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Summary

A widely accepted view in memory research is that previously acquired information can

be reactivated during sleep, leading to persistent memory storage. Targeted memory

reactivation (TMR) was developed as a technique whereby specific memories can be

reactivated during sleep using a sensory stimulus linked to prior learning. As a research

tool, TMR can improve memory, raising the possibility that it may be useful for cognitive

enhancement and clinical therapy. A major challenge for the expanded use of TMR is

that a skilled operator must manually control stimulation, which is impractical in many

settings. To address this limitation, we developed the SleepStim system for automated

TMR in the home. SleepStim includes a smartwatch to collect movement and heart-rate

data, plus a smartphone to emit auditory cues. A machine-learning model identifies

periods of deep sleep and triggers TMR sounds within these periods. We tested

whether this system could replicate the spatial-memory benefit of in-laboratory TMR.

Participants learned locations of objects on a grid, and then half of the object locations

were reactivated during sleep over 3 nights. Recall was tested each morning. In an

experiment with 61 participants, the TMR effect was not significant but varied system-

atically with stimulus intensity; low-intensity but not high-intensity stimuli produced

memory benefits. In a second experiment with 24 participants, we limited stimulus

intensity and found that TMR reliably improved spatial memory, consistent with effects

observed in laboratory studies. We conclude that SleepStim can effectively accomplish

automated TMR, and that avoiding sleep disruption is critical for TMR benefits.
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INTRODUCTION

Sleep has long been recognised as important for memory

(e.g., Patrick & Gilbert, 1896), but much remains to be learned about

why. A prevalent view at the present time is that reactivation

of stored information during sleep helps stabilise memories, prevent-

ing forgetting of important information (Born & Wilhelm, 2012;

Marr, 1971; Paller, 1997; Paller et al., 2020).

Studies using targeted memory reactivation (TMR) have provided

evidence for this hypothesis by demonstrating that selectively reacti-

vating memories during sleep can strengthen them (Oudiette &

Paller, 2013). In TMR experiments, learning is associated with a sensory

cue, which is subsequently presented during sleep without awaking the

sleeper. Cue presentation can lead to reactivation of memory content

in the cortex and hippocampus (Bendor & Wilson, 2012; Cairney

et al., 2018; Wang et al., 2019). After sleep, reactivated memories are
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typically remembered better than those not reactivated, demonstrating

that memory reactivation during sleep can strengthen memory, a find-

ing that has been confirmed by meta-analysis (Hu et al., 2020).

Experiments with TMR have shown that it is a useful tool for inves-

tigating questions in memory research and potentially as an intervention

for cognitive enhancement. For example, TMR can improve retention of

information learned in a classroom setting (Gao et al., 2020) and facili-

tate learning of motor skills (Cheng et al., 2021; Johnson et al., 2019).

Researchers have therefore proposed that TMR may be useful to

enhance memory and to augment therapies that depend on learning,

e.g., rehabilitation (Oudiette & Paller, 2013; Paller, 2017).

A major barrier to expanding use of TMR is that the technique

requires experimenters to control presentation of cues while monitor-

ing sleep using polysomnography (PSG). In this way, cues can be pre-

sented in a particular sleep stage without arousing the participant

from sleep. A specialised sleep facility and extensive training of opera-

tors is required for this online sleep scoring, and participants must

sleep in an environment that differs in many ways from their typical

sleeping environment at home.

These requirements impose substantial limitations on TMR exper-

iments. For example, very few studies have examined the effects of

multiple TMR sessions, owing largely to logistical difficulties. Standard

TMR requirements also make it impractical to study or use TMR in

clinical therapy across multiple sessions. To surmount these limita-

tions, new ways to perform TMR in participants’ own homes are

needed, ideally using an automated system that does not require

direct control by an operator.

Previous research on TMR outside of the sleep
laboratory

Previous research on home-TMR can be divided into two categories.

With brain-state-independent approaches (Antony et al., 2022), TMR

cues are automatically presented during sleep irrespective of sleep

stage. In brain-state-dependent approaches, there is an attempt to

present TMR cues in a specific sleep stage.

Brain-state independent TMR has shown mixed results in improv-

ing cognition and memory. Ritter et al. (2012) found that memory reac-

tivation during sleep could enhance creative problem solving; the

researchers reactivated a problem-solving task using a plug-in scent dif-

fuser during overnight sleep. While they slept, participants received

either an odour linked to the task, an irrelevant odour, or no odour, and

those who received task-linked odours produced solutions that blinded

raters judged as more creative. Similarly, Neumann et al. (2020) found

that TMR with an olfactory cue (incense sticks placed near the head

while sleeping) could improve vocabulary learning in children. Other

brain-state independent TMR experiments, in contrast, did not find

benefits consistent with the TMR literature. Donohue and Spencer

(2011) found that TMR using a continuous ocean sound played while

participants slept overnight did not improve memory for word pairs.

Göldi and Rasch (2019) found no effect of TMR when foreign vocabu-

lary was cued 30 min after sleep onset. However, in a further analysis

the authors showed that TMR benefitted memory for participants who

reported that their sleep was undisturbed, but not those who reported

that sound cues disturbed their sleep.

Our recent experiments using PSG recordings in the laboratory envi-

ronment substantiated the notion that Göldi and Rasch (2019) put forward

– that TMR does not improve memory when sleep is disrupted by sounds.

One study showed that a TMR benefit for learning face-name associations

was reduced when TMR sounds disrupted sleep (Whitmore et al., 2022).

Furthermore, deliberately disrupting sleep with loud sound cues reverses

the TMR effect on spatial recall, selectively weakening reactivated memo-

ries (Whitmore & Paller, 2022). Therefore, we suggest that brain-state

independent TMR may tend to be ineffective because the intensity and

timing of cues cannot be flexibly adjusted to avoid disrupting sleep.

Accordingly, brain-state dependent home TMR controlled using a

sleep sensor may be superior to brain-state independent TMR. In two

prior experiments with home TMR, we used a modified Zeo system

(Shambroom et al., 2012) with electrolyte-filled electrodes for fore-

head electroencephalography (EEG) recordings used to control sound

presentations. One study showed an impact of TMR on feelings of

ownership and proprioceptive drift in the rubber-hand illusion

(Honma et al., 2016). The other showed effects on creative problem

solving (Sanders et al., 2019).

Designing a home TMR system

Based on previous research and pilot testing, we identified key needs

for a home TMR system. These included the ability to target specific

sleep stages, robustness to signal problems (such as poor contact

quality), and minimal reliance on proprietary or ‘black-box’ technol-
ogy. The system must also be comfortable, avoid disturbing sleep, and

be easy for participants to use.

As no complete system currently exists meeting these require-

ments, we developed a new open-loop, brain-state dependent TMR

system that we call ‘SleepStim’. This system works with consumer

devices, specifically an Android phone and a Fitbit smartwatch. Previ-

ous research has shown that sleep stages can be decoded from heart

rate and wrist movement (Beattie et al., 2017; de Zambotti et al., 2018;

Faust et al., 2019); although these algorithms are less accurate than tra-

ditional sleep scoring they can still provide useful information on sleep

(Haghayegh et al., 2019). We developed a custom algorithm to identify

periods of N3 sleep and trigger TMR cueing during these periods (with-

out the need to discriminate all sleep stages). We then tested whether

TMR with SleepStim could improve memory for object-location associ-

ations as observed in previous TMR studies (e.g., Rudoy et al., 2009).

EXPERIMENT 1 METHODS

Figure 1 shows a diagram of the 5-day procedure. On the first day, we

provided participants with a Fitbit Versa and an Android smartphone.

To allow us to correlate sleep-physiology features with behavioural

results, a Dreem 2 headband (Arnal et al., 2020) was also provided. On
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the second day, participants learned arbitrary screen locations for

50 objects shown on a grid on the smartphone. Each object appeared

with a distinct sound naturally associated with the object (mean

[SD] duration 554 [181] ms). On the second, third, and fourth night, the

SleepStim system presented sound cues for half of the objects during

sleep. Memory was tested in the morning of the third, fourth, and fifth

day. We predicted that participants would recall locations more accu-

rately for objects reactivated during sleep compared to those not reac-

tivated, replicating the typical effect of TMR on spatial memory.

SleepStim system

The SleepStim system was designed to present TMR cues in N3 sleep,

detected using a Fitbit worn by participants. A custom application

running on the Fitbit acquired data once per second. Data consisted

of heart rate in beats per minute, acceleration on x-, y-, and z-axis, and

rotation on these axes from the accelerometer and gyro, respectively.

Data were transmitted via Bluetooth to the paired phone. The first

step of processing on the phone was feature extraction, as schema-

tised in Figure 2. Briefly, the phone computed a time-frequency repre-

sentation of the last 240 s of accelerometer, gyro, and heart-rate data.

The result was a time-frequency matrix, quantifying variability as a

function of both time (number of prior seconds) and frequency. This

transformation is similar to that used in other sleep-staging algorithms

(Beattie et al., 2017) and is useful because it allows for characterisa-

tion of various sleep phenomena (e.g., high- versus low-frequency

heart rate variability). Because time-frequency variability was highly

correlated on all axes, only the z-axis of the accelerometer and gyro

signals was used in computing the time-frequency representation.

•

•

•

• Test 3
• Return

equipment

• Pick up 
equipment

• Adaptation Learning task

Bedtime test

TMR night 1
night

• Test 1

• TMR night 2

• Test 2

• TMR night 3

Morning

Evening

Day 1 Day 2 Day 3 Day 4 Day 5

“dong”

The par�cipant was shown the loca�ons 
of 10 objects (2 examples below)

Next, the par�cipant moved each object (indicated here by green 
arrow) and then feedback was given

“meow”

(a)

(b)

(c)

“dong”

F IGURE 1 (a) Sequence of
events in the study. On day 2 all
tasks were completed in the
evening. (b) the learning phase
included five blocks with
10 objects each. Each block
included presentation of objects
(left) and trials of location recall
with the drop-out method (right).

The sound of each object was
played whenever the object
appeared on the screen in its
target location. The memory test
used the same procedure for
location recall except that
participants were not given
feedback or shown the correct
location of the objects, and the
sounds were not played.
(c) Diagram of the cue-control
algorithm. When average
probability of N3 passes the
threshold (0.9), cues are played
every 10 s. Cueing stops when p
(N3) drops below this threshold
or an arousal is detected.

10 tanh units

5 tanh units

p(N3)

Con�nuous heart rate, rota�on, accelera�on

Most recent 
values + sum 
of mo�on 
over last
240 s

Feature extraction: 240s of data is broken into chunks of 10-120 samples

10-sample chunks

20-sample chunks

…120-sample chunksVariance in each chunk is input to neural network

F IGURE 2 Schematic of the
feature-extraction system and neural
network. Variance was calculated using the
standard deviation of each chunk.
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Following feature extraction, the time-frequency features along with

current values from all sensors and total motion integrated over the

last 240 s were input to an artificial neural network classifier trained

to predict the probability of N3 sleep. For each sample, the network

produced a value, p(N3), corresponding to the probability of N3 sleep.

Neural network training and testing

We trained the neural network on a dataset for 24 participants that

included Fitbit data and sleep scores from an overnight session. Half of

the participants were young adults who slept in the laboratory over-

night for an unrelated study and half were middle-aged adults who

slept at home. For the young adults, sleep stages were determined by

manual scoring of PSG data; for middle-aged adults sleep stages were

determined using the automatic scoring built into the Dreem 2.

Prior to training, we computed features for the Fitbit data as

described above. To speed training, we subsampled the data by a fac-

tor of 5, to yield one sample every 5 s. Preliminary testing showed

down-sampling did not meaningfully affect classifier accuracy, likely

due to redundant information in successive samples. In total, 178,948

observations were included.

We then trained a perceptron neural network classifier with two

hidden layers to predict whether each second would be scored as N3

based on the Fitbit features. Training was performed using the Neural

module of JMP 15.2.1 (2019) using the ‘squared’ regularisation pen-

alty. To evaluate the network's overall performance in classifying N3

sleep, we also trained a separate version of the model with one-third

of the subjects (50,425 observations) held out from training as a vali-

dation set. The model achieved an area under the curve of 0.77 in

classifying sleep as N3 or non-N3, indicating that it exceeded chance

performance. We also evaluated alternative classifier schemes, includ-

ing linear discriminant analysis and a convolutional neural network. Of

these, the two-layer perceptron combined with our feature-extraction

algorithm performed the best.

Automated TMR

Sounds were played at constant 10-s intervals (onset–onset), approxi-

mating TMR protocols used in laboratory studies where sounds were

presented every 5–10 s (Creery et al., 2015; Rudoy et al., 2009;

Whitmore et al., 2022). Sound presentation started when N3 sleep

was detected, as operationalised by (a) a high value for the probability

of N3 averaged over the most recent 240 s, p(N3) ≥0.9, and (b) the

most recent value for p(N3) ≥0.85. Start/stop timing and sound inten-

sity was controlled by the algorithm shown in Figure 3.

SleepStim was limited to presenting sounds when p(N3) was high

within a time interval from 15 min to 3 h after the time the system

was turned on. The system was also limited to stimulating for a maxi-

mum of 10.5 min. These constraints were imposed to minimise the

chance of disrupting sleep and are consistent with protocols used in

laboratory TMR studies (Rudoy et al., 2009).

Participants

We collected data from 120 adults recruited using flyers placed on

campus. The protocol was approved by the Northwestern University

Institutional Review Board. Participants provided written informed

consent and were paid for their time.

We conducted three major analyses comprising (i) how frequently

participants perceived TMR sounds, (ii) effects of TMR on memory,

and (iii) EEG correlates of the TMR effect. All 120 participants were

included in Analysis 1. For Analysis 2, we included only participants

who completed memory tests and TMR stimulation in accordance

with the protocol, as defined by the following criteria:

• Completion of training, the bedtime memory test, and at least one

morning memory test.

• During sleep, at least 25 cues were presented.

• No more than four stimuli were presented when the Fitbit read a

heart rate of zero (indicative of a poor heart rate signal).

• Objects were correctly allocated to cued and uncued conditions

(which did not happen for three participants due to a bug in the

allocation algorithm).

Analysis 2 included 61 participants, with a mean (SEM, range) age

of 20.6 (0.23, 18–25) years and 17 (28%) were male.

Analysis 3 (EEG correlates of TMR) included 45 participants who

met criteria for Analysis 2 and had at least 1 night of Dreem 2 data

during cueing with sufficient quality for automatic sleep staging.

These participants had a mean (SEM, range) age of 20.4 (0.24,

18–25) years and 14 (31%) were male.

Procedure

Day 1

Participants picked up the equipment and were instructed on the proce-

dure and how to use the smartphone app. They wore the Fitbit and the

Dreem 2 that night to allow for acclimation to the equipment. The phone

played continuous white noise overnight. Participants used a slider in the

app to set the white-noise intensity to a comfortable level. This intensity

setting was used as the initial setpoint for sounds played during the

night. Using the algorithm described in detail below, the app controlled

presentation of a control sound (electronic ding) intended to help partici-

pants adapt to the potential disruption of sound presentations. The goal

was to reduce sleep disruption from experimental sounds presented on

subsequent nights. Targeting slow-wave sleep, the phone repeatedly

played an electronic ding sound that was unrelated to the memory task.

Day 2

Using the phone, participants completed the learning phase at a mean

(SEM) time of 10:24 p.m. (71 min). In this task (described in Figure 1b),

4 of 13 WHITMORE ET AL.
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a grid covered the phone's entire screen, and participants learned the

correct locations of objects on the grid. The app recorded accuracy

and response times during each phase.

There were five blocks of trials, each with 10 objects. First, the par-

ticipant was shown the correct locations of the 10 objects in that block.

Then, each object appeared in the centre of the screen in a random

order, and the participant attempted to move it to the correct location.

The participant then received feedback consisting of a red X

(if incorrect) or a green checkmark (if correct) at the location where they

positioned the object. The feedback was presented for 2 s, after which

the object was displayed in the correct position for 3 s. The placement

was considered correct if the object was placed within 120 pixels

(�2 cm) of the correct location; correct objects were dropped from the

rotation. A block ended when the participant placed all objects correctly.

The phone played the sound associated with each object when it first

appeared on the screen, and when the correct location was shown in

the feedback phase. The learning task was made unavailable after it was

completed to ensure participants only completed it once.

Participants began the bedtime memory test shortly after com-

pleting the learning (mean [SEM] delay 11 [5] min). In this test, all

50 objects were presented sequentially in the centre of the screen, in

random order, and the participant attempted to move each object to

its correct location. Unlike in the learning phase, no feedback was

given.

After participants completed their bedtime memory test, the

app selected 25 objects to be cued during sleep using a matching

algorithm to minimise the difference in bedtime memory perfor-

mance between two sets of objects (to be cued and uncued).

Objects were sorted by memory error and then assigned in alternat-

ing order (i.e., 1 = cued, 2 = uncued…). Because some differences

remained after this assignment, the app also counterbalanced partic-

ipants so that the assignment procedure started with cued in half of

the participants and uncued in the other half. As expected, there

was no difference in recall accuracy between cued and uncued

objects in the bedtime memory test (Wilcoxon signed-rank test,

z[60] = 0.8, p = 0.42).

F IGURE 3 Flow chart illustrating how sounds are controlled in the SleepStim system. p(N3) is the probability that the participant is in N3
sleep as determined by the neural network classifier. The Fitbit transmits data once per second; if no Fitbit data is received for 10 s (indicating
loss of signal), the sounds are turned off. A rapid drop in p(N3) while sounds are playing suggests the sounds aroused the participant and the
auditory cue intensity may be set too high, therefore the auditory cue intensity setpoint is decreased if p(N3) drops below 0.85 while sounds are
playing. Latency is approximately 1 s from acquisition to the availability of p(N3); the latency is constant and not affected by signal quality as data

is never re-transmitted.
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Shortly before going to sleep, the participant put on the Fitbit and

Dreem 2, started the TMR app, and calibrated white-noise intensity.

During the night, and on all subsequent nights, sounds linked to the

25 objects in the cued condition were presented during sleep.

Days 3 and 4

Participants completed a memory test in the morning. The test was

identical to the memory test on Day 2, except with a different random

order of objects. During sleep, they used the Fitbit, Dreem 2, and

TMR app as on previous nights.

Day 5

Participants completed a final memory test in the morning and returned

the equipment. When returning the equipment, we asked participants

whether they remembered hearing any of the sounds from the memory

task while they were sleeping. To avoid demand effects, participants

were not asked about the TMR sounds (or told that TMR sounds were

presented) until this point, consistent with laboratory TMR protocols.

Memory performance measurement

We measured memory change as the ratio of mean spatial error at a

morning memory test to mean spatial error at the bedtime memory

test (e.g., mean test1 error/mean bedtime test error). We computed

this statistic separately for cued and uncued objects. We used non-

parametric tests in comparisons of memory error as error values were

not normally distributed (D’Agostino & Pearson, 1973).

For each test, we computed the TMR effect as the memory change

for cued objects minus the memory change for uncued objects. A nega-

tive value indicates a benefit of TMR for memory. For example, a TMR

effect of �0.1 implies that the increase in error for cued objects was

10% lower than the increase in error for uncued objects. We deter-

mined whether TMR effects differed significantly from zero using the

Wilcoxon signed-rank test, a non-parametric one-sample test.

In the primary analysis of the TMReffect, we examinedmemory per-

formance on the last test taken.Whereas participantswere asked to take

three memory tests, some failed to do so on one or more mornings.

Therefore, our primary outcomewas performance at last test, which was

the last test for which data were available. For participants who com-

pleted all three tests (n= 41) we computed performance on each night.

Controlling for effects of initial memory performance

We observed that TMR effects were correlated with the pre-sleep dif-

ference in memory performance between cued and uncued objects

(Figure 4), which could be interpreted as regression to the mean. That

is, the larger the cued/uncued difference initially, the more likely this

difference is reduced on the subsequent test. Because this effect adds

variability that could obscure other correlations, we controlled for this

effect before analysing relationships between the TMR effect and

other variables. In this procedure, we used linear regression to isolate

the relation between the TMR effect and initial memory performance

differences between cued and uncued objects, computed separately

for each test. The residual effect after covarying out the effects of ini-

tial performance was termed the corrected TMR effect.

Dreem 2 sleep staging

We used data from the Dreem 2 headset to compute the time partici-

pants spent in each sleep stage, as well as the percentage of cues deliv-

ered in each sleep stage. Some participants did not have sufficient

high-quality data for staging (by the proprietary Dreem 2 algorithm), so

only a subset of 45 participants were included in these analyses.

EXPERIMENT 1 RESULTS

TMR cues were effectively targeted to N3 sleep

For 45 participants with EEG recordings of sufficient quality to permit

sleep staging during cueing, we compared the percentage of cues

delivered in each sleep stage to the percentage of overall time spent

in that sleep stage. This analysis served as an independent test that

the algorithm targeted N3 sleep in a new group of participants follow-

ing the original test and validation set.

Results shown in Figure 5 revealed that SleepStim successfully

targeted N3. Compared to the total time in each stage, the time when

cues were played was more likely to be N3 (t[44] = 3.56, p < 0.001)

and less likely to be classified as N2 (t[44] = 2.26, p = 0.03) or rapid

eye movement (REM) sleep (t[44] = 2.61, p = 0.01). Although N2 was

underrepresented in the cued sleep, a substantial number of cues

were presented in N2 due to the higher base rate of N2 sleep. We did

not observe differences between total sleep and cued sleep in wake

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0.85 0.95 1.05 1.15 1.25

T
M

R
 e

ff
e
c
t 
a
t 
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s
t 
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s
t

Cued error/uncued error at bedtime test 

r=0.34

p=0.01

F IGURE 4 An example of the linear regression used to control for
variation in memory performance in the bedtime test in Experiment
1. The bimodal distribution of bedtime test scores resulted from the
procedure used to assign objects to cued and uncued conditions.
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or N1, which may be because these stages were rarely observed in

the training set, providing little opportunity for the model to learn

how to identify them.

Participants generally did not notice TMR cues

In the full sample (including participants who did not pass inclusion cri-

teria), 16/120 participants (13%) reported hearing at least one sound

from the memory task. No participants reported that the sounds dis-

rupted their sleep or woke them. Among the participants included in

analysis, seven of 61 (11%) reported hearing at least one sound.

Participants efficiently learned and retained object
locations

Participants required a mean (SEM) of 1.61 (0.09) repetitions per object

in the learning phase to reach criterion. In the bedtime test, participants’

mean accuracy surpassed the criterion (Figure 6), indicating that the

learning procedure created an effective memory at a short delay.

Recall accuracy declined but seemed uninfluenced
by TMR

The mean (SEM) spatial error increased from 83 (3.51) pixels at bed-

time test to 106 (3.90) pixels at last test, indicating significant forget-

ting (Wilcoxon signed-rank test; z[60] = �6.27, p < 0.001). No

significant TMR effect was found at the last test or at any of the indi-

vidual time points (Figure 7).

TMR effect was associated with cue-sound intensity
and sleep-stage targeting

We hypothesised that sleep disruption caused by excessively loud cues

might have reduced the benefits of TMR. Given previous findings that loud

cues can disrupt memory processing in sleep (Whitmore & Paller, 2022),

we quantified the maximum intensity used overnight. The memory benefit

from TMR was significantly correlated with maximum auditory cue inten-

sity and marginally correlated with the percentage of cues delivered in

stage N3 (Figure 8, Table 1). That is, the tendency for memory to improve

more for cued objects than for uncued objects was greater when intensity

was lower andwhenmore cueswere delivered inN3.

Comparing TMR with optimal versus non-optimal
parameters

Given these correlational results, we explored individual differences

further by considering whether TMR might have a larger benefit in

participants cued with optimal parameters, defined as receiving at

least 25 sound cues on the adaptation night and using a relatively low

maximum sound intensity (<0.02). We opted to select these partici-

pants because these two factors, adaptation procedures and sound

intensity, could be directly controlled by the experimenter to reduce

sleep disruption. Differences between the two groups were non-

significant (Figure 9), but we did observe near-trend effects where the

TMR effect was larger for the optimal-cued participants at last test

(Mann–Whitney U test, U[60] = 356, p = 0.12) and at test 3 (U

[52] = 258, p = 0.11). Neither the optimal or non-optimal group

showed a significant effect of TMR at the last test or at test 3.

EXPERIMENT 2 METHODS

Because our initial experiment suggested that SleepStim could

improve memory contingent on low auditory cue intensity, we con-

ducted a follow-up study implementing an improved method. This

experiment was identical to the original experiment, except for the

following modifications.
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F IGURE 5 Results from Experiment 1 showing that the SleepStim
system predominantly delivered cues during N3 sleep. Grey bars
show the proportion of time spent in each sleep stage and blue bars
show the distribution of sleep stages when cues were delivered.
Whereas N3 comprised 21.1% of sleep, 34.7% of the cues were
delivered in this stage, and 65.5% of the cues were delivered in stages
N2 or N3. Cues in each stage are also listed in Table S1.
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F IGURE 6 Error at the Experiment 1 bedtime test remained
below the learning criterion (120 pixels). Error did not differ between
cued and uncued conditions (Wilcoxon signed-rank test; mean
difference = 0.76 pixels, z(60) = 0.8, p = 0.42). Individual participant
values are shown In Figure S2.
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• Participants could not set initial intensity >0.02.

• A new algorithm required participants to receive at least 25 adaptation

cues before they could begin the memory test, and if 25 cues were

not presented, the adaptation procedure was administered again.

• Participants could receive up to 30 min of cueing per night

(compared to 10.5 min in Experiment 1).

• We improved the algorithm for allocating objects to cued and uncued

conditions, which matched conditions more closely, obviating the need

for controlling for pre-sleep memory performance in the analysis.

Participants

Participants were recruited and paid using the same methods as the

prior experiment. We collected data from 44 participants, and of these,

24 passed inclusion criteria and their data were included in the analysis

of TMR effects on memory. Participants had a mean (SEM, range) age

of 21.6 (0.65, 18–31) years and seven of the 24 (29%) were male.

EXPERIMENT 2 RESULTS

Participants rarely reported hearing sounds

In the full sample, four of 44 participants (9%) reported hearing TMR

sounds during sleep. Among participants included in memory analysis,

two of 24 (8%) reported perceiving TMR sounds. One of the two par-

ticipants in the latter group who reported hearing sounds also

reported that the sounds disturbed their sleep.

TMR improved spatial memory at last test

As shown in Figure 10, the improved TMR protocol significantly

improved memory for cued objects relative to uncued objects at the

last test (Wilcoxon signed-rank test; z[23] = �2.69, p = 0.007). For

participants who took all three memory tests (n = 18), a significant
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F IGURE 8 Correlates of the targeted memory reactivation (TMR)
effect in Experiment 1. (a) Correlation between corrected TMR effect
and maximum auditory cue intensity. (b) Correlation between
corrected TMR effect and proportion of cues in N3. Corrected TMR
effect is calculated as (cued error at last test/cued bedtime error) –
(uncued error at last test/uncued bedtime error) - the TMR effect
predicted from the bedtime test (Figure 4).
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F IGURE 7 (a) Mean spatial error in Experiment 1 increased by �30% for both cued and uncued objects at the last test (compared to the
bedtime test immediately after learning). There was no significant difference in error between the cued and uncued objects. (b) in participants
who completed all three morning tests (n = 41), error continued to increase throughout the experiment, reflecting forgetting. Error bars reflect
the SEM for the within-subjects analysis of cued error-uncued error. Individual participant values are shown in Figure S2.
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difference between cued and uncued conditions emerged at the

second memory test and persisted in the third test (Wilcoxon signed-

rank test; z[17] = �1.63, �2.24,-2.29, p = 0.103, p = 0.025, and

p = 0.022 for test 1, 2, and 3, respectively).

DISCUSSION

Given that studies in the home environment would greatly expand

research and applications related to memory processing during sleep,

we designed and tested SleepStim, a novel wearable system for pre-

senting auditory cues during sleep. In Experiment 1, we found that

cues did not improve memory overall, but across participants the

memory effect was correlated with auditory cue intensity. We limited

auditory cue intensity in Experiment 2 and found that cues benefitted

memory. Our results confirmed that SleepStim can target deep sleep

and produce memory benefits that mirror those achieved via memory

reactivation in sleep laboratories equipped with PSG equipment. We

used a wearable device for obtaining EEG data from the forehead to

validate our procedure, but the TMR method we devised can be

applied with this system using only a wrist-worn device and a smart-

phone, making it easy to use, efficient, relatively inexpensive, and well

tolerated by most individuals. The results demonstrate that home

sleep interventions with the SleepStim system are feasible and effec-

tive, provided that adequate consideration is given to avoiding

arousal.

TABLE 1 Correlations between the corrected targeted memory reactivation effect and sleep/participant variables in Experiment 1

Measure Mean (SEM) p

FDR

p r Rationale

Total number of cues during experiment 145.13 (8.52) 0.36 0.77 �0.12 Increased number of cues may produce more

reactivation and stronger effect

Cues per cued night 67.25 (3.25) 0.53 0.78 �0.08 Alternative measurement of the number of cues

controlling the number of nights cued

Maximum cue intensity 0.03 (0.00) 0.02 0.25 0.31 Sound intensity is set by the user before sleep;

excessively loud or soft cues might be ineffective

Number of sounds on adaptation night 48.23 (3.66) 0.26 0.65 �0.15 Receiving cues on the adaptation night might reduce

sleep disruption on the first TMR night

Portion of sound cues delivered in N3 0.34 (0.04) 0.05 0.25 �0.29 Cueing in stages other than N3 might reduce the effects

of TMR

Number of sound cues delivered in N3 17 (2.86) 0.05 0.25 �0.29 Cues might be especially effective in N3 sleep

Portion of sound cues delivered in N2 + N3 0.64 (0.04) 0.18 0.6 �0.2 Cues may work equally well in N2 and N3, but worse in

other sleep stages.

Portion of sound cues in wake/N1 0.2 (0.04) 0.59 0.78 0.08 Cues in wake/N1 may be especially likely to be noticed

and disrupt sleep.

Portion of sound cues in REM 0.14 (0.03) 0.20 0.6 0.20 Reactivation in REM may produce unique effects not

seen in other sleep stages (Hutchison et al., 2021)

Portion of total sleep time in N3 0.25 (0.01) 0.57 0.78 0.09 Proxy for overall depth of sleep, which was shown to

affect TMR in a previous study (Whitmore et al., 2022)

Portion of participants reporting hearing

sounds

0.11 (0.04) 0.86 0.99 �0.02 In (Göldi & Rasch, 2019), participants who reported

hearing cues had smaller TMR effects

Mean error at initial test (pixels) 83.39 (3.51) 1.00 1.00 0.00 TMR effects may depend on the strength of initial

learning (Creery et al., 2015)

Morning memory tests performed 2.87 (0.05) 0.61 0.78 0.07 If TMR effects evolve over time, participants who

completed all tests might show a different effect than

those completing only some tests

Number of nights cued 2.18 (0.11) 0.62 0.78 �0.06 Repeated cueing on multiple nights may increase the

total reactivation and provide a stronger TMR effect

Participant age in years 20.56 (0.23) 0.92 0.99 �0.01 Previous studies (Cordi et al., 2018; Whitmore

et al., 2022) found TMR effects were associated with

age

Abbreviations: FDR, false discovery rate; REM, rapid eye movement; TMR, targeted memory reactivation.

Note: Correlation is a linear regression. Sign of the r value indicates the direction of the correlation; a negative r indicates higher values of the independent

variable are associated with more benefits of TMR for memory. Statistics are calculated using the 61 participants included in the memory analysis, except

for correlations with time in sleep stages that were performed in the subset of 45 participants with scorable electroencephalography. Corrected TMR

effect is calculated as (cued bedtime error/cued error at last test) – (uncued bedtime error/uncued error at last test) - the TMR effect predicted from the

bedtime test (Figure 3). We identified correlates of TMR effect using the non-FDR-corrected p values, as this analysis was an initial screen followed up

with a separate experiment, the less conservative approach is most appropriate.

WHITMORE ET AL. 9 of 13

 13652869, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.13731 by R

eadcube (Labtiva Inc.), W
iley O

nline Library on [24/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



An important finding in our experiment was that participants

remained unaware that TMR cues were presented in almost all cases,

with 13% of all participants (11% of those included in memory analy-

sis) reporting hearing cues in Experiment 1 and 7% (8% of those

included in memory analysis) reporting cues in Experiment 2. Rates of

cue perception did not significantly differ between the two experi-

ments. Low cue perception rates are a substantial improvement over

brain-state independent home TMR in past studies in our laboratory

and others, where participants frequently reported hearing cues and

having their sleep disturbed (e.g., Göldi & Rasch, 2019). Presenting

cues without participants noticing is important for usability and to

avoid accidentally unblinding participants in experiments where they

are assigned to different conditions. This result also confirms that

SleepStim can target states where participants are soundly asleep.

The ability to target deep sleep was also reflected by analysis

of the times of cue delivery in relation to the automatic sleep stag-

ing provided by Dreem 2. Cues were delivered disproportionately in

N3 sleep, and most of the cues not delivered in N3 were delivered

in N2. In a recent meta-analysis of the TMR literature, memory ben-

efits were found for both N2 and N3 sleep (Hu et al., 2020). In

TMR experiments aimed at enhancing memory in the sleep labora-

tory environment, cues are typically presented in either N3 or a

combination of N2 and N3, and memory-related sleep features like

spindles and slow waves occur in both of these stages (Dijk

et al., 1993). Our results show that SleepStim can target deep

non-REM sleep and deliver cues without waking participants, both

important advances for sleep-intervention studies in the home. Our

findings also showed that better targeting of N3 was associated

with stronger benefits of TMR for memory (Figure 8b), further

emphasising the importance of targeting cues to N3.

Despite the system's overall ability to target N3, �16% of cues

were delivered in wake as determined by the Dreem 2 algorithm. The

cueing procedure may not have avoided wake epochs as intended.

Perhaps the machine learning was imperfect, in that neural networks

can function unpredictably when provided with data outside the

domain of their training (Tsimenidis, 2020); the low amounts of wake

and N1 recorded in the training set may have provided insufficient

training. Similarly, wake movement patterns recorded in a sleep labo-

ratory likely differ from those at home. Wake cueing could be reduced

by adding additional constraints such as not cueing immediately after

significant body motion.

We demonstrated that the TMR procedure at home can yield

the typical effect observed in the laboratory, where TMR with quiet

sounds improves performance in a spatial memory task (Antony

et al., 2018; Creery et al., 2015; Rudoy et al., 2009; Schechtman

et al., 2021; Vargas et al., 2019). We also found that loud cues

reversed the TMR effect, consistent with our prior findings in a

study of face-name learning (Whitmore & Paller, 2022). Accordingly,

our findings suggest that home TMR can be useful for investigating

memory and perhaps in clinical applications as well. In particular,
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F IGURE 9 In Experiment
1, participants cued with optimal
parameters appeared to diverge
from those cued with non-optimal
parameters. Results are shown for
participants on their last test
(a) and for all three tests (b).
Corrected TMR effect is
calculated as (cued error at last

test/cued bedtime
error) – (uncued error at last test/
uncued bedtime error) – the TMR
effect predicted from the bedtime
test (Figure 4). Individual
participant values are shown in
Figure S2.
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F IGURE 10 Experiment 2 results.
(a) Targeted memory reactivation (TMR)
effects at the final memory test. (b) TMR
effects at each time point, for the
participants who performed all three
morning memory tests. Error bars reflect
the SEM for the within-subjects analysis of
cued error versus uncued error. Figures S1
and S2 show data for individual
participants.
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TMR at home may open up possibilities for clinical research with

TMR, studies of performance enhancement over multiple nights,

and TMR studies with larger numbers of participants and greater

efficiency.

Our results also highlight the critical importance of auditory cue

intensity and sleep disruption in home TMR. In Experiment 1, we

attempted to control sleep disruption through two strategies. First,

initial auditory cue intensity was at the white-noise level that partici-

pants set before sleep. Second, auditory cue intensity was decreased

upon detection of a cue-evoked arousal. Our analysis revealed that

participants who set a high intensity almost always showed a reversed

TMR effect, indicating that participants’ intensity settings were gener-

ally not optimal. Because very few participants reported hearing cues,

the reversed TMR effect likely resulted from micro-arousals rather

than full awakenings. Therefore, we opted to strictly limit intensity in

Experiment 2. Our recommendation is that cues for home TMR be

barely audible in a quiet room. Optimising methods for calibrating

intensity and making adjustments during the night is an important

challenge for future research.

The goal of this study was to test whether TMR could be effec-

tive in a home environment. The limitations included the absence of

objective measures of sleep quality from PSG. Sleep measures were

based on Dreem 2 algorithms; while we did not evaluate agreement

with a second human scorer (as is typical in laboratory studies), the

Dreem 2 has previously demonstrated high agreement with human

scorers (Arnal et al., 2020). The SleepStim system may be less effec-

tive at targeting N3 than a human operator. Also, participant behav-

iour was less standardised than in many laboratory studies. We

deliberately opted not to control factors like bedtimes or stimulant/

alcohol use, given our goal was of examining TMR in a naturalistic set-

ting. Despite these limitations, we found that data acquired with our

SleepStim-based protocol replicated typical effects of TMR with

improved memory for reactivated items.

Currently there remain many unanswered questions about factors

that influence TMR efficacy. For example, do different cueing strate-

gies (such as cues at random versus regular intervals) produce differ-

ent effects on memory? The ability to run high-throughput TMR

experiments at home may facilitate research on such questions. Sleep-

Stim offers a powerful platform for future sleep research. The ability

to run TMR experiments at scale outside the sleep laboratory can

enable new fundamental and clinical studies. The ability to deliver

closed-loop interventions in sleep using SleepStim may also be useful

for applications beyond TMR, such as influencing dream content

(Konkoly et al., 2021) or non-phase-locked entrainment to increase

slow wave and spindle activity (Antony & Paller, 2016; Simor

et al., 2018).

AUTHOR CONTRIBUTIONS

Nathan W. Whitmore and Ken A. Paller designed the experiment.

Nathan W. Whitmore collected, analysed, and interpreted data and

wrote software. Torin Kovach and Jasmine C. Harris wrote software.

Ken A. Paller supervised the project. Nathan W. Whitmore wrote the

manuscript with input from Ken A. Paller.

ACKNOWLEDGMENTS

We thank Kristin Sanders, Kara Dastrup, and Carmen Westerberg for

contributing data used to train the model. Marc Slutzky, Prashanth

Prakash, Vamshi Muvvala, and Soheil Borhani provided valuable input

in developing and testing the approach. Funding was provided from

National Science Foundation (NSF) BCS-1921678, National Institutes

of Health/National Institute of Neurological Disorders and Stroke

(NIH/NINDS) R01NS112942, NIH/NINDS T32 NS047987, and

NIH/National Institute of Mental Health (NIMH) T32 MH067564.

CONFLICT OF INTEREST

All authors declare that no conflict of interest exists.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in

OSF at http://doi.org/10.17605/OSF.IO/6MQK2. Code and docu-

mentation for the SleepStim system is available at https://github.

com/nathanww/home-tmr.

ORCID

Nathan W. Whitmore https://orcid.org/0000-0001-7624-2725

Ken A. Paller https://orcid.org/0000-0003-4415-4143

REFERENCES

Antony, J., Ngo, H.-V. V., Bergmann, T. O., & Rasch, B. (2022). Real-time,

closed-loop, or open-loop stimulation? Navigating a terminological jun-

gle. Unpublished Manuscript.

Antony, J. W., & Paller, K. A. (2016). Using oscillating sounds to manipulate

sleep spindles. Sleep, 40(3), zsw068. https://doi.org/10.1093/sleep/

zsw068

Antony, J. W., Piloto, L., Wang, M., Pacheco, P., Norman, K. A., &

Paller, K. A. (2018). Sleep spindle refractoriness segregates periods of

memory reactivation. Current Biology, 28(11), 1736–1743.e4. https://
doi.org/10.1016/j.cub.2018.04.020

Arnal, P. J., Thorey, V., Debellemaniere, E., Ballard, M. E., Bou

Hernandez, A., Guillot, A., Jourde, H., Harris, M., Guillard, M., Van

Beers, P., Chennaoui, M., & Sauvet, F. (2020). The Dreem headband

compared to polysomnography for electroencephalographic signal

acquisition and sleep staging. Sleep, 43(11), zsaa097. https://doi.org/

10.1093/sleep/zsaa097

Beattie, Z., Oyang, Y., Statan, A., Ghoreyshi, A., Pantelopoulos, A.,

Russell, A., & Heneghan, C. (2017). Estimation of sleep stages in a

healthy adult population from optical plethysmography and acceler-

ometer signals. Physiological Measurement, 38(11), 1968–1979.
https://doi.org/10.1088/1361-6579/aa9047

Bendor, D., & Wilson, M. A. (2012). Biasing the content of hippocampal

replay during sleep. Nature Neuroscience, 15(10), 1439–1444. https://
doi.org/10.1038/nn.3203

Born, J., & Wilhelm, I. (2012). System consolidation of memory during

sleep. Psychological Research, 76(2), 192–203. https://doi.org/10.

1007/s00426-011-0335-6

Cairney, S. A., Guttesen, A. V., El Marj, N., & Staresina, B. P. (2018).

Memory consolidation is linked to spindle-mediated information pro-

cessing during sleep. Current Biology, 28(6), 948–954.e4. https://doi.
org/10.1016/j.cub.2018.01.087

Cheng, L. Y., Che, T., Tomic, G., Slutzky, M. W., & Paller, K. A. (2021).

Memory reactivation during sleep improves execution of a challenging

motor skill. The Journal of Neuroscience, 41(46), 9608–9616. https://
doi.org/10.1523/JNEUROSCI.0265-21.2021

WHITMORE ET AL. 11 of 13

 13652869, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.13731 by R

eadcube (Labtiva Inc.), W
iley O

nline Library on [24/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.17605/OSF.IO/6MQK2
https://github.com/nathanww/home-tmr
https://github.com/nathanww/home-tmr
https://orcid.org/0000-0001-7624-2725
https://orcid.org/0000-0001-7624-2725
https://orcid.org/0000-0003-4415-4143
https://orcid.org/0000-0003-4415-4143
https://doi.org/10.1093/sleep/zsw068
https://doi.org/10.1093/sleep/zsw068
https://doi.org/10.1016/j.cub.2018.04.020
https://doi.org/10.1016/j.cub.2018.04.020
https://doi.org/10.1093/sleep/zsaa097
https://doi.org/10.1093/sleep/zsaa097
https://doi.org/10.1088/1361-6579/aa9047
https://doi.org/10.1038/nn.3203
https://doi.org/10.1038/nn.3203
https://doi.org/10.1007/s00426-011-0335-6
https://doi.org/10.1007/s00426-011-0335-6
https://doi.org/10.1016/j.cub.2018.01.087
https://doi.org/10.1016/j.cub.2018.01.087
https://doi.org/10.1523/JNEUROSCI.0265-21.2021
https://doi.org/10.1523/JNEUROSCI.0265-21.2021


Cordi, M. J., Schreiner, T., & Rasch, B. (2018). No effect of vocabulary reac-

tivation in older adults. Neuropsychologia, 119, 253–261. https://doi.
org/10.1016/j.neuropsychologia.2018.08.021

Creery, J. D., Oudiette, D., Antony, J. W., & Paller, K. A. (2015). Targeted

memory reactivation during sleep depends on prior learning. Sleep,

38(5), 755–763. https://doi.org/10.5665/sleep.4670
D'Agostino, R., & Pearson, E. S. (1973). Tests for departure from normality.

Empirical results for the distributions of b2 and √ b1. Biometrika, 60(3),

613–622. https://doi.org/10.2307/2335012
de Zambotti, M., Goldstone, A., Claudatos, S., Colrain, I. M., & Baker, F. C.

(2018). A validation study of Fitbit charge 2™ compared with polysom-

nography in adults. Chronobiology International, 35(4), 465–476.
https://doi.org/10.1080/07420528.2017.1413578

Dijk, D.-J., Hayes, B., & Czeisler, C. A. (1993). Dynamics of electroencepha-

lographic sleep spindles and slow wave activity in men: Effect of sleep

deprivation. Brain Research, 626(1), 190–199. https://doi.org/10.

1016/0006-8993(93)90579-C

Donohue, K. C., & Spencer, R. M. C. (2011). Continuous re-exposure to

environmental sound cues during sleep does not improve memory for

semantically unrelated word pairs. Journal of Cognitive Education and

Psychology: JCEP, 10(2), 167–177. https://doi.org/10.1891/1945-

8959.10.2.167

Faust, O., Razaghi, H., Barika, R., Ciaccio, E. J., & Acharya, U. R. (2019). A

review of automated sleep stage scoring based on physiological signals

for the new millennia. Computer Methods and Programs in Biomedicine,

176, 81–91. https://doi.org/10.1016/j.cmpb.2019.04.032

Gao, C., Fillmore, P., & Scullin, M. K. (2020). Classical music, educational

learning, and slow wave sleep: A targeted memory reactivation experi-

ment. Neurobiology of Learning and Memory, 171, 107206. https://doi.

org/10.1016/j.nlm.2020.107206

Göldi, M., & Rasch, B. (2019). Effects of targeted memory reactivation dur-

ing sleep at home depend on sleep disturbances and habituation. NPJ

Science of Learning, 4, 5. https://doi.org/10.1038/s41539-019-0044-2

Haghayegh, S., Khoshnevis, S., Smolensky, M. H., Diller, K. R., &

Castriotta, R. J. (2019). Accuracy of wristband Fitbit models in asses-

sing sleep: Systematic review and meta-analysis. Journal of Medical

Internet Research, 21(11), e16273. https://doi.org/10.2196/16273

Honma, M., Plass, J., Brang, D., Florczak, S. M., Grabowecky, M., &

Paller, K. A. (2016). Sleeping on the rubber-hand illusion: Memory

reactivation during sleep facilitates multisensory recalibration. Neuro-

science of Consciousness, 2016(1), niw020. https://doi.org/10.1093/

nc/niw020

Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory

consolidation during sleep: A meta-analysis of targeted memory reacti-

vation. Psychological Bulletin, 146(3), 218–244. https://doi.org/10.

1037/bul0000223

Hutchison, I. C., Pezzoli, S., Tsimpanouli, M.-E., Abdellahi, M. E. A.,

Pobric, G., Hulleman, J., & Lewis, P. A. (2021). Targeted memory reacti-

vation in REM but not SWS selectively reduces arousal responses.

Communications Biology, 4(1), 1–6. https://doi.org/10.1038/s42003-
021-01854-3

JMP (15.2.1). (2019). SAS Institute, Inc.

Johnson, B. P., Scharf, S. M., Verceles, A. C., & Westlake, K. P. (2019). Use

of targeted memory reactivation enhances skill performance during a

nap and enhances declarative memory during wake in healthy young

adults. Journal of Sleep Research, 28(5), e12832. https://doi.org/10.

1111/jsr.12832

Konkoly, K. R., Appel, K., Chabani, E., Mangiaruga, A., Gott, J., Mallett, R.,

Caughran, B., Witkowski, S., Whitmore, N. W., Mazurek, C. Y.,

Berent, J. B., Weber, F. D., Türker, B., Leu-Semenescu, S.,

Maranci, J.-B., Pipa, G., Arnulf, I., Oudiette, D., Dresler, M., &

Paller, K. A. (2021). Real-time dialogue between experimenters and

dreamers during REM sleep. Current Biology: CB, 31(7), 1417–1427.e6.
https://doi.org/10.1016/j.cub.2021.01.026

Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical

Transactions of the Royal Society of London. Series B, Biological Sciences,

262(841), 23–81. https://doi.org/10.1098/rstb.1971.0078
Neumann, F., Oberhauser, V., & Kornmeier, J. (2020). How odor cues help

to optimize learning during sleep in a real life-setting. Scientific Reports,

10(1), 1227. https://doi.org/10.1038/s41598-020-57613-7

Oudiette, D., & Paller, K. A. (2013). Upgrading the sleeping brain with

targeted memory reactivation. Trends in Cognitive Sciences, 17(3),

142–149. https://doi.org/10.1016/j.tics.2013.01.006
Paller, K. A. (1997). Consolidating dispersed neocortical memories: The

missing link in amnesia. Memory, 5(1–2), 73–88. https://doi.org/10.
1080/741941150

Paller, K. A. (2017). Sleeping in a brave new world: Opportunities for

improving learning and clinical outcomes through targeted memory

reactivation. Current Directions in Psychological Science, 26(6),

532–537. https://doi.org/10.1177/0963721417716928
Paller, K. A., Mayes, A. R., Antony, J. W., & Norman, K. A. (2020).

Replay-based consolidation governs enduring memory storage, the cogni-

tive neurosciences (6th ed.). MIT Press. https://par.nsf.gov/biblio/

10187208-replay-based-consolidation-governs-enduring-memory-storage

Patrick, G. T. W., & Gilbert, J. A. (1896). Studies from the psycholog-

ical laboratory of the University of Iowa: On the effects of loss

of sleep. Psychological Review, 3(5), 469–483. https://doi.org/10.

1037/h0075739

Ritter, S. M., Strick, M., Bos, M. W., Van Baaren, R. B., & Dijksterhuis, A.

(2012). Good morning creativity: Task reactivation during sleep

enhances beneficial effect of sleep on creative performance. Journal of

Sleep Research, 21(6), 643–647. https://doi.org/10.1111/j.1365-2869.
2012.01006.x

Rudoy, J. D., Voss, J. L., Westerberg, C. E., & Paller, K. A. (2009). Strength-

ening individual memories by reactivating them during sleep. Science,

326(5956), 1079. https://doi.org/10.1126/science.1179013

Sanders, K. E. G., Osburn, S., Paller, K. A., & Beeman, M. (2019). Targeted

memory reactivation during sleep improves next-day problem solving.

Psychological Science, 30(11), 1616–1624. https://doi.org/10.1177/

0956797619873344

Schechtman, E., Antony, J. W., Lampe, A., Wilson, B. J., Norman, K. A., &

Paller, K. A. (2021). Multiple memories can be simultaneously reacti-

vated during sleep as effectively as a single memory. Communications

Biology, 4(1), 1–13. https://doi.org/10.1038/s42003-020-01512-0
Shambroom, J. R., Fábregas, S. E., & Johnstone, J. (2012). Validation of an

automated wireless system to monitor sleep in healthy adults. Journal

of Sleep Research, 21(2), 221–230. https://doi.org/10.1111/j.1365-

2869.2011.00944.x

Simor, P., Steinbach, E., Nagy, T., Gilson, M., Farthouat, J., Schmitz, R.,

Gombos, F., Ujma, P. P., Pamula, M., B�odizs, R., & Peigneux, P. (2018).

Lateralized rhythmic acoustic stimulation during daytime NREM sleep

enhances slow waves. Sleep, 41(12), zsy176. https://doi.org/10.1093/

sleep/zsy176

Tsimenidis, S. (2020). Limitations of deep neural networks: A discussion of

G. Marcus' critical appraisal of deep learning. ArXiv.

Vargas, I. M., Schechtman, E., & Paller, K. A. (2019). Targeted memory

reactivation during sleep to strengthen memory for arbitrary pairings.

Neuropsychologia, 124, 144–150. https://doi.org/10.1016/j.

neuropsychologia.2018.12.017

Wang, B., Antony, J. W., Lurie, S., Brooks, P. P., Paller, K. A., &

Norman, K. A. (2019). Targeted memory reactivation during sleep

elicits neural signals related to learning content. Journal of Neurosci-

ence, 39(34), 6728–6736. https://doi.org/10.1523/JNEUROSCI.2798-

18.2019

Whitmore, N. W., Bassard, A. M., & Paller, K. A. (2022). Targeted memory

reactivation of face-name learning depends on ample and undisturbed

slow-wave sleep. Npj Science of Learning, 7(1), 1–6. https://doi.org/10.
1038/s41539-021-00119-2

12 of 13 WHITMORE ET AL.

 13652869, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.13731 by R

eadcube (Labtiva Inc.), W
iley O

nline Library on [24/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1016/j.neuropsychologia.2018.08.021
https://doi.org/10.1016/j.neuropsychologia.2018.08.021
https://doi.org/10.5665/sleep.4670
https://doi.org/10.2307/2335012
https://doi.org/10.1080/07420528.2017.1413578
https://doi.org/10.1016/0006-8993(93)90579-C
https://doi.org/10.1016/0006-8993(93)90579-C
https://doi.org/10.1891/1945-8959.10.2.167
https://doi.org/10.1891/1945-8959.10.2.167
https://doi.org/10.1016/j.cmpb.2019.04.032
https://doi.org/10.1016/j.nlm.2020.107206
https://doi.org/10.1016/j.nlm.2020.107206
https://doi.org/10.1038/s41539-019-0044-2
https://doi.org/10.2196/16273
https://doi.org/10.1093/nc/niw020
https://doi.org/10.1093/nc/niw020
https://doi.org/10.1037/bul0000223
https://doi.org/10.1037/bul0000223
https://doi.org/10.1038/s42003-021-01854-3
https://doi.org/10.1038/s42003-021-01854-3
https://doi.org/10.1111/jsr.12832
https://doi.org/10.1111/jsr.12832
https://doi.org/10.1016/j.cub.2021.01.026
https://doi.org/10.1098/rstb.1971.0078
https://doi.org/10.1038/s41598-020-57613-7
https://doi.org/10.1016/j.tics.2013.01.006
https://doi.org/10.1080/741941150
https://doi.org/10.1080/741941150
https://doi.org/10.1177/0963721417716928
https://par.nsf.gov/biblio/10187208-replay-based-consolidation-governs-enduring-memory-storage
https://par.nsf.gov/biblio/10187208-replay-based-consolidation-governs-enduring-memory-storage
https://doi.org/10.1037/h0075739
https://doi.org/10.1037/h0075739
https://doi.org/10.1111/j.1365-2869.2012.01006.x
https://doi.org/10.1111/j.1365-2869.2012.01006.x
https://doi.org/10.1126/science.1179013
https://doi.org/10.1177/0956797619873344
https://doi.org/10.1177/0956797619873344
https://doi.org/10.1038/s42003-020-01512-0
https://doi.org/10.1111/j.1365-2869.2011.00944.x
https://doi.org/10.1111/j.1365-2869.2011.00944.x
https://doi.org/10.1093/sleep/zsy176
https://doi.org/10.1093/sleep/zsy176
https://doi.org/10.1016/j.neuropsychologia.2018.12.017
https://doi.org/10.1016/j.neuropsychologia.2018.12.017
https://doi.org/10.1523/JNEUROSCI.2798-18.2019
https://doi.org/10.1523/JNEUROSCI.2798-18.2019
https://doi.org/10.1038/s41539-021-00119-2
https://doi.org/10.1038/s41539-021-00119-2


Whitmore, N. W., & Paller, K. A. (2022). Sleep disruption selectively

weakens reactivated memories (p. 2022.04.10.487316). Unpublished

manuscript. https://doi.org/10.1101/2022.04.10.487316

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Whitmore, N. W., Harris, J. C.,

Kovach, T., & Paller, K. A. (2022). Improving memory via

automated targeted memory reactivation during sleep. Journal

of Sleep Research, e13731. https://doi.org/10.1111/jsr.13731

WHITMORE ET AL. 13 of 13

 13652869, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jsr.13731 by R

eadcube (Labtiva Inc.), W
iley O

nline Library on [24/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1101/2022.04.10.487316
https://doi.org/10.1111/jsr.13731

	Improving memory via automated targeted memory reactivation during sleep
	INTRODUCTION
	Previous research on TMR outside of the sleep laboratory
	Designing a home TMR system

	EXPERIMENT 1 METHODS
	SleepStim system
	Neural network training and testing
	Automated TMR
	Participants
	Procedure
	Day 1
	Day 2
	Days 3 and 4
	Day 5

	Memory performance measurement
	Controlling for effects of initial memory performance
	Dreem 2 sleep staging

	EXPERIMENT 1 RESULTS
	TMR cues were effectively targeted to N3 sleep
	Participants generally did not notice TMR cues
	Participants efficiently learned and retained object locations
	Recall accuracy declined but seemed uninfluenced by TMR
	TMR effect was associated with cue-sound intensity and sleep-stage targeting
	Comparing TMR with optimal versus non-optimal parameters

	EXPERIMENT 2 METHODS
	Participants

	EXPERIMENT 2 RESULTS
	Participants rarely reported hearing sounds
	TMR improved spatial memory at last test

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


