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SUMMARY

New memories are not quarantined from each other when first encoded; rather, they are interlinked with
memories that were encoded in temporal proximity or that share semantic features. By selectively biasing
memory processing during sleep, here we test whether context influences sleep consolidation. Participants
first formed 18 idiosyncratic narratives, each linking four objects together. Before sleep, they alsomemorized
an on-screen position for each object. During sleep, 12 object-specific soundswere unobtrusively presented,
thereby cuing the corresponding spatial memories and impacting spatial recall as a function of initial memory
strength. As hypothesized, we find that recall for non-cued objects contextually linked with cued objects also
changed. Post-cue electrophysiological responses suggest that activity in the sigma band supports context
reinstatement and predicts context-related memory benefits. Concurrently, context-specific electrophysio-
logical activity patterns emerge during sleep. We conclude that reactivation of individual memories during
sleep evokes reinstatement of their context, thereby impacting consolidation of associated knowledge.

INTRODUCTION

Individual memories are supported by an intricate network of in-

terconnections—not independent and detached from other

memories. These connections are central to the organization of

memories in the brain and impact subsequent retrieval. The

term ‘‘context’’ has been used to describe the elements that sur-

round a core memory, which share some features with it such as

time, space, or semantic-relatedness.1,2 Memories that are

formed within temporal proximity of others are said to share a

temporal context, whereas memories that share semantic

relatedness are said to share a semantic context or be semanti-

cally clustered. Both types of contexts impact subsequent

retrieval.2–6 When a specific memory learned in some context

is retrieved (e.g., the decorations for a recent party), other con-

textually related memories may effortlessly come to mind as

well (e.g., the guests attending the party). On the neural level,

this process, termed contextual reinstatement, is manifested

by increased similarity between the observed neural patterns

during encoding and retrieval.7,8 In this study, we explored

contextual reinstatement when memories were reactivated dur-

ing sleep, as well as the consequences of reinstatement on

retrieval.

Whereas the role of context at encoding and retrieval has been

repeatedly demonstrated, its role in the intermediate period has

not been systematically explored. During these offline periods,

including sleep, memory traces are cemented in cortical net-

works through a set of processes collectively termed consolida-

tion.9,10 The consolidation of declarative memories (i.e., explicit

memories for facts and autobiographical events) is thought to

primarily occur during non-rapid eye movement (NREM) sleep,

which consists of stages N2 and N3 of sleep. Consolidation is

thought to rely on memory reactivation, which, like contextual

reinstatement, involves the selective activation of memory-spe-

cific neural circuits.11,12 The extent to which contextually related

memories are reinstated over the course of consolidation during

sleep remains unclear. Recently, it has been hypothesized that

the benefits of NREM to memory stem from it being a state

devoid of context, thus preventing the damaging effects of

contextual interference13 (but see Antony and Schapiro14).

To explore context reinstatement during sleep, we biased

memory processing during sleep using unobtrusive stimuli, a

technique termed targeted memory reactivation (TMR).15 TMR

has been used to improve different forms of memory, including

declarative and non-declarative.16 Using this causal manipula-

tion, we demonstrated that consolidation was not limited to

memories that were directly targeted but extended to other

memories that were contextually bound to them. These results

suggest that context plays a role in the process of memory

consolidation during sleep. By examining electrophysiological

waveforms following stimulus presentation during sleep, we

demonstrated that power in the sigma range (15–20 Hz)—which

may reflect the activity of sleep spindles linked with memory

consolidation17–19—reflects the process of contextual reinstate-

ment during sleep and predicts subsequent performance on a

memory task.
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RESULTS

Participants (n = 29) engaged in a single-session experiment that

included an afternoon nap (Figure 1A). They first invented idio-

syncratic stories involving a place (e.g., a movie theater) and

four objects (Figure 1B). Next, they encoded the positions of ob-

jects on a 2D grid (Figure 1C). To keep the encoding context (i.e.,

the story) salient, this training also involved answering story-spe-

cific questions that required contextual reinstatement. Spatial

recall was then tested for all object positions. The average posi-

tioning error, calculated as the Euclidean distance between the

true position and placed position, was 76.7 ± 1.9 (mean ±

SEM) pixels (see STAR Methods). Next, participants were al-

lowed to nap for up to 90 min. During NREM sleep, participants

were exposed to sounds that had been associated with some of

the objects (Table S1). After sleep, spatial recall was once again

tested for all object positions. Finally, as a manipulation check,

participants engaged in a cued recall test in which they were

asked to list the objects linkedwith each scene. On average, par-

Figure 1. Experimental design

(A) Participants underwent tasks before and after a

90 min afternoon nap.

(B) Participants constructed a story including the

four objects and the locale pictured. The four ob-

jects, linked together by the story, formed a con-

textually bound set. Participants constructed 18

such stories.

(C) Participants learned the on-screen positions of

the eight objects in conjunction with answering

questions about their stories. Each of nine blocks

featured two contextually bound sets.

(D) After a memory test for object positions, par-

ticipants had a 90min nap opportunity. During their

sleep, sounds associated with 12 objects were

unobtrusively presented. These objects were sys-

tematically selected from six of the nine blocks. In

these six blocks, two objects from the same set

were cued. The critical conditions were thus cued

objects, non-cued objects from a set with cued

objects (i.e., a cued set), and non-cued objects

that do not belong to a cued set (either from a cued

block or a non-cued block). The panel shows an

outline of the two types of blocks (top) and

example blocks for each (bottom).

ticipants recalled 3.79 ± 0.05 objects out

of the 4 associated with each scene,

with no effect of cuing on recall (p = 0.91).

Reactivation during sleep impacted
performance for contextually
bound memories
We hypothesized that biasing reactivation

for certain memories would impact other

memories that belonged to the same

contextually bound set. We first divided

objects for each participant into three

groups (Figure 1D): (1) objects that were

directly reactivated using sounds during

sleep (cued objects˛ cued set), (2) objects that were not directly

reactivated but were contextually linked with objects belonging

to the previous group (non-cued objects ˛ cued set), and (3) ob-

jects that were neither directly reactivated nor shared an encod-

ing context with those that were (non-cued objects ; cued set)

(Figure 1D). The three groups did not differ in terms of pre-sleep

accuracy errors (F(2, 1666) = 1.29, p = 0.28; average errors were

71.53 ± 3.26, 75.66 ± 3.57, and 77.89 ± 2.05, respectively). After

sleep, the average errors for the three groups were 80.55 ± 3.26,

82.47 ± 4.31, and 81.75 ± 1.95, respectively.

We hypothesized that the second group would show less

forgetting during sleep relative to the third group. We first sub-

mitted our results to a repeated-measures ANOVA across partic-

ipants with condition (i.e., the three groups of objects) and time

(pre- and post-sleep) as factors. We found a main effect of

time (F(1, 56) = 7.51, p < 0.05), indicating that errors increased

across sleep. The effects of condition and the interaction be-

tween condition and time were not significant (F(2, 56) = 0.94,

p = 0.34 and F(2, 56) = 0.45, p = 0.51, respectively). We verified
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these results by running three additional repeated-measures

ANOVAs contrasting all three possible group pairings (e.g.,

cued objects ˛ cued set vs. non-cued objects ; cued set).

None of these analyses yielded significant effects of condition

or significant interactions (all p > 0.14). Diverging from our pre-

diction and from previous studies using TMR, these results sug-

gest that reactivation during sleep did not impact memory. In

fact, forgetting rates were numerically higher for cued objects

relative to non-cued ones, although this difference was not sig-

nificant. Since reactivation did not improve memory uniformly,

we next turned our attention to its effects onmemories as a func-

tion of their initial encoding strength.

Building on prior studies showing that sleep’s impact onmem-

ory is modulated by pre-sleepmemory strength,20–23 we hypoth-

esized that the effect of cuing in our task may depend on the

initial memory strength as reflected by pre-sleep errors.We fitted

a mixed linear model predicting how post-sleep positioning er-

rors would be modulated by condition while accounting for

pre-sleep positioning errors (Figures 2A and 2B). This approach

allowed us to consider whether reactivation affected memory

differentially based on accuracy levels before sleep. We thus

focused on the interaction between pre-sleep error and condi-

tion, which we term encoding-strength-dependent forgetting

(ESDF). Higher ESDF values indicate more forgetting for objects

with weaker encoding strength and less forgetting for stronger

memories.

Normalized pre-sleep errors were positively correlated with

post-sleep errors (F(1, 1537) = 258.8, p < 0.001), indicating that

memories that were well remembered before sleep remained

relatively well remembered after sleep (and vice versa). Mirroring

the results of the repeated-measures ANOVA, we did not find a

main effect of condition (F(2, 1537) = 0.28, p = 0.75), indicating

Figure 2. Targeted reactivation impactedmemory for reactivatedmemories and formemories bound by semantic context—but not temporal

context

(A) Data for a single participant. Each dot represents error rates for objects positioned by the participant before and after sleep. Colors signify the condition for

each object: cued objects˛ cued set (yellow), non-cued objects˛ cued set (red), and non-cued objects; cued set (blue). Steeper slopes signify more encoding-

strength-dependent forgetting between the pre- and post-sleep tests (e.g., memory for the weakly encoded objects gets worse).

(B) Forgetting curves across all participants. Slopes and intersects were estimated using a mixed linear model.

(C) Statistical comparison of encoding-strength-dependent forgetting (ESDF; slopes in Figure 2B) across conditions. Higher values reflect more forgetting for

weaker memories and less forgetting for stronger memories.

(D) The same dataset was submitted to another analysis, which distinguishes between two groups of objects: [(non-cued objects; cued set) ˛ cued block] and

(non-cued objects ; cued block). For brevity, the former group is designated as (non-cued objects ˛ cued block). Conventions follow Figure 1D.

(E) ESDF values across all participants for the four conditions. The purple and turquoise lines largely overlap but reflect data for different objects.

(F) Statistical comparison of ESDF values across conditions. Error bars signify standard errors of the mean, and p values reflect contrasts between parameters

produced using mixed linear models. **p < 0.01; *p < 0.05; �p < 0.1; n.s. p > 0.1.
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that cuing did not reduce post-sleep errors uniformly. However,

we found a significant interaction between condition and pre-

sleep errors (F(2, 1537) = 7.1, p < 0.001), indicating that cuing

differentially impacted errors as a function of pre-sleep errors,

with greater benefits for weakly encoded memories and fewer

benefits for strongly encoded ones. This interaction reflects dif-

ferences between conditions in ESDF. Higher ESDF values

reflect more forgetting for objects with higher pre-sleep errors

(i.e., steeper slopes between pre- and post-sleep errors as

shown in Figures 2A and 2B). We compared ESDF values for

the three conditions to unpack the interaction effect (Figure 2C).

Directly reactivated memories (i.e., cued objects ˛ cued set)

showed smaller ESDF values relative to memories that were

neither reactivated nor contextually bound to reactivated mem-

ories (i.e., non-cued objects ; cued set; t(1537) = �3.1,

p < 0.01). Crucially, non-cued objects that were contextually

bound with cued objects (i.e., non-cued objects ˛ cued set)

showed smaller ESDF values relative to memories that were

neither reactivated nor contextually bound to reactivated mem-

ories (i.e., non-cued objects ; cued set; t(1537) = �2.2,

p < 0.05). ESDF values for cued and non-cued memories within

the same contexts were not significantly different (i.e., cued ob-

jects ˛ cued set vs. non-cued objects ˛ cued set; t(1537) =

�1.07, p = 0.29). Comparable results were obtained when

considering the non-normalized accuracy errors, measured in

pixels (Figure S1). Taken together, these results indicate that

the effects of memory reactivation during sleep extend beyond

targetedmemories, impacting othermemories that were contex-

tually linked with them.

ESDF values may reflect forgetting rates for weaker memories

(for which lower ESDF values reflect less forgetting), stronger

memories (for which lower ESDF values reflect more forgetting),

or a combination of both. To explore these effects separately, we

used a median split (calculated separately for each participant

based on their data distribution in T1) to examine the effects of

reactivation on memories with higher-than-median and lower-

than-median error rates. A linear mixed model incorporating me-

dian in lieu of T1 error showed a significant interaction between

condition and median split (F(2, 1537) = 4.53, p < 0.05), mirroring

the interaction between condition and T1 error reported in the

previous paragraph. We then analyzed data for the higher-

than-median and lower-than-median errors separately to ask

whether the interaction is driven by a main effect of condition

on weaker or stronger memories, respectively. However, neither

half revealed a significant effect of condition (p > 0.2). There was

thus no evidence that ESDF values were driven by an effect iso-

lated to weaker or stronger memories, leaving open the possibil-

ity that a composite from both was operative.

Using the same dataset, we next examined the differential

roles of semantic context (i.e., conceptual links between objects,

operationalized by the idiosyncratic story for each set) and tem-

poral context (i.e., links between objects learned within temporal

proximity, operationalized by our block design; Figure 1C). Tem-

poral encoding context has been shown to reinstate during

wake, thereby impacting retrieval,8,24,25 and we hypothesized

that it would similarly be reinstated and impact reactivation dur-

ing sleep. We divided our data into four groups (Figure 2D). The

first two were identical to those used for the previous analysis

(cued objects˛ cued set; non-cued objects˛ cued set). Another

group included objects that were not linked with a cued set but

were learned within the same block as cued objects [(non-

cued objects; cued set)˛ cued block]. The final group included

objects that were neither learned in the same block nor linked

with the same set as the cued objects (non-cued objects ;
cued block). Objects in the former group—but not the latter

group—were learned within temporal proximity (i.e., within the

same block) of cued objects. We postulated that these tempo-

rally segmented blockswould effectively create segregated tem-

poral contexts that would drive behavior.

The four groups did not differ in terms of pre-sleep accuracy

errors (F(3, 1665) = 0.91, p = 0.43; average errors were 71.53 ±

3.26, 75.66 ± 3.57, 77.64 ± 2.82, and 78.12 ± 2.19, respectively).

After sleep, the average errors for the four groups were 80.55 ±

3.26, 82.47 ± 4.31, 80.89 ± 2.89, and 82.46 ± 2.21, respectively.

Like before, we first submitted our results to a repeated-mea-

sures ANOVA across participants with condition (i.e., the four

groups of objects) and time (pre- and post-sleep) as factors.

We found a main effect of time (F(1, 84) = 9.16, p < 0.01),

indicating that errors increased across sleep. The effects of con-

dition and the interaction between condition and time were not

significant (F(3, 84) = 0.76, p = 0.39 and F(3, 84) = 0.51, p =

0.48, respectively). Using a linear model to investigate ESDF

effects, we found main effects of pre-sleep errors (F(1, 1535) =

150.2, p < 0.001) but not condition (F(3, 1535) = 0.2, p = 0.9),

as well as a significant interaction (F(3, 1535) = 4.6, p < 0.01; Fig-

ure 2E). Contrasting the ESDF values for the three groups re-

vealed no significant difference between the [(non-cued objects

; cued set)˛ cued block] and (non-cued objects; cued block)

groups, suggesting that temporal context, as operationalized by

learning block, had no effect on performance (t(1535) = 0.03, p =

0.98; Figure 2F). We found significantly higher ESDF values for

the (cued objects ˛ cued set) group relative to the (non-cued ob-

jects; cued block) group (t(1535) =�2.89, p < 0.01) and a trend

toward higher ESDF values for the (non-cued objects˛ cued set)

group relative to the (non-cued objects ; cued block) group

(t(1535) = �1.83, p = 0.07).

Taken together, results suggest that semantic context is rein-

stated during sleep and guides memory consolidation. Temporal

contextdidnot showanyeffectsonconsolidation,but it ispossible

that such effects may have been missed due to shortcomings of

our operationalization of temporal context in this paradigm.

Sigma oscillations reflect contextual reinstatement,
predicting changes in performance
Next, we explored the role of sleep electroencephalogram (EEG)

oscillations in the process of contextual reinstatement. First, we

calculated the time-locked time-frequency response to sounds

presented during sleep for all task-related sounds (Figure 3A).

Across participants, we identified two clusters in the time-fre-

quency representation following sound onset (p < 0.01, cor-

rected): one cluster at lower frequencies (<10 Hz) peaking

around 0.5 s after sound onset and another between 15 and

20 Hz, which involved two components peaking before and after

the 1 s mark after sound onset (Figure 3B, left). Cluster 1 (Fig-

ure 3B, right), consisting of frequencies in the delta and theta

ranges, putatively reflects activity related to slow oscillations
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and K-complexes, which are typical of NREM sleep. Cluster 2,

consisting of frequencies in the sigma range, may reflect the

occurrence of sleep spindles, a sleep-specific waveform that

has been linked to consolidation.17,18 However, previous

research has shown that spindles typically commence approxi-

mately 1 s after sound onset.11,19,26 Together with the conjoined

pattern of the observed cluster, this may suggest that only the

late component of the cluster (cluster 2B) truly reflects spindle

activity, whereas the early component (cluster 2A) reflects

some high-frequency component of the K-complex.27 Therefore,

we conducted further analyses on both the full high-frequency

cluster and its two components.

Throughout NREM sleep, sounds were often presented multi-

ple times (Table S1). We hypothesized that waveforms resulting

from repeated presentations of the same sound would be more

similar one to the other than those resulting from different

sounds. To test this idea, we first quantified power in each clus-

ter on a trial-by-trial basis. Per trial, the average power within the

cluster in time-frequency space was averaged to create a single

scalar for each cluster in each trial. These values obtained for

each cluster in each participant were submitted to an intraclass

correlation coefficient (ICC) analysis (Figure 3C). ICC is a metric

that quantifies within- vs. between-group correlations. In this

case, higher ICC values would indicate that the response was

more consistent between repetitions of the same sounds (e.g.,

all ‘‘cat’’ sound presentations) than between different sounds

(e.g., ‘‘cat’’ vs. ‘‘lighter’’ sound). For most clusters, results indeed

indicated that coefficients were higher than those expected by

chance, as assessed using a permutation test (cluster 1,

p < 0.001; cluster 2, p < 0.01; cluster 2A, p < 0.01; cluster 2B,

p = 0.15; Figure 3B). These correlations may be the result of

the memory content related to a sound being reactivated simi-

larly across trials, but a more parsimonious explanation is that

they stem from the acoustic properties of the presented sounds

creating similar electrophysiological responses.

We used a similar approach to test whether specific wave-

forms reflected contextual relationships between objects within

the same set. We hypothesized that responses would be more

similar across sounds if these sounds were linked within the

same contextually bound set. For example, if a ‘‘cat’’ object

and a ‘‘lighter’’ object shared a context, we predicted that the

response to hearing their sounds would be more similar than

Figure 3. Post-cue spectral power is driven by context and predicts contextually driven changes in performance

(A) Time-frequency representation of EEG activity from electrode Cz over the time period before and after cue onset during sleep. The pink line represents the

average event-related response.

(B) Left: map of the across-participant p values for changes in spectral power. Right: identified clusters.

(C) The similarity of induced power changes between different repetitions of the same sound was quantified using intraclass correlation coefficients for each

cluster. Bar colors correspond to cluster outline colors in (B) (i.e., clusters 1, 2, 2A, and 2B from left to right). Results were evaluated using a permutation test. Real,

values obtained for non-shuffled data; Shuf, values obtained for shuffled data. Gray lines represent individual participant data (p values obtained from paired t

tests between the shuffled and real values).

(D) The similarity of induced power changes between different sounds belonging to the same contextually bound set. Designations follow those in (C).

(E) Correlations between intraclass correlation coefficients and condition-specific changes in ESDF values across participants. Left: for cued objects˛ cued sets.

Right: for non-cued objects˛ cued sets. p values reflect the significance level of the Pearson correlation coefficients. Error bars and dashed lines signify standard

errors of the mean. ***p < 0.001; **p < 0.01; *p < 0.05; �p < 0.1; n.s. p > 0.1.
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the response to the sounds of the ‘‘cat’’ and a ‘‘clock’’, which did

not share a context. Put differently, we predicted that if a specific

waveform is involved in the process of contextual reinstatement,

spectral power linked with that waveform would be more similar

for two sounds that share a context and less similar for two

sounds that do not share a context. To test this, we calculated

the ICC across sounds for each cluster and each participant (Fig-

ure 3D). Higher ICC values would indicate stronger within-

context consistency. Results showed higher-than-chance

coefficients for cluster 2 (p < 0.05), and specifically for cluster

2B, reflecting post-sound sigma activity (p < 0.001). Unlike the

previous analysis conducted within sounds, this analysis consid-

ered similarity between sounds and therefore does not reflect

trivial sources of correlation, such as acoustic similarity. These

results could implicate activity in the sigma band in the process

of context reinstatement during sleep.

Finally, we explored a more direct connection between within-

context sigma correlations and the aforementioned behavioral

effects depicted in Figure 2C. For each participant, we calcu-

lated (1) the TMR-induced changes in ESDF values for cued ob-

jects and for non-cued objects within cued sets and (2) the ICC

between sounds belonging to the same contextually bound set

(for each cluster). We then correlated these measures across

participants and found that participants with more similar sigma

power within sets also showed less ESDF for cued objects (r =

�0.71, p < 0.01 for cluster 2; r = �0.62, p < 0.01 for cluster 2B;

p > 0.18 for all other clusters; Figure 3E, left). The correlation

for non-cued objects, which reflects the contextual effects of

cuing on performance, was significant only for the late sigma

cluster (r =�0.5, p < 0.05 for cluster 2B, p > 0.36 for all other clus-

ters; Figure 3E, right).

For this last set of analyses, we used the differences between

the ESDF values for cued sets relative to non-cued sets. Our re-

sults, indicating a negative correlation between ICC values and

ESDF for cued sets, may therefore just as likely reflect a positive

correlation between ICC values and ESDF for non-cued sets.

Indeed, the exact same analysis can be viewed as if it considers

the changes in ESDF values for non-cued objects ; cued sets

relative to the cued objects ˛ cued sets, revealing positive cor-

relations for the sigma clusters (r = 0.71, p < 0.01 for cluster 2;

r = 0.62, p < 0.01 for cluster 2B). Although both these interpreta-

tions are equally valid statistically, we argue that the more parsi-

monious interpretation is that cuing-related ICC values corre-

spond to cuing-related effects rather than the change in

memories that were not biased during sleep. Finally, to comple-

ment these analyses, we testedwhether overall individual forget-

ting patterns, regardless of cuing condition, were correlated with

ICC values, and there were no significant correlations for any

clusters (p > 0.42). Taken together, the results demonstrate

that post-cue sigma power is correlated within set, and this cor-

relation predicts contextually determined reactivation effects.

Our findings therefore support the hypothesis that power in the

sigma band reflects contextual reinstatement during sleep.

Place-specific neural activity during sleep predicts
changes in performance
Previous studies operationalized contextual reinstatement dur-

ing wake using measures of similarity between brain states dur-

ing encoding and retrieval (e.g., Howard et al.7 and Manning

et al.8). To test whether place-specific wake-like activity is

involved in sleep reactivation, we had participants observe three

categories: places, faces, and abstract images (Figure S2). The

place images included cropped versions of the images subse-

quently used for the main task (e.g., a movie theater). Using

time-series data from all scalp electrodes to train a support-vec-

tor machine classifier, we identified clusters of time points distin-

guishing places and abstract images (p < 0.001). The largest

cluster spanned between 0.28 and 0.73 s after image onset dur-

ing wake (Figure 4A).

We hypothesized that place-related brain networks would play

an integral role in offline processing of the scene-heavy contexts

used in our task. Therefore, we decided to use the wake, place-

specific patterns of activity as a marker for context reactivation

during sleep. We next correlated the sleep and wake EEG data

from all scalp electrodes to reveal reinstatement of context-

related activity. Averaging across wake trials (i.e., around image

onset for place images in the functional localizer) and sleep trials

(i.e., around sound onset for sleep-related sounds), we calcu-

lated the time point-by-time point correlation matrix. The result

was a time 3 time matrix of correlation coefficients, with a

peak in correlation around 0.5 s after place image onset during

wake and 0.75 s after sound onset during sleep (Figure 4B,

top). This increase in correlation may reflect genuine neural reac-

tivation of place-related representations. However, it could be

that the correlations are not place specific but rather reflect sim-

ilarities between sleep and image viewing during wake. Indeed,

conducting the same correlation analysis between task-related

sound presentation data and EEG data following the presenta-

tion of an abstract image revealed similar temporal dynamics

(Figure 4B, bottom). This similarity suggests that the observed

increase in correlation between sleep and wake is driven by

wake-like activity occurring during the cuing period that is not

necessarily content specific.

We next tried to tease apart the generalized wake-related cor-

relation patterns and content-specific correlation patterns by

considering the differences between the patterns linked with ab-

stract and place images. We defined place-specific reactivation

as the subtraction of the place- and abstract-related matrices

(Dr; Figure 4C). The resulting matrix showed a peak in correlation

around 0.6 s after place image onset duringwake and 0.75 s after

sound onset during sleep. Although correlations peaked follo-

wing sound onset, they persisted at other times aswell (including

above-baseline correlations before sound onset, which was

generally about 6–7 s following prior sound onset). This extended

period of place-specific reactivation was unexpected and seem-

ingly challenges our hypothesis that reactivation during sleep

would elicit context-related neural patterns. On the other hand,

extended reactivation could stem from features of the TMR

design we used; during these critical periods of sleep, there

were repetitive presentations of task-related sounds, all of which

were part of contextually bound sets involving places. We there-

fore propose that location-related context was reactivated

consistently throughout the cuing period, producing reactivation

immediately after cuesaswell as later during intersound intervals.

Qualitatively similar results were obtained using a classification

approach rather than correlation-based analyses (Figure S3).
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To reveal whether place-specific reactivation predicts

changes in performance, we collapsed the place-specific reacti-

vation matrix over the time course of sleep trials (Figure 4D). For

the wake data, we focused on periods during which the classifier

distinguished between places and abstract images (Figure 4A;

gray dashed frame in Figure 4D). Arguably, data from intervals

when the two categories are indistinguishable would not be

informative in tracking memory-related patterns of activation.

The results show periods of time during which Dr was above

zero, indicating similarity to place-related wake activity, and pe-

riods of time during which Dr is lower than zero. These ‘‘dips’’

Figure 4. Place-specific neural reactivation

predicts changes in performance for cued

objects

(A) Classification accuracy for a classifier trained to

distinguish images of places and abstract images.

Gray lines denote significant classification above

chance (p < 0.001). Gray dashed boxes in the

following panels signify the time period for the

largest cluster of continuously significant classifi-

cation.

(B) Correlation patterns between EEG patterns

before and after sound presentation during sleep (y

axis) and image presentation during wake (x axis).

Top: correlations for images of places. Bottom:

correlations for abstract images.

(C) The place-specific correlation patterns, defined

as the subtraction between the upper and lower

matrices shown in (B). Note that place-related

activity starts before sound onset during sleep and

persists throughout most of the sound-locked time

course.

(D) Place-specific correlation patterns averaged

over the sound-locked time course during sleep.

(E) Correlations between the place-specific pat-

terns during the classifiable time period (gray

dashed box in D) and changes in ESDF values

across participants. Top: for cued objects ˛ cued

sets. Bottom: for non-cued objects ˛ cued sets. p

values reflect the significance level of the Pearson

correlation coefficients. Shaded areas and dashed

lines signify standard errors of the mean. *p < 0.05;

n.s., not significant.

could indicate either an increase in

similarity to the abstract-image-viewing

condition or a negative correlation

with the location-image-viewing condi-

tion (or both). Future studies should

explore these dynamics further, taking

into consideration their interactions with

sleep-specific waveforms (e.g., Schreiner

et al.12).

We next calculated average corr-

elations during this time period and cor-

related them with ESDF values for cued

objects ˛ cued sets. Results indicated

lower ESDF values for cued objects in

participants who demonstrated higher

wake-sleep place-specific correlations

(r = �0.39, p < 0.05; Figure 4E, left). However, reactivation pat-

terns did not significantly correlate with non-cued objects ˛
cued sets (r = �0.05, p = 0.82; Figure 4E, right). These two cor-

relation coefficients were not significantly different from one

another (p = 0.21). Taken together, results support the hypothe-

sis that place-specific neural representations are reinstated dur-

ing sleep and that this reinstatement predicts ESDF for cued

memories. However, the temporal dynamics of this activity

(i.e., its persistence over the intertrial interval) and the lack of a

clear correlation with the changes in performance for non-cued

objects ˛ cued sets qualify the validity of these results.
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DISCUSSION

In this study, we tested whether the context in which memories

are encoded impacts sleep-related consolidation. Participants

first developed idiosyncratic stories linking different objects

with a physical place and then encoded on-screen positions

for each object. By presenting object-specific sounds during

NREM sleep, we selectively biased reactivation toward specific

memories, thereby impacting forgetting for these memories.

Crucially, this manipulation also impacted retrieval for contextu-

ally bound memories that were not cued directly.

If reactivating amemory reinstates its context, carry-over ben-

efits should be determined by the level of contextual overlap

between the cued and non-cued memories, with the greatest

benefits incurred by the targeted memory itself. Although the

impact on cued memories was numerically higher for cued rela-

tive to non-cued memories, this difference was not significant.

This null effect should be considered with caution, and future

studies shouldmore directly consider the hypothesis that the de-

gree of contextual overlap would determine the benefits to con-

textually linked memories.

For both cued and non-cued memories, observed effects on

memory were dependent on initial memory strength. Benefits

to memory grew linearly as a function of initial memory strength,

with greater benefits for objects that were weakly encoded

before sleep and detriments to stronger memories. These data

are in line with previous studies that have found that weakly en-

coded memories seem to be prioritized for reactivation and

consolidation. The preferential benefits seem to be a general

phenomenon, observed during sleep and resting wake (e.g.,

Schapiro et al.28) and impacting both spontaneous reactivation

(e.g., Drosopoulos et al.20) and targeted reactivation (e.g., Cari-

ney et al.,22 Schechtman et al.,23 Creery et al.29). However, our

data suggest that the beneficial effect of TMR for weaker mem-

ories may be mirrored by a detrimental effect for stronger mem-

ories. This balance between reactivation-related improvements

and detriments in our paradigm raises the possibility that these

effects were restricted by some homeostatic process.30 We

did not find a uniform benefit of cuing on memory performance

when dependence on encoding strength was not taken into

account.

Spectral analyses revealed that power in the sigma band (15–

20 Hz) was correlated when sounds were linked to contextually

bound objects. Furthermore, these correlations within contextu-

ally bound sets predicted changes in retrieval performance: with

greater similarity, there was less ESDF for both cued and non-

cued objects within a set. The relationship between the physio-

logical and behavioral correlates of contextual reinstatement

supports our hypothesis regarding the role of context in consol-

idation during sleep. Finally, our analyses revealed that neural

representations related to places were reinstated during sleep,

and this reinstatement predicted changes in retrieval perfor-

mance for cued objects. However, these results may reflect

more general reactivation patterns that are not context specific

and warrant further research.

Taken together, our analyses reveal that context was rein-

stated during sleep in a manner that had an impact on memory

processing. From a broader perspective, these findings fit with

the growing literature linking context and memory. The notion

of context-dependent memory pertains to improved retrieval in

a context similar to the encoding context.31,32 The natural pro-

cess of autobiographical retrieval involves the experience of

mentally traveling back in time,33,34 which in itself involves

contextual reinstatement,6 thereby improving retrieval by

increasing the similarity between neurocognitive states at en-

coding and retrieval.

Despite much theoretical and empirical research on how

context bridges memory encoding and retrieval, the question

of context’s role in memory consolidation during sleep has

been scarcely addressed. Some evidence suggests that sleep

serves to strengthen the links between memories and the con-

texts in which they are encoded.35,36 Indeed, consolidation

over time seems to increase the similarity between neural repre-

sentations of memories linked with the same context,37 although

the specific role of sleep remains to be explored.

The question of whether contexts are reinstated during sleep

is separate from the question of sleep’s effects on context-

item binding. Some consolidation theories assume that sleep is

a context-less state and that this property of sleep sheltersmem-

ories by preventing context-related interference.13 However, to

the best of our knowledge, the question of context reinstatement

during sleep has not been systematically explored. Recently, we

showed that the capacity for reactivation and consolidation

during sleep is not limited to a single memory at a given time,

suggesting that memories that are tightly and conceptually inter-

linked can be reactivated simultaneously.19 Our current results

suggest that this capacity for simultaneous reactivation extends

beyond tightly interlinked memories (e.g., different memories

related to cats) and also applies to contextually interlinked

memories (e.g., memories that reside within the same narrative).

These findings complement recent studies that have found

that reactivating memories during wake had a retroactive bene-

ficial impact on conceptually related memories that were not

directly reactivated.38,39 Taken together, these findings show

that consolidation during both wake and sleep involves contex-

tual reinstatement and impacts memories that were not

directly cued.

Limitations of the study
Our design attempted to tease apart two interlinked forms of

context—semantic context and temporal context. Results re-

vealed that semantic context, operationalized using idiosyn-

cratic narratives constructed by each participant, impacted

sleep-related effects onmemory, whereas temporal context, op-

erationalized using a temporally structured block design, did not

(Figure 2). However, we acknowledge some design limitations

that warrant a nuanced interpretation of this divergence. First,

the contextually bound sets, which were used to operationalize

semantic context, also shared a temporal context; they not

only shared a narrative but were also learned in the same

learning block. Second, temporal context is not impacted

exclusively by the mere passage of time. Instead, salient events

act as event boundaries, creating abrupt shifts in temporal

context.40–42 It could be argued, therefore, that blocks in the po-

sition-learning part of the task did not uniformly reflect temporal

context but rather that switches between trials within a block
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acted as event boundaries. Effectively, this framing would mean

that memories in our task never shared temporal context,

providing an alternative explanation for the observed null

findings.

However, a distinction between the roles of semantic and tem-

poral context during sleep aligns with other experimental find-

ings. In a recent study, we used the same task design to explore

the role of context in undisturbed, overnight sleep.43 By consid-

ering the similarities between memory trajectories over a 10 h

delay period within the same contextually bound sets, we found

that semantic—but not temporal—context drives performance

changes over a period including sleep but not over a period

that did not include sleep. In a separate study, Liu and Ranga-

nath44 found the sleep is crucial for binding together memories

that are semantically related but learned in different episodes.

In contrast, they found that sleep did not impact binding between

memories that were semantically unrelated but learned within

temporal proximity of each other (see Liu et al.45 for computa-

tional work supporting this model). These results suggest that

there may be a qualitative difference between the roles semantic

and temporal contexts play in memory processing during sleep.

A different notable limitation of our design concerns the way

sounds were incorporated in our design. The object-congruent

sounds were first introduced in the position-learning part of the

task (and not earlier, during the story-building part), potentially

limiting the sounds’ context-dependent impact when presented

during sleep.

Over the last decades, sleep’s active role in memory consoli-

dation has gradually been revealed and acknowledged. Our un-

derstanding of howmemory representations are reactivated and

evolve during sleep is still incomplete. Day-to-day memories are

best understood when considering the connections among

them, yet these connections are not accounted for in our models

of memory processing during sleep.46 Our demonstration of a

role for context in sleep consolidation opens the door for further

exploration of how memory interconnections impact consolida-

tion during sleep. More generally, this study underscores the

notion that memory processing orchestrated by the sleeping

brain is as rich and complex as when we are awake.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Eitan Schechtman

(eitans@uci.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The datasets generated during the current study are available from the lead contact upon request.

d Original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We recruited human participants from the local university community who claimed to be able to nap in the afternoon and reported not

having a hearing impairment or a history of any neurological or sleep disorders. Participants were asked to go to bed later than usual

on the night prior to the study, to wake up earlier than usual on the day of the study, and to avoid caffeine that morning. We assumed

that the relevant neurocognitive mechanisms of sleep – which are the core focus of this study – would not be impacted by sleep re-

striction or participants’ napping patterns. In total, 48 participants were recruited (14 identified as men, 33 identified as women, and

one identified as gender queer; average age = 22.6 years). Data from19 of these participants were excluded from the final analysis (16

who were not exposed to all stimuli during NREM sleep and three with poor recall of which objects were associated with each place,

as described below). Although these exclusion criteria were not pre-registered, including these 19 participants was deemed inappro-

priate because the logic of our manipulation relied on both reactivation during sleep and strong place-object learning. In total, 29

participants were included in the final analysis (8 identified as men, 20 identified as women, and one identified as gender queer;

average age = 22.8 years). Based on self-report, participants slept 5.93 hours on average on the night before the study. The North-

western University Institutional Review Board approved the procedure.

METHOD DETAILS

Materials
Visual stimuli were presented on a screen (1920 3 1080 pixels, P2418HT, Dell Inc., TX). Sounds were delivered over a pair of

speakers (AX-210, Dell Inc., TX). Participants’ spoken responses were recorded using a Lavalier clip-on microphone (PoP voice

Inc.). Stimulus presentation and participant responses were controlled by Presentation (v17.2, Neurobehavioral Systems, Inc.).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Custom scripts This paper https://github.com/cognos-uci/CellReports2023

Software and algorithms

Matlab 2018b MathWorks Inc, Natick, MA https://www.mathworks.com/

products/matlab.html

sleepSMG package Greer & Saletin http://sleepsmg.sourceforge.net

FieldTrip package Oostenveld et al.47 https://www.fieldtriptoolbox.org/

Presentation v17.2 Neurobehavioral Systems, Inc. https://www.neurobs.com/menu_presentation/

menu_download/version_history

Other

BOSS image corpus Brodeur et al.48 https://sites.google.com/site/bosstimuli/
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Visual stimuli were used for both for the main task and for the functional localizer task. For the main task, visual stimuli consisted of

76 images of objects and 19 images of places. The object images were square and portrayed either inanimate objects (e.g., a tele-

phone) or animals (e.g., a cat) on a white background. During the spatial task described below, they were each shown at 125 3 125

pixels (34.4 3 34.4 mm).Most imageswere taken from theBOSS corpus,48,49 and somewere taken from copyright-free online image

databases (e.g., http://www.pixabay.com). Each object image wasmatched with a distinguishable, congruent sound with a maximal

duration of 0.6 s (e.g., a ringing sound; a meow sound). The place images portrayed distinct real-life places (e.g., a movie theater; a

desert) and were shown horizontally with a 1:2 aspect ratio. Images were taken from copyright-free online image databases (e.g.,

http://www.pixabay.com).

Three of the 76 object images and one of 19 place images were used in a pre-task practice block. One additional object image was

never displayed, but the sound associated with it was presented during sleep alongwith a subset of task-relevant sounds, as detailed

below. The remaining 18 place imageswere each associated with four objects to create contextually bound sets. Object imageswere

each assigned a random position on a 2D circular grid (radius – 540 pixels, 148.5 mm). The positions of the 72 objects were set to be

at least 50 pixels from the center and the perimeter of the grid and at least 55 pixels from all other object positions. The positions of

each set of four objects associated with the same place were at least 425 pixels one from the other. This allowed us to separately

estimate errors that stem from confusion between the positions of two objects (swap errors) and errors that stem from imprecise ob-

ject placement (accuracy errors; see below).19

For the functional localizer, a total of 120 images were used, including 40 images belonging to each of three categories: faces,

places, and abstract images. All images were cropped to be square and were presented on-screen at 450 x 450 pixels. The face

images were taken from the Psychological Image Collection at Stirling (pics.stir.ac.uk). The place images consisted of the same

images used for the main task, cropped, and supplemented by additional images taken from the BOLD5000 database.50 The ab-

stract images are scrambled place images, created by scrambling the Fourier transforms of place images from the same

database.

Procedure
After consenting to participate in the study, participants were fitted with an electroencephalography (EEG) cap. EEG data was

collected continuously throughout all phases of the study (Figure 1A). Since data were collected during the COVID-19 pandemic,

participants wore their masks throughout the study, except during the nap portion. After entering the experimental chamber, partic-

ipants completed a task to measure their response times. This RT task consisted of a red square that shifted between left and right

positions at 10 Hz and finally stopped at one of the two locations. The participant was required to click the correct mouse button (i.e.,

left/right) before the square began flickering again. The task ended when the participant responded correctly for 8 out of the last 10

trials. Initially, the square paused for 450 ms, but if the participant failed to reach the criteria within 30 trials, this duration was

extended by 50 ms and the task restarted, iterating until the criterion was reached. Then, participants rated their sleepiness level us-

ing the Stanford Sleepiness Scale.51

Next, participants conducted a functional localizer task (Figure S2A). The rationale for including this task was to identify neural pat-

terns that are specific to a category of stimuli. These patterns were then used to identify context reactivation during sleep, as ex-

plained below. The task included 150 trials, equally divided among three image categories: places, faces, and scrambled, abstract

images. The task included dozens of diverse exemplars from each category to establish that the detected patterns were indeed cate-

gory specific and not driven by low-level visual features or any one image. Each trial included a 1-s exposure to an image, with an

inter-trial interval ranging between 2.5 and 3.5 s. Each category included 40 images, 10 of which were repeated over two consecutive

trials. Participants were instructed to left-click themousewhen an image was repeated. The first two participants run did not undergo

the functional localizer task, and their data were not used for analyses incorporating data from this task.

Participants next began the main task, which consisted of three parts: story-building, position-learning and test. In the story-build-

ing part (Figure 1B), participants were instructed to build idiosyncratic stories, one for each contextually bound set (i.e., images of a

place and four objects). Each set was presented together on the screen, and participants had to indicate when they have developed a

story for it. Then, they recorded an audio rendition of the story. Finally, they were asked two questions about each object in each

story: ‘‘Did the object appear throughout the whole story, start to end?" and "was the object in motion (not static) during the story?’’

These questions were chosen because they were applicable to all objects, yet the answers did not merely concern object attributes

but rather required retrieving the constructed story. The answers for both questions with respect to all four objects were recorded

before moving on to develop a story for the next contextually bound set.

After story building was completed, participants started the position-learning part (Figure 1C). This part of the task consisted of

nine blocks, each including a pair of contextually bound sets and eight objects in total. Each block included interleaving learning trials

for the two sets. This design choice wasmade with the intention of linking the two sets together through a shared temporal context at

encoding. Set pairings and block allocation were randomized. In this part of the task, participants had to encode the on-screen po-

sitions for the objects on a two-dimensional on-screen circular grid. Once all object positions were learned, as defined below, the

next block commenced. Before the first block commenced, participants engaged in a practice block which included four objects

that were designated as practice objects.

At the start of each block, participants viewed the images of the two places linked with the two contextually bound sets featured in

the block and were given the option to listen to their recordings of the associated stories to refresh their memories. Next, participants
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were exposed to the to-be-learned position of the eight objects included in the block. Each object was presented in its on-screen

position for 4.5 s. Its congruent sound was presented twice, once at trial onset and again at the end of the trial (with sound offset

synchronized to image offset). A 1-s inter-trial interval followed.

After being exposed to the true object positions, participants trained on placing the object images in their positions. Each trial

included a single object, and trials were presented in a pseudo-random order, such that objects linked to the same story were seldom

presented sequentially. At the start of each trial, an object-specific contextual question was presented. These questions were the

same ones presented in the story-building part. Participants had to get each question correct to proceed with the trial (responses

that were congruent with the answers recorded previously were deemed correct). Answering incorrectly terminated the trial (Fig-

ure 1C, bottom). The purpose of presenting these questions was to repeatedly reinstate the encoding context during the position-

learning part of the task. Overall, 88.92%±0.9% (mean ± SEM) of questions were answered correctly during training. Next, the object

was presented at a randomposition on the grid, alongwith its associated sound. Participants used the computer mouse to attempt to

drag the object to the position where it was initially seen on the grid. Trials with a Euclidean error of less than 100 pixels relative to the

true position were considered correct. After correctly placing an object near its true position twice in a row, it was considered as

learned and was dropped out from the block. On average, each object was presented in 3.52±0.15 trials (mean ± SEM). Both correct

and incorrect trials included feedback: the true object position was presented for 2 s alongwith the user-selected position. The sound

was then presented again, co-terminating with the feedback display. A 1-s inter-trial interval followed.

The last part of the main task including a test on object positions. In each trial, participants had to drag one of the objects to its true

position. All 72 objects were presented in a pseudorandom order, preceded by the three practice objects. Objects were each pre-

sented in a random position on the grid, accompanied by their sounds. No context-related questions were presented, nor was feed-

back given. A 1-s inter-trial interval was used.

Following the test, participants’ pre-sleep error rates were calculated (i.e., the Euclidean distance between the chosen and true on-

screen positions). Out of a total of 72 objects, 12 were designated to be cued during sleep. These objects were selected in a manner

that obeyed the following logic: Six of the nine blocks included cued objects. Each of these blocks consisted of two contextually

bound sets: one including cued objects; the other not. The six contextually bound sets which included cued objects each included

two cued objects and two non-cued objects. Out of the nine blocks, the remaining three blocks did not include any cued objects. The

condition designated to each object, set, and block were determined using an algorithm that minimized variability between the

average error rates among conditions. For each participant, the algorithm considered 200,000 random allocations of objects to con-

ditions, each obeying the logic outlined above. The random allocation for which the average positioning error was lowest across the

following four conditions was used: (1) cued object ˛ cued set; (2) non-cued object ˛ cued set; (3) (non-cued object ; cued set) ˛
cued block; (4) non-cued object; cued block. In addition to the 12 object-related sounds designated for cuing, another soundwhich

was not used during the wake portions of the task was presented during sleep as a control sound.

Immediately after ending the test, participants were permitted to nap for 90 minutes with the lights out on a foldable futon in the

same experimental room. Throughout their nap, white noise was presented (�47 dB). Sleepwasmonitored online by an experimenter

skilled at sleep staging. Upon detection of stage N3 of NREM sleep, sounds were unobtrusively presented in the experimental room

(<53 dB). EEG data weremonitored continuously, and sound presentation was terminated immediately upon signs of arousal or tran-

sition to REM sleep. The inter-stimulus interval (i.e., offset-to-onset) was randomly set to either 6, 6.5, or 7 s. If a participant did not

reach NREM stage N3 after 45 minutes, sounds were presented in either stage N2 or N3 throughout the remainder of the nap. Out of

the 48 participants, 16 participants were not exposed to all 13 sounds at least once during NREM (they were exposed to 4.75±0.83

sounds on average throughout all sleep stages). These participants either never reached stable NREM sleep or were easily arousable

throughout the nap. Since sound presentation served as the main manipulation in this study, these participants were excluded from

all analyses. Although the excluded and included participants may differ in terms of sleep quality, potentially introducing a selection

bias, it is highly unlikely that these groups would differ in the relevant mechanisms of memory processing during sleep.

After the nap, participants were required to wait at least 5 minutes before resuming the task. Before completing the post-sleep

memory tests, participants engaged in the response-time task described above. To rule out the effects of sleep inertia on perfor-

mance,52 participants were required to meet a response-time criterion that was set based on their pre-sleep performance on the

same task. Additionally, participants rated their sleepiness level once more. The result for both tasks are detailed in Table S2.

Next, they started the post-nap test, which was identical to the pre-nap test. Then, participants completed a self-paced recall

test, in which they had to type in, for each picture of a place, which objects were linked with it. This part of the task was used as

a manipulation check, since the expected effects of TMR critically depended on a strong, over-trained link between objects, stories,

and places. Three participants who failed to recall at least 75% of the objects were excluded from analysis. Finally, participants were

asked if they heard sounds presented during the nap. Out of the 29 participants used for analyses, 7 reported hearing task-related

sounds. These 7 participants then underwent a task in which they were required to indicate which sounds they remember hearing

during sleep. Their responses indicated that they were not significantly different than chance at identifying which sounds were pre-

sented (p = 0.8, Sign Rank Test). Participants were then allowed to clean up, after which they were dismissed.

Electrophysiological data collection and preprocessing
EEG was recorded using Ag/AgCl active electrodes (Biosemi ActiveTwo, Amsterdam). In addition to the 64 electrodes at 10–20 sys-

tem scalp locations, contacts were placed on the mastoids, next to the eyes, and on the chin. Recordings were made at a sampling
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rate of 512 Hz. Analyses were conducted using the FieldTrip47 and sleepSMG (http://sleepsmg.sourceforge.net) packages for Mat-

lab 2018b (MathWorks Inc, Natick, MA). EEG channels were re-referenced offline to averaged mastoids and filtered using a two-way

least-squares FIR highpass filter with a cutoff of 0.4 Hz. Additionally, a notch filter was used to remove noise at 60 Hz. Noisy channels

were replaced with interpolated data from neighboring electrodes using the spherical interpolation method in FieldTrip, and noisy

segments were detected manually and removed from further analyses. For the data collected during wake, ICA was used to detect

and remove artifacts associated with eye blinks and horizontal eye movements.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sleep staging
Sleep staging (i.e., determining the stage of sleep for each 30-s epoch) was based on the guidelines published by the American Acad-

emy of Sleep Medicine53 and conducted by two independent raters, both of whom were not privy to when sounds were presented.

Any discrepancies were subsequently reconciled by one of the two raters. Table S1 shows the amount of time spent in each stage of

sleep and number and percentage of cues presented in each stage.

Statistical analyses of behavioral data
For each trial in the tests conducted before and after sleep, the error was measured in pixels as the Euclidean distance between

the true object’s position and the position indicated by the participant. In designing this experiment, we anticipated that the po-

sitions of contextually linked objects, which were learned within temporal proximity, would be confusable. Therefore, to disen-

tangle any gross miscategorization errors from nuanced positioning errors (and focus on the latter, which were central to the

design of this study), our algorithm positioned the four objects within a set at a substantial distance from one another (425 pixels).

This value was over three times larger than the median error across participants and conditions (82.8 pixels), allowing us to cate-

gorically flag objects as ‘‘swapped’’ if they were placed closer to the position of another object belonging to the same contextually

bound set. These gross errors, stemming from either pure guesses or confusion between objects, were omitted from further anal-

ysis.19 In total, 20.07%±1.81% of objects were swapped before sleep and 19.88%±1.99% after sleep. The change in swap rates

over sleep was not modulated by condition (F(3, 2084)=1.41, p=0.24; Change_in_swap_rate � 1 + Condition + (1 + Condition |

Participant)). For all the remaining trials, repeated-measures ANOVAs and mixed linear models were used. All repeated-measures

ANOVA use the Lower-Bound Estimate to correct for violation of the assumption of sphericity. Results were comparable to those

obtained with other methods (i.e., Greenhouse-Geisser correction; Huynh-Feldt correction) or without any correction. The

following mixed linear model was used for comparing pre-sleep accuracy errors between conditions across participants (fitglme

function in Matlab):

Error pre sleep � 1 + Condition+ ð1 + ConditionjParticipantÞ
‘‘Participant’’ is a categorical variable, denoting the participant number of each individual participant. Two different analyses were

run, one focusing only on semantic context and one considering semantic and temporal context separately. For the former, ‘‘Con-

dition’’ was a categorical variable with three possible values: (1) cued object˛ cued set; (2) non-cued object˛ cued set; (3) non-cued

object; cued set (Figure 1D). For the latter, ‘‘Condition’’ was a categorical variable with four possible values: (1) cued object ˛ cued

set; (2) non-cued object˛ cued set; (3) (non-cued object; cued set)˛ cued block; (4) non-cued object; cued block (Figure 2D). An

ANOVA was used to report the statistical significance of the components of the model, and dummy variables were used for compar-

isons between conditions (producing the p-values reported in the paper and presented in Figure 2).

To consider the changes over sleep, error rates were Z-scored within participants and used to evaluate the effects of cuing during

sleep across participants using the following mixed linear model:

Error post sleep � 1+Error pre sleep�Condition+ ð1+Error pre sleep�Condition
�
�ParticipantÞ

This analysis wasmotivated by recent studies suggesting that targetedmemory reactivation in these experimental paradigms (and

likely spontaneous sleep reactivation as well) selectively improves memory for weakly encoded memories.22,23,29 By using normal-

ized data and adding the pre-sleep error as a predictor, we were able to separately evaluate two effects: a uniform cuing benefit,

which would manifest as a main effect of Condition (a different in intersect in Figure 2B); and cuing effects that rely on pre-sleep error

levels, which would manifest as an interaction effect between Condition and Error_pre_sleep (a different slope in Figures 2B and 2C;

encoding-strength-dependent forgetting). A similar analysis was run on non-Z-scored data (Figure S1).

In order to quantify the extent of the cuing effect on cued and non-cued objects within a contextually bound set for each participant

(Figures 3E and 4E), a similar model was run for each participant, omitting the random effects.

Error post sleep � 1+Error pre sleep�Condition

The obtained coefficients for each condition [i.e., condition-specific encoding-strength-dependent forgetting values relative to the

value for the (non-cued object; cued set) group] were then used to calculate correlations between behavior and physiology across

participants, as outlined below.
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Spectral analysis
Spectral analyses were run on data collected during sleep from electrode Cz and limited to epochs for task-related sounds presented

during NREM sleep. We decided to focus our analyses on electrode Cz because it is sensitive to two notable memory-related wave-

forms: sleep spindles and slow-oscillations.19 Trials were segmented around sound onset (1.25 s before to 4.75 s after). For each trial,

we first subtracted its overall mean and then calculated a spectrogram between 0.25 Hz and 25 Hz in 0.25 Hz intervals, using 0.5-s

timewindowswith 87.5%overlap. For each participant, the average baseline (i.e., t < 0 s) activity was calculated per frequency band,

and each trial’s spectrogram was converted to percent change by subtracting and dividing the activity during baseline for each fre-

quency band. These trial-specific spectrograms were used to extract power in specific time-frequency clusters on the single trial

level, as detailed below.

To identify significant clusters of sound-related activity, we first averaged the trial-specific spectrograms within participants. Then,

each point in the time-frequency representation was compared to zero across participants, with an alpha level of 0.01 (corrected for

the number of data-points using a Bonferroni correction). For example, all data points across participants representing t = 1 s, F =

10 Hz were submitted to a t test with the null hypothesis that the power is zero. This comparison indicated which points in time-fre-

quency space show activity significantly higher than baseline. The results, shown in Figure 3B, indicated there were several clusters

of points that were temporally and spectrally contiguous and separate one from the other. The two largest clusters were identified by

our algorithm and used for further analyses. The higher-frequency cluster, reflecting activity in the sigma range (see Figure 3B), may

encapsulate sleep spindle activity which commonly commences approximately 1 s after sound onset (e.g.,11,19). We therefore

considered both the full cluster as well as the two putatively separate components, in our analyses.

Intraclass correlations of spectral power
For each trial, we extracted and summated the values confined by each cluster from the spectrogram, resulting in a single scalar

value per trial and cluster. We hypothesized that trials involving the same sounds within the same participants would have correlated

power in certain clusters. To test this, we used intraclass correlation.54 This metric, ICC, is symmetrical (i.e., whereas inter-class cor-

relations predict Y from X, intra-class correlations predict how clustered together different values of X are) and can be used to calcu-

late the correlation between more than two values. Unlike interclass correlations, ICC values so not have a minimal value (i.e., can go

lower than �1), and are negatively biased (see Figure S4). We calculated ICCs for each participant and cluster, and then ran a per-

mutation test with mixed labels (n = 10,000) for each participant. Finally, we conducted a paired t-test between the true ICC and the

average ICC value calculated using the permutation test. This analysis resulted in the p-values that were presented in Figure 3 and in

themain text. To ensure that we had sufficient data and to avoid biases due to a small number of trials, ICC analyses on spectral data

were limited to participants who had at least five presentations for each sound (N = 16). For these participants, data for all artifact free

sound-locked trials was used (average number of trials = 7.5).

Next, we hypothesized that contextually bound memories would elicit correlated spectral activity. We leveraged the fact that for

each contextually bound set, two sounds were presented. We averaged the power per sound and per cluster, producing two values

for each contextually bound set within participants. The ICC was then calculated within set for each cluster. Like before, we used a

permutation test (n = 10,000) and paired t-tests to consider evidence in support of our hypothesis. Finally, the true ICC values ob-

tained for each participant and cluster were then correlated with the encoding-strength-dependent forgetting values calculated

per participant. The p-values derived from this analysis are presented in Figure 3 and in the main text.

Classification analyses
Using the data collected in the functional localizer task, a classifier was trained for each participant to distinguish faces, places, and

abstract images (Figure S2B). For each image, trials that were not contaminated with artifacts were segmented between 1.5 s before

and 3.5 s after image onset. Classification was calculated for each time point independently using time-series data from the 64 scalp

electrodes as features. Data were smoothed using a 51.2-ms rectangular smoothingwindow. These data were used to train a support

vector machine (SVM) classifier and tested using 5-fold cross-validation protocol.55 This procedure was repeated for 20 iterations

and averaged across iterations. To calculate the significance level, clusters of contiguous time points that were significantly higher

than chance (p < 0.001) were identified, and each time point’s t-values were summed together to produce a cluster-level t mass.

Then, a permutation test was initiated by reconducting the classification analysis and identifying significant clusters using shuffled

labels. Significance for each true cluster-level t mass was evaluated relative to the random distribution of clusters generated based

on 100,000 permutations, with an alpha of 0.001.

Sleep-wake electrophysiological pattern correlations
Having established a link between semantic contexts and images of locations during wake, we tested whether the reinstatement of

context during sleep would result in an increase in the correlation between neural activity during sleep (reactivation) and wake (place-

image viewing). As a baseline condition, we initially considered using the EEG activity related to face-image viewing, but opted

against this option in the analysis stage, following the realization that we do not have an a priori assumption regarding the involvement

of face representations as part of the semantic context (e.g., some contexts may involve people whereas others may not, adding

noise to this analysis). Instead, we decided to use the abstract-image-related wake activity as a baseline condition.
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Using the Functional Localizer data and the data from the sleep phase, we correlated (1) place-image-related and abstract-image-

related wake EEG patterns with (2) patterns observed around the onset of sounds during sleep. First, time-series data were

segmented around both the wake and sleep trial onsets, starting 1.5 s before and ending 3.5 s after stimulus onset. Trials containing

artifacts were omitted. Only sleep trials that included task-related sounds were considered. Data was smoothed using a 51.2-ms

smoothing window. Data from the 64 scalp electrodes at each time point during wake were correlated with data from the same elec-

trodes at each time point during sleep, resulting in a time X time correlation matrix showing wake-sleep correlations across time

points. Two matrices were created, one correlating place-image-related wake EEG patterns with sleep-related EEG patterns, and

one correlating abstract-image-related wake EEG patterns with sleep-related EEG patterns. The subtraction between the two

was used to assess evidence for place-specific activation patterns. The difference matrix was collapsed over the sleep-time axis

to create a vector of correlation coefficients over the course of the wake trial, and the time period during which wake classification

was significantly above chance was extracted. These values, across participants, were then correlated with the encoding-strength-

dependent forgetting values calculated per participant. The p-values derived from this analysis are presented in Figure 3 and in the

main text.
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