
Semantically Informed Data Augmentation for
Unscoped Episodic Logical Forms

Mandar Juvekar∗

Boston University
Boston, MA, USA 02215

mandarj@bu.edu

Gene Louis Kim

University of South Florida
Tampa, FL, USA 33620

genekim@usf.edu

Lenhart Schubert

University of Rochester
Rochester, NY, USA 14627

schubert@cs.rochester.edu

Abstract

Unscoped Logical Form (ULF) of Episodic

Logic is a meaning representation format that

captures the overall semantic type structure of

natural language while leaving certain finer de-

tails, such as word sense and quantifier scope,

underspecified for ease of parsing and annota-

tion. While a learned parser exists to convert

English to ULF, its performance is severely lim-

ited by the lack of a large dataset to train the sys-

tem. We present a ULF dataset augmentation

method that samples type-coherent ULF expres-

sions using the ULF semantic type system and

filters out samples corresponding to implausi-

ble English sentences using a pretrained lan-

guage model. Our data augmentation method

is configurable with parameters that trade off

between plausibility of samples with sample

novelty and augmentation size. We find that the

best configuration of this augmentation method

substantially improves parser performance be-

yond using the existing unaugmented dataset.1

1 Introduction

Kim and Schubert (2019) introduced Unscoped

Episodic Logical Form (ULF) as a semantic rep-

resentation that captures syntactic type structure

within the Episodic Logic formalism, while staying

close to the surface form for ease of annotation and

parsing. Kim et al. (2021a) presented a learned ap-

proach to parsing English sentences to ULF which

showed promising results. Their parsing efforts,

however, were limited by the size of the training

data available. They released a dataset of 1,738

sentences with corresponding manual ULF annota-

tions alongside their parser whichÐto the best of

our knowledgeÐremains the only dataset of ULF

annotations to date. Our work aims to alleviate this

limitation of data sparsity.

∗Work done in part while at the University of Rochester.
1The code is available at https://github.com/

genelkim/subtree-sampled-ulf-data-augmentation.

(|Mary| ((past place.v)

|Glenn|

(under.p (k anesthesia.n))))

Figure 1: An example ULF for the sentence ªMary

placed Glenn under anesthesia.º

In this paper, we present a method of augment-

ing ULF datasets. Our method leverages ULF’s

underlying type structure and works by replacing

subtrees of seed ULFs with other subtrees of the

same semantic type. This, combined with the use

of pretrained language models to prune out the

most incoherent sentences, allows us to expand rel-

atively small datasets of ULF, such as that of Kim

et al. (2021a), into datasets several times larger in

size. We evaluate the efficacy of our system by

looking at the performance of the existing ULF

parser when trained on augmented versions of the

original training set.

The importance of our work, and more generally

of ULF parsing, comes from the role of ULF in the

broader Episodic Logic (EL) framework. Episodic

Logic (EL) is an extended first-order logic designed

to closely match the form and expressivity of nat-

ural language (Schubert, 2000). EL is a powerful

representation with rich model-theoretic semantics

which enable a variety of inferences including de-

ductive inference, uncertain inference, and natural

logic-like inference (Morbini and Schubert, 2009;

Schubert and Hwang, 2000; Schubert, 2014). How-

ever, parsing ordinary English sentences into fully

resolved EL forms is a difficult task.

ULF is an underspecified form of EL designed

to balance encoding adequate semantic information

with ease of parsing. It fully specifies the semantic

type structure of EL by marking the types of the

atoms and of all the predicate-argument relation-

ships while leaving issues such as quantifier scope,

word sense, and anaphora unresolved. ULF is the

critical first step in parsing full-fledged EL formu-

las. A detailed description of how ULF fits into

the EL interpretation process is given by Kim and

Schubert (2019). ULF is also a useful interpreta-

tion in its own right. It is capable of generating

inferences based on clause-taking verbs, counter-

factuals, questions, requests, and polarity (Kim

et al., 2019, 2021b,c), and has been an effective

representation in schema-based story understand-

ing (Lawley et al., 2019) and spatial reasoning-

related dialogue (Platonov et al., 2020).

2 Background

ULFs are trees written in parenthesized list form.

The leaves of these trees, which we will refer to as

atoms, can be:

• Surface words marked with suffix tags of their

semantic types (e.g. .v, .n, .pro, .d for verbs,

nouns, pronouns, and determiners, respec-

tively);

• Case-sensitive symbols such as names and

titles marked with pipes (e.g. |Glenn|). Pipe-

marked symbols may be left without a seman-

tic tag, in which case they are interpreted as

having an entity type;

• One of a closed set of logical and macro

symbols (e.g. k and mod-n for denoting kind-

forming and noun modifier-forming operators,

respectively). These symbols have unique

types and are left without suffix tags.

Figure 1 contains an example ULF for the sen-

tence ªMary placed Glenn under anesthesia.º The

different types of atoms described above are all

present here. The names ªMaryº and ªGlennº are

enclosed in pipes and the other surface words have

POS-related semantic tags (e.g. place.v). The

type-shifter k is used to turn the nominal predicate

anesthesia.n into a kind, which is an abstract in-

dividual whose instances are entities. The special

operator past is used to specify the tense of the

verb place.v.

As mentioned before, there is a machine

learning-based parser to convert English sen-

tences (Kim et al., 2021a) to ULFs. A brief

description of how the parser works is given

in Appendix A. In the other direction, Kim

et al. (2019) introduced a simple ULF-to-English

translator, ulf2english, which they reported as

achieving 78% grammaticality. Broadly speaking,

ulf2english works by analyzing the ULF type of

each clause, adding morphological details based

on that analysis, removing purely logical opera-

tors, and mapping logical symbols to their corre-

sponding surface forms. A more up-to-date version

(whose performance exceeds the evaluation in that

paper to an unknown degree)2 is used in our sam-

pling system.

2.1 The ULF Type System

The EL/ULF type system is the backbone upon

which our data augmentation system is built. The

semantics of EL are defined over a domain of in-

dividuals denoted by D and a set of truth values

denoted by 2. A set of situations S ⊂ D con-

sisting of first-class individuals provides the ba-

sis for intensionality.3 Since EL is a first-order

logic, the domain D contains all the individuals

that can be spoken about directly. D not only

contains ordinary individuals and situations, but

also collections, kinds of entities, propositions, and

more. Special type-shifting operators are used to

access these other individuals. For example, the

so-called kind operator k can be applied to the

nominal predicate dog.n (i.e. (k dog.n)) to talk

about ªdogsº as a whole (as opposed to any par-

ticular dog or collection of dogs). Predicates can

be thought of as true/false-valued functions that

take a certain number of objects from the domain

and a situation as input. Viewing that in a curried

form gives us the type of an arbitrary predicate:

(D → (D → (· · · → (D → (S → 2)) · · ·))). For

convenience, we shorten this to (Dn → (S → 2))
where n is the number of Ds in the previous type.4

For our purposes (where we are mostly concerned

with ULFs) intensionality is not very relevant, and

so henceforth we will abbreviate (S → 2) by 2̂.

Since monadic predicates (type (D → 2̂)) com-

monly occur in the type system, we will use N as

a shorthand for (D → 2̂).

A couple of key differences exist between the

ULF and EL type systems. ULF types may have

syntactic restrictions, denoted by subscripts, e.g., a

verbal monadic predicate is denoted by NV . Deter-

miners are denoted with the type (N → D), which

anticipates their replacement in EL by a variable of

type D bound by a restricted quantifier.

Each ULF atom can be one of a few related

2
https://github.com/genelkim/ulf2english

3The description of EL semantics we give is informal and
limited to our purposes. For a more detailed, formal discussion
we recommend reading Schubert and Hwang (2000, pp. 9±14).

4For technical reasons, EL supplies the situations last.

2̂

(Dn → 2̂)V

D

(Dn+1 → 2̂)V

go.v)))

(NV → D)

(to

(Dn+1 → 2̂)V

(Dn+1 → 2̂)V

want.v)

ignored

((past

D

NN

boy.n)

(NN → D)

((The.d

Figure 2: An example of how atomic ULF types combine to give the type of the ULF.

semantic types. Logical operators have a unique

semantic type, whereas suffix-tagged atoms are

restricted by the semantic types that correspond

to their tags. A detailed correspondence between

ULF atoms and their semantic types is given by

Kim (2022, pp. 34±40). The types of atoms can

combine (or compose) via function application to

give the type of the ULF composed of those atoms.

For example, a.d which has type (N → D), and

dog.n which has typeN can compose to give (a.d

dog.n), with type D. Such ULFs can further com-

pose to give types for more complex ULFs. Fig-

ure 2 gives an example of such a type composition.

Here, the entire ULF has type 2̂, the type for a

complete sentence. Notice that want.v has type

(Dn+1 → 2̂)V . The variable n (taken to be a non-

negative integer) is used to account for the fact that

we do not have prior knowledge of how many ar-

guments the verb takes. It is treated as an integer

variable until the last step, where we instantiate it to

1 so that (Dn → 2̂)V can combine with D to give

2̂. Such treatment is typical for verbs and other

types that can take a variable number of arguments.

We will call trees similar to the one in Figure 2

without the actual ULF atoms type derivation trees.

A type derivation tree shows one way the types at

the leaves can combine to give the type at the root.

All properly annotated ULFs, including ULFs

that do not correspond to complete sentences,

should have a valid type that can be found by com-

posing the types of its atoms. This fact is what we

use to build our ULF sampler. Our method of sam-

pling ULFs produces new ULFs from a seed ULF

by picking a random subtree of the seed, finding the

semantic type of that subtree, and then replacing

the subtree with another ULF of the same type. In

our experiments, these seed ULFs are ULFs in the

training set of the manually annotated ULF dataset

released by Kim et al. (2021a). The type structure

helps ensure that the result is a valid ULF where

at least the composition of semantic types is co-

herent, and limiting our sampler to small subtrees

makes sampling meaningful sentences significantly

more likely than generating entire sentences from

scratch.

3 System Description

Our system can be broadly broken into two parts: a

sampler that takes a single seed ULF as input and

generates one new ULF-English pair, and a handler

which uses the sampler repeatedly to augment a

given dataset. Pseudocode for the salient parts of

this process is given in Appendix E.

3.1 The Sampler

The sampler goes through four phases: (1) picking

a random subtree, (2) finding its type, (3) sampling

a ULF of that type, and (4) replacing the original

subtree in-place. In this subsection we describe

that process, illustrating it by walking through the

process with the seed ULF (|Abe| ((pres see.v)

(a.d carp.n)) (see Figure 3 for an overview).

3.1.1 Picking a random subtree

This phase involves two parameters that can be

tweaked: a maximum size M for the subtree

picked, and a ªrecursion probabilityº p. Given

these parameters and an input ULF, our algorithm

first descends the ULF (viewed as a tree) top-down

by picking uniformly random children at each level

until it reaches a subtree with size (number of

leaves) less than or equal to M . Then at each step

where it is not at a leaf node it descends another

level (by picking a random child) with probability

p, and returns the subtree with the current node at

its root with probability 1−p. If the algorithm ever

(|Abe| ((pres see.v)

(a.d carp.n)))

(a) The original ULF with the selected sub-
tree highlighted. The subtree has type D.

(|Abe| ((pres see.v)

(many.d (plur plant.n)))

(c) The final sampled ULF with the replaced
subtree highlighted.

=⇒

⇐=

D

NN

NN

plant.n))

(NN → NN)

(plur

(NN → D)

(many.d

(b) The derivation tree sampled for D with sampled
atoms for the leaf nodes.

Figure 3: The sampling process illustrated.

reaches a leaf node it simply returns it. Pseudocode

for this procedure is given in Algorithm 1 in Ap-

pendix E. In our running example (in Figure 3a)

the recursion goes down the right side of the tree

and stops with the subtree (a.d carp.n).

3.1.2 Computing the subtree’s type

The selected subtree’s type is computed using

ULF’s type composition rules. We use a pre-

existing ULF type system implementation5 which

finds the semantic type of a given ULF fragment by

recursively composing types from the atoms in a

bottom-up fashion. Due to the presence of variables

in some types of leaf nodes (for example for verbs

which can have multiple arities), the type system

can return a list of possible types corresponding to

different values of the variables. In such a case, we

pick a random type from this list. Since variables in

ULF type compositions rarely take high values (for

example, verbs do not frequently take more than

three arguments), we pick types corresponding to

smaller values of the variable with higher proba-

bility. Specifically, if the number of options is less

than 4, we pick uniformly. If the number of op-

tions is 4 or more, we pick uniformly from the first

three options with probability 3/4, and uniformly

from all the options with probability 1/4. Picking

from multiple possible types in a more principled

manner (for example by looking at the type com-

position tree of the seed ULF) could be an avenue

for future work in improving our sampler.

Using this process, we find that the chosen sub-

tree in the running example has type D.

3.1.3 Sampling a ULF with a given type

This phase involves one parameter: the maximum

size M ′ for the sampled ULF fragment; and takes

one argument: τroot, the desired ULF type (in our

5
https://github.com/genelkim/ulf-lib

running example this is D). To sample a ULF with

the given type, we first sample a type derivation

tree with τroot at the root. Then, for each leaf type

in the derivation tree, we sample a ULF atom with

that type. Combining those atoms with the tree

structure of the derivation tree gives us a ULF with

the desired type.

Sampling a type derivation tree. Sampling a

derivation tree is done via three functions: SAM-

PLETYPEDERIVATION, SAMPLETYPESOURCE,

and SAMPLEARGDERIVATIONS. The top-level

function is SAMPLETYPEDERIVATION which, as

the name suggests, generates a type derivation tree

with type τroot. To do so it first uses SAMPLETYPE-

SOURCE to sample a source type, τsrc, which is a

type which can give τroot when supplied 0 or more

arguments and which is known to be the type of

an atomic ULF. It then calls SAMPLEARGDERIVA-

TIONS which takes τroot and τsrc and returns a list

of derivation trees for the argument types that need

to be supplied to τsrc to obtain τroot. Finally, SAM-

PLETYPEDERIVATION combines the source and

argument into a derivation tree for τroot which it

returns.

SAMPLETYPESOURCE takes one argument, τ0,

and returns a type that can be combined with 0 or

more arguments to obtain τ0 and which can be the

type of an atomic ULF. Let T be the set of all types

that can be taken by atomic ULFs, and let µT be a

distribution over T . We take µT to be the uniform

distribution in our implementation. We leave the

selection of a more informed distribution for future

work.6 SAMPLETYPESOURCE iteratively finds all

the types in T that can combine with 0 or more

arguments to give τ0 and adds them to a set T ′.

6For example, while a four-argument verb is possible (e.g.
in ªI sold my car to John for $400.º), it is far less likely than
a one- or two-argument verb. A good choice for µT might
account for that.

Glenn eats an apple.

Glenn eats an apple daily .

Glenn eats 33 apples daily.Monsoon rains eat an apple daily.

Glenn eats a pear .

Adelina’s cat eats a pear.Glenn does not throw a pear.

Figure 4: An example of what a tree of sentences (ULFs omitted for brevity) generated from the seed ªGlenn eats

an appleº with depth of 2 and branching factor of 2 might look like. Newly sampled text segments are highlighted.

The corresponding replaced text segment in the parent (if any) is underlined with the same color.

It then returns a sample from T ′ with distribution

weights from µT .Details on how exactly T ′ is com-

puted are provided in Algorithm 2 in Appendix E.

SAMPLEARGDERIVATIONS takes parameters

τcur and τsrc, and computes a list of derivation

trees for types that can be composed with τsrc to

get τcur. This starts with τcur and ªgrowsº outward

to get τsrc. It begins by finding the first type τnext
that needs to be prepended to τcur to get τsrc. For

instance, if τsrc = (A → (B → (S → 2))) and

τcur = (S → 2), then τnext = B. On finding

τnext, the algorithm makes a mutually recursive

call to SAMPLETYPEDERIVATION to compute a

derivation tree Dnext for τnext. It then recurses

with τcur = (τnext → τcur) and the same τsrc to

obtain a list of derivations, ℓD. The algorithm re-

turns [Dnext] + ℓD. Algorithm 2 in Appendix E

contains pseudocode for the entire derivation tree

sampling process.

Example. In our running example (Figure 3),

the top-level function call is SAMPLETYPED-

ERIVATION(D). That function calls SAMPLE-

TYPESOURCE(D), which returns the source type

(NN → D). This is a valid source type since

it can combine with one or more type to give

D, and since there are atoms (e.g. the.d) which

have type (NN → D). The top level function

then calls SAMPLEARGDERIVATIONS(τcur = D,

τsrc = (NN → D)). That function identifies that

NN can be combined with (NN → D) to get D,

and thus calls SAMPLETYPEDERIVATION(NN).

In turn, that call does the same process as above,

but with NN as the root. It samples a source

which, let us say, turns out to be (NN → NN).
It then calls SAMPLEARGDERIVATIONS(τcur =
NN , τsrc = (NN → NN)), which deduces that

the required argument type is NN and calls SAM-

PLETYPEDERIVATION(NN) to find a derivation

tree for the argument. In our example, the mutual

recursion will end here: the call just mentioned will

sample NN as the source, which needs no further

arguments to get to NN .

Putting everything together, this process leads to

the derivation tree in Figure 3b.

Sampling ULF atoms. After generating a type

derivation tree, we sample ULF atoms that have

the types at the leaves of the derivation tree. Those

atoms are then put in the structure induced by the

derivation tree to obtain the ULF sampled. Sam-

pling atoms with given types is done using the

ULF lexicon used by Kim et al. (2021a). The sam-

pling is weighted by probabilities computed by nor-

malizing unigram counts from the Google n-gram

dataset (Franz and Brants, 2006). In our example

there are three leaf nodes with types (NN → D),
(NN → NN), and NN . Suppose they are instanti-

ated to the atoms many.d, plur, and plant.n.

3.1.4 Replacing in place

The final sampled ULF is obtained from the input

ULF by replacing the random subtree picked in

the first phase with the ULF fragment sampled in

the previous phase. This is done using simple tree

operations. In our example, this leads to the final

sampled ULF, (|Abe| ((pres see.v) (many.d

(plur plant.n)))).

3.2 The Handler

The sampling handler takes three inputs: the dataset

that is to be augmented, a depth d, and a branching

factor b. For each ULF U in the dataset, the handler

performs the following steps:

1. Use the sampler b times on input ULF U to

get b different samples from the seed U .

2. On each new ULF U ′ sampled in the previous

step, use the sampler b times.

3. Repeat step 2 d times, thus obtaining a tree of

ULFs with depth d and branching factor b. In

this tree, each node is obtained from its parent

via an application of the sampler. Figure 4

shows an example of such a tree.

4. Collect all the ULFs in this tree along with

their English translations (which are found

using the ULF-to-English library) into a set.

Combining all the sets obtained from the above

process gives us a raw augmented dataset.

After generating a raw augmented dataset we

assign a quality score using language model per-

plexity. The final dataset consists of the top F ∗N
ULF-English pairs according to the quality score,

where N is total number of samples and F is a

preset constant proportion (0 ≤ F ≤ 1). We use

the GPT-2 language model (Radford et al., 2019)

in our implementation. This last pruning step is

done in order to remove highly incoherent results.

Algorithm 3 contains pseudocode for the handler.

The reason we branch out from the seed instead

of repeatedly modifying in a linear fashion is that

in a linear design, if the sampler ever returns an

incoherent result, every sentence generated from

then onwards is likely to be incoherent too. This

leads to a lot of ªwastedº seeds leading to a smaller

yield of good ULF-English pairs. In our branching-

based design, even if one sample ends up being

incoherent, the other branches of the algorithm still

remain viable.

3.3 ULF Macros

One notable limitation of our sampler is that it does

not support most ULF macros. ULF macros per-

form unique transformations over their arguments

to handle complex but regular mappings from syn-

tax to semantic structure (e.g., topicalization, post-

nominal modification, etc.) and do not fit directly

into the type-compositional system.

4 Experiments

We evaluate our sampler on the hand-annotated

ULF 1.0 dataset by Kim et al. (2021a), the only

dataset of gold ULF annotations that we are aware

of. This dataset has 1,378, 180, and 180 sentences

of ULF-English pairs in the training, development,

and test sets, respectively.

Metrics. Following prior work on this dataset,

we use SEMBLEU as the primary evaluation met-

ric and use EL-SMATCH secondarily for analysis,

since it is broken down into F1, precision, and

recall components. The SEMBLEU score better

reflects the the parser’s ability to generate coherent

ULFs because it takes into account chains of mul-

tiple nodes and edges that EL-SMATCH does not.

d b M M ′ p N

1 3 5 5 0.5 5,035

2 3 5 5 0.5 14,503

3 1 5 5 0.5 4,777

3 2 5 5 0.5 16,050

3 3 5 5 0.5 40,708

3 4 5 5 0.5 83,383

4 3 5 5 0.5 116,112

Table 1: Sampling parameters and the resulting dataset

sizes. The table uses the same variable conventions as

Section 3 for sampling parameters and dataset size.

Thus, SEMBLEU is used as the primary evaluation

metric for ULF parsing. Kim and Schubert (2016)

describes EL-SMATCH in detail, which includes

a method for representing ULFs as a set of triples

similar to AMRs. When SEMBLEU is run on ULF,

the same set-of-triples representation is used for

ULFs so that the metric designed for AMR can be

run on ULF.

4.1 Settings

Model. In order to isolate the benefits of the data

augmentation method, we use the current state-

of-the-art ULF parsing model (Kim et al., 2021a).

This parser is described in detail in Appendix A.

While Kim et al. (2021a) released the code for their

model, it runs on PyTorch 1.2 with Python 3.6

which are incompatible with the drivers in some

of our more up-to-date computing machines. We

updated the code to use PyTorch 1.11 and Python

3.10. This initially led to a reduction in parser per-

formance, but we found that we could replicate

the original parser performance by reducing the

step size by a factor 0.25 and doubling the num-

ber of training epochs. We detail the replication

experiment in Appendix D, including the model hy-

perparameters. We use the model that successfully

replicated the original results in our experiments.

Sampled Datasets. The sampling parameter

combinations we test are listed in Table 1 along

with the number of unique examples that result

from this sampling process. We vary the handler

parameters: depth and branching factors, which

largely determine the number of samples. We fix

the subtree sampling parameters: maximum sample

size to 5, maximum replacement size to 5, and re-

cursion probability to 0.5. During the development

process, we found this to lead to the best balance of

quality and speed. We remove duplicated samples

d b SEMBLEU EL-SMATCH

F1 Precision Recall
Reported 47.4 59.8 60.7 59.0
Replicated 47.1 58.7 60.6 56.9
1 3 48.2 59.5 61.6 57.6
2 3 46.0 58.2 59.5 57.0
3 1 47.9 59.0 61.8 56.5
3 2 46.1 57.9 59.8 56.1
3 3 48.3 59.8 61.5 57.8
3 4 47.8 58.1 60.1 56.3
4 3 49.0 59.3 60.9 57.8

Table 2: Test set parser performance for augmented

training on various sampling parameters and no

filteringÐthe average of 5 runs with different random

seeds.

to reduce unintended bias towards these sentences.

LM Filtering. To evaluate the trade-off between

sample quality and quantity, we vary the num-

ber of LM-filtered samples in our final augmented

datasets. For each sampled dataset, we retain the

following proportions of samples: 0.1, 0.25, 0.5,

and 1.0. We limit our filtering experiments to the

three largest sampled sets. This ensures that suffi-

cient samples remain even after aggressive filtering.

4.2 Training & Hyperparameters

We modify the training process of the baseline

model to include some number of epochs where

the model trains on both the manually annotated

ULF examples and the type-sampled dataset. After

that, the remaining epochs are trained using only

the manually annotated ULF examples. Other than

this new hyperparameter, the only hyperparameter

that is changed from the original model is the total

number of epochs. We reduce the number of total

epochs trained since the model begins to overfit

earlier when a larger sampled dataset is added.

We estimated the number of epochs at which the

model begins to overfit with sample augmentation

using d = 3 and b = 3 at 1.0, 0.5, 0.25, and 0.1

filtering proportions. For these parameters, we set

the augmented training epochs to 1 greater than

where we consistently saw overfitting.7 We then

generalize this to other experiments under the as-

sumption that similarly sized datasets will begin to

overfit at similar numbers of epochs. The training

epoch specifics are provided in Appendix B.

4.3 Results

In this section, we report only the average test set

metrics. Appendix B reports the full results in-

cluding the development set metrics and standard

deviations for both test and development sets.

Handler Parameters. We first compare the per-

formance of the baseline model when augmented

with the unfiltered samples from the sampler with

sampling parameters specified in Table 1. These re-

sults are reported in Table 2. The model augmented

with d = 4 and b = 3 has the best performance,

with a SEMBLEU score that is 1.6 points over the

reported baseline and 1.9 points over the replicated

baseline. Augmenting the training with sampled

pairs improves SEMBLEU scores for most sam-

pler parameters. Under closer inspection, we find

a curious pattern in these results. When we fix b
to 3 and vary d from 1 to 4, we see a U-shaped

SEMBLEU performance curve. Similarly, when

we fix d to 3 and vary b from 1 to 4, we see a similar

pattern, though the performance drops a bit again

when b = 4.

The rise in SEMBLEU scores with data aug-

mentation is not reflected as strongly in the EL-

SMATCH scores. The EL-SMATCH F1 scores are

typically slightly higher than the replicated base-

line, but still under the score reported by Kim et al.

(2021a). This suggests that the augmented samples

push the model towards overall parse coherence

without much changing the expected performance

on a particular node or edge.8

LM Filtering. Table 3 shows the parser perfor-

mance when the augmented dataset is filtered at

different levels based on LM perplexity. Moderate

filtering (0.5) tends to result in a small improve-

ment, leading to the best SEMBLEU results in this

paper of 49.1 on the d = 3, b = 3 dataset. Curi-

ously, moderate filtering seems to push the model

toward higher EL-SMATCH recall over precision.

Aggressive filtering (0.1) consistently degrades

performance, even relative to the baseline model.

This does not seem to be due to dataset size, since

similarly sized augmented datasets in Table 2 (d =
1, b = 3 and d = 3, b = 1) still improve over the

baseline. This suggests that aggressive LM filtering

7We consider an increase in development set perplexity to
be an overfit model.

8EL-SMATCH scores are based on overlaps of individual
nodes and edges whereas SEMBLEU scores are based on
chains of node-edge-node links.

d b Filter SEMBLEU EL-SMATCH

F1 Precision Recall
Reported 47.4 59.8 60.7 59.0
Replicated 47.1 58.7 60.6 56.9
3 3 1.00 48.3 59.8 61.5 57.8

0.50 49.1 59.8 61.0 58.6
0.25 46.6 58.3 59.3 57.4
0.10 46.9 59.7 60.8 58.7

3 4 1.00 47.8 58.1 60.1 56.3
0.50 47.9 59.0 60.4 57.5
0.25 47.5 59.0 60.1 57.9
0.10 46.6 58.4 59.8 56.4

4 3 1.00 49.0 59.3 60.9 57.8
0.50 48.1 59.5 60.2 58.9
0.25 48.1 59.0 60.0 58.1
0.10 45.3 57.9 58.9 56.9

Table 3: Test set parser performance for LM-filtered

augmented data for larger type sampling parametersÐ

the average of 5 runs with different random seeds.

removes useful variance in the samples and leads

to overfitting to low-perplexity sentences.

4.4 Qualitative Evaluation

We performed a qualitative analysis of the sam-

pled sentences in an early version of the sampler9

to evaluate the syntactic and semantic coherence

of the generated samples. This experiment used

d = 3, b = 2 sampling parameters and LM filtering

to a dataset size of 5,000 samples. 400 randomly

selected examples from this set were scored by

human evaluators for both syntactic and semantic

coherence, each on a 5-point scale. This resulted in

a mean syntax score of 3.87 and a mean semantics

score of 3.96, showing that the sampler typically

succeeds in generating ULFs corresponding to well-

formed and understandable text. Appendix C pro-

vides exact prompts given to human evaluators and

more details of the results.

5 Related Work

Gibson and Lawley (2022) fine-tune GPT2-large

on the ULF 1.0 dataset to learn both an English to

ULF parser and a ULF to English generator. Their

ULF parser underperforms Kim et al.’s (2021a) on

the primary SEMBLEU metric but achieves the

state-of-the-art on the EL-SMATCH metric. Their

ULF to English generator matches or outperforms

the ulf2english system on automatic machine

translation metrics, BLEU (Papineni et al., 2002),

chrF++ (PopoviÂc, 2017), and METEOR (Banerjee

9This version failed to properly propagate certain syntactic
restrictions leading to sampling failures, in which case we
repeated the sampling process.

and Lavie, 2005) but uses more compute resources.

Data augmentation is far from a new idea for

training neural networks. Data augmentation in

computer vision is common via translation, rota-

tion, cropping, flipping, noise injection, and color

space transformations (Shorten and Khoshgoftaar,

2019). NLP has its own suite of data augmenta-

tion techniques that have been explored with token-

level perturbations (Wei and Zou, 2019), graph-

level perturbations (ËSahin and Steedman, 2018),

example interpolation (Zhang et al., 2018; Verma

et al., 2019; Faramarzi et al., 2022), and distribu-

tional model-based synthetic sampling (Sennrich

et al., 2016; Yang et al., 2020; Kobayashi, 2018)

covering the major common approaches. Feng et al.

(2021) provide a comprehensive survey of the NLP

data augmentation approaches.

Focusing in on semantic parsing, Jia and Liang

(2016) and Yu et al. (2021) learn synchronous

context-free grammars using available data from

which new examples are sampled. Andreas (2020)

infers shared lexical environments and performs

substitutions of words between them to encourage

compositionality in semantic parsers. van Noord

and Bos (2017) cross-reference two independent

AMR parsers to automatically generate likely-high-

quality examples which led to major parsing per-

formance gains. None of these methods are able

to exploit the knowledge that we have about ULF

types and the rules that mediate their composition.

Some of the approaches described in this section,

such as van Noord and Bos’ (2017), could be used

in conjunction with our approach.

6 Conclusions

We presented a data augmentation method for

ULFs that leverages ULF’s underlying semantic

type structure. This method helps alleviate the data

sparsity problem that currently exists for ULF pars-

ing, leading to a new state-of-the-art in this task

without any change in the parsing model. Though

we tested our data augmentation method on ULFs,

this technique is applicable to any semantic parsing

task with an underlying tree-structured composi-

tional type system. For example, parsing in com-

binatory categorical grammar (Steedman, 2000)

is another appropriate candidate for this sampling

technique. Some details of the sampling procedure

can also be improved in obvious, but not trivial

ways. For example, our ULF atom sampling pro-

cedure uses word frequencies without ULF type

information.This leads to an over-representation of

type-ambiguous words in our generated samples.

We think that type system-driven data augmen-

tation for ULF is a promising way to further im-

prove ULF parser performance. We expect further

parsing improvements through refinement of the

sampling parameters and expansion of the sam-

pler to include macros. The additional data pro-

vided by such augmentation would support more

general neural network-based semantic parsers as

have been successful in other semantic represen-

tations (van Noord et al., 2018; Liu et al., 2018;

Buys and Blunsom, 2017; Konstas et al., 2017).

We are hopeful to see an improved semantic parser

find utility in ULF-related tasks such as those men-

tioned at the end of section 1.

Acknowledgements

This work was supported in part by NSF grant

IIS-1940981. We thank Omar Abdelrahman for

assisting in the replication of the ULF parser per-

formance for the newer Python version. We are

grateful to the anonymous reviewers for their help-

ful feedback.

References

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556±7566, Online. Association for
Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65±72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1215±1226, Vancouver, Canada. Association
for Computational Linguistics.

Mojtaba Faramarzi, Mohammad Amini, Akilesh Badri-
naaraayanan, Vikas Verma, and Sarath Chandar. 2022.
Patchup: A feature-space block-level regularization
technique for convolutional neural networks. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36(1):589±597.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-

uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968±988, Online. Association for Computa-
tional Linguistics.

Alex Franz and Thorsten Brants. 2006. All our n-gram
are belong to you. https://ai.googleblog.com/

2006/08/all-our-n-gram-are-belong-to-you.html.
Google AI Blog.

Erin Gibson and Lane Lawley. 2022. Language-model-
based parsing and english generation for unscoped
episodic logical forms. The International FLAIRS
Conference Proceedings, 35.

Daniel Gildea, Giorgio Satta, and Xiaochang Peng.
2018. Cache transition systems for graph parsing.
Computational Linguistics, 44(1):85±118.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12±22, Berlin, Germany. Association for Computa-
tional Linguistics.

Gene Kim, Viet Duong, Xin Lu, and Lenhart Schu-
bert. 2021a. A transition-based parser for unscoped
episodic logical forms. In Proceedings of the 14th In-
ternational Conference on Computational Semantics
(IWCS), pages 184±201, Groningen, The Netherlands
(online). Association for Computational Linguistics.

Gene Kim, Mandar Juvekar, Junis Ekmekciu, Viet
Duong, and Lenhart Schubert. 2021b. A (mostly)
symbolic system for monotonic inference with un-
scoped episodic logical forms. In Proceedings of the
1st and 2nd Workshops on Natural Logic Meets Ma-
chine Learning (NALOMA), pages 71±80, Groningen,
the Netherlands (online). Association for Computa-
tional Linguistics.

Gene Kim, Mandar Juvekar, and Lenhart Schubert.
2021c. Monotonic inference for underspecified
episodic logic. In Proceedings of the 1st and 2nd
Workshops on Natural Logic Meets Machine Learn-
ing (NALOMA), pages 26±40, Groningen, the Nether-
lands (online). Association for Computational Lin-
guistics.

Gene Kim, Benjamin Kane, Viet Duong, Muskaan
Mendiratta, Graeme McGuire, Sophie Sackstein,
Georgiy Platonov, and Lenhart Schubert. 2019. Gen-
erating discourse inferences from unscoped episodic
logical formulas. In Proceedings of the First Interna-
tional Workshop on Designing Meaning Representa-
tions, pages 56±65, Florence, Italy. Association for
Computational Linguistics.

Gene Kim and Lenhart Schubert. 2016. High-fidelity
lexical axiom construction from verb glosses. In
Proceedings of the Fifth Joint Conference on Lexical
and Computational Semantics, pages 34±44, Berlin,
Germany. Association for Computational Linguistics.

Gene Louis Kim. 2022. Corpus annotation, pars-
ing, and inference for Episodic Logic type structure.
Ph.D. thesis, University of Rochester.

Gene Louis Kim and Lenhart Schubert. 2019. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics - Long Papers, pages 13±30, Gothenburg,
Sweden. Association for Computational Linguistics.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic re-
lations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 452±457,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146±157, Vancouver,
Canada. Association for Computational Linguistics.

Lane Lawley, Gene Louis Kim, and Lenhart Schubert.
2019. Towards natural language story understand-
ing with rich logical schemas. In Proceedings of
the Sixth Workshop on Natural Language and Com-
puter Science, pages 11±22, Gothenburg, Sweden.
Association for Computational Linguistics.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 429±439, Melbourne, Australia.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Fabrizio Morbini and Lenhart Schubert. 2009. Evalua-
tion of EPILOG: a reasoner for Episodic Logic. In
Proceedings of the Ninth International Symposium on
Logical Formalizations of Commonsense Reasoning,
Toronto, Canada.

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018. Exploring neural methods for pars-
ing discourse representation structures. Transactions
of the Association for Computational Linguistics,
6:619±633.

Rik van Noord and Johan Bos. 2017. Neural semantic
parsing by character-based translation: Experiments
with abstract meaning representations. Computa-
tional Linguistics in the Netherlands, 7.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311±318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1842±1852, Melbourne, Australia. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532±1543, Doha, Qatar.
Association for Computational Linguistics.

Georgiy Platonov, Lenhart Schubert, Benjamin Kane,
and Aaron Gindi. 2020. A spoken dialogue system
for spatial question answering in a physical blocks
world. In Proceedings of the 21th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 128±131, 1st virtual meeting. Associa-
tion for Computational Linguistics.

Maja PopoviÂc. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612±618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Gözde Gül ËSahin and Mark Steedman. 2018. Data
augmentation via dependency tree morphing for low-
resource languages. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5004±5009, Brussels, Belgium.
Association for Computational Linguistics.

Lenhart Schubert. 2014. From treebank parses to
episodic logic and commonsense inference. In Pro-
ceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 55±60, Baltimore, MD. Association
for Computational Linguistics.

Lenhart K. Schubert. 2000. The situations we talk about.
In Jack Minker, editor, Logic-based Artificial Intelli-
gence, pages 407±439. Kluwer Academic Publishers,
Norwell, MA, USA.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja M. IwaÂnska and Stuart C.
Shapiro, editors, Natural Language Processing and

Knowledge Representation, pages 111±174. MIT
Press, Cambridge, MA, USA.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86±96,
Berlin, Germany. Association for Computational Lin-
guistics.

Connor Shorten and Taghi M. Khoshgoftaar. 2019. A
survey on image data augmentation for deep learning.
Journal of Big Data, 6(60).

Mark Steedman. 2000. The Syntactic Process, vol-
ume 24. MIT press, Cambridge, MA.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir
Najafi, Ioannis Mitliagkas, David Lopez-Paz, and
Yoshua Bengio. 2019. Manifold mixup: Better rep-
resentations by interpolating hidden states. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6438±6447. PMLR.

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382±6388, Hong Kong, China. As-
sociation for Computational Linguistics.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang,
Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for common-
sense reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1008±1025, Online. Association for Computational
Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev,
Richard Socher, and Caiming Xiong. 2021. Grappa:
Grammar-augmented pre-training for table semantic
parsing. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. 2018. mixup: Beyond empirical
risk minimization. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net.

A Baseline ULF Parser Description

Kim et al.’s (2021a) ULF parser is a transition

system-based parser where the transition actions

are selected using an LSTM. This parser modifies

the cache transition parser (Gildea et al., 2018)

to better model ULFs. At a high level, the mod-

ification introduces methods of generating ULF

symbols on the fly from input words, rather than

assuming a sequence of symbols as input. These

symbol generation methods are further designed

to reflect the relationship between ULF symbols

and their corresponding words rather than assum-

ing that an arbitrary mapping can exist between

them. The cache transition system oracle, which is

needed for training, is similarly modified to support

these changes in the possible actions.

The LSTM is then trained to take a concatenation

of the relevant input word, the relevant ULF sym-

bol, and the current transition system state features

as input and predicts the next action for the tran-

sition system. The transition system is inspected

to determine which word is relevant, this is called

hard attention (Peng et al., 2018). The relevant

ULF symbol is similarly inferred from the transi-

tion system state and action history. Either we find

which symbol we generated based on the current

word, or if it has not been generated yet, the most

recently generated symbol. The word features in-

clude the RoBERTa (Liu et al., 2019) embedding,

GloVe embedding (Pennington et al., 2014), and

learned embeddings of the lemma, POS tag, and

NER tag. The symbol tokens are learned. The

transition state features further includes informa-

tion about the dependency tree distances of relevant

words and the transition system phase. We refer

you to Kim et al.’s (2021a) paper for further details

of the parser.

B Additional Experiment Details

B.1 Augmented Epoch Determination

Filtering N overfit epoch

1.00 40,708 2

0.50 20,354 4

0.25 10,177 9

Table 4: Epochs values at which the model begins to

overfit when trained with an augmented dataset using

d = 3 and b = 3 parameters at various GPT-2 filtering

levels.

d b N F Aug. Total

1 3 5,035 1.00 25 45

2 3 14,503 1.00 10 30

3 1 4,777 1.00 25 45

3 2 16,050 1.00 10 30

3 3 40,708 1.00 2 20

3 3 20,354 0.50 5 25

3 3 10,177 0.25 10 30

3 3 5,083 0.10 25 45

3 4 83,383 1.00 2 20

3 4 41,691 0.50 2 20

3 4 20,845 0.25 5 25

3 4 10,422 0.10 10 30

4 3 116,112 1.00 2 20

4 3 58,056 0.50 2 20

4 3 29,028 0.25 5 25

4 3 14,514 0.10 10 30

Table 5: Number of epochs trained on the augmented

dataset and in total for each sampling and filtering con-

figuration. ªAug." is the number of augmented epochs.

ªTotal" is the total number of epochs trained. Includes

the total size of each sampling configuration results to

help interpret the motivation behind the epoch values.

Table 4 shows when the model would begin to

overfit at various augmented dataset levels. Specifi-

cally, we use the augmented dataset with d = 3 and

b = 3, filtered with GPT-2 at various proportions.

We use this to determine the number of epochs

that we should train the model with sampling aug-

mented data before only training on the manually

annotated dataset. The procedure we use here is to

add 1 to the results from Table 4. We do not add

1 to the full d = 3 and b = 3 dataset. Due to the

size of the dataset, 1 additional epoch would likely

severely overfit the model. For filtering at a 0.1

level, we extrapolate from the 0.5 and 0.25 levels,

assuming a linear relationship between the number

of augmenting examples and epochs.

We then generalize these results to other sam-

pling settings under the assumption that similarly

sized datasets will begin to overfit at similar num-

bers of epochs. We select the filtering level for the

d = 3, b = 3 dataset whose N value is the closest

lower value to the augmenting dataset in question.

Table 5 lists the number of epochs that we trained

each model on the augmented set and in total.

As with the rest of the parser details, we fol-

low Kim et al.’s (2021a) approach to selecting the

test model. After all training epochs, we select

Model SEMBLEU EL-SMATCH

d b F1 Precision Recall
Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)

Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7

Replicated 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3

1 3 48.7± 1.6 48.2± 1.2 58.4± 0.7 59.5± 0.7 61.3± 1.5 61.6± 1.3 55.7± 0.9 57.6± 0.6
2 3 46.9± 1.9 46.0± 1.6 56.9± 1.7 58.2± 1.0 59.6± 1.6 59.5± 1.1 54.4± 1.9 57.0± 1.7
3 1 49.2± 1.1 47.9± 1.5 58.4± 1.0 59.0± 0.8 61.9± 0.6 61.8± 0.9 55.3± 1.5 56.5± 1.2
3 2 48.0± 3.3 46.1± 3.3 57.5± 2.0 57.9± 1.7 60.7± 2.2 59.8± 1.8 54.7± 2.3 56.1± 2.4
3 3 49.6± 1.6 48.3± 1.7 59.2± 1.5 59.8± 1.4 62.1± 1.7 61.5± 1.4 56.7± 1.6 57.8± 2.2
3 4 49.3± 3.8 47.8± 4.0 58.3± 2.2 58.1± 2.4 61.1± 1.8 60.1± 2.0 55.7± 2.6 56.3± 3.2
4 3 50.4± 0.8 49.0± 1.0 58.7± 1.1 59.3± 1.7 61.2± 1.0 60.9± 1.2 56.5± 1.3 57.8± 2.5

Table 6: Detailed parser performance for augmented training on various sampling parameters and no filteringÐthe

average & standard deviation of 5 runs. See the caption for Table 10 regarding the meaning of the † superscript.

Model SEMBLEU EL-SMATCH

d b F F1 Precision Recall
Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)

Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7

Replicated 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3

3 3 1.00 49.6± 1.6 48.3± 1.7 59.2± 1.5 59.8± 1.4 62.1± 1.7 61.5± 1.4 56.7± 1.6 57.8± 2.2
0.50 49.5± 0.8 49.1± 1.7 58.7± 0.5 59.8± 1.0 61.2± 0.9 61.0± 1.5 56.4± 0.5 58.6± 0.8
0.25 47.6± 1.8 46.6± 1.8 57.4± 1.3 58.3± 1.4 59.8± 1.3 59.3± 1.9 55.3± 1.4 57.4± 1.3
0.10 47.2± 1.5 46.9± 1.5 57.9± 0.6 59.7± 0.8 59.7± 1.8 60.8± 1.5 56.2± 0.7 58.7± 0.9

3 4 1.00 49.3± 3.8 47.8± 4.0 58.3± 2.2 58.1± 2.4 61.1± 1.8 60.1± 2.0 55.7± 2.6 56.3± 3.2
0.50 48.6± 1.1 47.9± 1.4 58.4± 1.0 59.0± 0.9 61.1± 0.8 60.4± 1.2 55.8± 1.4 57.5± 0.9
0.25 47.3± 2.7 47.5± 2.4 57.4± 1.6 59.0± 2.2 59.8± 2.5 60.1± 2.7 55.1± 0.8 57.9± 1.9
0.10 46.7± 2.4 46.6± 2.2 57.2± 2.0 58.4± 2.4 60.1± 1.8 59.8± 1.7 54.7± 2.4 56.4± 3.3

4 3 1.00 50.4± 0.8 49.0± 1.0 58.7± 1.1 59.3± 1.7 61.2± 1.0 60.9± 1.2 56.5± 1.3 57.8± 2.5
0.50 49.0± 3.1 48.1± 3.6 59.2± 1.8 59.5± 2.1 60.9± 2.2 60.2± 2.4 57.7± 1.5 58.9± 1.9
0.25 48.3± 1.3 48.1± 1.7 57.8± 0.8 59.0± 0.8 60.0± 0.9 60.0± 1.4 55.7± 0.8 58.1± 0.6
0.10 45.5± 2.7 45.4± 2.7 56.9± 2.2 57.9± 2.1 58.9± 2.3 58.9± 1.8 55.1± 2.3 56.9± 1.8

Table 7: Detailed parser performance for LM-filtered augmented data for larger type sampling parametersÐthe

average & standard deviation of 5 runs.

the epoch at which the model has the best develop-

ment set SEMBLEU performance and restore that

checkpoint for testing.

B.2 Detailed Parser Results

Table 6 shows the full detailed parsing results with

full augmented datasets, no filtering. These results

include the development set results and standard

deviations. These details should help in check-

ing replication. It also shows that adding the aug-

mented data tends to lead to more overfitting of the

model. That is, the development set performance

is relatively higher compared to the test set perfor-

mance when using data augmentation. Still, the

average test set performance is only a point or two

below the average development set performance

so the overfitting does not tend to be very severe.

The standard deviations also show that certain sam-

pling configurations lead to very unstable training.

d = 3, b = 4 for example has a 4-point standard

deviation in SEMBLEU scores. Table 7 shows sim-

ilarly detailed results for the filtering experiments.

B.3 Hyperparameters

Model hyperparameters are listed in Table 8. All of

them except for the learning rate are grandfathered

in from Kim et al.’s (2021a) parser.

C Qualitative Evaluation Details

For the qualitative analysis, we sampled an aug-

mented dataset using the following parameters

d = 5, b = 2,M = 5,M ′ = 5, p = 0.5. This

earlier version of the parser performed filtering

based on a maximum augmented size, including

the seed examples, rather than filtering proportional

to only the sampled set. We set the maximum size

to 5,000. Excluding the 1,378 seed sentences (the

training set of ULF 1.0), this results in 3,622 new

samples. Of these, we uniformly randomly select

400 and had human evaluators rank the English

translations (using ulf2english) for both syntac-

tic and semantic coherence. Each example was

Score Description

1 Completely garbled

2 Garbled up but there are sizable chunks that are coherent

3 Some inaccuracies in grammar, but overall not bad

4 Minor syntax errors

5 Grammatical

Score Description

1 This doesn’t mean anything

2 You could speculate what it means, but it isn’t very coherent

3 Either somewhat clear but still unclear, or quite implausible

4 Meaning is clear but a little strange for the average ear

5 Makes sense, is plausible

Table 9: Descriptions of scores given to volunteers. The first table corresponds to syntax scores and the second

corresponds to scores for meaning.

1.4 for the reported and our modified runs, respec-

tively, 0.3 is within the range of sample variance.

EL-SMATCH results are similar, though our repli-

cated runs are relatively stronger on precision over

recall.

E Pseudocode for Algorithms

Algorithms 1 to 3 are the pseudocode algorithms

for the PICKRANDOMSUBTREE, SAMPLETYPED-

ERIVATION, and AUGMENTDATASET, respectively,

which are described in Section 3.

Algorithm 2, however, elides some implementa-

tional caveats. First, in practice, we add a global

parameter M ′ that imposes a maximum on the num-

ber of leaves in the sampled tree. This is imple-

mented by limiting the amount of mutual recursion

that happens between SAMPLETYPEDERIVATION

and SAMPLEARGDERIVATIONS. Second, while

the pseudocode uses simple equality to compare

types, in practice we use a TYPEMATCH function

which takes two types τ and τ ′ and returns true

if and only if τ ′ is the same as τ , except possi-

bly with additional syntactic restrictions. Third, in

practice SAMPLETYPESOURCE can return some

non-atomic ULF types which are known to be types

of atomic ULFs when operated on with specific op-

erators. This is to account for operators (such as

sentential operators) which are ignored during type

composition. An example of this is that SAMPLE-

TYPESOURCE can returned a ªtensed verbº type

which can be instantiated in the next step to a tense

operator operating on a verb (e.g. (pres eat.v)).

Model SEMBLEU EL-SMATCH

F1 Precision Recall
Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ) Dev (±σ) Test (±σ)

Reported 46.4± 1.4 47.4± 1.3 58.4± 0.7 59.8± 1.0 59.1± 1.1 60.7± 1.5 57.8± 0.5 59.0± 0.7

Unmod.† 44.2± 1.7 42.9± 2.5 56.2± 0.4 56.7± 0.6 58.7± 1.9 58.3± 1.7 53.9± 1.2 55.3± 1.2

Modified 46.4± 2.7 47.1± 1.4 56.9± 1.9† 58.7± 1.4 59.5± 1.8† 60.6± 1.7 54.6± 2.2† 56.9± 1.3

Table 10: Results for the baseline replication experiments. Results are based on 5 random runs. A ª†" superscript

indicates results based on 4 runs due to a system failure on one of the runs. The ªUnmod.º row contains the results

of running our code updated to PyTorch 1.11 and Python 3.10 using the exact same parameters as the original. The

ªModifiedº row contains the results where the learning rate is lowered four-fold and total epochs are increased from

25 to 60.

Algorithm 1 Picking a random subtree of a ULF.

global parameters: M ∈ N, the maximum size of the subtree picked; p ∈ (0, 1), a probability.

function PICKRANDOMSUBTREE(U)

input: U , a ULF.

if SIZE(U) > M then

U ′ ← (uniformly) random child of U .

return PICKRANDOMSUBTREE(U ′).
else if U is atomic then

return U .

else

U ′ ← (uniformly) random child of U .

return





PICKRANDOMSUBTREE(U ′)

with probability p;

U otherwise.

end if

end function

Algorithm 2 Sampling a type derivation tree for a given type. This pseudocode ignores some implementa-

tion details. Those details are explained in the text description of this algorithm.

function SAMPLETYPEDERIVATION(τroot)
τsrc ← SAMPLETYPESOURCE(τroot)
−−→τargs ← SAMPLEARGDERIVATIONS(τroot, τsrc)
return (τsrc,

−−→τargs)
end function

function SAMPLETYPESOURCE(τ0)

global parameters: T , the set of possible types of ULF atoms; µT , a distribution over T .

T ′ ← ∅
for τa ∈ T do

τtmp ← τ0
while τtmp ̸= NIL do

if τa = τtmp then

T ′.append(τa)

end if

if τtmp ∈ {D,S,2} then

τtmp ← NIL
else

τtmp ← CODOMAIN(τtmp)
end if

end while

end for

return τsrc ∼ µT (T
′)

end function

function SAMPLEARGDERIVATIONS(τcur, τsrc)
if τsrc = τcur then

return []
end if

τarg ← NEXTARGTYPE(τcur, τsrc)
Darg ← SAMPLETYPEDERIVATION(τarg)
τnext ← (τarg → τcur)
return [Darg] + SAMPLEARGDERIVATIONS(τnext, τsrc)

end function

Algorithm 3 The handler. We assume that the function SAMPLEFROMSEED is the top-level function for

the sampler. It takes a ULF as input and runs the sampler to produce a single new (ULF, English) pair.

function AUGMENTDATASET(D , d, b, F)

input: D , a set of (ULF, English) pairs; d, the branching depth; b, the branching factor;

F , top fraction of augmented set to keep.

D ′ ← D

for (U,E) ∈ D do

S ← [U]
for i ∈ {1, 2, . . . , d} do

S′ ← ∅
for U ∈ S do

U ′ ← POPFIRST(S)
for j ∈ {1, 2, . . . , b} do

(U ′′, E′′)← SAMPLEFROMSEED(U ′)
D ′.append((U ′′, E′′))
S′.append(U ′)

end for

end for

S ← S′

end for

end for

ORDERBYLANGUAGEMODELSCORE(D ′)
return first F ∗ |D | elements of D ′

end function

