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Abstract—Operators can now remotely control switches and
update the control settings for voltage regulators and distributed
energy resources (DERs), thus unleashing the network recon-
figuration opportunities to improve grid efficiency. Aligned to
this direction, this work puts forth a comprehensive toolbox
of mixed-integer linear programming (MILP) models leverag-
ing the control capabilities of smart grid assets. It develops
detailed practical models to capture the operation of locally
and remotely controlled regulators, and customize the watt-var
DER control curves complying with the IEEE 1547 mandates.
Maintaining radiality is a key requirement germane to various
feeder optimization tasks. This requirement is accomplished here
through an intuitive and provably correct formulation. To our
knowledge, this is the first time to optimally select a feeder
topology and simultaneously design DER settings while taking
into account legacy grid apparatus. The developed toolbox is put
into action to reconfigure a grid for minimizing losses using real-
world data on a benchmark feeder. The results corroborate that
optimal topologies vary across the day and coordinating DERs
and regulators is critical during periods of steep net load changes.

Index Terms—Watt-var control; radiality (tree) constraints;
voltage regulators; IEEE 1547; linearized distribution flow.

I. INTRODUCTION

Distribution grids typically operate as radial networks. They
are equipped with normally-open switches that allow changes
in the network topology and maintain radiality for protection
system simplicity. The ability to switch between different
topologies brings about a class of grid optimization tasks
termed as distribution network reconfiguration (DNR), includ-
ing post-outage restoration, voltage regulation, and power loss
minimization [1], [2]. Utilizing existing switches to enhance
efficiency and reliability of distribution systems is promising,
making DNR a long-pursued task [2], [3]. Network reconfig-
uration problems are combinatorial in nature, and inevitably
introduce integer variables when posed as mathematical pro-
grams. However, advancements in mixed-integer solvers re-
vived attempts towards efficient DNR reformulations [4], [5].

The advent of DERs and flexible loads has directed re-
cent DNR research at maximally utilizing the available in-
frastructure [6], [7]. On the other hand, the intermittency
introduced by DERs increases the importance of DNR towards
maintaining voltages within safe limits. Thus, attempts are
being directed towards leveraging smart grid assets such as
dispatchable DERs, capacitor banks, and remotely controlled
voltage regulators in DNR formulations. Yet several smart grid
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devices (such as photovoltaics (PVs) or energy storage units)
and legacy grid devices alike operate based on local control
rules [8]. On an operational basis, these rules could be fixed
(regulators and capacitors) or reconfigured periodically [9].
This is to reduce the frequency in communication and OPF
computations. Yet the outcome of DNR could be significantly
affected by inaccurate or inadequate modeling of such locally
controlled devices. The attempts at proper modeling of these
devices are limited and based on simplifying assumptions,
such as fixed and known taps for regulators and unity power
factor DERs [6]. Enforcing radiality is another critical aspect
in grid topology reconfiguration and other optimization tasks,
such as planning and topology identification [10]. The popular
approaches to enforce radiality include an exhaustive loop
elimination, imposing a single inflow edge or a single parent
per bus [11], [12], but fail or lack optimality guarantees in the
presence of DERs [11].

The contribution of this work is threefold: i) Put forth a
novel mixed-integer linear program (MILP) model for design-
ing watt-var curves for DERs that takes into account all IEEE
1547 standard mandates; ii) Revisit an optimization model for
guaranteeing radiality of a feeder to provide a more compact
form; and iii) Develop an optimization model for capturing the
operation of locally controlled regulators. This is in contrast to
existing schemes where regulators are either ignored or their
taps are presumed known. The proposed DNR is formulated
as a mixed-integer quadratic program (MIQP) and tested
using real-world data on the IEEE 37-bus grid. Numerical
tests corroborate that depending on the load-generation mix
experienced across a day, the operator has to select different
topologies and regulator/DER settings.

II. PROBLEM STATEMENT AND EXISTING MODELS

Suppose a utility knows the feeder model as well as the
anticipated load and solar generation on a per-bus basis for
the upcoming period of 4 hours or so. The operator would
like to reconfigure the grid via remotely controlled switches
to minimize ohmic losses. A key requirement is that the
reconfigured topology has to remain radial at all times. In
addition to switches, the operator can change the tap settings
of remotely controlled regulators and select the watt-var curves
of DERs to ensure that voltages and line flows remain within
specified limits. This section reviews existing models for
feeders, nodal/edge constraints, and voltage-dependent loads.
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1) Nodal Variables and Constraints: A single-phase dis-
tribution system with N + 1 buses can be modeled as a
graph G(Np,E). The nodes in Ny := {0,...,N} corre-
spond to buses; and its directed edges £ to lines, regula-
tors, and switches. The non-substation buses are contained
in N':= ANy \ {0}. The load-buses are in N; C N. Let v;
represent the voltage magnitude and p; + jg; the complex
power injection at bus ¢. Vectors v and p + jq stack the
voltages and injections, respectively, for nodes in N.

A distribution grid may host different types of loads and
DERs, such as (in)elastic ZIP loads and (non)dispatchable
DERs. The constraints on voltage and power injection for all
nodes can be abstractly expressed as

vl <v <ol (1a)
p(v) <p <p(v) (1b)
q(v,p) <q<q(v,q) (Ic)

where voltage limits at the point of service are typically set
within £3% per unit (pu) [13]. The functions p(v), p(v),
q(v,p), and q(v, q) apply entrywise, and depend on load and
DER characteristics. Regarding loads, in steady-state analysis
the voltage dependence of loads is captured by the ZIP model.
Given bus voltage magnitude v;, the power injection of load
i is modeled as p;(v;) = of + ofv; + obv? and ¢;(v;) =
ad+afv;+adv?, with all « coefficients being non-positive and
assumed known [13]. Linearizing the quadratic dependence of
ZIP loads around the nominal voltage of 1 pu, we approximate
vf ~ 2v; — 1. Then, for all buses hosting loads, the re/active

power limits of (1c) can be compactly written as
[p,(vi) Di(vi) q,(vi) @G(vi)]" = ao+vicas, Vi€ Ne. (2)

If load ¢ is inelastic, then apparently pi(vi) = p;(v;); and
p,(vi) < pi(v;) otherwise. Similarly for reactive power injec-
tions. Modeling of DERs is deferred to Section III.

2) Edge Variables and Constraints: The edge set £ can
be partitioned into the set of switches Eg; regulators Er; and
fixed lines £\ (EgUEs). The basic DNR task aims at selecting
a subset of switches to be closed. To capture which switches
are closed, let us introduce the binary variables y.’s for all
switchable lines e € £g. Variable y, = 1 indicates that switch
e is closed or connected; and vice versa. The power flow P, +
jQ. on edge e is constrained as

ye[Be Qe] < [Pe Qe] < ye[pe Qe], Veef

where y. is a variable for switches; and is fixed to 1 for lines
and regulators. If switch e is open (y. = 0), constraint (3a) sets
the power flow on e to zero. Else, box constraints on the power
flow are enforced and usually P, = —P. and Q = —Q..

3) Linearized Distribution Flow (LDF) Model: Per the
LDF model, the power injections at each bus ¢ are [2]:

(3a)

pi= Y, P— Y P (4a)
e:(i,j)EE e:(ji)eE

= >, Qe— > Qe (4b)
e:(1,j)EE e:(j,i)€E
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Fig. 1. Active power-reactive power (watt/var) DER control curve.

If r. + jz. is the impedance of line e : (4,j) € &, the LDF
model relates the squared voltage magnitudes to power flows
linearly as v? — v? = 2r. P, + 22.Q.. Using the linearization
v? =~ 2v; — 1 in the LDF model, one obtains [14]

i Y
Vi —V; =TePe+2.Qc, Ve:(i,j)eEN\(ErUEs). (5)

For switchable lines in g, the voltage drop of (5) applies
only if the switch is closed, that is

ye(vi_vj_repe_ere)zov Vei(i7j)€55- 6)

The bilinear products appearing in (6) such as y.v; are handled
using McCormick linearization [15]; see also [16].

III. DESIGNING WATT-VAR CONTROL CURVES FOR DERS

The IEEE 1547 standard mandates DERS to provide reactive
power support according to four possible modes: i) constant
power factor; ii) voltage-dependent reactive power (volt-var);
iii) active power-dependent reactive power (watt-var); and
iv) constant reactive power mode. The watt-var dependencies
are captured by control rules described by piecewise affine
functions; see Fig. 1. To effectively integrate DERs, these
rules should be decided optimally based on feeder and loading
conditions. We henceforth assume that DERs are operating in
the watt-var mode and their parameters are adjusted routinely.

To simplify the exposition, we consider DERs operating
in the right halfspace of the watt-var rule of Fig. 1 (e.g.,
generation). Given the rated reactive power capacity §; for
the i-th DER, the controllable parameters are p;; and p; o.
The IEEE 1547 standard further constraints (p; 1,p;2) as

0.4p; < p;1 < 0.8p;
pi1+0.1p; < pio < P;

(7)
(7b)

where p; is the rated active power for DER . These specifica-
tions are set by the standard to ensure a substantial deadband
and to avoid steep slopes in Fig. 1. Given (p;1,pi2), the
reactive power of DER ¢ depends on its active power as

0 , 0<p; <pin
qi(pi) = % y Pi,l S pi <P ()
—qi y Pi2 < pi <P

The control rule of (8) induces a non-linear equality constraint
between variables ¢;, p; 1, and p; 2, which we next capture
by a novel MILP model: Introduce three binary variables to
indicate which of the three segments in (8) is active each time

(6i,1,0i2,0;3) € {0,1}® and &1+ din+d;3=1. (9)
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The selection of a segment depends on the value of p; as
0i2Pi1 + 0i3pi2 < pi < 0i1Di1 + 0s2pi2 + 053D (10)
Then, the rule of (8) can be expressed by the constraint

J— 5Z 1 0 6 q’L(pZ pl,l) _ 5
Pi2 — Pi1

4,30 (11)
Albeit (10) involves binary-continuous variable products, and
can be thus handled by MacCormick linearization, that is not
the case for (11). Unfortunately, the latter entails ratios or
products of continuous variables. To bypass this difficulty,
we parameterize Fig. 1 using the slope/intercept of its middle
segment instead of the breakpoints (p;1,p;2). If the middle
segment of (8) is denoted by ¢;(p;) = Bip; + 7; for some
negative (3;,7;), then (11) is equivalent to

(12)

¢ = 0i2(Bipi + vi) — 0i,30;-

Different from (10), constraint (12) involves only binary-
continuous variable products. We next reformulate (10) in
terms of (B;,~;). Because the line ¢;(p;) = Bip; + 7: passes
through the points (p; 1,0) and (p; 2, —q;), we get that

and

pig =2 g +7i
" ﬁz ﬁz

Plugging (13) into (10); multiplying all sides by 5; < 0;
adding +;; and using (9), eventually provides

ﬂzpz) -

which is still amenable to McCormick linearization.

The rule of (8) is equivalent to (9), (12), and (14). With the
help of McCormick linearization, the latter can be posed as an
MILP model. The aforesaid model captures the piecewise rule,
but does not enforce the limitations of (7). To capture those,
we translate the constraints on (piyl,pijg) to constraints on
(Bi,vi)- Plugging (13) into (7) implies (5;, ;) should satisfy

—0.4p;8; < v < —0.8p;8;
DiBi + v < —q; < 0.1p; 5.

Pi2 = — (13)

8is(vi — 0i2G; < Bipi +vi < 63.1vi — 0i,3G; (14)

(15a)
(15b)

To summarize, the control rule for DER i is optimally tuned
via variables (f3;,;) that satisfy (9), (12), (14), and (15). To
the best of our knowledge, this is the first model to optimally
design the IEEE 1547 control curves for DERs.

IV. MODELING VOLTAGE REGULATORS

A regulator scales its secondary-side voltage by +10%
in increments of 0.625% using tap positions [8]. Consider
a regulator modeled by edge ¢ : (i,j) € Eg. Its voltage
transformation ratio can be set to 1 4+ 0.00625 - t., where
t. € {0,%1,...,£16} is its tap position. We consider locally
and remotely controlled regulators [13]. A locally controlled
regulator aims to maintain v; within a given range [v;, 7;].
The regulator changes its taps after a time delay until v; is
brought within [v > Ej], unless an extreme tap position has been

v;/1.1 v;/0.9

Fig. 2. Locally controlled regulator characteristic: The left/rightmost segments
occur when regulator taps have maxed out. Within the middle green box, the
secondary voltage is successfully regulated. Lacking the actual tap position,
this middle area is approximated by its midpoint (reference voltage).

reached. Ignoring the time delay, this operation is shown in
Figure 2 and described by

Ll-v; v <15
v =
Uj(’Ui) = [’UJ,’U]] s ﬁ <7’Ui < 8)7] . (16)
09-v; , v >g5

The first branch relates to the case where the primary voltage
v; is quite low and even with ¢, = +16, the secondary voltage
v; = 1.1 - v; remains below V. Likewise, the third branch
relates to the case where the tap has reached its minimum of
te = —16. Normal operation is captured by the second branch,
where v; is successfully regulated within [v;, 7;].

As the operator cannot fully monitor and/or control the exact
tap position, we propose approximating the second branch of
(16) by setting v; at the mid-point of the range

vty when wv; € (fjl (;)J9>

Since the regulation range typically spans 2—4 taps or 0.0125—
0.025 pu [8], this approximation incurs negligible modeling
error. The approximate operation of Fig. 2 can be modeled
similarly to the watt-var curve of (8), using three binary
variables selecting the three regions of operation:

v;(vi) =

v; > 0.80 5, e 17
0.8 1+1 2+09 3 (17a)
v; < 7] 55 1+ 0. 955,2 +1.20¢ 3 (17b)
v+,
W=mew+%z(]2]>+0%ww (17¢)

5671 + 6672 + 56,3 = 1, and ((5@1,(5,’3,5@3) € {0, 1}3 (17d)

The binary-continuous variable products in (17c) can be
handled via McCormick linearization. For remotely controlled
regulators, their taps can be changed remotely and hence, their
voltage ratio becomes an optimization variable taking one of
33 possible values. This can be encoded using the 6-bit binary
expansion model of [17].

V. ENSURING RADIAL TOPOLOGIES

Ensuring a graph is radial is of central importance to various
grid tasks. In grids with a single power source and no DERs,
enforcing radiality entails allowing one incoming flow edge
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per bus [4]. With DERs present, a bus may receive power
from multiple edges even for radial grid. To handle such
networks, the model of [5] enforces an edge orientation so that
each bus has a single parent bus. However, counterexamples
where this parent-child model produces disconnected graphs
do exist [12]. A dual graph-based model was suggested in
[12], but is limited to planar graphs. For a general network,
cycles can be avoided by constraining the number of connected
edges on each cycle to be less than the cycle length [7].
Despite its generality, this cycle-elimination approach can lead
to exponentially many constraints. One of the most popular
radiality model ensures connectivity of loads to DERSs via the
power flow equations, and connects DERs to the substation
via flows of a virtual commodity [11]. We build upon the
commodity flow approach and propose a more succinct model
with fewer variables and constraints.

Given the complete graph G(Nj,E), define a subgraph
G(Ny, E), such that £ := £\ {e : e € Es,y. = 0}. The
subgraph G represents the reconfigured network. To capture
the line infrastructure of G, define its |€| x (IV + 1) branch-
bus incidence matrix A. Its (e,i)-th entry takes the value
of +1 (—1) if edge e € & starts (ends) at bus 4; and 0,
otherwise. Separate the first column a, of A related to the
substation as A = [ag A, to get the reduced incidence matrix
A. Similarly, let A € RI€I*N represent the reduced branch-
bus incidence matrix of subgraph G. The next claim (shown
in [16]) establishes a model for imposing graph connectivity.

Proposition 1. ([16]) A graph G(No, €) with reduced branch-
bus incidence matrix A is connected if and only if there exists
a vector of virtual flows £ € RI€l, such that ATf = 1.

Proposition 1 involves A, which depends on the switch
statuses 7.’s. Notice that A is derived from A by removing
the rows related to open switches. Therefore, the condition of
Prop. 1 can be expressed with respect to the original A, by
forcing the virtual flows in f to be zero for open lines.

Corollary 1. Let A be the reduced branch-bus incidence
matrix of G, and G C G be a subgraph defined by opening
switches {e € Es : ye = 0}. Subgraph G is connected if and
only if there exists £ € RI€! such that

A'f=1 and —y.N<f.<yN, Vec&s. (18)

Constraint (18) implies that the virtual flows on open
switches are zero, and bounds the flows on closed switches
within [N, NJ. Once a graph G is ensured to be connected,
the requirement of radiality can be readily enforced as

Sy = N—[€\ &

ecfs

19)

to ensure the total number of connected edges is V.

VI. PROBLEM FORMULATION

W can now formulate the optimal DNR task. Consider an
operating period of 4 hr. Before the start of this period, the
operator collects minute-based data capturing the anticipated

L

Fig. 3. The IEEE 37-bus feeder with an additional regulator, lines, and DERs.

load and solar generation, and partition them into 15-min
intervals. From each 15-min interval, the operator selects
S samples, yielding a total of 7' = 16S samples for the
upcoming 4-hr period, indexed by t. The data related to
sample ¢ are collectively denoted by vector 8'. The operator
would like to minimize the total power losses summed over 7'
instances. Although each one of the 7' instances experiences
different loading conditions, they all share the same feeder
topology and DER/regulator settings. To capture this, we group
optimization variables as

w1 = {{Ye}eces> {5i7’7i}ie/\/\/\/ga{be,k}eesR\£§}§ and
wé = {Vta pt7 {qf7 6;;,]6}1'6/\[\./\[27 {5i,k}e€$é ) Pta Qt}v Vt.
The ultimate goal is to determine w;. The grid would then be

allowed to operate autonomously using local rules per interval
t yielding variables {w%}7_ ;. The DNR task can be posed as

Z Z Te(PeQ,t‘FQg,t)

teT ecE\ER
s.to (1) = (6),(9),(12),(14), (15),(19),(17) VL.

min
“-’17{“’121}?:1

(DNR)

The objective approximates the ohmic losses along all lines
and times per the LDF model.

VII. NUMERICAL TESTS AND CONCLUSIONS

The developed DNR was tested on a modified IEEE 37-
bus feeder converted to its single-phase equivalent; see Fig. 3.
Switches include three existing and two additional lines, all
denoted as dashed edges. Regulator (799, 701) is assumed to
be remotely controlled. The regulator added on line (704, 720)
is set locally controlled with reference voltage 1 pu and
bandwidth 0.016 pu. Five PVs of equal capacity were placed.
Fig. 4 (left) shows normalized minute-based load and solar
data that were extracted from the Pecan Street dataset [18];
see [16] for details. We synthesized reactive loads by scaling
the actual demand to match the nominal benchmark power
factors. The linearized ZIP parameters of (2) were found using
the derived (re)active load profiles for each bus and the load
type from the benchmark. Representing high solar integration,
solar data were scaled to meet 75% of the energy consumption.
Problem (DNR) was solved using YALMIP and Gurobi [19].

The 24-hr interval was partitioned into five periods 71 — 7s;
see Fig. 4. Each period was divided into 15-min intervals
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Fig. 4. lefr: Normalized aggregate active load and solar generation over time. The 5 panes represent the operating periods 71 — 75 and (G, C) labels indicate
optimal topology and watt-var curves; right: dictionary of obtained optimal topology and watt-var curves.

and S 2 load and generation samples were randomly
drawn from the minute-based data. We then solved five
instances of (DNR). The optimal topologies and watt-var
curves obtained for different periods are shown in Fig. 4.
The average power loss incurred during the five periods were
{1.5,1.9,9.9,4.6,5.1} x 1072 and the optimal tap settings
were {19,16,15,21,21}, respectively. Since period 77 ex-
periences negligible solar generation, its watt-var curves are
inconsequential. During period 75, while all PVs tend to
absorb minimal reactive power and hence hit the limits of the
watt-var curve in (7), the PV at bus 738 obtains a different
curve and absorbs its maximum reactive power before reaching
its p. During 73, voltages remain within limits because both
load and generation are high, and so watt-var curves coincide
with minimal reactive absorption. Period 7 witnesses a steep
variation in load-generation mix. Such variation is tackled via
a high tap setting of 21 and relatively aggressive participation
in reactive absorption; see curve Cy. Finally, period 75 with
no PV generation yields generic watt-var curves similar to 77,
but different taps and topology due to high load.

We also experimented with the numbers of operating periods
and samples S. The effects are on three fronts: i) Frequency
of changes in taps, topology, and inverter curves; ii) Voltage
violations over all minute-based data after fixing wy; and iii)
Total active power loss for all minute-based data after fixing
wi. Shorter periods result in more frequent operations on
taps, switches, and inverter settings, while longer periods may
render problem (DNR) infeasible due to extreme changes in
the load-generation mix. Even when feasible, longer periods
lead to increased losses. For a fixed length, increasing S
results in lower losses and voltage violations and higher
computational burden.

Our numerical tests have corroborated: a) The optimal
topology varies with the load-generation mix; b) Coordinat-
ing DERs and regulators is critical during periods of steep
transitions; and ¢) The trade-offs involved in the length of
operating periods and the number of scenarios. Extending
this work to multiphase grids, exact AC grid models, and/or
considering volt-var rather than watt-var (which introduce
stability concerns) are relevant research directions.
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