cosmological (Afzal et al. 2023)
interpretations of our results, with several more GW
searches and signal studies in preparation. We look for-
ward to the cross-validation analysis that will become
possible with the independent data sets collected by
other IPTA members.

2. THE 15-YEAR DATA SET AND DATA MODEL

The NANOGrav 15-year data set? (NG15) con-
tains observations of 68 pulsars obtained between July
2004 and August 2020 with the Arecibo Observatory

(Arecibo), the Green Bank Telescope (GBT), and the
Very Large Array (VLA), augmenting the 12.5-year data
set (Alam et al. 2021a,b) with 2.9 years of timing data
for the 47 pulsars in the previous data set, and with
21 new pulsars®. For this paper we analyze narrow-
band times of arrival (TOAs), which are computed sep-
arately for sub-bands of each receiver, and focus on
the 67 pulsars with a timing baseline > 3years. We
adopt the TT(BIPM2019) timescale and the JPL DE440
ephemeris (Park et al. 2021), which improves Jupiter’s
orbit with ranging and VLBI observations of the Juno
spacecraft. Uncertainties in the Jovian orbit impacted
NANOGrav’s 11-year GWB search (Arzoumanian et al.
2018; Vallisneri et al. 2020), but they are now negligible.

For each pulsar, we fit the TOAs to a timing model
that includes pulsar spin period, spin period derivative,
sky location, proper motion, and parallax. While not
all pulsars have measurable parallax and proper mo-
tion, we always include these parameters because they
induce delays with the same frequencies for all pulsars
(f = 0.5yr~! for parallax and f = yr~! plus a lin-
ear envelope for proper motion), so there is a risk that
a parallax or proper motion signal could be misidenti-
fied as a GW signal. Fitting for these parameters in all
pulsars reduces our sensitivity to GWs at those frequen-
cies; however, this effect is minimal for GWB searches
since these frequencies are much higher than the fre-
quencies at which we expect the GWB to be signifi-
cant. For binary pulsars, the timing model includes also
five orbital elements for binary pulsars and additional
non-Keplerian parameters when these improve the fit as
determined by an F' test. We fit variations in disper-
sion measure as a piecewise constant “DMX” function
(Arzoumanian et al. 2015; Jones et al. 2017). The in-
dividual analysis of each pulsar provides best-fit esti-
mates of the timing residuals dt, of white measurement
noise, and of intrinsic red noise, modeled as a power
law (Cordes 2013; Lam et al. 2017; Jones et al. 2017).4
White measurement noise is described by three param-
eters: a linear scaling of TOA uncertainties (“EFAC”),
white noise added to the TOA uncertainties in quadra-
ture (“EQUAD”), and noise common to all sub-bands
at the same epoch (“ECORR”), with independent pa-
rameters for every receiver/backend combination (see
NG15detchar). We summarize white noise by its maxi-
mum a posteriori (MAP) covariance C. See App. A for
more details of our instruments, observations, and data-

3 The data set is available at data.nanograv.org with the code used

2 While the time between the first and last observations we analyze
is 16.03 years, this data set is named “15-year data set” since no
single pulsar exceeds 16 years of observation; we will use this
nomenclature despite the discrepancy.

to process it.

4 Throughout the paper we use “red noise” to describe noise whose

power spectrum decreases with increasing frequency.
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reduction pipeline: a complete discussion of the data set
can be found in NG15.

In our Bayesian GWB analysis, we model 8t as a fi-
nite Gaussian process consisting of time-correlated fluc-
tuations that include intrinsic red pulsar noise and (po-
tentially) a GW signal, along with timing-model uncer-
tainties (van Haasteren et al. 2009; van Haasteren &
Vallisneri 2014; Taylor 2021). The red noise is mod-
eled with Fourier basis F' and amplitudes ¢ (Lentati
et al. 2013). All Fourier bases (the columns of F') are
sines and cosines computed on the TOAs with frequen-
cies f; = i/T, where T = 16.03 yr is the TOA ex-
tent. The timing-model uncertainties are modeled with
design-matrix basis M and coefficients €. The single-
pulsar log likelihood is then

1
Inp(dt|c, €) = —3 [r"C7'r + Indet (27C)], (1)
with
r=0t— Fc— Me. (2)

The prior for the € is taken to be uniform with infinite
extent, so the posterior is driven entirely by the like-
lihood. The set of the {c} for all pulsars take a joint
normal prior with zero mean and covariance

(Cqithj) = 0ij (OapPai + Pav,i) ; (3)

here a,b range over pulsars and i, j over Fourier com-
ponents; d;; is Kronecker’s delta. The term ¢,; de-
scribes the spectrum of intrinsic red noise in pulsar
a, while ®,; describes processes with common spec-
trum across all pulsars and (potentially) phase-coherent
inter-pulsar correlations. The {c} prior ties together the
single-pulsar likelihoods (Equation 1) into a joint pos-
terior, p(c, €,m|dt) x p(dt|c, €)p(c, €ln)p(n), where we
have dropped subscripts to denote the concatenation of
vectors for all pulsars, and where 1 denotes all the hy-
perparameters (such as red-noise and GWB power spec-
trum amplitudes) that determine the covariances. We
marginalize over ¢ and € analytically, and use Markov
chain Monte Carlo techniques (see App. B) to estimate
p(n|dt) for different models of the intrinsic red noise and
common spectrum.

The data-model variants adopted in this paper all
share this probabilistic setup, but differ in the struc-
ture and parametrization of ®.;;. For a model with
intrinsic red noise only (henceforth IRN), ®4p; = 0;
for common-spectrum spatially-uncorrelated red noise
(CURN), ®up,i = dapPcurn,i; for an isotropic GWB with
Hellings—Downs correlations (HD), ®up,; = I'(€ap)Pup.i,
with I' the Hellings—Downs function of pulsar angular

separations &qp

3 1 1 1
T(&wp) = ixln(z) — 3% + 3 + 55@, (4)
1 —cos&up
x = ) . (5)

In NG12gwb we established strong Bayesian evidence for
CURN over IRN; finding that HD is preferred over CURN
would point to the GWB origin of the common-spectrum
signal. We also investigate other spatial correlation pat-
terns, e.g., monopole or dipole, introduced in §5.3.
Throughout this paper, we set the spectral compo-
nents ¢,; of intrinsic pulsar noise (which have units of
s2, as appropriate for the variance of timing residuals)

to a power law,

A2 1/ i L,
Pai = 127T2 T (fref) fref7 (6)

introducing two dimensionless hyperparameters for each
pulsar: the intrinsic-noise amplitude A, and spectral
index v,. We use log-uniform and uniform priors, re-
spectively, on these hyperparameters; their bounds are
described in App. B. More sophisticated intrinsic-noise
models are discussed in §5.1 and NG15detchar. In mod-
els CURN? and HD?, the common spectra ®cyrn,; and
®yp,; follow Equation 6,

A2 1 f —7YCURN 3
PcurN,: = SEN T (fr;> fret> (7)

A2 1 f —7YHD
i) . Z7HD -~ v -3 8
HD,: 127’1’2 T <fref> fref7 ( )

introducing hyperparameters Acugrn, Ycurn ~and
Anp, yap respectively. However, we set yyp = 13/3
for the GWB from a stationary ensemble of inspiraling
binaries, and refer to that fiducial model as HD'3/3. For
specific “free spectrum” studies we will instead model
the individual ®cugrn,; or Pup,; elements, and refer to
models cURNT®® and Hpf®. Throughout this article we
use frequencies f; = /T with ¢ = 1-30 for intrinsic noise
(f = 2-59 nHz), covering a frequency range over which
pulsar noise transitions from red-noise-dominated to
white—noise-dominated. For common-spectrum noise,
we limit the frequency range in order to reduce corre-
lations with excess white noise at higher frequencies.
Following NG12gwh, we fit a CURNY model enhanced
with a power-law break to our data, and limit fre-
quencies to the MAP break frequencies (i = 1-14 or
f =2-28 nHz; see App. C).

3. BAYESIAN ANALYSIS

When fit to the 15-year data set, the CURN”Y and HD”
models agree on the presence of a loud time-correlated
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Figure 2. Bayes factors between models of correlated red noise in the NANOGrav 15-year data set (see §5.3 and App. B). All
models feature variable-y power laws. CURN” is vastly favored over IRN (i.e., we find very strong evidence for common-spectrum
excess noise over pulsar intrinsic red-noise alone); HD” is favored over CURN” (i.e., we find positive evidence for Hellings—Downs
correlations in the common-spectrum process); dipole and monopole processes are strongly disfavored with respect to CURN7;
adding correlated processes to HD” is disfavored. While the interpretation of “raw” Bayes factors is somewhat subjective, they
can be given a statistical significance within the hypothesis-testing framework by computing their background distributions and

deriving the p-values of the observed factors, e.g., Figure 3.

stochastic signal with common amplitude and spec-
trum across pulsars’. The joint Ayp—~yup Bayesian
posterior is shown in panel (b) of Figure 1, with 1-D
marginal posteriors in the horizontal and vertical sub-
plots. The posterior medians and 5-95% quantiles are
App = 64752 x 107 and yup = 3.270 3. The thicker
curve in the vertical subplot is the Agp posterior for
the HD3/3 model, for which Ayp 13/3 = 2. 4+0 x 10715,
These amplitudes are compatible with astrophysu:al ex-
pectations of a GWB from inspiraling SMBHBs (see
§6). The App posterior has essentially no support below
10—15

The strong Agp—~up correlation is an artifact of us-
ing the conventional frequency fref = 1yr—! in Equa-
tion 6, and it largely disappears when f.of is moved to
the band of greatest PTA sensitivity; see the dashed con-
tours in panel (b) of Figure 1 for fiot = (10yr)~t. The
~up posterior is in moderate tension with the theoretical
universal binary-inspiral value ygp = 13/3, which lies at
the 99% credible boundary: smaller values of ygp could
be an indication that astrophysical effects, such as stellar
scattering and gas dynamics, play a role in the evolution
of SMBHBs emitting GWs in this frequency range (see
§6 and Agazie et al. 2023a). This highlights the impor-
tance of measuring this parameter. Furthermore, its es-
timation is sensitive to details in the modeling of intrin-
sic red noise and of interstellar-medium timing delays in
a few pulsars (see the analysis in §5.2). Notably, in the
12.5-year data set yup = 13/3 was recovered at ~ lo
below the median (NG12gwb); this anomaly is reversed
in the newer data set. It is likely that more expansive

5See App. B for details about our Bayesian methods, including

the calculation of Bayes factors.

data sets or more sophisticated chromatic noise models,
e.g., next generation Gaussian process models such as
in §5.1 (Goncharov et al. 2021b; Chalumeau et al. 2022;
Lam et al. 2018), will be needed to infer the presence of
possible systematic errors in yyp.

Our Bayesian analysis provides evidence that the
common-spectrum signal includes Hellings—Downs inter-
pulsar correlations. Specifically, the Bayes factor be-
tween the HD” and CURN? models ranges from 200 (when
14 Fourier frequencies are included in ®;) to 1,000 (when
5 frequencies are included, as in NG12gwb). Results
are similar for HD'3/3 vs. CURN'3/3. Figure 2 recapitu-
lates Bayes factors between a variety of models, includ-
ing some with the alternative spatial-correlation struc-
tures discussed in §5.3. The very peaked Ayp posterior
in panel (b) of Figure 1, significantly separated from
smaller amplitudes, supports the very large Bayes fac-
tor between IRN and CURN?. The 15-year data set fa-
vors HD?Y over CURN?, and over models with monopolar
or dipolar correlations, and it is inconclusive about, i.e.,
gives roughly even odds for, the presence of spatially
correlated signals in addition to HD”.

We can also regard the HDY vs. CURN” Bayes factor as
a detection statistic in a hypothesis-testing framework,
and derive the p-value of the observed Bayes factor with
respect to its empirical distribution under the CURN?Y
model. We do so by computing Bayes factors on 5,000
bootstrapped data sets where inter-pulsar spatial corre-
lations are removed by introducing random phase shifts,
drawn from a uniform distribution from 0 to 27, to
the common-process Fourier components (Taylor et al.
2017). This procedure alters inter-pulsar correlations to
have a mean of zero, while leaving the amplitudes of in-
trinsic pulsar noise and CURN unchanged, thus provid-
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Figure 3. Empirical background distribution of HD”-to-CURN” Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed by the phase-shift technique (Taylor et al. 2017) to remove inter-pulsar correlations. We
only compute 5,000 Bayesian phase shifts, compared to 400,000 optimal statistic phase shifts, because of the huge computational
resources needed to perform the Bayesian analyses. For the optimal statistic, we also compute the background distribution using
27,000 simulations (orange line) and compare to an analytic calculation (green line). Dotted lines indicate Gaussian-equivalent
20, 30, and 40 thresholds. The dashed vertical lines indicate the values of the detection statistics for the unshifted data sets.
For the Bayesian analyses, we find p = 102 (approx. 30); for the optimal statistic analyses, we find p = 5 x 107°-1.9 x 10~*

(approx. 3.5-40).

ing a way to test the null hypothesis that no inter-pulsar
correlations are present. The resulting background dis-
tribution of Bayes factors is shown in the left panel of
Figure 3—they exceed the observed value in five of the
5,000 phase shifts (p = 1073). We also performed sky
scramble analyses (Cornish & Sampson 2016), which
remove the dependence of inter-pulsar spatial correla-
tions on the angular separations between the pulsars by
attributing random sky positions to the pulsars. Sky
scrambles generate a background distribution for which
inter-pulsar correlations are present in the data but they
are independent of the pulsars’ angular separations: for
this distribution, we find p = 1.6 x 1073, A detailed dis-
cussion of sky scrambles and the results of these analyses
can be found in App. F.

As in NG12gwb, we also carried out a minimally mod-
eled Bayesian reconstruction of the inter-pulsar correla-
tion pattern, using spline interpolation over seven spline-
knot positions. The choice of seven spline-knot posi-
tions is based on features of the Hellings—Downs pattern:
two correspond to the maximum and minimum angular
separations (0° and 180°, respectively), two are chosen
to be at the theoretical zero crossings of the Hellings—
Downs pattern (49.2° and 121.8°), one is at the theo-
retical minimum (82.5°), and the final two are between
the end points and zero crossings (25° and 150°) to al-
low additional flexibility in the fit. Panel (d) of Fig-
ure 1 shows the marginal 1-D posterior densities at these
spline-knot positions for a power-law varied-exponent
model. The reconstruction is consistent with the over-
plotted Hellings—Downs pattern; furthermore, the joint
2-D marginal posterior densities for the knots, not shown

in panel (d) of Figure 1, at the HD zero-crossings is con-
sistent with (0, 0) within 1o credibility.

4. OPTIMAL STATISTIC ANALYSIS

We complement our Bayesian search with a frequen-
tist analysis using the optimal statistic (Anholm et al.
2009; Demorest et al. 2013; Chamberlin et al. 2015), a
summary statistic designed to measure correlated excess
power in PTA residuals. (Note that there is no accepted
definition of “optimal statistic” in modern statistical us-
age, but the term has become established in the PTA
literature to refer to this specific method, so we use it
for this reason.) It is enlightening to describe the op-
timal statistic as a weighted average of the inter-pulsar
correlation coefficients

6tZ’P;1<i’abe’16tb
Tr P;li’abe_li)ba ’

Pab = (9)

where 6t are the residuals of pulsar a, and P, =
(8t,6tT) is their total auto-covariance matrix. The
cross-covariance matrix ®,, encodes the spectrum of
the HD-correlated signal, normalized so that ®,, =
AT (E4p) @y (see Pol et al. 2022), and where elements
of ®,, are given by Equation 3. Indeed, the pg, have
expectation value A°T(&,;), but their variance o2, =
(Tr P;ltf’abe_ltiba)_l +O(A%) is too large to use them
directly as estimators. Thus we assemble the optimal
statistic as the variance-weighted, I'-template-matched
average of the pgp,

A2 — Ea>b Pabr(fab)/ogb
>asy D2(Eav) /02,

(10)
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Figure 4. Optimal statistic S/N for HD correlations, dis-
tributed over CURN? (solid lines) and CURN'®/? (dashed lines)
noise-parameter posteriors. The vertical lines indicate the
mean S/Ns. We find S/Ns of 5+ 1 and 4+ 1 for CURN” and
, respectively.

This equation represents the optimal estimator of the
HD amplitude A2; it can also be interpreted as the
best-fit A2 obtained by least-squares—fitting the pap to
the Hellings—Downs model A2T'(£,). Because A? is a
function of intrinsic-red-noise and common-process hy-
perparameters through the P,, we use the results of
an initial Bayesian-inference run to refer the statistic to
MAP hyperparameters, or to marginalize it over their
posteriors. As discussed in Vigeland et al. (2018), we
obtain more accurate values of the amplitude by this
marginalization.

To search for inter-pulsar correlations using the op-
timal statistic, we evaluate the frequency (the p-value)
with which an uncorrelated common-spectrum process
with parameters estimated from our data set would yield
A? greater than we observe. In the absence of a signal,
the expectation value of A2 is zero, and its distribution
is approximately normal. Thus we divide the observed
A? by its standard deviation to define a formal signal-
to-noise ratio

Za>b pabr(fab)/ogb
. (11)
[5ey T2(E) [02,]

Figure 4 shows the distribution of this S/N over CURNY
and CURN'3/3 noise-parameter posteriors, with S/Ns of
5+ 1 and 4 £ 1, respectively (means + standard de-
viations across noise-parameter posteriors). We use 14
frequency components to model the signal: the depen-
dence on the number of frequency components is very
weak.

S/N =

Because the distribution of A2 is only approximately
normal (Hazboun et al. 2023), the S/N of Equation 11
does not map analytically to a p-value, and it cannot
be interpreted as a “sigma” level. Instead, optimal-
statistic p-values can be computed empirically by re-

moving inter-pulsar correlations from the 15-year data
set with phase shifts (Taylor et al. 2017). We draw ran-
dom phase offsets from 0 to 27 for the common-process
Fourier components, which is equivalent to making uni-
form draws from the background distribution of CURN,
and ask how often a random choice of phase offsets
produces a HD-correlated signal. The right panel of
Figure 3 shows the distribution of noise-marginalized
S/N over 400,000 phase shifts. There are 19 phase
shifts with noise-marginalized S/N greater than ob-
served, with p = 5 x 107°. We compare the phase-shift
distribution with backgrounds obtained by simulation
(right panel of Figure 3, orange line) and analytic calcu-
lation (green line). For the former, we simulate 27,000
CURN"” realizations using MAP hyperparameters from
the 15-yr data and compute the optimal-statistic S/N for
each; for the latter, we evaluate the generalized x? dis-
tribution (Hazboun et al. 2023) with median CURNY hy-
perparameters. Although neither method includes the
marginalization over noise-parameter posteriors, we find
good agreement with phase shifts, with p = 1.8 x 1074
from simulations, and p = 1.9 x 10~* from the analytic
calculation. Finally, we use sky scrambles to compute
the p-value for the null hypothesis that inter-pulsar cor-
relations are present, but they have no dependence on
the angular separation between the pulsars, for which
we find p < 107% (see App. F).

Averaging the cross-correlations p,, in angular-
separation bins with equal numbers of pulsar pairs re-
veals the Hellings—Downs pattern, as shown in panel
(c) of Figure 1 for 15 bins. The p, were evalu-
ated with MAP cURN'3/3 noise parameters. The black
dashed curve traces the expected correlations for an HD-
correlated background with the MAP amplitude; the
vertical error bars display the expected 1o spreads of the
binned cross-correlations, accounting for the (puppcd)
covariances induced by the HD-correlated process (Ro-
mano et al. 2021; Allen & Romano 2022). (Neglecting
those covariances yields 20-40% smaller spreads. Note
that they are not included in p-value estimates because
those are calculated under the null hypothesis of no spa-
tially correlated process.)

Although each draw from the noise-parameter poste-
rior would generate a slightly different plot, as would
different binnings, the quality of the fit seen in Fig-
ure 1 provides a visual indication that the excess low-
frequency power in the 15-year data set harbors HD
correlations. The 2 for this 15-bin reconstruction with
respect to the Hellings—Downs curve is 8.1, where we ac-
count for pup covariance in constructing the bins, and the
covariance between bins in constructing the x2? (Allen &
Romano 2022). This corresponds to a p-value of 0.75,
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calculated using simulations based on the HDY model, or
0.92 if one assumes this value follows a canonical x? with
15 degrees of freedom. These p-values are representative
of what we find with different binnings: we find p > 0.3
when using eight to 20 bins (assuming a canonical 2
distribution).

5. CHECKS AND VALIDATION

Prior to analyzing the 15-year data set, we extensively
reviewed our data collection and analysis procedures,
methods, and tools, in an effort to eliminate contamina-
tion from systematic effects and human error. Further-
more, the results presented in §3 and §4 are supported
by a variety of consistency checks and auxiliary stud-
ies. In this section we present those that offer evidence
for or against the presence of HD correlations, reveal
anomalies, or otherwise highlight features of note in the
data: alternative DM modeling (§5.1), the spectral con-
tent (§5.2) and correlation pattern (§5.3) of the excess-
noise signal, as well as the consistency of our findings
across data set “slices,” pulsars, and telescopes (§5.4).

5.1. Alternative DM models

In this paper and in previous GW searches (e.g.,
NG12gwb), we model fluctuations in the DM using
DMZX parameters (a piecewise-constant representation,
see NG15). Adopting this DM model as the standard
makes it easier to directly compare the results here to
those in NG12gwb. An alternative model where DM
variations are modeled as a Fourier-domain Gaussian
process, DMGP, has been used by Antoniadis et al.
(2022), Chen et al. (2021), and Goncharov et al. (2021a).
The Fourier coefficients follow a power law similar to
those of intrinsic and common-spectrum red noise, but
their basis vectors include a v~2 radio-frequency depen-
dence, and the component frequencies f; = i/T range
through ¢ = 1-100. Under the DMGP model we also in-
clude a deterministic solar-wind model (Hazboun et al.
2022) and the two chromatic events in PSR J1713+0747
reported in Lam et al. (2018) which are modeled as de-
terministic exponential dips with the chromatic index
quantifying the radio-frequency dependence of the dips
left as a free parameter. If these chromatic events are
not modeled, they raise estimated white noise (Hazboun
et al. 2020). A detailed discussion of chromatic noise ef-
fects can be found in NG15detchar.

Using the DMGP model in place of DMX has minimal
effects on nearly all pulsars in the array. Only PSRs
J1713+0747 and J1600—3053 show notable differences
in their recovered intrinsic-noise parameters. However,
DMGP does affect the parameter estimation of common
red noise, as seen in Figure 5, shifting the posterior for

T T T

logogAcurN

YCURN

Figure 5. CURN” posterior distributions using DMGP (red)
and DMX (blue) to model DM variations. The dashed line
marks ycurn = 13/3. While the posteriors are broadly con-
sistent, DMGP shifts the ycurn posterior to higher values,
making it more consistent with ycurn = 13/3.

7 to higher values that are more consistent with 13/3.
Despite this, we still recover HD correlations at the same
significance as when we use DMX to model fluctuations
in the DM, implying that the evidence reported for the
presence of correlations in this work is independent of
the choice of DM noise modeling.

5.2. Spectral analysis

Adopting power-law spectra for CURN and HD is a
useful simplification that reduces the number of fit pa-
rameters and yields more informative constraints; fur-
thermore, it is expedient to identify HD'3/3 with the
hypothesis that we are observing the GWB from SMB-
HBs. Nevertheless, the standard v = 13/3 power law
for GW inspirals may be altered by astrophysical pro-
cesses such as stellar and gas friction in nuclei (see, e.g.,
Merritt & Milosavljevié 2005 for a review), by apprecia-
ble eccentricity in SMBHB orbits (Enoki & Nagashima
2007), and by low-number SMBHB statistics (Sesana
et al. 2008). HDY parameter recovery may also be biased
if intrinsic pulsar noise is not modeled well by a power
law. Indeed, our data show hints of a discrepancy from
the idealized HD'3/3 model: the yup posterior in panel
(b) of Figure 1 favors slopes much shallower than 13/3,
and the HD7-to-CURN” Bayes factor drops from 1,000 to
200 when Fourier components at more than five frequen-
cies are included in the model.

We examine the spectral content of the 15-year data
set using the CURNT®® and HDT®® models, which are
parametrized by the variances of the Fourier components
at each frequency. Their marginal posteriors are shown
in the left panel of Figure 6, where bin number ¢ cor-
responds to f; = i/T, with T' = 16.03 yr the extent of
the data set. For the purpose of illustration, we overlay
best-fit power laws that thread the posteriors in a way
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Figure 6. Left: Posteriors of Fourier component variance ®; for the cURN™®® (left) and Hp™® (right) models (see §2), plotted
at their corresponding frequencies f; = /T with T" the 16.03-yr extent of the data set. Excess power is observed in bins 1-8

(somewhat marginally in bin 6); Hellings—Downs-correlated power

in bins 1-5 and 8. The dashed line plots the best-fit power

law, which has v ~ 3.2 (as in panel (d) of Figure 1); the fit is pushed to lower 7 by bins 1 and 8. The dotted line plots the best-fit
power law when + is fixed to 13/3; it overshoots in bin 1 and undershoots in bin 8. Right: Posteriors of variance ®5 in Fourier

bin 2 (f2 = 3.95 nHz) in a CURN™® 4+ HD™® 4 MONOPOLE™™® 4 DI

POLE™® model, showing evidence of a quasi-monochromatic

monopole process (dashed). No monopole or dipole power is observed in all other bins of that joint model, with ®curn,; and

Pyp,; posteriors consistent with the left panel.

similar to the factorized PTA likelihood of Taylor et al.
(2022) and Lamb et al. (2023).

We deem excess power, either uncorrelated for
cURN'™®e or correlated for HD™®®, to be observed in a
bin when the support of the posterior is concentrated
away from the lowest amplitudes. No power of either
kind is observed above fg, consistent with the presence
of a floor of white measurement noise. Furthermore,
no correlated power is observed in bins 6 and 7, where a
power-law model would expect a smooth continuation of
the trend of bins 1-5 (cf. the dashed fit of Figure 6): this
may explain the drop in the Bayes factor. However, cor-
related power reappears in bin 8, pushing the fit toward
shallower slopes. Indeed, repeating the fit by omitting
subsets of the bins suggests that the low recovered vyup
is due mostly to bin 8 and to the lower-than-expected
correlated power found in bin 1. Obviously, excluding
those bins leads to higher ~yp estimates.

To explore deviations from a pure power law that may
arise from statistical fluctuations of the astrophysical
background or from unmodeled systematics (perhaps re-
lated to the timing model), in App. D we relax the nor-
mal ¢ prior (cf. Equation 3) to a multivariate Student’s
t-distribution that is more accepting of mild outliers.
The resulting estimate of ycurn peaks at a higher value
and is broader than in CURN?, with posterior medians
and 5-95% quantiles of yourn = 3.52:8.

Similarly, spectral turnovers due to interactions be-
tween SMBHBs and their environments can result in
reduced GWB power at lower frequencies, which might
explain the slightly lower correlated power in bin 1. We
investigate this hypothesis in App. E using the turnover

spectrum of Sampson et al. (2015). For this curNturnover
model, the 15-year data favor a spectral bend below 10
nHz (near f5), but the Bayes factor against the standard
HD” is inconclusive.

Future data sets with longer time spans and the com-
parison of our data set with those of other PTAs should
help clarify the astrophysical or systematic origin of
these possible spectral features.

5.3. Alternative correlation patterns

Sources other than GWs can produce inter-pulsar
residual correlations with spatial patterns other than
HD. For example, errors in the solar-system ephemerides
create time-dependent Roemer delays with dipolar cor-
relations (Roebber 2019; Vallisneri et al. 2020), and er-
rors in the correction of telescope time to an inertial
timescale (Hobbs et al. 2012, 2020) create an identical
time-dependent delay for all pulsars (i.e., a delay with
monopolar correlations).

Gair et al. (2014) showed that, for a pulsar array dis-
tributed uniformly across the sky, HD correlations can
be decomposed as

1_‘HD,ab = Z g1 ]DZ(COS gab)a

=0
(1—2)
(+2)

3
g0=0,91=0, g = 5(2l+ 1) for 1 >2, (12)

where the P;(cos &) are Legendre polynomials of order
l evaluated at the pulsar angular separation £,;. In other
words, a HD-correlated signal should have no power at
l=0o0rl=1.
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Figure 7. Multiple-component optimal statistic for a Legen-
dre polynomial basis (Equation 12) with with lymax = 5. The
violin plots show the distributions of the normalized Legen-
dre coefficients A? = A%g, over CURN” noise-parameter pos-
teriors. The black dashed line shows the Legendre spectrum
of a pure-HD signal, with the median posterior A%p.

We can perform a frequentist generic correlation
search using Legendre polynomials® with the multiple-
component optimal statistic (MCOS; Sardesai & Vige-
land 2023)—a generalized statistic that allows multiple
correlation patterns to be fit simultaneously to the cor-
relation coefficients pgp. Figure 7 shows the constraints
on A? = A%g, obtained by fitting the correlations pgp to
this Legendre series using the MCOS and marginalizing
over CURN?Y noise-parameter posteriors. The quadrupo-
lar structure of the data is evident, along with a small
but significant monopolar contribution.

The same feature from the Legendre decomposition
appears if we use the MCOS to search for multiple cor-
relations simultaneously: a multiple regression analy-
sis favors models that contain both significant HD and
monopole correlations (see App. G). From simulations
of 15-year-like data sets (see App. H.1), we find a p-
value of 0.11 (approx. 20) for observing a monopole at
this significance or higher with a pure-HD injection of
amplitude similar to what we observe. We also per-
form a model-checking study to assess whether the ob-
served monopole is consistent with the HD/3 model
(see App. H.2), and we find a p-value of 0.11 for pro-
ducing an apparent monopole when the signal is purely
HD!3/3. Thus, we conclude that it is possible for a HD-
correlated signal to appear to have monopole correla-
tions in an optimal statistic analysis at this significance
level.

6 A Bayesian method for fitting correlations using Legendre poly-

nomials can be found in Nay et al. (2023).

In contrast, Bayesian searches for additional correla-
tions do not find evidence of additional monopole- or
dipole-correlated red noise processes: as shown in Fig-
ure 2, the Bayes factors for these processes are ~ 1. We
also perform a general Bayesian search for correlations
using a CURN™®® + gpfr® 4+ MoONOPOLE™®® + DIPOLET®®
model, which allows for independent uncorrelated and
correlated components at every frequency bin. We note
that this analysis is more flexible than the ones described
above, which assume a power-law power spectral den-
sity. We find no significant dipole-correlated power at
any frequency, and we find monopole-correlated power
only in the second frequency bin (fo = 3.95 nHz); pos-
teriors of variance for that bin are shown in the right
panel of Figure 6.

Motivated by this finding, we perform a search for HD”
4+ SINUSOID, which includes a deterministic sinusoidal
delay (applied to all pulsars alike, as appropriate for a
monopole) with free frequency, amplitude, and phase.
The sinusoid’s posteriors match the free-spectral analy-
sis in frequency and amplitude; however, the Bayes fac-
tor between HD? + SINUSOID and HD7 calculated using
two methods (Hee et al. 2015; Hourihane et al. 2023),
is only ~ 1, so the signal cannot be considered statis-
tically significant. Astrophysically motivated searches
for sources that produce sinusoidal or sinusoid-like de-
lays in the residuals, such as an individual SMBHB or
perturbations to the local gravitational field induced by
fuzzy dark matter (IKChmelnitsky & Rubakov 2014), also
yield Bayes factors ~ 1. Thus we conclude that there
is some evidence of additional power at 3.95 nHz with
monopole correlations; however, the significance in the
Bayesian analyses is low, while the optimal-statistic S/N
could be produced by a HD-correlated signal. There-
fore, we cannot definitively say whether the signal is
present, or determine the source. We note that per-
forming an MCOS analysis after subtracting off real-
izations of a sinusoid using HDY 4 SINUSOID posteri-
ors reduces the (S/N)monopole =~ 0 while (S/N)up re-
mains unchanged, indicating that this single-frequency
monopole-correlated signal is likely causing the nonzero
monopole signal observed in the MCOS analysis.

Similar hints of a monopolar signal (though weaker)
were found in the NANOGrav 12.5-year data set, unsur-
prisingly given that it is a subset of the current data set.
To exercise due diligence, we audited the correction of
telescope time to GPS time at the Arecibo Observatory
and at the Green Bank Telescope, and found nothing
that could explain our observations. The subsequent
steps in the time-correction pipeline rely on very accu-
rate atomic clocks and are unlikely to introduce consid-
erable systematics (Petit 2022). An important test will
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be whether this signal persists in future data sets. If this
monopolar feature is a truly an astrophysical signal, we
would expect it to increase in significance as our data
set grows. Comparisons with other PTAs and combined
IPTA data sets will also provide crucial insight.

5.4. Dropout and cross-validation

The GWB is by its nature a signal affecting all of the
pulsars in the PTA, although it may appear more signif-
icant in some based on their observing time span, noise
properties, and on the particular realization of pulsar
and Earth contributions (Speri et al. 2023). One way
to assess the significance of the GWB in each pulsar is
a Bayesian dropout analysis (Aggarwal et al. 2019; Ar-
zoumanian et al. 2020), which introduces a binary pa-
rameter that turns on and off the common signal (or its
inter-pulsar correlations) for a single pulsar, leaving all
other pulsars unchanged. The Bayes factor associated
with this parameter, also referred to as the “dropout
factor,” describes how much each pulsar likes to “par-
ticipate” in the common signal.

Figure 8 plots CURNY vs. IRN dropout factors for all
67 pulsars (blue). We find positive dropout factors (i.e.,
dropout factors > 2) for an uncorrelated common pro-
cess in twenty pulsars, while only one has a dropout
factor < 0.5. For comparison, in the NANOGrav 12.5-
year data set ten pulsars showed positive dropout fac-
tors for an uncorrelated common process, while three
had negative dropout factors. We also show HD corre-
lations vs. CURN? dropout factors (orange). For these,
the uncorrelated common process is always present in
all pulsars, but the cross-correlations for all pulsar pairs
involving a given pulsar may be dropped from the like-
lihood. We find positive factors for HD correlations vs.
CURN” in seven pulsars, while three are negative. We
expect more pulsars to have positive dropout factors for
CURN” vs. IRN than for Hellings—Downs vs. CURN” be-
cause the Bayes factor comparing the first two models
is significantly higher than the one comparing the sec-
ond two models (see Figure 2). Negative dropout factors
could be caused by noise fluctuations or they could be
an indication that more advanced chromatic noise mod-
eling is necessary (Alam et al. 2021a). They could also
be caused by the GWB itself, which induces both corre-
lated and uncorrelated noise in the pulsars (the so-called
“Earth terms” and “pulsar terms”; Mingarelli & Min-
garelli 2018).

In addition to Bayes factors, the goodness-of-fit of
probabilistic models can be evaluated by assessing their
predictive performance (Gelman et al. 2013). Specifi-
cally, given that the GWB is correlated across pulsars,
we can (partially) predict the timing residuals dt, of
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Figure 8. Support for CURN? (blue) and HD” correlations
(orange) in each pulsar, as measured by a dropout analy-
sis. Dropout factors greater than 1 indicate support for the
CURN” or HD? while those less than 1 show that the pulsar
disfavors it. We find significant spread in the dropout factors
among pulsars with long observation times, but overall more
pulsars favor CURN” participation and HD” correlations than
disfavor them.

pulsar a from the residuals dt_, of all other pulsars by
way of the “leave-one-out” posterior predictive likelihood
(PPL)

P(5ta|5t_0) = / 00, p(6t,10.) p(0a1¢ o). (13)

where 8, are all the parameters and hyperparameters
that affect pulsar a in a given model. As discussed in
Meyers et al. (2023), we compare the predictive perfor-
mance of CURN'3/3 and HD'3/3 for each pulsar in turn
by taking the ratio of the corresponding leave-one-out
PPLs. These ratios are closely related to the dropout
factors plotted in Figure 8. Multiplying the PPL ratios
for all pulsars yields the pseudo Bayes factor (PBF).
For the 15-year data set we find PBF;5,, = 1,400 in
favor of HD'3/3 over cURN'3/3. The PBF does not have
a “betting odds” interpretation, but we obtain a crude
estimate of its significance by building its background
distribution on 40 CURN'®/3 simulations with the MAP
log,o Acurn inferred from the 15-year data set. For all
simulations except one, the PBF favors the null hypoth-
esis, and log,y PBF 15y, is displaced by approx. three
standard deviations from the mean log;, PBF.

A different sort of cross-validation relies on evaluating
the optimal statistic for temporal subsets of the data
set, as in Hazboun et al. (2020). In the regime where
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Figure 9. S/N growth as a function of time and number of
pulsars. As we move from left to right we add an additional
six months of data at each step. New pulsars are added
when they accumulate three years of data. The blue violin
plot shows the distribution of the optimal statistic S/N over
CURN” noise parameters. The dashed orange line shows the
number of pulsars used for each time slice.

the lowest frequencies of our data are dominated by the
GWB, the optimal statistic S/N should grow with the
square root of the time span of the data and linearly
with the number of pulsars in the array (Siemens et al.
2013); in this regime increasing the number of pulsars is
the best way to boost PTA sensitivity to the GWB. To
verify that this is indeed the case, we analyze “slices”
of the data set in six-month increments, starting from
a six-year data set. Once a new pulsar accumulates
three years of data, we add it to the array. We per-
form a separate Bayesian CURN” analysis for each slice
and calculate the Hellings—Downs optimal statistic over
the noise-parameter posterior. In Figure 9, we plot the
S/N distributions against time span and the number of
pulsars. As expected, we observe essentially monotonic
growth associated with the increase in the number of
pulsars.

The signal should also be consistent between tim-
ing observations made with Arecibo and GBT. To test
this, we analyze the two split-telescope data sets (see
App. A); both show evidence of common-spectrum ex-
cess noise. Figure 10 shows Arecibo (orange) and GBT
(green) CURN? posteriors, which are broadly consistent
with each other and with full-data posteriors (blue).
Arecibo yields logyg A = —14.0270 35 and v = 2.7815-7
(medians with 68% credible intervals), while GBT yields
logg A = —14.215:1% and vy = 3.3770 30

The split-telescope data sets are significantly less sen-
sitive to spatial correlations than the full data set, be-
cause they have fewer pulsars and therefore pulsar pairs
(see Figure 12 of App. A). Nevertheless, we can search
them for spatial correlations using the optimal statis-
tic. We find a noise-marginalized Hellings—Downs S/N
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Figure 10. CURN” posterior distributions for Arecibo (or-
ange) and GBT (green) split-telescope data sets, and for the
full data set (blue). The dashed line marks ycurn = 13/3.
The posteriors for the split-telescope data sets are consistent
with each other and with the posteriors for the full data set.

of 2.9 for Arecibo and 3.3 for GBT, consistent with the
split-telescope data sets having about half the number
of pulsars as the full data set. The S/Ns for Arecibo
and GBT are comparable: while telescope sensitivity,
observing cadence, and distribution of pulsars all affect
GWRB sensitivity, the dominant factor is the number of
pulsars because the S/N scales linearly with the num-
ber of pulsars but only as o (oy/¢)~ /7, where o is the
residual root-mean-squared, and ¢ is the observing ca-
dence (Siemens et al. 2013). We also note that the dis-
tributions of angular separations probed by Arecibo and
GBT are similar, although GBT observes more pulsar
pairs with large angular separations (see Figure 12).

6. DISCUSSION

In this letter we have reported on a search for an
isotropic stochastic GWB in the 15-year NANOGrav
data set. A previous analysis of the 12.5-year
NANOGrav data set found strong evidence for ex-
cess low-frequency noise with common spectral prop-
erties across the array, but inconclusive evidence for
Hellings—Downs inter-pulsar correlations, which would
point to the GW origin of the background. By con-
trast, the 12.5-year data disfavored purely monopo-
lar (clock-error-like) and dipolar (ephemeris-error—like)
correlations. Subsequent independent analyses by the
PPTA and EPTA collaborations reported results con-
sistent with ours (Goncharov et al. 2021a; Chen et al.
2021), as did the search of a combined data set (Anto-
niadis et al. 2022)—a syzygy of tantalizing discoveries
that portend the rise of low-frequency GW astronomy.

We analyzed timing data for 67 pulsars in the 15-year
data set (those that span > 3 years), with a total time
span of 16.03 years, and more than twice the pulsar pairs
than in the 12.5-year data set. The common-spectrum
stochastic signal gains even greater significance and is
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detected in a larger number of pulsars. For the first time,
we find compelling evidence of Hellings—Downs inter-
pulsar correlations, using both Bayesian and frequen-
tist detection statistics (see Figure 1), with false-alarm
probabilities of p = 1073 and p = 5 x 107°5-1.9 x 1074,
respectively (see Figure 3).

The significance of Hellings-Downs correlations in-
creases as we increase the number of frequency com-
ponents in the analysis up to five, indicating that the
correlated signal extends over a range of frequencies.
A detailed spectral analysis supports a power-law sig-
nal, but at least two frequency bins show deviations
that may skew the determination of spectral slope (Fig-
ure 6). These discrepancies may arise from astrophysi-
cal or systematic effects. Furthermore, slope determi-
nation changes significantly using an alternative DM
model (Figure 5). The study of spatial correlations with
the optimal statistic confirms a Hellings—Downs quasi-
quadrupolar pattern (Figure 7 and panel ¢ of Figure 1),
with some indications of an additional monopolar signal
confined to a narrow frequency range near 4 nHz. How-
ever, the Bayesian evidence for this monopolar signal is
inconclusive, and we could not ascribe it to any astro-
physical or terrestrial source (e.g., an individual SMBHB
or errors in the chain of timing corrections).

The GWB is a persistent signal that should increase in
significance with number of pulsars and observing time
span. This is indeed what we observe by analyzing slices
of the data set (see Figure 9). Furthermore, the signal is
present in multiple pulsars (Figure 8), and can be found
in independent single-telescope data sets (Figure 10).
We are preparing a number of other papers searching
the 15-year data set for stochastic and deterministic sig-
nals, including an all-sky, all-frequency search for GWs
from individual circular SMBHBs. This search, together
with the same analysis of the 12.5-year data set (Arzou-
manian et al. 2023), indicates that the spectrum and
correlations we observe cannot be produced by an indi-
vidual circular SMBHB.

If the Hellings—Downs-correlated signal is indeed an
astrophysical GWB, its origin remains indeterminate.
Among the many possible sources in the PTA frequency
band, numerous studies have focused on the unresolved
background from a population of close-separation SMB-
HBs. The SMBHB population is a direct byproduct
of hierarchical structure formation, which is driven by
galaxy mergers (e.g., Blumenthal et al. 1984). In a
post-merger galaxy, the SMBHs sink to the center of
the common merger remnant through dynamical inter-
actions with their astrophysical environment, eventually
leading to the formation of a binary (Begelman et al.
1980). GW emission from a SMBHB at nHz frequencies

is quasi-monochromatic because the binaries evolve very
slowly. Under the assumption of purely GW-driven bi-
nary evolution, the expected characteristic-strain spec-
trum is oc f~2/3 (or £~13/3 for pulsar-timing residuals).

The GWB spectrum may also feature a low-frequency
turnover induced by the dynamical interactions of bi-
naries with their astrophysical environment (e.g., with
stars or gas, see Armitage & Natarajan 2002; Sesana
et al. 2004; Merritt & Milosavljevi¢ 2005) or possibly by
non-negligible orbital eccentricities persisting to small
separations (Enoki & Nagashima 2007). We find little
support for a low-frequency turnover in our data (see
App. E).

The GWB amplitude is determined primarily by
SMBH masses and by the occurrence rate of close bi-
naries, which in turn depends on the galaxy merger
rate, the occupation fraction of SMBHs, and the binary
evolution timescale; population models predict ampli-
tudes ranging over more than an order of magnitude
(Rajagopal & Romani 1995; Wyithe & Loeb 2003; Jaffe
& Backer 2003; McWilliams et al. 2014; Sesana 2013),
under a variety of assumptions. Figure 11 displays a
comparison of HDY parameter posteriors with power-law
spectral fits from an observationally constrained semi-
analytic model of the SMBHB population constructed
with the HOLODECK package (Kelley et al. 2023). This
particular set of SMBHB populations assumes purely
GW-driven binary evolution, and uses relatively nar-
row distributions of model parameters based on liter-
ature constraints from galaxy-merger observations (see,
e.g., Tomezak et al. 2014). While the amplitude recov-
ered in our analysis is consistent with models derived
directly from our understanding of SMBH and galaxy
evolution, it is toward the upper end of predictions im-
plying a combination of relatively high SMBH masses
and binary fractions. A detailed discussion of the GWB
from SMBHBs in light of our results is given in Agazie
et al. (2023a).

In addition to SMBHBs, more exotic cosmological
sources such as inflation, cosmic strings, phase transi-
tions, domain walls, and curvature-induced GWs can
also produce detectable GWBs in the nHz range (see,
e.g., Guzzetti et al. 2016; Caprini & Figueroa 2018, and
references therein). Similarities in the spectral shapes of
cosmological and astrophysical signals make it challeng-
ing to determine the origin of the background from its
spectral characterization (Kaiser et al. 2022). The ques-
tion could be settled by the detection of signals from
individual loud SMBHBs or by the observation of spa-
tial anisotropies, since the anisotropies expected from
SMBHBS are orders of magnitude larger than those pro-
duced by most cosmological sources (Caprini & Figueroa
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Figure 11. Posteriors of HD” amplitude (for frer = 1yr™h
and spectral slope for the 15-year data set (blue), compared
to power-law fits to simulated GWB spectra (red, dashed)
from a population of SMBHBSs generated by HOLODECK (Kel-
ley et al. 2023) under the assumption of purely GW-driven
binary evolution, and narrowly distributed model parame-
ters based on galaxy merger-observations. We show 1/2/3¢
regions, and the dashed line indicates v = 13/3. The broad
contours confirm that population variance can lead to a sig-
nificant spread of spectral characteristics.

2018; Bartolo et al. 2022). We discuss these models in
the context of our results in Afzal et al. (2023).

The EPTA and Indian Pulsar Timing Array (InPTA;
Joshi et al. 2018), PPTA, and Chinese Pulsar Timing
Array (CPTA; Lee 2016) collaborations have also re-
cently searched their most recent data for signatures of
a gravitational-wave background (Antoniadis et al. 2023;
Reardon et al. 2023; Xu et al. 2023), and an upcoming
IPTA paper will compare the results of these searches.
The IPTA’s forthcoming Data Release 3 will combine
the NANOGrav 15-year data set with observations from
the EPTA, PPTA, and InPTA collaborations, compris-
ing about 80 pulsars with time spans up to 24 years, and
offering significantly greater sensitivity to spatial cor-
relations and spectral characteristics than single-PTA
data sets. Future PTA observation campaigns will im-
prove our understanding of this signal and of its astro-
physical and cosmological interpretation. Longer data
sets will tighten spectral constraints on the GWB, clar-
ifying its origin (Pol et al. 2021). Greater numbers of
pulsars will allow us to probe anisotropy in the GWB
(Pol et al. 2022) and its polarization structure (see, e.g.,
Arzoumanian et al. 2021, and references therein). The
observation of a stochastic signal with spatial correla-
tions in PTA data, suggesting a GWB origin, expands
the horizon of GW astronomy with a new Galaxy-scale
observatory sensitive to the most massive black-hole sys-
tems in the Universe and to exotic cosmological pro-
cesses.
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APPENDIX

A. ADDITIONAL DATA SET DETAILS

The observations included in the NANOGrav 15-year
data set were performed between July 2004 and August
2020 with the 305-m Arecibo Observatory (Arecibo), the
100-m Green Bank Telescope (GBT), and, since 2015,
the 27 25-m antennae of the Very Large Array (VLA).
We used Arecibo to observe the 33 pulsars that lie within
its declination range (0° < 0 < +39°); GBT to ob-
serve the pulsars that lie outside of Arecibo’s range,
plus J17134-0747 and B1937+421, for a total of 36 pul-
sars; the VLA to observe the seven pulsars J0437—4715,
J1600—3053, J1643—1224, J1713+0747, J1903+0327,
J1909—3744, and B1937+21. Six of these were also ob-
served with Arecibo, GBT, or both; J0437—4715 was
only visible to the VLA. Figure 12 shows the sky loca-
tions of the 67 pulsars used for the GWB search (top)
and the distribution of angular separations for the pulsar
pairs (bottom).

Initial observations were performed with the ASP
(Arecibo) and GASP (GBT) systems, with 64-MHz
bandwidth (Demorest 2007). Between 2010 and 2012,
we transitioned to the PUPPI (Arecibo) and GUPPI
(GBT) systems, with bandwidths up to 800 MHz (Du-
Plain et al. 2008; Ford et al. 2010). We observe pulsars
in two different radio-frequency bands in order to mea-
sure pulse dispersion from the interstellar medium: at
Arecibo, we use the 1.4 GHz receiver plus either the 430
MHz or 2.1 GHz receiver (and the 327 MHz receiver for
early observations of J2317+1439); at GBT, we use the
820 MHz and 1.4 GHz receivers; at the VLA, we use the
1.4 GHz and 3 GHz receivers with the YUPPI system.

In §5.4 we analyze also two split-telescope data sets:
33 pulsars for Arecibo, and 35 for GBT (excluding
J0614—3329, which was observed for less than three
years). For the two pulsars timed by both telescopes
(J171340747 and B1937+21), we partition the timing
data between the telescopes and obtain independent
timing solutions for each. We do not analyze a VL A-only
data set, which would have shorter observation spans
and significantly reduced sensitivity.

B. BAYESIAN METHODS & DIAGNOSTICS

The prior probability distributions assumed for all
analyses in this paper are listed in Table 1. We use
Markov chain Monte Carlo (MCMC) techniques to sam-
ple randomly from the joint posterior distribution of our
model parameters. Marginal distributions are obtained
simply by considering only the parameter of interest
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Figure 12. Top: Sky locations of the 67 pulsars used in the
15-year GWB analysis. Markers indicate which telescopes
observed the pulsar. Bottom: Distribution of angular sepa-
rations probed by the pulsars in the full data set (orange),
the Arecibo data set (blue), and the GBT data set (red).
Because Arecibo and GBT mostly observed pulsars at differ-
ent declinations, there are few inter-telescope pairs at small
angular separations, resulting in a deficit of pairs for the full
data set in the first bin.

in each sample. To assess convergence of our MCMC
runs beyond visual inspection we use the Gelman—Rubin
statistic, requiring R < 1.01 for all parameters (Gelman
& Rubin 1992; Vehtari et al. 2021). We performed most
runs discussed in this paper with the PTMCMC sampler
(Ellis & van Haasteren 2017) and postprocessed sam-
ples with chainconsumer (Hinton 2016).

In NG12gwh we use an analytic approximation for the
uncertainty of marginalized-posterior statistics (Wilcox
2012). Here we instead adopt a boostrap approach:
we resample the original MCMC samples (with replace-
ment) to generate new sets that act as independent sam-
pling realizations. We then calculate the distributions of
the desired summary statistics (e.g., quantiles, marginal-
ized posterior values) over these sets. From these distri-
butions, we determine central values and uncertainties
(either medians and 68% confidence intervals, or means
and standard deviations).
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Table 1. Prior distributions used in all analyses performed in this paper.

parameter description prior comments
white noise
Ey EFAC per backend/receiver system Uniform [0, 10] single-pulsar analysis only
Qr [s] EQUAD per backend/receiver system log-Uniform [—8.5, —5] single-pulsar analysis only
Ji [s] ECORR per backend/receiver system log-Uniform [—8.5, —5] single-pulsar analysis only
intrinsic red noise
Aved red-noise power-law amplitude log-Uniform [—20, —11] one parameter per pulsar
Yred red-noise power-law spectral index Uniform [0, 7] one parameter per pulsar
all common processes, free spectrum
pi [32] power-spectrum coefficients at f = /T log-Uniform in p; [—18, —8| one parameter per frequency
all common processes, power-law spectrum
A common process strain amplitude log-Uniform [—18, —14] (v = 13/3) one parameter for PTA
log-Uniform [—18, —11] (v varied)  one parameter for PTA
¥ common process power-law spectral index delta function (y = 13/3) fixed
Uniform [0, 7] one parameter for PTA
all common processes, broken—power-law spectrum
A broken—power-law amplitude log-Uniform [—18, —11] one parameter for PTA
107 broken—power-law low-freq. spectral index Uniform [0, 7] one parameter per PTA
é broken—power-law high-freq. spectral index delta function (§ = 0) fixed
fbena [Hz]  broken—power-law bend frequency log-Uniform [—8.7,—7] one parameter for PTA
4 broken—power-law high-freq. transition sharpness delta function (¢ = 0.1) fixed
all common processes, t-process spectrum
A power-law amplitude log-Uniform [—18, —11] one parameter for PTA
% power-law spectral index Uniform [0, 7] one parameter per PTA
x; modification factor Inverse Gamma Distribution one parameter per frequency
all common processes, turnover spectrum
A turnover power-law amplitude log-Uniform [—18, —11] one parameter for PTA
¥ turnover power-law high-freq. spectral index Uniform [0, 7] one parameter per PTA
K turnover power-law low-freq. spectral index Uniform [0, 7] one parameter per PTA
fo [Hz] turnover power-law bend frequency log-Uniform [—9,—7] one parameter for PTA
all common processes, cross-correlation spline model
Y normalized cross-correlation values at spline Uniform [—0.9,0.9] seven parameters for PTA

knots (103,25, 49.3,82.5, 121.8, 150, 180)°

We rely on a variety of techniques to perform Bayesian
model comparison. The first is thermodynamic integra-
tion (e.g., Ogata 1989; Gelman & Meng 1998), which
computes Bayesian evidence integrals directly through
parallel tempering: we run Ng MCMC chains that ex-
plore variants of the likelihood function raised to dif-
ferent exponents (3, then approximate the evidence for
model H as

mp(d#) = [ (npdi)s 48~ 3 (mp(d0))s
0 B

(B1)
where all likelihoods and posteriors are computed
within model H, 6 denotes all of the model’s parame-
ters, and the expectation (Inp(d|f))s is approximated
by MCMC with respect to the posterior pg(fld) o
p(d|0,H)Pp(0,H). The inverse temperatures 3 are
spaced geometrically, as is the default in PTMCMC.

To compare nested models, which differ by “freezing”
a subset of parameters, we also use the Savage—Dickey
density ratio (Dickey 1971): if models H and H differ

by the fact that (say) 6 is frozen to 0 in the latter, then
p(d[Ho) /p(dIH) = p(Bo = 0ld, 1) /p(B = O[H).

When comparing disjoint models with different like-
lihoods (e.g., HD versus CURN), we use product-space
sampling (Carlin & Chib 1995; Godsill 2001). This
method treats model comparison as a parameter estima-
tion problem, where we sample the union of the unique
parameters of all models, plus a model-indexing param-
eter that activates the relevant likelihood function and
parameter space of one of the sub-models. Bayes fac-
tors are then obtained by counting how often the model
index falls in each activation region and taking ratios of
those counts.

In some situations, it can be difficult to sample a com-
putationally expensive model directly. In these cases,
we sample a computationally cheaper approximate dis-
tribution and reweight those posterior samples to es-
timate the posterior for the computationally expensive
model (Hourihane et al. 2023). The reweighted poste-
rior can be used in the thermodynamic-integration or
Savage—Dickey methods. In addition, the mean of the
weights yields the Bayes factor between the expensive
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and approximate models, which may be of direct interest
(e.g., HD can be approximated by CURN). We estimate
Bayes-factor uncertainties using bootstrapping and, for
product-space sampling, with the Markov-model tech-
niques of Cornish & Littenberg (2015) and Heck et al.
(2019).

C. BROKEN POWER-LAW MODEL

As shown in NG12gwh, the simultaneous Bayesian es-
timation of white measurement noise and of red-noise
processes described by power laws biases the recovery
of the spectral index of the latter (Lam et al. 2017;
Hazboun et al. 2019). Just as in NG12gwb and An-
toniadis et al. (2022), we impose a high-frequency cutoff
on the red-noise processes. To choose the cutoff fre-
quency, we perform inference on our data with a CURNY
model modified so that the common process has power

spectral density
_ Ly
A fN\T T
S(f) o 1272 (fref) L (fbreak) frCf7
(C2)

then set the cutoff to the MAP fireax. Equation C2 is
fairly generic, allowing for separate spectral indices at
low () and high (¢) frequencies. The break frequency
Soreax dictates where the broken power law changes spec-
tral index, while ¢ (which we set to 0.1) controls the
smoothness of the transition.

The marginal posterior for fireak, obtained in the
factorized-likelihood approximation using the tech-
niques of Lamb et al. (2023), has median and 90% cred-
ible region of 3.2753 x 10~® Hz, and a MAP value of
2.75 x 10~® Hz. The latter is close to f14 = 14/T in our
frequency basis (with T" the total span of the data set),
so we use 14 frequencies to model common-spectrum
noise processes (see §2 and NG12gwh).

D. T-PROCESS SPECTRUM MODEL

The free-spectrum analysis of our data (§5.2 and Fig-
ure 6) shows that the frequency bins at f1, fs, f7, and
fs appear to be in tension with a pure power law, skew-
ing the estimation of v and reducing the HD'3/3 vs.
CURN'3/3 Bayes factor. Assuming that those frequency
components reflect unmodeled systematics or stronger-
than-expected statistical fluctuations, we can make our
inference more robust to such outliers with a “fuzzy”
power-law model that allows the individual ®; to vary
more freely around their expected values. To wit, we
introduce the ¢-process spectrum (TPS)

Drpsi = i Ppowerlaw,; With  z ~ invgammal(z;;1,1),
(D3)

where @powerlaw,i follows Equation 6 and x follows the
inverse gamma distribution with parameters a = 8 = 1;
the resulting Gaussian mixture yields a Student’s-¢ dis-
tribution for the ®rpg ;. Figure 13 shows CURNY power-
law posteriors and CURNTPS modified power-law posteri-
ors, obtained in the factorized-likelihood approximation
(Taylor et al. 2022; Lamb et al. 2023) and compared
to CURN'™®® bin variances. The TPS model is spread
more widely and deviates from the perfect power law at
bins f1, fe, f7, and fg, as expected. The right panel of
Figure 13 shows the joint log;, A, v posteriors for CURN”
and CURNTPS, The latter is more consistent with steeper
power laws, and it includes v = 13/3 at 1o credibility.

E. TURNOVER MODEL

The final parameterized spectral model that we in-
vestigate is motivated by the idea that the dynamics
of SMBHBs are influenced by their environments at
sub-parsec separations (Armitage & Natarajan 2002;
Sesana et al. 2004; Merritt & Milosavljevi¢ 2005). These
interactions affect binary evolution and the resulting
spectrum of the GWB. The process of bringing two
SMBHs together after galaxy mergers involves a com-
plex chain of interactions: despite significant theoretical
work, the lack of observational constraints makes it dif-
ficult to draw any conclusions. PTAs, however, provide
a unique opportunity to probe the timescale over which
two SMBHs evolve from the merger of their galaxies to
a bound binary that produces GW signals in the PTA
sensitivity band.

When dynamical interactions dominate orbital evo-
lution, binaries will traverse the GW spectrum more
quickly, reducing GW emission compared to a GW-
driven inspiral. This kind of behavior is captured by
the turnover model (Sampson et al. 2015):

o= () D8] o

This is qualitatively similar to the broken power law dis-
cussed earlier, except that here fy represents the GW
frequency at which typical binary evolution transitions
from environmentally dominated (at lower frequencies
and wider separations) to GW-dominated (at higher fre-
quencies and smaller separations). The parameter k
controls the shape of the spectrum below fy, and de-
pends on the orbital-evolution mechanism. Note that
the actual turning point of the spectrum is not at fy
but at foend = fo X (3k/4 — 1)1/% (NGOgwh).
Applying this model to our data, we find hints of de-
partures from a pure power law: the transition frequency
fo lies below 10 nHz with 65% credibility, while the
bend frequency lies below 10 nHz with 75% credibility.
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Figure 13. Power-law (CURN”, blue) and t-process power-law (CURN™T
spectra, compared to free-spectral bin-variance posteriors (CURN

TPS

S orange) spectral posteriors. Left: reconstructed

, violin plots). Right: joint (log;, A,~) posteriors. The

“fuzzy” t-process allows local deviations from a perfect power law, producing wider constraints that are more consistent with

~v = 13/3 (dashed line).

Nevertheless, Bayesian comparison of this cURNturrover
model with CURN? reports an inconclusive Bayes fac-
tor of 1.46 & 0.02 in favor of CURN'™OVer  Ryurthermore,
the estimation of CURN'™ ™MoV parameters is sensitive to
DM modeling (see §5.1). While the spectra are broadly
consistent whether we use DMX or DMGP to model DM
fluctuations, there are differences in the power at certain
frequencies that lead to differences in the turnover pa-
rameters. This is discussed in greater detail in Agazie
et al. (2023a).

F. SKY SCRAMBLES

In the sky-scramble method (Cornish & Sampson
2016), inter-pulsar correlations are analyzed as if the
pulsars occupied random sky positions, with the purpose
of creating a background distribution of PTA detection
statistics for null-hypothesis testing, in alternative to
phase shifts (Taylor et al. 2017; see §3 and §4). If a cor-
related signal is present in the data, phase shifts and sky
scrambles actually test different null hypotheses: phase
shifts test the hypothesis that no inter-pulsar correla-
tions are present, while sky scrambles assume that inter-
pulsar correlations are present at the level measured in
the data, but test the hypothesis that these correlations
have no dependence on angular separation.

As is the convention in the literature, we require that
scrambled overlap reduction functions (ORFs) be inde-
pendent of each other and of the unscrambled ORF us-
ing a match statistic,

i T,T
M= LaitaLatlap ., (F5)

\/(Za,b;ﬁa 1ﬂabrab) (Za,b;ﬁa PZLbF;b)

where T'yp and T", are two different ORFs. For the
sky scrambles used in our analysis, the scrambled ORF's
have M < 0.1 with respect to the unscrambled ORF,
and M < 0.17 with each other. We generate 10,000
sky scrambles, owing to the difficulty in obtaining large
numbers of scrambled ORFs that satisfy the match
threshold; because of limitations of computational re-
sources, we obtain our detection statistics for 5,000 of
those ORF's. Figure 14 shows the resulting background
distributions for the HDY-to-CURN? Bayes factor (left
panel) and the optimal-statistic S/N (right panel). The
Bayes factors exceed the observed value in eight of the
5,000 sky scrambles (p = 1.6 x 10~2), while none of
the sky scrambles have noise-marginalized mean S/N
greater than observed (p < 107%).

We note that the null distribution recovered by the
sky scrambles is not very sensitive to the choice of
match threshold for [M| < 0.2. Figure 15 compares
the null distributions when the match threshold for all
ORF's with each other and with the unscrambled ORF
is set to |M| < 0.17 (blue), |M| < 0.1 (orange), and
|M| < 0.08 (green). There is very little difference among
the distributions; however, imposing a smaller thresh-
old means that fewer sky scrambles can be used (6,043
with [M| < 0.1 and 1,534 with |M| < 0.08, compared
to 10,000 with |M| < 0.17), which limits the precision
with which the p-value can be measured. We find no
evidence that the recovered null distribution is biased
when including sky scrambles with matches up to 0.17.
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Figure 14. Empirical background distribution of HD”-to-CURN” Bayes factor (left, see §3) and noise-marginalized optimal
statistic (right, see §4), as computed in 5,000 sky scrambles, which erases the dependence of inter-pulsar correlations on the
angular separation between the pulsars. Dotted lines indicate Gaussian-equivalent 20, 30, and 40 thresholds. The dashed
vertical lines indicate the values of the detection statistics for the unscrambled data set. We find p = 1.6 x 1072 (approx. 30)
for the Bayesian analysis, and p < 107" (> 30) for the optimal-statistic analysis.

Table 2. Multiple-correlation optimal statistic best-fit coefficients Ai, S/Ns, and AIC probabilities

HD Correlations Monopole Correlations Dipole Correlations

Model A#p S/N A2, S/N Mean A3 S/N | p(AIC)
HD only 6.8(9) x 1073°  4(1) . 3x 1072
Monopole only 1.1(1) x 1073%  4(1) <o | 6x1078
Dipole only < 15(3)x 1073 4(1) | 8x107?
HD + monopole 5.5(8) x 10730 3.4(8) 8(1) x 107" 2.9(8) = = 1

8(2) x 1073 1.7(7) | 6 x 1072
9(2) x 1073 1.9(6) | 1 x 1072
3(2) x 1073 0.6(4) 0.48

HD + dipole
monopole + dipole .-
HD + monopole + dipole | 5.1(8) x 107%°  2.9(6)

5.5(8) x 107°°  3.2(7)
8(1) x 1073+ 2.7(7)
7(1) x 10731 2.4(6)

NoTE—AIl values were computed for the 15-year data set, assuming a power-law power spectral density using the 14 lowest
frequency components. Here A%, S/N, and AIC are marginalized over pulsar noise parameters with fixed v = 13/3. The numbers
in parentheses represent the mean least-squares errors for the A? coefficients and standard deviations over noise-parameter

posteriors for S/Ns. We compute p(AIC) with respect to the model with the lowest mean AIC (i.e., HD + monopole).

G. MULTIPLE-CORRELATION OPTIMAL
STATISTIC

The multiple-correlation optimal statistic (MCOS;
Sardesal & Vigeland 2023) fits the inter-pulsar corre-
lation coefficients pqp with a linear model that includes
multiple components with different correlation patterns,
but with the same spectral shape. The linear-model co-
efficients are the squared amplitudes of the components.
Within such a model, the significance of each component
can be quoted as a S/N given by its best-fit coefficient di-
vided by the fit error. Just as for the noise-marginalized
optimal statistic (Vigeland et al. 2018), the posterior
distribution of pulsar noise parameters induces a distri-
bution of MCOS statistics.

We fit the 15-year data with models that include HD,
monopole, and dipole-correlated components in various
combinations. Table 2 lists the noise-marginalized am-

plitude estimates and S/N for all models. The goodness-
of-fit of the models can be compared using the Akaike
Information Criterion (AIC; Akaike 1998):

AIC = 2k + X2, (G6)

where k is the number of model parameters and x? is
the fit’s chi-squared, computed without accounting for
GW-induced pqp correlations. (This can be thought of
as a pseudo-Bayes factor, with the factor of 2k imposing
an Occam penalty.) The relative probability of a model
compared to the most-favored model is then given by

P(AIC) = exp [(AICmi, — AIC)/2] . (G7)

where AIC,,in is the minimum AIC across all models.
Table 2 lists the AIC probabilities, computed by av-

eraging the AIC of each model over pulsar noise pa-

rameters. The HD-correlated model is preferred among
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Figure 15. Comparison between empirical background dis-
tributions for the noise-marginalized optimal statistic, as
computed by the sky-scramble technique. We show distri-
butions computed using a match threshold of M < 0.17
(blue), M < 0.1 (orange), and M < 0.08 (green). Dotted
lines indicate Gaussian-equivalent 20, 30, and 40 thresholds.
The dashed vertical lines indicate the values of the detection
statistics for the unscrambled data set. We find little differ-
ence between the background distributions computed using
different match thresholds, modulo the fact that imposing
a smaller threshold yields fewer sky scrambles, which limits
the precision to which the p-value can be measured.

the models with a single correlated process. The mod-
els with both HD and monopole correlations are pre-
ferred among all models: for a model with HD and
monopole correlations, we find S/N of 3.4 £ 0.8 for HD
correlations and 2.9 + 0.8 for monopolar correlations,
while for a model with HD, monopole, and dipole cor-
relations, we find S/N of 2.9 &+ 0.6 for HD correlations,
2.4 + 0.6 for monopole correlations, and 0.6 4+ 0.4 for
dipole correlations (means + standard deviations across
noise-parameter posteriors). The statistical significance
of these S/Ns can be quantified empirically using sim-
ulations of 15-year—like data sets (see App. H.1), which
report p-values < 1072 and ~ 4 x 10~ 2 for the observed
mean HD and monopole statistics across data replica-
tions with no spatially correlated injections.

As discussed in Sardesai & Vigeland (2023), the opti-
mal statistic and the MCOS are metrics of the apparent
spatial correlation pattern of the data, but they have
a limited ability to identify its actual source. That is
because a real HD signal may also excite the monopole
optimal statistic and the monopole component of the
MCOS; conversely, a real monopolar signal may also ex-
cite the HD optimal statistic and the HD component
of the MCOS; and so on. The S/Ns quoted in Table 2
quantify how often we would expect to measure the ob-
served value of the optimal statistic if only uncorrelated
noise is present, but they do not describe how often one
type of correlated noise would produce a given value of
the optimal statistic for a different type of correlation.
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Figure 16. Results of the MCOS analysis, which prefers a
model including both HD and monopole correlations. Top:
MCOS S/N for HD correlations (solid blue) and monopole
correlations (dashed orange), marginalized over CURN'3/3
noise-parameter posteriors. The vertical lines indicate the
mean S/Ns. We find a S/N of 3.4 £ 0.8 for HD correla-
tions and 2.9 + 0.8 for monopole correlations. Bottom:
Binned cross-correlations pqp (black error bars), computed
with MAP noise parameters from a CURN'®/® run. The
solid blue and dashed orange curves show best-fit HD and
HD+monopole correlation patterns, corresponding to A% =
6.8x107%% and to AZp = 5.5x 10730, A2 1 =8x107%,
respectively. The monopolar component accounts for the
vertical shift of the cross-correlations with respect to the HD
curve. We use the standard version of the optimal statistic
that does not include inter-pulsar correlations to compute
Pab, SO the points and errors do not match those shown in
panel (c) of Figure 1.

This effect can be characterized using simulations (see
App. H.1), which report a p-value of 0.11 for the ob-
served mean monopole statistic when a HD-correlated
signal with the MAP 15-year amplitude is included in
the simulated data sets. We conclude that there are
some indications of a possible monopole-correlated sig-
nal in the data with S/N comparable to but smaller than
the S/N for HD correlations; however, from simulations
we conclude that it is possible for such a signal to appear
in an MCOS analysis if only a HD-correlated stochastic
process is present.
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Figure 17. Top: MCOS HD S/N values recovered in
the three simulations described in App. H.1, compared to
the MCOS HD S/N measured in the real data set (vertical
dashed red line), which has p-values of < 1072 for simula-
tions i and iii, and 0.64 for simulations ii. Bottom: MCOS
monopole S/N values recovered in the three simulations,
compared to the real-data MCOS monopole S/N (vertical
dashed red line), which has p-values of 4 x 1072, 1.1 x 10~ !,
and < 1072 for simulation i, ii, and iii respectively.

H. MULTIPLE-CORRELATION OPTIMAL
STATISTIC SIMULATIONS

In this appendix we obtain the distribution of the
MCOS over an ensemble of simulated data sets, with
the goal of characterizing the probability that the ob-
served S/Ns could have been produced by pulsar noise
alone, or by a GWB with HD correlations. Unlike our
Bayesian analysis, the MCOS prefers a model that in-
cludes both HD and monopolar components. So we are
especially interested in asking how frequently we may
expect the observed MCOS monopole if the data con-
tain only the GWB. In Apps. H.1 and H.2 we present two
different types of simulations: “astrophysical,” where we
generate synthetic data with MAP noise parameters in-
ferred from the 15-year data set, both with and without
the GWB; and “model checking,” where we create data
replications following the HD'3/3 posteriors for the real
data set. Note that neither simulation attempts to ac-
count for the monochromatic character of the putative
monopolar signal (see §5.2).

H.1. Astrophysical simulations

Following Pol et al. (2021), we generate simulated data
sets adopting MAP pulsar-noise parameters obtained
from the real data independently for each pulsar; these
“noise runs” include an additional power-law process to
reduce contamination between the putative GWB and
the pulsars’ intrinsic red noise (Taylor et al. 2022). We
produce 100 realizations each of three different simu-
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Figure 18. Distribution of real-data and replicated MCOS
monopole S/Ns. Each point represents a draw n(k) from
HD'3/3 posterior, which is used to simulate 8™ ®) and to
compute both S/Ns. The replicated monopole S/N is greater
for 11% of the simulations.

lations: (i) injecting no spatially correlated power-law
GWB or excess uncorrelated common-spectrum noise;
(ii) injecting a spatially correlated power-law GWB with
amplitude 2.7 x 1071® and spectral index 13/3; and (iii)
injecting no GWB or common-spectrum noise, but omit-
ting the additional power-law process in the estimation
of intrinsic pulsar noise, with the goal of testing how
often excess common-spectrum noise is recognized as a
spatially correlated GWB.

We compute HD + monopole + dipole MCOS S/Ns
for all synthetic data sets (see Figure 17). The mean
HD S/Ns observed in the real data (see App. G) corre-
spond to p-values of < 1072 for simulations (i) and (iii),
and 0.64 for simulation (ii). The mean monopole S/Ns
observed in the real data set correspond to p-values of
4 x 1072, 1.1 x 107}, and < 1072 for simulations (i),
(ii), and (iii) respectively. We conclude that it is un-
likely that we would measure HD correlations at the
level observed in real data when no correlated signal
is present (simulation (i)) or when only uncorrelated
common-spectrum red noise is present (simulation (iii)).
In addition, the HD S/Ns obtained from a HD-correlated
GWB injection (simulation (ii)) are fully consistent with
the S/N observed in real data. By contrast, the observed
monopole S/N could have been produced by intrinsic
pulsar noise alone, or by a real HD signal.

H.2. Model-checking simulations

In App. H.1 we have tackled the question of monopole
S/N significance using simulations based on real-data
MAP estimates nMAP of pulsar-noise and GW param-
eters. In this appendix we adopt a procedure with
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a stronger Bayesian flavor, evaluating the MCOS on
a population of data replications created using HD'3/3
as a generative model with noise hyperparameters n
drawn from the HD'3/3 real-data posterior. This can be
seen also as a Bayesian model-checking exercise (Gelman
et al. 1996, 2013): if we find that the summary statis-
tic of interest (the monopole MCOS) has a much more
extreme value in real data than in data replications,
we should suspect that the data model (here HD/3)
is missing something.

We perform the test by drawing 500 parameter vectors
{n™?} from the HD'3/3 real-data posterior; for each n(*)
we simulate a data set 6t5™*) ~ p(5t|n*)) and com-
pare MCOS(8ts™ (%) n(k)) with MCOS(8t;n™*)). Our
notation emphasizes the dependence of the MCOS on
the pulsar noise parameters through the P matrices in
Equation 9. Figure 18 shows the resulting distribution
of monopole S/Ns. The replicated monopole S/N is
greater than its observed counterpart for 11% of the
draws. Thus, it is plausible that the MCOS could mea-
sure the observed monopole S/N in data that contain
only a HD-correlated GWB. Conversely, the observed
monopole S/N does not by itself suggest that HD'3/3 is
misspecified.
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