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INTRODUCTION

Sleep has long been recognised as

Jasmine C. Harris? |

important for memory

Torin Kovach? | Ken A. Paller?

Summary

A widely accepted view in memory research is that previously acquired information can
be reactivated during sleep, leading to persistent memory storage. Targeted memory
reactivation (TMR) was developed as a technique whereby specific memories can be
reactivated during sleep using a sensory stimulus linked to prior learning. As a research
tool, TMR can improve memory, raising the possibility that it may be useful for cognitive
enhancement and clinical therapy. A major challenge for the expanded use of TMR is
that a skilled operator must manually control stimulation, which is impractical in many
settings. To address this limitation, we developed the SleepStim system for automated
TMR in the home. SleepStim includes a smartwatch to collect movement and heart-rate
data, plus a smartphone to emit auditory cues. A machine-learning model identifies
periods of deep sleep and triggers TMR sounds within these periods. We tested
whether this system could replicate the spatial-memory benefit of in-laboratory TMR.
Participants learned locations of objects on a grid, and then half of the object locations
were reactivated during sleep over 3 nights. Recall was tested each morning. In an
experiment with 61 participants, the TMR effect was not significant but varied system-
atically with stimulus intensity; low-intensity but not high-intensity stimuli produced
memory benefits. In a second experiment with 24 participants, we limited stimulus
intensity and found that TMR reliably improved spatial memory, consistent with effects
observed in laboratory studies. We conclude that SleepStim can effectively accomplish

automated TMR, and that avoiding sleep disruption is critical for TMR benefits.
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memory consolidation, memory replay, sleep, sleep disruption, wearable technology

Studies using targeted memory reactivation (TMR) have provided
evidence for this hypothesis by demonstrating that selectively reacti-

vating memories during sleep can strengthen them (Oudiette &

(e.g., Patrick & Gilbert, 1896), but much remains to be learned about
why. A prevalent view at the present time is that reactivation
of stored information during sleep helps stabilise memories, prevent-
ing forgetting of important information (Born & Wilhelm, 2012;
Marr, 1971; Paller, 1997; Paller et al., 2020).

Paller, 2013). In TMR experiments, learning is associated with a sensory
cue, which is subsequently presented during sleep without awaking the
sleeper. Cue presentation can lead to reactivation of memory content
in the cortex and hippocampus (Bendor & Wilson, 2012; Cairney
et al,, 2018; Wang et al,, 2019). After sleep, reactivated memories are
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typically remembered better than those not reactivated, demonstrating
that memory reactivation during sleep can strengthen memory, a find-
ing that has been confirmed by meta-analysis (Hu et al., 2020).

Experiments with TMR have shown that it is a useful tool for inves-
tigating questions in memory research and potentially as an intervention
for cognitive enhancement. For example, TMR can improve retention of
information learned in a classroom setting (Gao et al., 2020) and facili-
tate learning of motor skills (Cheng et al., 2021; Johnson et al., 2019).
Researchers have therefore proposed that TMR may be useful to
enhance memory and to augment therapies that depend on learning,
e.g., rehabilitation (Oudiette & Paller, 2013; Paller, 2017).

A major barrier to expanding use of TMR is that the technique
requires experimenters to control presentation of cues while monitor-
ing sleep using polysomnography (PSG). In this way, cues can be pre-
sented in a particular sleep stage without arousing the participant
from sleep. A specialised sleep facility and extensive training of opera-
tors is required for this online sleep scoring, and participants must
sleep in an environment that differs in many ways from their typical
sleeping environment at home.

These requirements impose substantial limitations on TMR exper-
iments. For example, very few studies have examined the effects of
multiple TMR sessions, owing largely to logistical difficulties. Standard
TMR requirements also make it impractical to study or use TMR in
clinical therapy across multiple sessions. To surmount these limita-
tions, new ways to perform TMR in participants’ own homes are
needed, ideally using an automated system that does not require

direct control by an operator.

Previous research on TMR outside of the sleep
laboratory

Previous research on home-TMR can be divided into two categories.
With brain-state-independent approaches (Antony et al., 2022), TMR
cues are automatically presented during sleep irrespective of sleep
stage. In brain-state-dependent approaches, there is an attempt to
present TMR cues in a specific sleep stage.

Brain-state independent TMR has shown mixed results in improv-
ing cognition and memory. Ritter et al. (2012) found that memory reac-
tivation during sleep could enhance creative problem solving; the
researchers reactivated a problem-solving task using a plug-in scent dif-
fuser during overnight sleep. While they slept, participants received
either an odour linked to the task, an irrelevant odour, or no odour, and
those who received task-linked odours produced solutions that blinded
raters judged as more creative. Similarly, Neumann et al. (2020) found
that TMR with an olfactory cue (incense sticks placed near the head
while sleeping) could improve vocabulary learning in children. Other
brain-state independent TMR experiments, in contrast, did not find
benefits consistent with the TMR literature. Donohue and Spencer
(2011) found that TMR using a continuous ocean sound played while
participants slept overnight did not improve memory for word pairs.
Goldi and Rasch (2019) found no effect of TMR when foreign vocabu-
lary was cued 30 min after sleep onset. However, in a further analysis

the authors showed that TMR benefitted memory for participants who
reported that their sleep was undisturbed, but not those who reported
that sound cues disturbed their sleep.

Our recent experiments using PSG recordings in the laboratory envi-
ronment substantiated the notion that Goldi and Rasch (2019) put forward
- that TMR does not improve memory when sleep is disrupted by sounds.
One study showed that a TMR benefit for learning face-name associations
was reduced when TMR sounds disrupted sleep (Whitmore et al., 2022).
Furthermore, deliberately disrupting sleep with loud sound cues reverses
the TMR effect on spatial recall, selectively weakening reactivated memo-
ries (Whitmore & Paller, 2022). Therefore, we suggest that brain-state
independent TMR may tend to be ineffective because the intensity and
timing of cues cannot be flexibly adjusted to avoid disrupting sleep.

Accordingly, brain-state dependent home TMR controlled using a
sleep sensor may be superior to brain-state independent TMR. In two
prior experiments with home TMR, we used a modified Zeo system
(Shambroom et al., 2012) with electrolyte-filled electrodes for fore-
head electroencephalography (EEG) recordings used to control sound
presentations. One study showed an impact of TMR on feelings of
ownership and proprioceptive drift in the rubber-hand illusion
(Honma et al., 2016). The other showed effects on creative problem

solving (Sanders et al., 2019).

Designing a home TMR system

Based on previous research and pilot testing, we identified key needs
for a home TMR system. These included the ability to target specific
sleep stages, robustness to signal problems (such as poor contact
quality), and minimal reliance on proprietary or ‘black-box’ technol-
ogy. The system must also be comfortable, avoid disturbing sleep, and
be easy for participants to use.

As no complete system currently exists meeting these require-
ments, we developed a new open-loop, brain-state dependent TMR
system that we call ‘SleepStim’. This system works with consumer
devices, specifically an Android phone and a Fitbit smartwatch. Previ-
ous research has shown that sleep stages can be decoded from heart
rate and wrist movement (Beattie et al., 2017; de Zambotti et al., 2018;
Faust et al., 2019); although these algorithms are less accurate than tra-
ditional sleep scoring they can still provide useful information on sleep
(Haghayegh et al., 2019). We developed a custom algorithm to identify
periods of N3 sleep and trigger TMR cueing during these periods (with-
out the need to discriminate all sleep stages). We then tested whether
TMR with SleepStim could improve memory for object-location associ-

ations as observed in previous TMR studies (e.g., Rudoy et al., 2009).

EXPERIMENT 1 METHODS

Figure 1 shows a diagram of the 5-day procedure. On the first day, we
provided participants with a Fitbit Versa and an Android smartphone.
To allow us to correlate sleep-physiology features with behavioural

results, a Dreem 2 headband (Arnal et al., 2020) was also provided. On
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FIGURE 1 (a) Sequence of (a) Day 1 Day 2 Day 3 Day 4 Day 5
events in the study. On day 2 all  Pick up e Test1d e Test? e Test3
tasks were completed in the Morning equipment e Return
evening. (b) the learning phase ) . ) equipment
. . .  Adaptation * Leamningtask ||e TMRnight2 |[|e TMR night3
included five blocks with ) ) « Bedtime test

. Evening night SR U=
10 objects each. Each block * TMR night 1
included presentation of objects ()

(left) and trials of location recall
with the drop-out method (right).
The sound of each object was

The participant was shown the locati
of 10 objects (2 examples below)
“dong” “meow”

ons Next, the participant moved each object (indicated here by green
arrow) and then feedback was given
“dong”

played whenever the object
appeared on the screen in its ﬂ
target location. The memory test §
used the same procedure for
location recall except that
participants were not given
feedback or shown the correct gl

location of the objects, and the ASS
sounds were not played.

(c) Diagram of the cue-control (c)

algorithm. When average

probability of N3 passes the

threshold (0.9), cues are played 0.9

10s

m udongn nmeown

every 10 s. Cueing stops when p
(N3) drops below this threshold
or an arousal is detected.

FIGURE 2 Schematic of the |

Continuous heart rate, rotation, acceleration

feature-extraction system and neural
network. Variance was calculated using the

'

standard deviation of each chunk.

Feature extraction: 240s of data is broken into chunks of 10-120 samples

- - - - - - 10-sample chunks

| |

| | ‘ 20-sample chunks

Most recent

Variance in each chun

values + sum

k is input to neural network

...120-sample chunks of motion
‘ over last
240's
| 10 tanh units
v
| 5 tanh units |
v
| p(N3) |

the second day, participants learned arbitrary screen locations for
50 objects shown on a grid on the smartphone. Each object appeared
with a distinct sound naturally associated with the object (mean
[SD] duration 554 [181] ms). On the second, third, and fourth night, the
SleepStim system presented sound cues for half of the objects during
sleep. Memory was tested in the morning of the third, fourth, and fifth
day. We predicted that participants would recall locations more accu-
rately for objects reactivated during sleep compared to those not reac-
tivated, replicating the typical effect of TMR on spatial memory.

SleepStim system

The SleepStim system was designed to present TMR cues in N3 sleep,
detected using a Fitbit worn by participants. A custom application

running on the Fitbit acquired data once per second. Data consisted
of heart rate in beats per minute, acceleration on x-, y-, and z-axis, and
rotation on these axes from the accelerometer and gyro, respectively.
Data were transmitted via Bluetooth to the paired phone. The first
step of processing on the phone was feature extraction, as schema-
tised in Figure 2. Briefly, the phone computed a time-frequency repre-
sentation of the last 240 s of accelerometer, gyro, and heart-rate data.
The result was a time-frequency matrix, quantifying variability as a
function of both time (number of prior seconds) and frequency. This
transformation is similar to that used in other sleep-staging algorithms
(Beattie et al., 2017) and is useful because it allows for characterisa-
tion of various sleep phenomena (e.g., high- versus low-frequency
heart rate variability). Because time-frequency variability was highly
correlated on all axes, only the z-axis of the accelerometer and gyro

signals was used in computing the time-frequency representation.
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Following feature extraction, the time-frequency features along with
current values from all sensors and total motion integrated over the
last 240 s were input to an artificial neural network classifier trained
to predict the probability of N3 sleep. For each sample, the network
produced a value, p(N3), corresponding to the probability of N3 sleep.

Neural network training and testing

We trained the neural network on a dataset for 24 participants that
included Fitbit data and sleep scores from an overnight session. Half of
the participants were young adults who slept in the laboratory over-
night for an unrelated study and half were middle-aged adults who
slept at home. For the young adults, sleep stages were determined by
manual scoring of PSG data; for middle-aged adults sleep stages were
determined using the automatic scoring built into the Dreem 2.

Prior to training, we computed features for the Fitbit data as
described above. To speed training, we subsampled the data by a fac-
tor of 5, to yield one sample every 5 s. Preliminary testing showed
down-sampling did not meaningfully affect classifier accuracy, likely
due to redundant information in successive samples. In total, 178,948
observations were included.

We then trained a perceptron neural network classifier with two
hidden layers to predict whether each second would be scored as N3
based on the Fitbit features. Training was performed using the Neural
module of JMP 15.2.1 (2019) using the ‘squared’ regularisation pen-
alty. To evaluate the network's overall performance in classifying N3
sleep, we also trained a separate version of the model with one-third
of the subjects (50,425 observations) held out from training as a vali-
dation set. The model achieved an area under the curve of 0.77 in
classifying sleep as N3 or non-N3, indicating that it exceeded chance
performance. We also evaluated alternative classifier schemes, includ-
ing linear discriminant analysis and a convolutional neural network. Of
these, the two-layer perceptron combined with our feature-extraction

algorithm performed the best.

Automated TMR

Sounds were played at constant 10-s intervals (onset-onset), approxi-
mating TMR protocols used in laboratory studies where sounds were
presented every 5-10s (Creery et al., 2015; Rudoy et al., 2009;
Whitmore et al., 2022). Sound presentation started when N3 sleep
was detected, as operationalised by (a) a high value for the probability
of N3 averaged over the most recent 240 s, p(N3) 20.9, and (b) the
most recent value for p(N3) 20.85. Start/stop timing and sound inten-
sity was controlled by the algorithm shown in Figure 3.

SleepStim was limited to presenting sounds when p(N3) was high
within a time interval from 15 min to 3 h after the time the system
was turned on. The system was also limited to stimulating for a maxi-
mum of 10.5 min. These constraints were imposed to minimise the
chance of disrupting sleep and are consistent with protocols used in
laboratory TMR studies (Rudoy et al., 2009).

Participants

We collected data from 120 adults recruited using flyers placed on
campus. The protocol was approved by the Northwestern University
Institutional Review Board. Participants provided written informed
consent and were paid for their time.

We conducted three major analyses comprising (i) how frequently
participants perceived TMR sounds, (ii) effects of TMR on memory,
and (iii) EEG correlates of the TMR effect. All 120 participants were
included in Analysis 1. For Analysis 2, we included only participants
who completed memory tests and TMR stimulation in accordance
with the protocol, as defined by the following criteria:

o Completion of training, the bedtime memory test, and at least one
morning memory test.

e During sleep, at least 25 cues were presented.

e No more than four stimuli were presented when the Fitbit read a
heart rate of zero (indicative of a poor heart rate signal).

e Objects were correctly allocated to cued and uncued conditions
(which did not happen for three participants due to a bug in the

allocation algorithm).

Analysis 2 included 61 participants, with a mean (SEM, range) age
of 20.6 (0.23, 18-25) years and 17 (28%) were male.

Analysis 3 (EEG correlates of TMR) included 45 participants who
met criteria for Analysis 2 and had at least 1 night of Dreem 2 data
during cueing with sufficient quality for automatic sleep staging.
These participants had a mean (SEM, range) age of 20.4 (0.24,
18-25) years and 14 (31%) were male.

Procedure
Day 1

Participants picked up the equipment and were instructed on the proce-
dure and how to use the smartphone app. They wore the Fitbit and the
Dreem 2 that night to allow for acclimation to the equipment. The phone
played continuous white noise overnight. Participants used a slider in the
app to set the white-noise intensity to a comfortable level. This intensity
setting was used as the initial setpoint for sounds played during the
night. Using the algorithm described in detail below, the app controlled
presentation of a control sound (electronic ding) intended to help partici-
pants adapt to the potential disruption of sound presentations. The goal
was to reduce sleep disruption from experimental sounds presented on
subsequent nights. Targeting slow-wave sleep, the phone repeatedly
played an electronic ding sound that was unrelated to the memory task.

Day 2

Using the phone, participants completed the learning phase at a mean
(SEM) time of 10:24 p.m. (71 min). In this task (described in Figure 1b),
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Mean P(N3) >
0.9 over the last
240 s?

Fewer than
10.5 min of
cues presented

this night?
A MA
Are sound cues
currently
playing?
Yes
Stop sound cues
Current cue Increase cue
intensity < intensity by
Decrease cue intensity 0.00025 t
intensity setpoint? (capped a
t00 setpoint)
5 min delay is enforced
before any cueing can
resume in order to allow
the participant to return, )
to deep sleep ) \ No P(N3) <0.85in
Wait 5 mln/ < the last Yes /e sound cues
sample? currently
A playing?
Decrease -
intensity setpoint Begin
by 0.015 presenting
cues with 10-S
1SI
FIGURE 3 Flow chart illustrating how sounds are controlled in the SleepStim system. p(N3) is the probability that the participant is in N3

sleep as determined by the neural network classifier. The Fitbit transmits data once per second; if no Fitbit data is received for 10 s (indicating
loss of signal), the sounds are turned off. A rapid drop in p(N3) while sounds are playing suggests the sounds aroused the participant and the
auditory cue intensity may be set too high, therefore the auditory cue intensity setpoint is decreased if p(N3) drops below 0.85 while sounds are
playing. Latency is approximately 1 s from acquisition to the availability of p(N3); the latency is constant and not affected by signal quality as data

is never re-transmitted.

a grid covered the phone's entire screen, and participants learned the
correct locations of objects on the grid. The app recorded accuracy
and response times during each phase.

There were five blocks of trials, each with 10 objects. First, the par-
ticipant was shown the correct locations of the 10 objects in that block.
Then, each object appeared in the centre of the screen in a random
order, and the participant attempted to move it to the correct location.
The participant then received feedback consisting of a red X
(if incorrect) or a green checkmark (if correct) at the location where they
positioned the object. The feedback was presented for 2 s, after which
the object was displayed in the correct position for 3 s. The placement
was considered correct if the object was placed within 120 pixels
(~2 cm) of the correct location; correct objects were dropped from the
rotation. A block ended when the participant placed all objects correctly.
The phone played the sound associated with each object when it first
appeared on the screen, and when the correct location was shown in
the feedback phase. The learning task was made unavailable after it was

completed to ensure participants only completed it once.

Participants began the bedtime memory test shortly after com-
pleting the learning (mean [SEM] delay 11 [5] min). In this test, all
50 objects were presented sequentially in the centre of the screen, in
random order, and the participant attempted to move each object to
its correct location. Unlike in the learning phase, no feedback was
given.

After participants completed their bedtime memory test, the
app selected 25 objects to be cued during sleep using a matching
algorithm to minimise the difference in bedtime memory perfor-
mance between two sets of objects (to be cued and uncued).
Objects were sorted by memory error and then assigned in alternat-
ing order (i.e.,, 1 = cued, 2 = uncued...). Because some differences
remained after this assignment, the app also counterbalanced partic-
ipants so that the assignment procedure started with cued in half of
the participants and uncued in the other half. As expected, there
was no difference in recall accuracy between cued and uncued
objects in the bedtime memory test (Wilcoxon signed-rank test,
z[60] = 0.8, p = 0.42).
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Shortly before going to sleep, the participant put on the Fitbit and
Dreem 2, started the TMR app, and calibrated white-noise intensity.
During the night, and on all subsequent nights, sounds linked to the

25 objects in the cued condition were presented during sleep.

Days 3 and 4

Participants completed a memory test in the morning. The test was
identical to the memory test on Day 2, except with a different random
order of objects. During sleep, they used the Fitbit, Dreem 2, and
TMR app as on previous nights.

Day 5

Participants completed a final memory test in the morning and returned
the equipment. When returning the equipment, we asked participants
whether they remembered hearing any of the sounds from the memory
task while they were sleeping. To avoid demand effects, participants
were not asked about the TMR sounds (or told that TMR sounds were

presented) until this point, consistent with laboratory TMR protocols.

Memory performance measurement

We measured memory change as the ratio of mean spatial error at a
morning memory test to mean spatial error at the bedtime memory
test (e.g., mean testl error/mean bedtime test error). We computed
this statistic separately for cued and uncued objects. We used non-
parametric tests in comparisons of memory error as error values were
not normally distributed (D’ Agostino & Pearson, 1973).

For each test, we computed the TMR effect as the memory change
for cued objects minus the memory change for uncued objects. A nega-
tive value indicates a benefit of TMR for memory. For example, a TMR
effect of —0.1 implies that the increase in error for cued objects was
10% lower than the increase in error for uncued objects. We deter-
mined whether TMR effects differed significantly from zero using the
Wilcoxon signed-rank test, a non-parametric one-sample test.

In the primary analysis of the TMR effect, we examined memory per-
formance on the last test taken. Whereas participants were asked to take
three memory tests, some failed to do so on one or more mornings.
Therefore, our primary outcome was performance at last test, which was
the last test for which data were available. For participants who com-

pleted all three tests (n = 41) we computed performance on each night.

Controlling for effects of initial memory performance

We observed that TMR effects were correlated with the pre-sleep dif-
ference in memory performance between cued and uncued objects
(Figure 4), which could be interpreted as regression to the mean. That

is, the larger the cued/uncued difference initially, the more likely this

1.0¢
2 08 r=0.34
2 06 o .
% 04fo  ° o o p=0.0f
2 02h.. e o ° 8%
T QU8 ot o
_,8, _0.2_ ° o%o 0;030% ......... SLIITTRN &
o ° o

% -0.4r o »° ° °
T -0.6f
s 0.8} °
F 1.0t

0.85 0.95 1.05 1.15 1.25

Cued error/uncued error at bedtime test

FIGURE 4 An example of the linear regression used to control for
variation in memory performance in the bedtime test in Experiment

1. The bimodal distribution of bedtime test scores resulted from the
procedure used to assign objects to cued and uncued conditions.

difference is reduced on the subsequent test. Because this effect adds
variability that could obscure other correlations, we controlled for this
effect before analysing relationships between the TMR effect and
other variables. In this procedure, we used linear regression to isolate
the relation between the TMR effect and initial memory performance
differences between cued and uncued objects, computed separately
for each test. The residual effect after covarying out the effects of ini-
tial performance was termed the corrected TMR effect.

Dreem 2 sleep staging

We used data from the Dreem 2 headset to compute the time partici-
pants spent in each sleep stage, as well as the percentage of cues deliv-
ered in each sleep stage. Some participants did not have sufficient
high-quality data for staging (by the proprietary Dreem 2 algorithm), so

only a subset of 45 participants were included in these analyses.

EXPERIMENT 1 RESULTS
TMR cues were effectively targeted to N3 sleep

For 45 participants with EEG recordings of sufficient quality to permit
sleep staging during cueing, we compared the percentage of cues
delivered in each sleep stage to the percentage of overall time spent
in that sleep stage. This analysis served as an independent test that
the algorithm targeted N3 sleep in a new group of participants follow-
ing the original test and validation set.

Results shown in Figure 5 revealed that SleepStim successfully
targeted N3. Compared to the total time in each stage, the time when
cues were played was more likely to be N3 (t[44] = 3.56, p < 0.001)
and less likely to be classified as N2 (t[44] = 2.26, p = 0.03) or rapid
eye movement (REM) sleep (t[44] = 2.61, p = 0.01). Although N2 was
underrepresented in the cued sleep, a substantial number of cues
were presented in N2 due to the higher base rate of N2 sleep. We did
not observe differences between total sleep and cued sleep in wake
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FIGURE 5 Results from Experiment 1 showing that the SleepStim

system predominantly delivered cues during N3 sleep. Grey bars
show the proportion of time spent in each sleep stage and blue bars
show the distribution of sleep stages when cues were delivered.
Whereas N3 comprised 21.1% of sleep, 34.7% of the cues were
delivered in this stage, and 65.5% of the cues were delivered in stages
N2 or N3. Cues in each stage are also listed in Table S1.
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FIGURE 6 Error at the Experiment 1 bedtime test remained
below the learning criterion (120 pixels). Error did not differ between
cued and uncued conditions (Wilcoxon signed-rank test; mean
difference = 0.76 pixels, z(60) = 0.8, p = 0.42). Individual participant
values are shown In Figure S2.

or N1, which may be because these stages were rarely observed in
the training set, providing little opportunity for the model to learn
how to identify them.

Participants generally did not notice TMR cues

In the full sample (including participants who did not pass inclusion cri-
teria), 16/120 participants (13%) reported hearing at least one sound
from the memory task. No participants reported that the sounds dis-
rupted their sleep or woke them. Among the participants included in

analysis, seven of 61 (11%) reported hearing at least one sound.
Participants efficiently learned and retained object
locations

Participants required a mean (SEM) of 1.61 (0.09) repetitions per object
in the learning phase to reach criterion. In the bedtime test, participants’

Research

mean accuracy surpassed the criterion (Figure 6), indicating that the

learning procedure created an effective memory at a short delay.

Recall accuracy declined but seemed uninfluenced
by TMR

The mean (SEM) spatial error increased from 83 (3.51) pixels at bed-
time test to 106 (3.90) pixels at last test, indicating significant forget-
ting (Wilcoxon signed-rank test; z[60] = —6.27, p < 0.001). No
significant TMR effect was found at the last test or at any of the indi-
vidual time points (Figure 7).

TMR effect was associated with cue-sound intensity
and sleep-stage targeting

We hypothesised that sleep disruption caused by excessively loud cues
might have reduced the benefits of TMR. Given previous findings that loud
cues can disrupt memory processing in sleep (Whitmore & Paller, 2022),
we quantified the maximum intensity used overnight. The memory benefit
from TMR was significantly correlated with maximum auditory cue inten-
sity and marginally correlated with the percentage of cues delivered in
stage N3 (Figure 8, Table 1). That is, the tendency for memory to improve
more for cued objects than for uncued objects was greater when intensity

was lower and when more cues were delivered in N3.

Comparing TMR with optimal versus non-optimal
parameters

Given these correlational results, we explored individual differences
further by considering whether TMR might have a larger benefit in
participants cued with optimal parameters, defined as receiving at
least 25 sound cues on the adaptation night and using a relatively low
maximum sound intensity (<0.02). We opted to select these partici-
pants because these two factors, adaptation procedures and sound
intensity, could be directly controlled by the experimenter to reduce
sleep disruption. Differences between the two groups were non-
significant (Figure 9), but we did observe near-trend effects where the
TMR effect was larger for the optimal-cued participants at last test
(Mann-Whitney U test, U[60] = 356, p = 0.12) and at test 3 (U
[52] = 258, p = 0.11). Neither the optimal or non-optimal group
showed a significant effect of TMR at the last test or at test 3.

EXPERIMENT 2 METHODS

Because our initial experiment suggested that SleepStim could
improve memory contingent on low auditory cue intensity, we con-
ducted a follow-up study implementing an improved method. This
experiment was identical to the original experiment, except for the

following modifications.
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FIGURE 7 (a) Mean spatial error in Experiment 1 increased by ~30% for both cued and uncued objects at the last test (compared to the
bedtime test immediately after learning). There was no significant difference in error between the cued and uncued objects. (b) in participants
who completed all three morning tests (n = 41), error continued to increase throughout the experiment, reflecting forgetting. Error bars reflect
the SEM for the within-subjects analysis of cued error-uncued error. Individual participant values are shown in Figure S2.

e Participants could not set initial intensity >0.02.

e A new algorithm required participants to receive at least 25 adaptation
cues before they could begin the memory test, and if 25 cues were
not presented, the adaptation procedure was administered again.

e Participants could receive up to 30 min of cueing per night
(compared to 10.5 min in Experiment 1).

e We improved the algorithm for allocating objects to cued and uncued
conditions, which matched conditions more closely, obviating the need
for controlling for pre-sleep memory performance in the analysis.

Participants

Participants were recruited and paid using the same methods as the
prior experiment. We collected data from 44 participants, and of these,
24 passed inclusion criteria and their data were included in the analysis
of TMR effects on memory. Participants had a mean (SEM, range) age
of 21.6 (0.65, 18-31) years and seven of the 24 (29%) were male.

EXPERIMENT 2 RESULTS
Participants rarely reported hearing sounds

In the full sample, four of 44 participants (9%) reported hearing TMR
sounds during sleep. Among participants included in memory analysis,
two of 24 (8%) reported perceiving TMR sounds. One of the two par-
ticipants in the latter group who reported hearing sounds also

reported that the sounds disturbed their sleep.

TMR improved spatial memory at last test

As shown in Figure 10, the improved TMR protocol significantly
improved memory for cued objects relative to uncued objects at the
last test (Wilcoxon signed-rank test; z[23] = —2.69, p = 0.007). For
participants who took all three memory tests (n = 18), a significant
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FIGURE 8 Correlates of the targeted memory reactivation (TMR)
effect in Experiment 1. (a) Correlation between corrected TMR effect
and maximum auditory cue intensity. (b) Correlation between
corrected TMR effect and proportion of cues in N3. Corrected TMR
effect is calculated as (cued error at last test/cued bedtime error) -
(uncued error at last test/uncued bedtime error) - the TMR effect
predicted from the bedtime test (Figure 4).
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TABLE 1

Measure Mean (SEM) p

Total number of cues during experiment 145.13 (8.52) 0.36
Cues per cued night 67.25(3.25) 0.53
Maximum cue intensity 0.03(0.00) 0.02
Number of sounds on adaptation night 48.23 (3.66) 0.26
Portion of sound cues delivered in N3 0.34(0.04) 0.05
Number of sound cues delivered in N3 17 (2.86) 0.05
Portion of sound cues delivered in N2 + N3 0.64(0.04) 0.18

Research

Correlations between the corrected targeted memory reactivation effect and sleep/participant variables in Experiment 1

Portion of sound cues in wake/N1 0.2(0.04) 0.59

Portion of sound cues in REM 0.14 (0.03) 0.20

Portion of total sleep time in N3 0.25(0.01) 0.57

Portion of participants reporting hearing 0.11(0.04) 0.86

sounds

Mean error at initial test (pixels) 83.39 (3.51) 1.00

Morning memory tests performed 2.87 (0.05) 0.61

Number of nights cued 2.18(0.11) 0.62

Participant age in years 20.56 (0.23) 0.92

FDR

p r Rationale

0.77 —0.12  Increased number of cues may produce more
reactivation and stronger effect

0.78 —0.08 Alternative measurement of the number of cues
controlling the number of nights cued

0.25 0.31  Sound intensity is set by the user before sleep;
excessively loud or soft cues might be ineffective

0.65 —0.15 Receiving cues on the adaptation night might reduce
sleep disruption on the first TMR night

0.25 —0.29  Cueing in stages other than N3 might reduce the effects
of TMR

0.25 —0.29  Cues might be especially effective in N3 sleep

0.6 -0.2 Cues may work equally well in N2 and N3, but worse in
other sleep stages.

0.78 0.08  Cues in wake/N1 may be especially likely to be noticed

and disrupt sleep.

0.20  Reactivation in REM may produce unique effects not
seen in other sleep stages (Hutchison et al., 2021)

0.78 0.09  Proxy for overall depth of sleep, which was shown to
affect TMR in a previous study (Whitmore et al., 2022)

0.99 —0.02 In(Goldi & Rasch, 2019), participants who reported
hearing cues had smaller TMR effects

1.00 0.00 TMR effects may depend on the strength of initial
learning (Creery et al., 2015)

0.78 0.07 If TMR effects evolve over time, participants who
completed all tests might show a different effect than
those completing only some tests

0.78 —0.06 Repeated cueing on multiple nights may increase the
total reactivation and provide a stronger TMR effect

0.99 -0.01 Previous studies (Cordi et al., 2018; Whitmore

et al., 2022) found TMR effects were associated with
age

Abbreviations: FDR, false discovery rate; REM, rapid eye movement; TMR, targeted memory reactivation.

Note: Correlation is a linear regression. Sign of the r value indicates the direction of the correlation; a negative r indicates higher values of the independent
variable are associated with more benefits of TMR for memory. Statistics are calculated using the 61 participants included in the memory analysis, except
for correlations with time in sleep stages that were performed in the subset of 45 participants with scorable electroencephalography. Corrected TMR
effect is calculated as (cued bedtime error/cued error at last test) - (uncued bedtime error/uncued error at last test) - the TMR effect predicted from the
bedtime test (Figure 3). We identified correlates of TMR effect using the non-FDR-corrected p values, as this analysis was an initial screen followed up

with a separate experiment, the less conservative approach is most appropriate.

difference between cued and uncued conditions emerged at the
second memory test and persisted in the third test (Wilcoxon signed-
rank test; z[17] = —1.63, —2.24,-2.29, p = 0.103, p = 0.025, and
p = 0.022 for test 1, 2, and 3, respectively).

DISCUSSION

Given that studies in the home environment would greatly expand
research and applications related to memory processing during sleep,
we designed and tested SleepStim, a novel wearable system for pre-
senting auditory cues during sleep. In Experiment 1, we found that

cues did not improve memory overall, but across participants the

memory effect was correlated with auditory cue intensity. We limited
auditory cue intensity in Experiment 2 and found that cues benefitted
memory. Our results confirmed that SleepStim can target deep sleep
and produce memory benefits that mirror those achieved via memory
reactivation in sleep laboratories equipped with PSG equipment. We
used a wearable device for obtaining EEG data from the forehead to
validate our procedure, but the TMR method we devised can be
applied with this system using only a wrist-worn device and a smart-
phone, making it easy to use, efficient, relatively inexpensive, and well
tolerated by most individuals. The results demonstrate that home
sleep interventions with the SleepStim system are feasible and effec-
tive, provided that adequate consideration is given to avoiding

arousal.
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An important finding in our experiment was that participants
remained unaware that TMR cues were presented in almost all cases,
with 13% of all participants (11% of those included in memory analy-
sis) reporting hearing cues in Experiment 1 and 7% (8% of those
included in memory analysis) reporting cues in Experiment 2. Rates of
cue perception did not significantly differ between the two experi-
ments. Low cue perception rates are a substantial improvement over
brain-state independent home TMR in past studies in our laboratory
and others, where participants frequently reported hearing cues and
having their sleep disturbed (e.g., Goldi & Rasch, 2019). Presenting
cues without participants noticing is important for usability and to
avoid accidentally unblinding participants in experiments where they
are assigned to different conditions. This result also confirms that
SleepStim can target states where participants are soundly asleep.

The ability to target deep sleep was also reflected by analysis
of the times of cue delivery in relation to the automatic sleep stag-
ing provided by Dreem 2. Cues were delivered disproportionately in
N3 sleep, and most of the cues not delivered in N3 were delivered
in N2. In a recent meta-analysis of the TMR literature, memory ben-
efits were found for both N2 and N3 sleep (Hu et al, 2020). In
TMR experiments aimed at enhancing memory in the sleep labora-
tory environment, cues are typically presented in either N3 or a
combination of N2 and N3, and memory-related sleep features like
spindles and slow waves occur in both of these stages (Dijk
et al., 1993). Our results show that SleepStim can target deep

non-REM sleep and deliver cues without waking participants, both
important advances for sleep-intervention studies in the home. Our
findings also showed that better targeting of N3 was associated
with stronger benefits of TMR for memory (Figure 8b), further
emphasising the importance of targeting cues to N3.

Despite the system's overall ability to target N3, ~16% of cues
were delivered in wake as determined by the Dreem 2 algorithm. The
cueing procedure may not have avoided wake epochs as intended.
Perhaps the machine learning was imperfect, in that neural networks
can function unpredictably when provided with data outside the
domain of their training (Tsimenidis, 2020); the low amounts of wake
and N1 recorded in the training set may have provided insufficient
training. Similarly, wake movement patterns recorded in a sleep labo-
ratory likely differ from those at home. Wake cueing could be reduced
by adding additional constraints such as not cueing immediately after
significant body motion.

We demonstrated that the TMR procedure at home can yield
the typical effect observed in the laboratory, where TMR with quiet
sounds improves performance in a spatial memory task (Antony
et al, 2018; Creery et al.,, 2015; Rudoy et al., 2009; Schechtman
et al, 2021; Vargas et al., 2019). We also found that loud cues
reversed the TMR effect, consistent with our prior findings in a
study of face-name learning (Whitmore & Paller, 2022). Accordingly,
our findings suggest that home TMR can be useful for investigating

memory and perhaps in clinical applications as well. In particular,
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TMR at home may open up possibilities for clinical research with
TMR, studies of performance enhancement over multiple nights,
and TMR studies with larger numbers of participants and greater
efficiency.

Our results also highlight the critical importance of auditory cue
intensity and sleep disruption in home TMR. In Experiment 1, we
attempted to control sleep disruption through two strategies. First,
initial auditory cue intensity was at the white-noise level that partici-
pants set before sleep. Second, auditory cue intensity was decreased
upon detection of a cue-evoked arousal. Our analysis revealed that
participants who set a high intensity almost always showed a reversed
TMR effect, indicating that participants’ intensity settings were gener-
ally not optimal. Because very few participants reported hearing cues,
the reversed TMR effect likely resulted from micro-arousals rather
than full awakenings. Therefore, we opted to strictly limit intensity in
Experiment 2. Our recommendation is that cues for home TMR be
barely audible in a quiet room. Optimising methods for calibrating
intensity and making adjustments during the night is an important
challenge for future research.

The goal of this study was to test whether TMR could be effec-
tive in a home environment. The limitations included the absence of
objective measures of sleep quality from PSG. Sleep measures were
based on Dreem 2 algorithms; while we did not evaluate agreement
with a second human scorer (as is typical in laboratory studies), the
Dreem 2 has previously demonstrated high agreement with human
scorers (Arnal et al., 2020). The SleepStim system may be less effec-
tive at targeting N3 than a human operator. Also, participant behav-
iour was less standardised than in many laboratory studies. We
deliberately opted not to control factors like bedtimes or stimulant/
alcohol use, given our goal was of examining TMR in a naturalistic set-
ting. Despite these limitations, we found that data acquired with our
SleepStim-based protocol replicated typical effects of TMR with
improved memory for reactivated items.

Currently there remain many unanswered questions about factors
that influence TMR efficacy. For example, do different cueing strate-
gies (such as cues at random versus regular intervals) produce differ-
ent effects on memory? The ability to run high-throughput TMR
experiments at home may facilitate research on such questions. Sleep-
Stim offers a powerful platform for future sleep research. The ability
to run TMR experiments at scale outside the sleep laboratory can
enable new fundamental and clinical studies. The ability to deliver
closed-loop interventions in sleep using SleepStim may also be useful
for applications beyond TMR, such as influencing dream content
(Konkoly et al., 2021) or non-phase-locked entrainment to increase
slow wave and spindle activity (Antony & Paller, 2016; Simor
etal., 2018).
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