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Abstract—Operators can now remotely control switches and
update the control settings for voltage regulators and distributed
energy resources (DERs), thus unleashing the network recon-
fguration opportunities to improve grid effciency. Aligned to
this direction, this work puts forth a comprehensive toolbox
of mixed-integer linear programming (MILP) models leverag-
ing the control capabilities of smart grid assets. It develops
detailed practical models to capture the operation of locally
and remotely controlled regulators, and customize the watt-var
DER control curves complying with the IEEE 1547 mandates.
Maintaining radiality is a key requirement germane to various
feeder optimization tasks. This requirement is accomplished here
through an intuitive and provably correct formulation. To our
knowledge, this is the frst time to optimally select a feeder
topology and simultaneously design DER settings while taking
into account legacy grid apparatus. The developed toolbox is put
into action to reconfgure a grid for minimizing losses using real-
world data on a benchmark feeder. The results corroborate that
optimal topologies vary across the day and coordinating DERs
and regulators is critical during periods of steep net load changes.

Index Terms—Watt-var control; radiality (tree) constraints;
voltage regulators; IEEE 1547; linearized distribution fow.

I. INTRODUCTION

Distribution grids typically operate as radial networks. They

are equipped with normally-open switches that allow changes

in the network topology and maintain radiality for protection

system simplicity. The ability to switch between different

topologies brings about a class of grid optimization tasks

termed as distribution network reconfguration (DNR), includ-

ing post-outage restoration, voltage regulation, and power loss

minimization [1], [2]. Utilizing existing switches to enhance

effciency and reliability of distribution systems is promising,

making DNR a long-pursued task [2], [3]. Network reconfg-

uration problems are combinatorial in nature, and inevitably

introduce integer variables when posed as mathematical pro-

grams. However, advancements in mixed-integer solvers re-

vived attempts towards effcient DNR reformulations [4], [5].

The advent of DERs and fexible loads has directed re-

cent DNR research at maximally utilizing the available in-

frastructure [6], [7]. On the other hand, the intermittency

introduced by DERs increases the importance of DNR towards

maintaining voltages within safe limits. Thus, attempts are

being directed towards leveraging smart grid assets such as

dispatchable DERs, capacitor banks, and remotely controlled

voltage regulators in DNR formulations. Yet several smart grid

devices (such as photovoltaics (PVs) or energy storage units)

and legacy grid devices alike operate based on local control

rules [8]. On an operational basis, these rules could be fxed

(regulators and capacitors) or reconfgured periodically [9].

This is to reduce the frequency in communication and OPF

computations. Yet the outcome of DNR could be signifcantly

affected by inaccurate or inadequate modeling of such locally

controlled devices. The attempts at proper modeling of these

devices are limited and based on simplifying assumptions,

such as fxed and known taps for regulators and unity power

factor DERs [6]. Enforcing radiality is another critical aspect

in grid topology reconfguration and other optimization tasks,

such as planning and topology identifcation [10]. The popular

approaches to enforce radiality include an exhaustive loop

elimination, imposing a single infow edge or a single parent

per bus [11], [12], but fail or lack optimality guarantees in the

presence of DERs [11].

The contribution of this work is threefold: i) Put forth a

novel mixed-integer linear program (MILP) model for design-

ing watt-var curves for DERs that takes into account all IEEE

1547 standard mandates; ii) Revisit an optimization model for

guaranteeing radiality of a feeder to provide a more compact

form; and iii) Develop an optimization model for capturing the

operation of locally controlled regulators. This is in contrast to

existing schemes where regulators are either ignored or their

taps are presumed known. The proposed DNR is formulated

as a mixed-integer quadratic program (MIQP) and tested

using real-world data on the IEEE 37-bus grid. Numerical

tests corroborate that depending on the load-generation mix

experienced across a day, the operator has to select different

topologies and regulator/DER settings.

II. PROBLEM STATEMENT AND EXISTING MODELS

Suppose a utility knows the feeder model as well as the

anticipated load and solar generation on a per-bus basis for

the upcoming period of 4 hours or so. The operator would

like to reconfgure the grid via remotely controlled switches

to minimize ohmic losses. A key requirement is that the

reconfgured topology has to remain radial at all times. In

addition to switches, the operator can change the tap settings

of remotely controlled regulators and select the watt-var curves

of DERs to ensure that voltages and line fows remain within

specifed limits. This section reviews existing models for

feeders, nodal/edge constraints, and voltage-dependent loads.
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1) Nodal Variables and Constraints: A single-phase dis-

tribution system with N + 1 buses can be modeled as a

graph G(N0, E). The nodes in N0 := {0, . . . , N} corre-

spond to buses; and its directed edges E to lines, regula-

tors, and switches. The non-substation buses are contained

in N := N0 \ {0}. The load-buses are in Nℓ ⊆ N . Let vi
represent the voltage magnitude and pi + jqi the complex

power injection at bus i. Vectors v and p + jq stack the

voltages and injections, respectively, for nodes in N .

A distribution grid may host different types of loads and

DERs, such as (in)elastic ZIP loads and (non)dispatchable

DERs. The constraints on voltage and power injection for all

nodes can be abstractly expressed as

v1 ≤ v ≤ v̄1 (1a)

p(v) ≤ p ≤ p̄(v) (1b)

q(v,p) ≤ q ≤ q̄(v,q) (1c)

where voltage limits at the point of service are typically set

within ±3% per unit (pu) [13]. The functions p(v), p̄(v),
q(v,p), and q̄(v,q) apply entrywise, and depend on load and

DER characteristics. Regarding loads, in steady-state analysis

the voltage dependence of loads is captured by the ZIP model.

Given bus voltage magnitude vi, the power injection of load

i is modeled as pi(vi) = α
p
0 + α

p
1vi + α

p
2v

2
i and qi(vi) =

α
q
0+α

q
1vi+α

q
2v

2
i , with all α coeffcients being non-positive and

assumed known [13]. Linearizing the quadratic dependence of

ZIP loads around the nominal voltage of 1 pu, we approximate

v2i ≃ 2vi − 1. Then, for all buses hosting loads, the re/active

power limits of (1c) can be compactly written as

[p
i
(vi) p̄i(vi) q

i
(vi) q̄i(vi)]

⊤ = α0+viα12, ∀i ∈ Nℓ. (2)

If load i is inelastic, then apparently p
i
(vi) = p̄i(vi); and

p
i
(vi) ≤ p̄i(vi) otherwise. Similarly for reactive power injec-

tions. Modeling of DERs is deferred to Section III.

2) Edge Variables and Constraints: The edge set E can

be partitioned into the set of switches ES ; regulators ER; and

fxed lines E \(ER∪ES). The basic DNR task aims at selecting

a subset of switches to be closed. To capture which switches

are closed, let us introduce the binary variables ye’s for all

switchable lines e ∈ ES . Variable ye = 1 indicates that switch

e is closed or connected; and vice versa. The power fow Pe+
jQe on edge e is constrained as

ye[P e Q
e
] ≤ [Pe Qe] ≤ ye[P̄e Q̄e], ∀ e ∈ E (3a)

where ye is a variable for switches; and is fxed to 1 for lines

and regulators. If switch e is open (ye = 0), constraint (3a) sets

the power fow on e to zero. Else, box constraints on the power

fow are enforced and usually P e = −P̄e and Q
e
= −Q̄e.

3) Linearized Distribution Flow (LDF) Model: Per the

LDF model, the power injections at each bus i are [2]:

pi =
∑

e:(i,j)∈E

Pe −
∑

e:(j,i)∈E

Pe (4a)

qi =
∑

e:(i,j)∈E

Qe −
∑

e:(j,i)∈E

Qe. (4b)

Fig. 1. Active power-reactive power (watt/var) DER control curve.

If re + jxe is the impedance of line e : (i, j) ∈ E , the LDF

model relates the squared voltage magnitudes to power fows

linearly as v2i − v2j = 2rePe + 2xeQe. Using the linearization

v2i ≃ 2vi − 1 in the LDF model, one obtains [14]

vi − vj = rePe + xeQe, ∀ e : (i, j) ∈ E \ (ER ∪ ES). (5)

For switchable lines in ES , the voltage drop of (5) applies

only if the switch is closed, that is

ye(vi − vj − rePe − xeQe) = 0, ∀ e : (i, j) ∈ ES . (6)

The bilinear products appearing in (6) such as yevi are handled

using McCormick linearization [15]; see also [16].

III. DESIGNING WATT-VAR CONTROL CURVES FOR DERS

The IEEE 1547 standard mandates DERs to provide reactive

power support according to four possible modes: i) constant

power factor; ii) voltage-dependent reactive power (volt-var);

iii) active power-dependent reactive power (watt-var); and

iv) constant reactive power mode. The watt-var dependencies

are captured by control rules described by piecewise affne

functions; see Fig. 1. To effectively integrate DERs, these

rules should be decided optimally based on feeder and loading

conditions. We henceforth assume that DERs are operating in

the watt-var mode and their parameters are adjusted routinely.

To simplify the exposition, we consider DERs operating

in the right halfspace of the watt-var rule of Fig. 1 (e.g.,

generation). Given the rated reactive power capacity q̄i for

the i-th DER, the controllable parameters are pi,1 and pi,2.

The IEEE 1547 standard further constraints (pi,1, pi,2) as

0.4p̄i ≤ pi,1 ≤ 0.8p̄i (7a)

pi,1 + 0.1p̄i ≤ pi,2 ≤ p̄i (7b)

where p̄i is the rated active power for DER i. These specifca-

tions are set by the standard to ensure a substantial deadband

and to avoid steep slopes in Fig. 1. Given (pi,1, pi,2), the

reactive power of DER i depends on its active power as

qi(pi) =







0 , 0 ≤ pi ≤ pi,1
−q̄i(pi−pi,1)
pi,2−pi,1

, pi,1 ≤ pi ≤ pi,2

−q̄i , pi,2 ≤ pi ≤ p̄i

(8)

The control rule of (8) induces a non-linear equality constraint

between variables qi, pi,1, and pi,2, which we next capture

by a novel MILP model: Introduce three binary variables to

indicate which of the three segments in (8) is active each time

(δi,1, δi,2, δi,3) ∈ {0, 1}3 and δi,1 + δi,2 + δi,3 = 1. (9)
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The selection of a segment depends on the value of pi as

δi,2pi,1 + δi,3pi,2 ≤ pi ≤ δi,1pi,1 + δi,2pi,2 + δi,3p̄i. (10)

Then, the rule of (8) can be expressed by the constraint

qi = δi,1 · 0− δi,2
q̄i(pi − pi,1)

pi,2 − pi,1
− δi,3q̄i. (11)

Albeit (10) involves binary-continuous variable products, and

can be thus handled by MacCormick linearization, that is not

the case for (11). Unfortunately, the latter entails ratios or

products of continuous variables. To bypass this diffculty,

we parameterize Fig. 1 using the slope/intercept of its middle

segment instead of the breakpoints (pi,1, pi,2). If the middle

segment of (8) is denoted by qi(pi) = βipi + γi for some

negative (βi, γi), then (11) is equivalent to

qi = δi,2(βipi + γi)− δi,3q̄i. (12)

Different from (10), constraint (12) involves only binary-

continuous variable products. We next reformulate (10) in

terms of (βi, γi). Because the line qi(pi) = βipi + γi passes

through the points (pi,1, 0) and (pi,2,−q̄i), we get that

pi,1 = −
γi

βi

and pi,2 = −
q̄i + γi

βi

. (13)

Plugging (13) into (10); multiplying all sides by βi < 0;

adding γi; and using (9), eventually provides

δi,3(γi − βip̄i)− δi,2q̄i ≤ βipi + γi ≤ δi,1γi − δi,3q̄i (14)

which is still amenable to McCormick linearization.

The rule of (8) is equivalent to (9), (12), and (14). With the

help of McCormick linearization, the latter can be posed as an

MILP model. The aforesaid model captures the piecewise rule,

but does not enforce the limitations of (7). To capture those,

we translate the constraints on (pi,1, pi,2) to constraints on

(βi, γi). Plugging (13) into (7) implies (βi, γi) should satisfy

−0.4p̄iβi ≤ γi ≤ −0.8p̄iβi (15a)

p̄iβi + γi ≤ −q̄i ≤ 0.1p̄iβi. (15b)

To summarize, the control rule for DER i is optimally tuned

via variables (βi, γi) that satisfy (9), (12), (14), and (15). To

the best of our knowledge, this is the frst model to optimally

design the IEEE 1547 control curves for DERs.

IV. MODELING VOLTAGE REGULATORS

A regulator scales its secondary-side voltage by ±10%
in increments of 0.625% using tap positions [8]. Consider

a regulator modeled by edge e : (i, j) ∈ ER. Its voltage

transformation ratio can be set to 1 + 0.00625 · te, where

te ∈ {0,±1, . . . ,±16} is its tap position. We consider locally

and remotely controlled regulators [13]. A locally controlled

regulator aims to maintain vj within a given range [vj , v̄j ].
The regulator changes its taps after a time delay until vj is

brought within [vj , v̄j ], unless an extreme tap position has been

0.9 · vi
<latexit sha1_base64="fXRQal93aCHf29sr4jR1+ziSuVM=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkktqLeCF48V7Ac0oWw2m3bpZjfsbgol9G948aCIV/+MN/+N2zYHbX0w8Hhvhpl5YcqZNq777Wxsbm3v7Jb2yvsHh0fHlZPTjpaZIrRNJJeqF2JNORO0bZjhtJcqipOQ0244vp/73QlVmknxZKYpDRI8FCxmBBsr+W7tzieRNGgyYINK1a25C6B14hWkCgVag8qXH0mSJVQYwrHWfc9NTZBjZRjhdFb2M01TTMZ4SPuWCpxQHeSLm2fo0ioRiqWyJQxaqL8ncpxoPU1C25lgM9Kr3lz8z+tnJr4NcibSzFBBlovijCMj0TwAFDFFieFTSzBRzN6KyAgrTIyNqWxD8FZfXiedes27rtUfG9Vmo4ijBOdwAVfgwQ004QFa0AYCKTzDK7w5mfPivDsfy9YNp5g5gz9wPn8A3/CQ4w==</latexit>
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Fig. 2. Locally controlled regulator characteristic: The left/rightmost segments
occur when regulator taps have maxed out. Within the middle green box, the
secondary voltage is successfully regulated. Lacking the actual tap position,
this middle area is approximated by its midpoint (reference voltage).

reached. Ignoring the time delay, this operation is shown in

Figure 2 and described by

vj(vi) =







1.1 · vi , vi ≤
vj

1.1
[

vj , vj
]

,
vj

1.1 < vi <
vj

0.9

0.9 · vi , vi ≥
vj

0.9

. (16)

The frst branch relates to the case where the primary voltage

vi is quite low and even with te = +16, the secondary voltage

vj = 1.1 · vi remains below vj . Likewise, the third branch

relates to the case where the tap has reached its minimum of

te = −16. Normal operation is captured by the second branch,

where vj is successfully regulated within [vj , vj ].
As the operator cannot fully monitor and/or control the exact

tap position, we propose approximating the second branch of

(16) by setting vj at the mid-point of the range

vj(vi) =
vj + vj

2
when vi ∈

(

vj

1.1
,
vj

0.9

)

.

Since the regulation range typically spans 2–4 taps or 0.0125–

0.025 pu [8], this approximation incurs negligible modeling

error. The approximate operation of Fig. 2 can be modeled

similarly to the watt-var curve of (8), using three binary

variables selecting the three regions of operation:

vi ≥ 0.8δe,1 +
vj

1.1
δe,2 +

v̄j

0.9
δe,3 (17a)

vi ≤
vj

1.1
δe,1 +

v̄j

0.9
δe,2 + 1.2δe,3 (17b)

vj = 1.1δe,1vi + δe,2

(

vj + vj

2

)

+ 0.9δe,3vi (17c)

δe,1 + δe,2 + δe,3 = 1, and (δi,1, δi,2, δi,3) ∈ {0, 1}3 (17d)

The binary-continuous variable products in (17c) can be

handled via McCormick linearization. For remotely controlled

regulators, their taps can be changed remotely and hence, their

voltage ratio becomes an optimization variable taking one of

33 possible values. This can be encoded using the 6-bit binary

expansion model of [17].

V. ENSURING RADIAL TOPOLOGIES

Ensuring a graph is radial is of central importance to various

grid tasks. In grids with a single power source and no DERs,

enforcing radiality entails allowing one incoming fow edge

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 26,2023 at 22:18:02 UTC from IEEE Xplore.  Restrictions apply. 



per bus [4]. With DERs present, a bus may receive power

from multiple edges even for radial grid. To handle such

networks, the model of [5] enforces an edge orientation so that

each bus has a single parent bus. However, counterexamples

where this parent-child model produces disconnected graphs

do exist [12]. A dual graph-based model was suggested in

[12], but is limited to planar graphs. For a general network,

cycles can be avoided by constraining the number of connected

edges on each cycle to be less than the cycle length [7].

Despite its generality, this cycle-elimination approach can lead

to exponentially many constraints. One of the most popular

radiality model ensures connectivity of loads to DERs via the

power fow equations, and connects DERs to the substation

via fows of a virtual commodity [11]. We build upon the

commodity fow approach and propose a more succinct model

with fewer variables and constraints.

Given the complete graph G(N0, E), defne a subgraph

Ǧ(N0, Ě), such that Ě := E \ {e : e ∈ ES , ye = 0}. The

subgraph Ǧ represents the reconfgured network. To capture

the line infrastructure of G, defne its |E| × (N + 1) branch-

bus incidence matrix Ã. Its (e, i)-th entry takes the value

of +1 (−1) if edge e ∈ E starts (ends) at bus i; and 0,

otherwise. Separate the frst column a0 of Ã related to the

substation as Ã = [a0 A], to get the reduced incidence matrix

A. Similarly, let Ǎ ∈ R
|Ě|×N represent the reduced branch-

bus incidence matrix of subgraph Ǧ. The next claim (shown

in [16]) establishes a model for imposing graph connectivity.

Proposition 1. ([16]) A graph Ǧ(N0, Ě) with reduced branch-

bus incidence matrix Ǎ is connected if and only if there exists

a vector of virtual fows f ∈ R
|Ě|, such that Ǎ⊤f = 1.

Proposition 1 involves Ǎ, which depends on the switch

statuses ye’s. Notice that Ǎ is derived from A by removing

the rows related to open switches. Therefore, the condition of

Prop. 1 can be expressed with respect to the original A, by

forcing the virtual fows in f to be zero for open lines.

Corollary 1. Let A be the reduced branch-bus incidence

matrix of G, and Ǧ ⊆ G be a subgraph defned by opening

switches {e ∈ ES : ye = 0}. Subgraph Ǧ is connected if and

only if there exists f ∈ R
|E| such that

A⊤f = 1 and − yeN ≤ fe ≤ yeN, ∀e ∈ ES . (18)

Constraint (18) implies that the virtual fows on open

switches are zero, and bounds the fows on closed switches

within [−N, N ]. Once a graph Ǧ is ensured to be connected,

the requirement of radiality can be readily enforced as
∑

e∈ES

ye = N − |E \ ES | (19)

to ensure the total number of connected edges is N .

VI. PROBLEM FORMULATION

W can now formulate the optimal DNR task. Consider an

operating period of 4 hr. Before the start of this period, the

operator collects minute-based data capturing the anticipated

Fig. 3. The IEEE 37-bus feeder with an additional regulator, lines, and DERs.

load and solar generation, and partition them into 15-min

intervals. From each 15-min interval, the operator selects

S samples, yielding a total of T = 16S samples for the

upcoming 4-hr period, indexed by t. The data related to

sample t are collectively denoted by vector θ
t. The operator

would like to minimize the total power losses summed over T

instances. Although each one of the T instances experiences

different loading conditions, they all share the same feeder

topology and DER/regulator settings. To capture this, we group

optimization variables as

ω1 := {{ye}e∈ES
, {βi, γi}i∈N\Nℓ

, {be,k}e∈ER\EL
R
}; and

ω
t
2 := {vt,pt, {qti , δ

t
i,k}i∈N\Nℓ

, {δte,k}e∈EL
R
,Pt,Qt}, ∀t.

The ultimate goal is to determine ω1. The grid would then be

allowed to operate autonomously using local rules per interval

t yielding variables {ωt
2}

T
t=1. The DNR task can be posed as

min
ω1,{ωt

2
}T
t=1

∑

t∈T

∑

e∈E\ER

re(P
2
e,t +Q2

e,t) (DNR)

s.to (1) − (6), (9), (12), (14), (15), (19), (17) ∀t.

The objective approximates the ohmic losses along all lines

and times per the LDF model.

VII. NUMERICAL TESTS AND CONCLUSIONS

The developed DNR was tested on a modifed IEEE 37-

bus feeder converted to its single-phase equivalent; see Fig. 3.

Switches include three existing and two additional lines, all

denoted as dashed edges. Regulator (799, 701) is assumed to

be remotely controlled. The regulator added on line (704, 720)
is set locally controlled with reference voltage 1 pu and

bandwidth 0.016 pu. Five PVs of equal capacity were placed.

Fig. 4 (left) shows normalized minute-based load and solar

data that were extracted from the Pecan Street dataset [18];

see [16] for details. We synthesized reactive loads by scaling

the actual demand to match the nominal benchmark power

factors. The linearized ZIP parameters of (2) were found using

the derived (re)active load profles for each bus and the load

type from the benchmark. Representing high solar integration,

solar data were scaled to meet 75% of the energy consumption.

Problem (DNR) was solved using YALMIP and Gurobi [19].

The 24-hr interval was partitioned into fve periods T1−T5;

see Fig. 4. Each period was divided into 15-min intervals
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Fig. 4. left: Normalized aggregate active load and solar generation over time. The 5 panes represent the operating periods T1 −T5 and (G,C) labels indicate
optimal topology and watt-var curves; right: dictionary of obtained optimal topology and watt-var curves.

and S = 2 load and generation samples were randomly

drawn from the minute-based data. We then solved fve

instances of (DNR). The optimal topologies and watt-var

curves obtained for different periods are shown in Fig. 4.

The average power loss incurred during the fve periods were

{1.5, 1.9, 9.9, 4.6, 5.1} × 10−2 and the optimal tap settings

were {19, 16, 15, 21, 21}, respectively. Since period T1 ex-

periences negligible solar generation, its watt-var curves are

inconsequential. During period T2, while all PVs tend to

absorb minimal reactive power and hence hit the limits of the

watt-var curve in (7), the PV at bus 738 obtains a different

curve and absorbs its maximum reactive power before reaching

its p̄. During T3, voltages remain within limits because both

load and generation are high, and so watt-var curves coincide

with minimal reactive absorption. Period T4 witnesses a steep

variation in load-generation mix. Such variation is tackled via

a high tap setting of 21 and relatively aggressive participation

in reactive absorption; see curve C4. Finally, period T5 with

no PV generation yields generic watt-var curves similar to T1,

but different taps and topology due to high load.

We also experimented with the numbers of operating periods

and samples S. The effects are on three fronts: i) Frequency

of changes in taps, topology, and inverter curves; ii) Voltage

violations over all minute-based data after fxing ω1; and iii)

Total active power loss for all minute-based data after fxing

ω1. Shorter periods result in more frequent operations on

taps, switches, and inverter settings, while longer periods may

render problem (DNR) infeasible due to extreme changes in

the load-generation mix. Even when feasible, longer periods

lead to increased losses. For a fxed length, increasing S

results in lower losses and voltage violations and higher

computational burden.

Our numerical tests have corroborated: a) The optimal

topology varies with the load-generation mix; b) Coordinat-

ing DERs and regulators is critical during periods of steep

transitions; and c) The trade-offs involved in the length of

operating periods and the number of scenarios. Extending

this work to multiphase grids, exact AC grid models, and/or

considering volt-var rather than watt-var (which introduce

stability concerns) are relevant research directions.
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