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Abstract

To understand how memories are reactivated and consolidated during sleep,
experimenters have employed the unobtrusive re-presentation of memory cues
from a variety of pre-sleep learning tasks. Using this procedure, known as targeted
memory reactivation (TMR), we previously found that reactivation of counter-
social-bias training during post-training sleep could selectively enhance train-
ing effects in reducing unintentional social biases. Here, we describe re-analyses
of electroencephalographic (EEG) data from this previous study to characterize
neurophysiological correlates of TMR-induced bias reduction. We found that
TMR benefits in bias reduction were associated with (a) the timing of memory-
related cue presentation relative to the 0.1-1.5 Hz slow-oscillation phase and (b)
cue-elicited EEG power within the 1-4 Hz delta range. Although cue delivery was
at a fixed rate in this study and not contingent on the slow-oscillation phase, cues
were found to be clustered in slow-oscillation upstates for those participants with
stronger TMR benefits. Similarly, higher cue-elicited delta power 250-1000ms
after cue onset was also linked with larger TMR benefits. These electrophysiologi-
cal results substantiate the claim that memory reactivation altered social bias in
the original study, while also informing neural explanations of these benefits.
Future research should consider these sleep physiology parameters in relation to
TMR applications and to memory reactivation in general.
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1 | INTRODUCTION

Spontaneous memory reactivation during post-encoding
sleep contributes to enduring memories (Diekelmann
& Born, 2010; Dudai, 2012; Klinzing et al., 2019; Paller
etal., 2020; Rasch & Born, 2013; Stickgold & Walker, 2013).
Intriguingly, reactivation can also be initiated and guided
exogenously via unobtrusive delivery of memory-related
sensory cues; targeted memory reactivation (TMR) can

thus be used to promote memory consolidation during
sleep (Antony et al., 2012; Cellini & Capuozzo, 2018; Feld
& Diekelmann, 2020; Lewis & Bendor, 2019; Oudiette &
Paller, 2013; Paller et al., 2021; Rasch et al., 2007; Rudoy
et al., 2009; Schouten et al., 2017; for a meta-analysis of
TMR, see Hu et al., 2020). Furthermore, certain types of
memory modification could ultimately benefit psycho-
logical well-being and are useful beyond their impact
on memory performance (Feld & Diekelmann, 2020;
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Paller, 2017; Paller et al., 2021). In particular, TMR may
hold promise for modifying unwanted habits and biases.
However, the ultimate usefulness of TMR could depend
on first developing a better understanding of relevant neu-
ral mechanisms operative in driving successful reactiva-
tion and consolidation during sleep.

Implicit social bias is recognized as an aspect of habit
memory and as a critical aspect of social cognition, as well
as a contributor to social inequality. Even when people
do not endorse racial prejudice and gender biases when
directly asked, biases can be evident in their behavior
and in measures provided by the Implicit Association
Test and the Evaluative Priming Task (Gawronski & De
Houwer, 2014; Greenwald & Lai, 2020). These indirect
tests are designed to assess the associative strength be-
tween social groups (e.g., racial minority) and attributes
(e.g., good/bad) without participants' reflection on these
evaluative processes (Gawronski & De Houwer, 2014).
Given the prevalence of unintentional social biases, it is
important to study how implicit biases can be changed
(Dasgupta, 2013; Lai et al., 2013). While mounting ev-
idence suggests that biases can be reduced when people
engage in counter-stereotypical thinking, training benefits
seem to be short-lived (Lai et al., 2016). The benefits may
be transient because long-standing habits tend to predom-
inate and because small effects of counter-bias training
decay over time. However, training benefits may solidify,
as with learning in general, if training is followed by re-
peated reactivation and consolidation during sleep.

In our prior study, TMR to reactivate counter-bias
training during post-training sleep produced relative bias-
reduction benefits both immediately and in additional
testing after a one-week delay (Hu, Antony et al., 2015).
There is reason to be confident that the TMR method can
promote memory consolidation, given our recent meta-
analysis of such effects across 91 studies (Hu et al., 2020),
showing a significant TMR effect (Hedges' g = 0.27-0.32)
when administered during non-rapid eye movement
(NREM) sleep. However, there was also ample heteroge-
neity of effect sizes across studies and the effect size tends
to be small-to-moderate. With respect to TMR for social
bias, only two studies have been published to date, our
initial study (Hu, Antony et al., 2015) and one replication
study where TMR benefits were not observed (Humiston
& Wamsley, 2019). On the one hand, a divergence in TMR
effect size between these two studies is unclear at present.
One possibility is that, given a small-to-moderate effect
size overall (Cordi & Rasch, 2021a; Hu et al., 2020), such
effects could be difficult to detect with a small sample size
(Cordi & Rasch, 2021a), and that better studies are needed
with larger sample sizes. On the other hand, we reasoned
that insights could still be provided by examining associa-
tions between neural responses to memory cues presented

during sleep and subsequent behavioral effects in our
original study.

Recent evidence of TMR and sleep-based memory con-
solidation suggests that TMR effects can be predicted by
slow-wave and spindle-related activity (Antony et al., 2012,
2018; Batterink et al., 2016; Cairney et al., 2014, 2018; Cox
et al., 2014; Hauner et al., 2013; Laventure et al., 2016;
Schreiner et al., 2015, 2018; Schreiner & Rasch, 2015).
These data fit well with current accounts of sleep-based
memory consolidation, which propose that successful
memory consolidation relies on the coupling between
neocortical slow-waves and thalamo-cortical spindles
(Molle et al., 2002; Mdlle & Born, 2011). Intriguingly, the
timing between spindles and slow-waves appears to be
critical during consolidation: spindles during slow-wave
upstates would theoretically promote cortical plasticity
that allows hippocampal-neocortical interactions. Via
this hippocampal-neocortical dialogue and with concur-
rent hippocampal ripples that carry specific memory in-
formation, memories can gradually be consolidated and
become long-lasting (Klinzing et al., 2019; Staresina et al.,
2015). Supporting the importance of the timing of slow
waves and spindles in memory consolidation, prior ev-
idence suggests that the timing of TMR cues relative to
slow waves and spindles is instrumental in successful
TMR benefits (Antony et al., 2018; Batterink et al., 2016;
Goldi et al., 2019).

Building on these findings, we hypothesized that in our
experiment (Hu, Antony et al., 2015), cue-related slow-
wave (0.1-4 Hz) and spindle (12-16 Hz) activity could be
important for TMR to reduce social biases. Alternatively,
if effects on social bias were spurious in the first place,
then such associations with sleep physiology would not
be expected. To test our hypotheses, we categorized par-
ticipants into high versus low benefits groups based on
the median split of TMR-induced bias reductions. We next
compared cue-related EEG activity between these two
groups of participants, focusing on (1) timing of mem-
ory cues relative to slow waves, and particularly to slow-
oscillation phase; and (2) cue-elicited EEG activity that
may distinguish between high- versus low-benefit groups.
In addition to these between-group analyses, we also con-
ducted correlational analyses involving EEG activity and
TMR-induced bias reduction across all participants.

2 | METHOD

2.1 | Participants

Data from 28 participants (age: mean+SD, 22 +4years,
13 female, 15 male) were included in the analyses. Data
were collected as reported by Hu et al. (2015), wherein

sdpy) suomipuop) pue swid L oy 39S “[€202/#0/01] U0 Areiqr ouuQ AdjiA “Suos| BuoH Jo AsiAtun Aq pzy-dASd/1111°01/10p/wioo Ka[im Areaqriout]uoy/:sdny woly pIPEoumod s ‘€Z0T ‘986869¢ 1

101/wi00" o1 ATeaqauguo,

pi

AsUDI'] suowntuo)) aAnear)) s[qesrjdde sy £q pausaod are sapd1IR YO SN JO sa[NI 10§ AIeIqIT duIuQ A3[IA UO (SUOHIP



XIA ET AL.

30f12

counter-bias training to reduce unintentional social bias
was followed by TMR during an afternoon nap. Only
participants who received more than 80 cues during
sleep were included, to ensure a good signal-to-noise
ratio for EEG analyses. Ten additional participants were
not included due to missing EEG files (n = 6), fewer than
80 cues presented during slow-wave sleep (n = 2, who
received 39 and 22 cues, respectively), or missing stimulus
triggers in the EEG data (n = 2).

2.2 | Experimental procedures

Participants completed the following seven steps of the
procedure: (1) a seven-block, 200-trial implicit association
test (IAT) to assess baseline racial and gender implicit
biases; (2) counter-racial-bias and counter-gender-bias
training with auditory cues; (3) post-training/pre-nap
IATs to assess immediate counter-bias training effect; (4)
sound-cue retrieval task to strengthen sound-training as-
sociations; (5) a 90-min nap with TMR; (6) post-nap IATs
to assess TMR's immediate effect, and (7) 1-week delayed
IATs.

Participants completed a racial bias IAT (white and
black male faces, pleasant and unpleasant words) and a
gender bias IAT (white male and female faces, science-
and humanities-related words), the order of which was
counterbalanced across participants. The IAT follows a
standard 7-block, 200-trials setup (Greenwald et al., 2003).
Participants used two response keys (“E” key for the left
index finger; “I” key for the right index finger) for stim-
ulus categorization. In block 1 (20 trials), participants
completed a simple categorization task, wherein they
categorized good (“E”) and bad (“I”) attribute words (for
gender IAT, these are science and art words). In block 2
(20 trials), participants categorized White (“E”) and Black

Counter-Bias Training

%
N\ ‘,)

sunshine

Gender Bias Racial Bias

FIGURE 1 (a)Counter-bias training with sound cues. Participa
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(“I”) male faces (for gender IAT, these are White male
and female faces). In blocks 3 and 4 (20 and 40 trials re-
spectively), participants completed a combined catego-
rization task, wherein they pressed one button (“E”) for
either White or good words (for gender IAT, male or sci-
ence words) and the other button (“I”) for Black or bad
words (for gender IAT, female or art words). In block 5
(40 trials), participants completed a reversed simple cate-
gorization block, wherein they pressed “I” for White faces
and “E” for Black faces (for gender IAT, White male and
female faces). In blocks 6 and 7 (20 and 40 trials respec-
tively), participants again completed a combined catego-
rization task, wherein they pressed one button (“E”) for
either Black face or good words (for gender IAT, female
face or science words) and the other button (“I”) for White
face or bad words (for gender IAT, male face or art words).
Via such key-stimuli mapping, the IAT contained bias-
congruent blocks (e.g., when Black faces and bad words
shared one button, or when female faces and art words
shared one button; 60 trials) and bias-incongruent blocks
(when Black faces and good words shared one button, or
when female faces and science words shared one button;
60 trials). On each trial, a single stimulus was presented
centrally until a correct response was registered (onset
150ms after prior response). If an incorrect response was
registered, an error feedback symbol “X” was presented
on the screen until participants gave the correct response.
Participants were instructed to make a categorization re-
sponse as quickly and accurately as possible.

Following baseline IATS, participants completed two
counter-bias training tasks, with each task containing
360 trials (see Figure 1la). During the task, participants
made speeded button presses (within 1s) to 180 counter-
stereotypical face-word pairings (i.e., black face+pleasant
word pairing; female face+science-related word pairing),
while they withheld button presses for the remaining 180

(b) _
TMR during SWS
0 Time (min)
Wake
REM
Stage1

Stage2
SWsS

nts pressed a button in response to counter-stereotypical face-word

pairings within 1 s. upon a correct and timely button press, participants heard a distinctive sound (one for gender bias and another for race
bias). Participants next completed a sound-cue retrieval task to further strengthen sound-training associations. (b) Nap and TMR. When
participants showed signs of slow-wave sleep, one of the two sounds was repeatedly played to sleeping participants every 5 s (1-s sound

duration, 4-s inter-stimulus-interval). Sounds were played with a low intensity to avoid arousal (figure adapted from Hu, Antony et al.,

2015).
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face-word trials (black face+unpleasant word; female
face+humanities word). Following correct button presses
to counter-stereotypical pairings, participants heard a 1-s
sound cue to establish mental associations between sound
cues and counter-bias training. Two sounds were created
from frequency-modulated pure tones, with each sound
paired with counter-racial-bias training or with counter-
gender-bias training, respectively. The sound-training as-
sociations were counterbalanced across participants. To
assess training effectiveness, participants next completed
the racial and gender bias IATSs again as post-training/pre-
nap IATs. Words and faces used in these IATs were differ-
ent from the baseline IATs.

Right before participants slept, they engaged in a
sound-cue-retrieval task to further reinforce the associa-
tion between sounds and counter-bias training. Each trial
started with one of the two sounds from the counter-bias
training. Participants were presented with either a White
female face or a Black male face on the left side of the
monitor, while a science word and a pleasant word were
presented on the upper-right and lower-right side of the
monitor (location of words randomized across trials).
Participants were required to use a mouse to drag the
face to its corresponding word to create a counter-bias
pair in accordance with the sound that was presented.
Participants completed 120 trials in total.

For the TMR administration, participants took a nap
with scalp-recorded EEG. During the entire nap period,
we played constant white noise [38-40dB SPL]. When par-
ticipants showed stable slow-wave sleep (SWS), one of the
two auditory cues was presented (embedded at roughly
the same intensity as the white noise) to reactivate the cor-
responding counter-bias memories. Auditory tones and
their corresponding reactivation categories were nearly
counterbalanced across participants in our sample, with
13 receiving the tone reactivating counter-race-bias and
15 receiving the tone reactivating counter-gender-bias.
Each cue lasted 1 s, with an inter-stimulus interval of 4 s.
Cueing was halted whenever recordings showed signs of
arousal or when participants were no longer in SWS or
N2 sleep. Participants were awakened after ~90 min or al-
lowed more time to sleep if they were still in SWS. After
waking up, participants took a 10-min break, followed by
post-nap IATs that were the same as the pre-nap IATs.

2.3 | Behavioral data analyses

IAT effects are typically calculated as D scores (Greenwald
et al., 2003), considering (1) mean and standard deviation
(SD) of reaction times (RTs), (2) response accuracies
from congruent (blocks 3,4) and incongruent (blocks 6,7)
blocks. Here, we adopted a D score variant used in our

previous IAT research (Hu, Bergstrom et al., 2015), the Dy,
score, wherein we adopted a 600-ms penalty for incorrect
responses. This Dy, score was calculated as follows: First,
we deleted trials with RTs shorter than 300ms or longer
than 3 s (<1%). Second, we calculated averaged RTs
(correct responses only) for congruent and for incongruent
blocks, separately. Third, we calculated an inclusive SD
using all correct trials from congruent and incongruent
blocks combined. Fourth, we replaced incorrect responses
with the averaged RT associated with that particular block
plus a 600-ms penalty. Fifth, we calculated the averaged
RTs for congruent and incongruent blocks including RTs
of incorrect responses with the error penalties. Sixth, we
calculated the RT differences as RT_incongruent minus
RT_congruent from step five. Seventh, this difference was
divided by inclusive SD obtained from step three. A larger
Dy score indicates a stronger implicit social bias. Using
this Dy score, we calculated TMR cueing benefits = (pre-
nap IAT D¢,, minus post-nap IAT Dy, for cued bias) minus
(pre-nap IAT D¢, minus post-nap IAT Dy, for uncued
bias). A higher score for this metric indicated a greater
reduction for cued than uncued biases, corresponding
to more successful reactivation of counter-bias training
during sleep.

Participants were segregated into two groups, high-
versus low-benefit, based on a median split of this TMR
cueing benefit score. In the high-benefit group (n = 14), 8
participants received the tone reactivating counter-gender
bias and 6 participants received the tone reactivating
counter-racial bias. In the low-benefit group (n = 14), 7
participants received the tone reactivating counter-gender
bias and 7 participants received the tone reactivating
counter-racial bias.

2.4 | EEG recording and preprocessing
EEG was recorded using 21 electrodes (NeuroScan
Synamps). Two additional electrodes were placed, one
below the left eye and the other next to the right eye, for
recording the vertical and horizontal EOG; and one ad-
ditional electrode was placed on the chin to record EMG.
Continuous EEG was recorded from International 10-20
locations Fpz, Fz, Cz, Pz, Oz, Fpl/2, F3/4, F7/8, C3/4,
P3/4, T3/4, T5/6, and O1/2, amplified with a bandpass
of 0.1-200Hz at a 500-Hz sampling rate. Data were re-
referenced offline to the average of left and right mastoids.
We used MNE-Python for EEG preprocessing (Gramfort
et al., 2013). Sleep stages were formally identified offline
using the standard American Academy of Sleep Medicine
Manual (Iber et al., 2007).

Raw EEG data were preprocessed as follows. First,
EEG data were filtered with a band-pass of 0.1-40Hz.
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Second, some of the most lateral and anterior frontal
scalp recording channels (F7/8, T3/4, T5/6, Fpl/2, FPz)
were removed due to excessive artifacts (e.g., bad chan-
nels) and because TMR studies have typically focused
on frontal/central/parietal electrodes for electrophysio-
logical analyses. Third, continuous EEG data were seg-
mented into 5-s epochs beginning 2 s prior to cue onset
[—2 s to 3 s]. Fourth, epochs containing excessive artifacts
were removed by visual inspection (Mean+SD, 5+6 per
participant), Lastly, segmented EEG epochs were down-
sampled to 200 Hz. For analyses, we used Numpy (Harris
et al., 2020); for phase-related statistics and plots, we used
Pingouin (Vallat, 2018).

2.4.1 | Cue-related slow-wave phase analyses
We focused on the slow-oscillation band and the delta-
frequency band to provide a detailed picture of their
roles in TMR and in memory consolidation (see Kim
et al., 2019). Filtered, segmented data were low-pass fil-
tered to 1.5 Hz, producing the 0.1-1.5 Hz slow-oscillation
band (Dasilva et al., 2021), or bandpass filtered between
1.5-4 Hz, producing the delta band (Kim et al., 2019). We
applied Hilbert transformation to extract the instantane-
ous phase angle at the onset of an auditory cue. We used
the Rayleigh Z test to determine whether cue onset timing
followed a non-uniform (H1, alternative hypothesis) or a
uniform distribution (HO, null hypothesis). These phase
analyses were performed at Fz in accordance with pre-
vious research (Batterink et al., 2016; Heib et al., 2013).
MNE-Python and custom Python scripts were used to
conduct phase analysis.

@ s
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1.01
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TMR Benefit
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Number of Cues

High Low

IPSYGHIIPHYSIULOGY -

2.4.2 | Cue-elicited event-related
potential and time-frequency EEG analyses

We first compared event-related potentials (ERPs) be-
tween the two subgroups. Preprocessed EEG segments
were baseline-corrected using the —1.5 — 0s pre-stimulus
interval. We used the —1.5 to 2.5 s epochs to match the
timing of time-frequency results. Epochs were then
averaged to obtain ERPs. To extract cue-elicited time-
frequency EEG activity, we applied continuous wavelet
transformation with variance cycles (3 cycle in length at
1 Hz, increasing linearly along with frequency to 15cy-
cles at 30Hz) to calculate the power of each frequency
band. After time-frequency transformation, epochs were
cropped into —1.5 to 2.5 s epochs to eliminate edge arti-
facts, followed by baseline correction using the interval
from —1.5 to —0.2 s. Time-frequency results were con-
ducted on Cz based on a recent TMR study (Schechtman
et al., 2021). Time-frequency analysis was conducted in
MNE-Python.

3 | RESULTS

3.1 | TMR behavioral benefits

We first quantified the extent to which the differential
change in bias for the TMR benefit was larger in the
high- than in the low-benefit group (Mean+ SE, High:
0.792+0.118; Low: —0.178+0.09; independent sample
t-test, #(26) = 6.51, p<.001, 95% CI [0.66, 1.28], Cohen's
d = 2.46, Figure 2a). This difference was expected given
the median-split procedure for creating the two groups.

(b)

600

a
o
o
H

N
o
o

High Low

FIGURE 2 (a) TMR benefit and (b) the number of cues played in the high-benefit (high) and low-benefit (low) groups, defined by
the magnitude of TMR benefit. TMR benefit scores and the number of cues from excluded participants (n = 10) are displayed with blue x
symbols (note that the means and SE values were computed without these 10 participants).
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Data from sleep-staging data are shown in Table 1.
There was significantly less SWS in the high-benefit
group than in the low-benefit group. Given that cues
were played during SWS, the high-benefit group tended
to receive fewer cues than the low TMR benefit group
(245430 and 340 + 35, respectively, #(26) = 1.96, p = .060,
95%CI [—193.38, 4.38], Cohen's d = 0.74, Figure 2b).
Correlational analyses across all participants showed that
neither SWS duration (1(28) = —.28, p = .150) nor number
of cues (1(28) = —.21, p = .152) were significantly related
to the TMR benefit. Based on these patterns of group dif-
ferences, we can rule out the idea that stronger TMR bene-
fits in the high-benefit group can be explained by a greater
number of cues played or longer periods spent in SWS.

3.2 | TMR benefits were associated with
a preferred phase angle of slow oscillation

To assess the relationship between TMR benefits and the
phase of slow oscillations associated with cue onsets, we
first assessed the slow-oscillation phases associated with
cue onset at Fz in each participant. Given that our TMR
cueing protocol was open-loop and thus not contingent
upon EEG activity, it can be expected that for most par-
ticipants, the cue onset phases would be randomly distrib-
uted within each participant. Indeed, we found that only
3 out of 14 participants in the high-benefit group, and 2
out of 14 participants in the low-benefit group had signifi-
cantly non-uniform distributions (for phase distribution
at a participant level, see Figure S2).

We next tested at a trial-level, whether the two groups
showed different cue-onset phase distribution patterns re-
lated to slow-oscillation activity. To this end, we extracted
the phase of cue onset for each trial, and collapsed this
trial-level phase information across participants within
each group. We found that the phase of cue onset showed
a significant non-uniform distribution in the high-benefit
group, preferentially clustering around 76° (Z(3432) = 7.45,
p<.001, Rayleigh Z test, Figure 3a). In contrast, phases of

cue onset were not significantly clustered in the low-benefit
group (Z(4755) = 0.41, p = .662, Rayleigh Z test, Figure 3b).
Given the different numbers of trials in the two groups, we
next used re-sampling to control the influence of unequal
trial numbers on phase calculation and clustering strength.
In the low-benefit group, we randomly selected 3432 out of
4755 trials with replacements to match the number of trials
in the high-benefit group, and calculated the phase clustering
via Rayleigh Z tests. We repeated this re-sampling procedure
5000 times to create Rayleigh Z distributions for low-benefit
groups (see Figure 3c). Regarding the high-benefit group,
we repeated the same procedure (sampling 3432 out of 3432
with replacement) to create Rayleigh Z distributions for the
high-benefit group (Figure 3c). Visual inspection of Figure 3c
suggests that only the high-benefit group showed significant
clustering and that the high-benefit group showed stronger
clustering strength (i.e., higher Rayleigh Zs) than the low-
benefit group. We next used the permutation test to statisti-
cally confirm this difference: we shuffled the labels of Rayleigh
Zs from high- and low-benefit groups obtained in Figure 3c,
and calculated a difference score between simulated “high”
versus “low” groups. This procedure was repeated 5000 times
to create a null distribution with 5000 difference scores.
Comparing the empirical high- versus low-benefit group
Rayleigh Zs difference against this null distribution revealed
that the high- versus low-benefit group difference was highly
significant (p<.001, Figure 3d). Together, these results sug-
gest that with a matching number of trials, cue onset phases
in the high-benefit group showed significant clustering in the
0.1-1.5 slow oscillation band; while cue onset phases in the
low-benefit group showed random distributions. Moreover,
the clustering strengths in the high-benefit group were sig-
nificantly higher than that in the low-benefit group.

3.3 | TMR benefits were associated with
cue-elicited delta power

Whereas the results above show that cue timing
relative to ongoing slow oscillations was associated

TABLE 1 Sleep stages (in min,

High-benefit grou Low-benefit grou
& group sroup mean + SE) in high- and low-benefit
Sleep stage (n=14) (n=14) p-value
groups
Wake 23.04+5.03 (min) 18.93 +4.34 (min) .54
N1 7.29+0.88 (min) 7.29+1.89 (min) 1
N2 27.21+2.61 (min) 24.57 +2.64 (min) 48
N3 22.21 +2.74 (min) 34.29+4.75 (min) .04%*
REM 6.18 +1.54 (min) 4.75+1.59 (min) .52
Total sleep time 62.89 +4.48 (min) 70.89 + 5.01 (min) .24
Total time 85.93+1.99 (min) 89.82+2.93 (min) .28

*p<.05.
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FIGURE 3 (aand b) Distributions of cue onset time in relation to 0.1-1.5 Hz slow-oscillation phase measured at Fz, collapsing trials

across all participants from the high- and low-benefit groups, separately.

Note that this analysis matched the trial numbers between these

two groups. (c) A re-sampling with replacement procedure was repeated 5000 times to create Rayleigh Z distributions for high- and low-
benefit groups, separately. (d) A permutation test was conducted to statistically confirm the difference between the Rayleigh Z distributions
of high- versus low-benefit groups, which revealed that the empirical Rayleigh Z difference was highly significantly larger than the

permutation Rayleigh Z difference (p <.001). *** denoted p <.001.

with the magnitude of TMR benefits, it would also be
informative to know the role of cue-elicited EEG activity
in influencing TMR benefits. Accordingly, we computed
cue-elicited ERPs and time-frequency EEG responses.
A non-parametric permutation test was conducted on
ERPs across time points at Cz between the high- and
low-benefit groups. No significant results were observed
(cluster ps> .86, Figure S2), suggesting that ERPs were not
significantly different between groups.

For time-frequency analyses, we focused on pre-
selected electrode Cz in accordance with a recent TMR
study (Schechtman et al., 2021). First, we performed a
non-parametric cluster-based permutation test across time
points and frequencies collapsing across all participants.

This analysis identified significant clusters modulated
by auditory cueing during sleep (delta-theta (1-9 Hz)
cluster: cluster p = .001, sigma cluster (15-20Hz): clus-
ter p = .037). We further divided the delta-theta clusters
into delta (1-4 Hz) and theta (4-9 Hz) separately to clarify
the specific role of frequency bands in social bias reduc-
tion (Canales-Johnson et al., 2020; Legendre et al., 2022;
Lehmann et al., 2016). Next, based on these three iden-
tified clusters, we compared EEG power from each clus-
ter between high- and low-benefit groups. As shown
in Figure 4a, results appeared to differ between the two
groups in the delta (1-4 Hz) band during 250-1000 ms
post cue onset (£(26) = 2.35, p = .027 ). In contrast, the
between-group differences were not significant for the

A °S “€70T “986869%1

:sdny wouy papeoy

IpU0D) pue SWId, 9y} 39S [£20T/P0/01] uo Areiqry auruQ 1A\ ‘Suoy SuoH jo Ansioatun £q prey1dAsd/1111°01/10p/wod Ko Kreaqrioury

1[uo//:sdny)

1oy/w0o" Ko Areaqy

P!

AsudI'] suownuo)) aAnear)) s[qesrjdde ayy £q pausaAod are sa[onIe YO SN JO SN 10§ AIRIQIT UIUQ KT UO (



8of12 XIA ET AL.
PSYCHOPHYSIOLOGY sp’
(a) All Subjects (C2) (b) All Subjects(Cz)
5 5.0
1 — 15
. I " ‘ 4.5
25 | 1.0 '
. '
[ 2
_20 | 05 § B 0
N w
s | N > E
€15 | 00 & g 35 %
i .
i " | 08 3.0
| &
| 25
s | -10 5 ‘.
|
| 1 2.0
-15 =15 -10 -05 00 05 10 15 20 25
-15 -10 -05 00 05 1.0 15 20 25 Time (s)
Time (s)
(c) High Group (Cz) (d) Low Group (Cz)
ip)
I 2.0
25 25 | : ' i 15
| A .
1.0
| 0
<2 . 20 | ‘ S
1:: g | s 0.5 é
o) >
S 15 _ 215 | & - 00 &
2 ] | s
o £ ' 5
w rag -05%
10 10 | 3
: - —10”
5 5 | -15
|
|
-15 -10 -05 0.5 1.0 1.5 2.0 2.5 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5 -20
Time (s) Time (s)
(e) Cluster1 Delta Power ()
*
6 i [} °
2.01
5-
[ ]
4- 1.59
[ ]
—
[ @ - ° °
; 3 7 ° = 1.0
S .
[ @
S o £
) =
()]
Y rho(28) = 0.39
i L]
-1 1 ° . . p=0.04
: ' S R N A
ngh Low Cluster1 Delta Power

FIGURE 4 Electrophysiological differences between high-benefit and low-benefit groups. (a) A time-frequency raw power map across all
participants. (b) Map of t-values for clusters modulated by auditory cues during sleep across all participants using a cluster-based permutation
test on time-frequency data. Results revealed cluster 1 delta and theta power (~0-1000ms), cluster 2 delta power (~1000-2000 ms), and cluster
3 sigma-beta power (~800-1400ms). See Figure S1 for time-frequency results from all electrodes. The vertical line at time 0 ms represents

cue onset, with the red line representing the duration of the sound (1000ms). (c and d) time-frequency plots for high-benefit and low-benefit
groups, with significant clusters highlighted, the color bars were the same in (c) and (d). (e) power difference between delta (~0-1000 ms, taken
from the significant cluster). (f) Spearman correlation coefficient between cue-elicited delta power and the TMR benefit.

250-1000ms theta (4-9 Hz) band (#26) = 1.30, p = .205 ), band (#26) = 1.46, p = .155). In addition to between-group
nor for 1000-2000ms delta (1-4 Hz) band (t(26) = 0.74, comparisons, we conducted correlation analyses between
p = .467), nor for 800-1400ms sigma-beta (15-20Hz) TMR benefits and delta, theta, and sigma power from each
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cluster across all participants. For delta power in clusterl
within the ~250-1000 ms time window, we found a signif-
icant correlation between cue-elicit delta power and TMR
benefits (rho(28) = 0.39, p = .042 ). We did not observe
significant correlations in clusterl theta (rho(28) = 0.25,
p = .202), cluster2 delta (rho(28) = .07, p = .736), and clus-
ter 3 sigma-beta (rho(28) = .16, p = .404).

4 | DISCUSSION

What physiological events are associated with successful
TMR-induced bias reduction during sleep? We addressed
this question using data from a prior study in which
targeted memory reactivation (TMR) was used follow-
ing training to combat unintentional social biases (Hu,
Antony et al., 2015). We found that larger TMR benefits in
bias reduction emerged when memory cues (1) clustered
toward the slow-oscillation upstate, and (2) elicited power
increases in the delta EEG band. These results comple-
ment recent evidence concerning neural mechanisms of
memory reactivation, particularly findings that demon-
strated the importance of optimal slow-oscillation phase
and cue-elicited delta power in memory reactivation
and consolidation (Ai et al., 2018; Batterink et al., 2016;
Batterink & Paller, 2017; Schreiner et al., 2015).

Our study is not the first to link TMR effects with prefer-
ential timing of cues to slow-oscillation phases (Batterink
et al., 2016; Goldi et al. (2019; Ngo & Staresina, 2022). This
clustering may have occurred here due to chance factors in
this subset of individuals with respect to when cues were
presented or instead to specific factors related to the gen-
eration of slow waves. Following previous TMR research
(e.g., Creery et al., 2015; Rudoy et al., 2009), auditory cues
in our study were delivered every 5 s (0.2 Hz) during SWS.
Perhaps this rhythm entrained EEG oscillations in some
participants, influencing slow-oscillation phase and delta
power changes. Indeed, a recent study suggests that open-
loop auditory stimulation can induce slow-oscillation am-
plitude changes (Huwiler et al., 2022).

Batterink et al. (2016) first reported that TMR ben-
efits were predicted by slow-oscillation phase at the
time of cueing: cues played during one particular in-
terval of the slow-wave cycle (180-270°) led to less
forgetting of cued items than did cues played during
other phases. Subsequently, employing closed-loop
stimulation to directly manipulate the timing of cues,
Goldi et al. (2019) reported that memory cues deliv-
ered at the beginning of slow-oscillation upstates (but
not downstates) yielded memory benefits as well as
memory-related differences in theta and spindle-band
EEG responses (Goldi et al., 2019). Similarly, we found
stronger TMR effects when cues clustered during the

IPSYGHOPHYSIUI.OGY -

upstate of 0.1-1.5 Hz slow oscillations (i.e., ~75° at
the frontal region). Discrepancies in phase values be-
tween our results and those of Batterink et al. (2016)
may be due to different TMR procedures. Batterink
et al. (2016) used 25 unique sounds to reactivate 25
unique item memories, whereas our study used one
auditory tone to reactivate training-related memo-
ries; much less processing may have been needed for
sound categorization in the present study. Moreover,
our results suggest that not only does slow-oscillation
phase matter when a single sound is presented (as in
Batterink et al., 2016), but also the preferred phase
angle over many repetitions of the same sound appears
to influence TMR benefits. Despite these differences, it
is noteworthy that both the study by Batterink et al. and
our study showed that TMR effects were stronger when
cues incidentally occurred during an optimal phase of
slow-oscillation activity. While future research is war-
ranted to further establish the causal role of cue-onset
timing and subsequent TMR benefits, extant findings
consistently suggest that the timing of cues relative to
slow oscillations is important for effective TMR (Goldi
et al., 2019; Ngo et al., 2013; Ngo & Staresina, 2022).
Indeed, one important prediction of the active systems
consolidation account is that memory consolidation is
more effective when memories are reactivated during
the slow-oscillation upstate (Klinzing et al., 2019;
Rasch & Born, 2013).

Other characteristics of sleep such as SWS duration
have also been implicated in memory improvements in
spatial memory, skill acquisition, fear extinction, and pref-
erence change (Ai et al., 2018; Antony et al., 2012; Cairney
et al., 2014; Hauner et al., 2013; Oudiette et al., 2013; but
see Cordi & Rasch, 2021b). Our results extend previous re-
search by suggesting that cue-elicited delta power within
the first 1000ms post-cue contributed to the reactiva-
tion of recent counter-bias training, resulting in further
weakening of long-standing biases. These findings, taken
together, corroborate previous TMR findings and empha-
size the critical role of slow oscillations and delta-band
neural activity in memory reactivation and consolidation
(Ai et al., 2018; Antony et al., 2012; Rudoy et al., 2009;
Schreiner et al., 2015).

In addition to slow oscillations and delta activity,
spindle-related activity (e.g., spindle density, power) has
also been implicated in prior studies of TMR-induced
memory consolidation (Antony et al.,, 2018; Cairney
et al.,, 2018; Creery et al.,, 2015). Specifically, Cairney
et al. (2018) reported that cue-elicited spindle activity
carried category-level memory information at the time
of reactivation, which was then associated with memory
performance after sleep. In the present study, although
auditory cues modulated sigma activity relative to pre-cue
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baselines, sigma activity was not associated with TMR
benefits.

One motivation for the current investigation was to
understand whether there are specific neural character-
istics that differentiate strong versus weak TMR bene-
fits in bias reduction. While meta-analytical evidence of
TMR convincingly suggests that memories can be selec-
tively targeted and improved during SWS, the effect sizes
of individual studies vary significantly (Hu et al., 2020).
In the context of bias reduction, two studies were pub-
lished, both conducted using a within-subject manip-
ulation and auditory TMR during an afternoon nap,
with the first reporting a significant TMR effect and the
second reporting a null effect (Hu, Antony et al., 2015;
Humiston & Wamsley, 2019). One possible explanation
for this divergence in effect size across studies would
emphasize the small size of an underlying effect, such
that real effects are sometimes missed when small sam-
ple sizes are used. An alternative possibility is that mem-
ory reactivation does not change bias reduction and that
the Hu, Antony et al., (2015) results are spurious, but the
present findings of systematic relationships with sleep
physiology cast doubt on that alternative. It is also possi-
ble that cues sometimes may not successfully reactivate
corresponding memories due to factors not yet under-
stood. In addition to the present and previous findings on
preferential slow-wave phase and EEG power, sleep dis-
ruptions and arousal due to auditory cueing are also fac-
tors shown to be detrimental to memory benefits (Goldi
& Rasch, 2019; Whitmore et al., 2022). Future research
is warranted, preferably with closed-loop cue delivery
that targets certain phase angles (see Goldi et al., 2019),
to provide causal evidence on the relationship between
these neural characteristics and TMR benefits.

Research with the method of targeted memory reac-
tivation opens exciting new avenues for manipulating
offline memory processing during sleep and for under-
standing how fundamental aspects of sleep influence
memory storage. At a mechanistic level, what are the neu-
ral mechanisms that contribute to reactivation-induced
behavioral benefits? The present approach provided some
insights. We found that for TMR to be effective in weak-
ening existing social biases, both cue timing relative to
slow-oscillation phase and cue-elicited EEG power in the
delta band is important. Together, these results contribute
to our understanding of the optimal brain activity that can
support memory reactivation during sleep and its behav-
ioral benefits after sleep.
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