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Abstract

A code 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 is a 𝑞-locally decodable code (𝑞-LDC) if one can recover any

chosen bit 𝑏𝑖 of the message 𝑏 ∈ {0, 1}𝑘 with good confidence by randomly querying the encoding

𝑥 ≔ 𝒞(𝑏) on at most 𝑞 coordinates. Existing constructions of 2-LDCs achieve 𝑛 = exp(𝑂(𝑘)),

and lower bounds show that this is in fact tight. However, when 𝑞 = 3, far less is known: the

best constructions achieve 𝑛 = exp(𝑘𝑜(1)), while the best known results only show a quadratic

lower bound 𝑛 ≥ Ω̃(𝑘2) on the blocklength.

In this paper, we prove a near-cubic lower bound of 𝑛 ≥ Ω̃(𝑘3) on the blocklength of 3-query

LDCs. This improves on the best known prior works by a polynomial factor in 𝑘. Our proof

relies on a new connection between LDCs and refuting constraint satisfaction problems with

limited randomness. Our quantitative improvement builds on the new techniques for refuting

semirandom instances of CSPs developed in [GKM22] and, in particular, relies on bounding the

(∞ → 1)-norm of appropriate Kikuchi matrices.
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1 Introduction

A binary locally decodable code (LDC) 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 maps a 𝑘-bit message 𝑏 ∈ {0, 1}𝑘 to

an 𝑛-bit codeword 𝑥 ∈ {0, 1}𝑛 with the property that the receiver, when given oracle access to

𝑦 ∈ {0, 1}𝑛 obtained by corrupting 𝑥 in a constant fraction of coordinates, can recover any chosen

bit 𝑏𝑖 of the original message with good conődence by only querying 𝑦 in a few locations. More

formally, a code 𝒞 is 𝑞-locally decodable if for any input 𝑖 ∈ [𝑘], the decoding algorithm makes

at most 𝑞 queries to the corrupted codeword 𝑦 and recovers the bit 𝑏𝑖 with probability 1/2 + 𝜀,

provided that Δ(𝑦, 𝒞(𝑏)) ≔ |{𝑣 ∈ [𝑛] : 𝑦𝑣 ≠ 𝒞(𝑏)𝑣}| ≤ 𝛿𝑛, where 𝛿, 𝜀 are constants. Though

formalized later in [KT00], locally decodable codes were instrumental in the proof of the PCP

theorem [AS98, ALM+98], and have deep connections to many other areas of complexity theory (see

Section 7 in [Yek12]), including worst-case to average-case reductions [Tre04], private information

retrieval [Yek10], secure multiparty computation [IK04], derandomization [DS05], matrix rigidity

[Dvi10], data structures [Wol09, CGW10], and fault-tolerant computation [Rom06].

A central research focus in coding theory is to understand the largest possible rate achievable by

a 𝑞-query locally decodable code. For the simplest non-trivial setting of 𝑞 = 2 queries, we have a

complete understanding: the Hadamard code provides an LDC with a blocklength 𝑛 = 2𝑘 and an

essentially matching lower bound of 𝑛 = 2Ω(𝑘) was shown in [KW04, GKST06, Bri16, Gop18].

In contrast, there is a wide gap in our understanding of 3 or higher query LDCs. The best

known constructions are based on families of matching vector codes [Yek08, Efr09, DGY11] and

achieve 𝑛 = 2𝑘𝑜(1) . In particular, the blocklength is slightly subexponential in 𝑘 and asymptotically

improves on the rate achievable by 2-query LDCs. The known lower bounds, on the other hand,

are far from this bound. The őrst LDC lower bounds are due to Katz and Trevisan [KT00], who

proved that 𝑞-query LDCs require a blocklength of 𝑛 ≥ Ω(𝑘
𝑞

𝑞−1 ). This was later improved in 2004

by Kerenedis and de Wolf [KW04] via a łquantum argumentž to obtain 𝑛 ≥ 𝑘
𝑞

𝑞−2 /polylog(𝑘) when

𝑞 is even, and 𝑛 ≥ 𝑘
𝑞+1
𝑞−1 /polylog(𝑘) when 𝑞 is odd. For the őrst nontrivial setting of 𝑞 = 3, their

result yields a nearly quadratic lower bound of 𝑛 ≥ Ω(𝑘2/log2 𝑘) on the blocklength. Subsequently,

Woodruff [Woo07, Woo12] improved this bound by polylog(𝑘) factors to obtain a lower bound of

𝑛 ≥ Ω(𝑘2/log 𝑘) for non-linear codes, and 𝑛 ≥ Ω(𝑘2) for linear codes. Very recently, Bhattacharya,

Chandran, and Ghoshal [BCG20] used a combinatorial method to give a new proof of the quadratic

lower bound of 𝑛 ≥ Ω(𝑘2/log 𝑘), albeit with a few additional assumptions on the code.

Our Work. In this work, we show a near-cubic lower bound 𝑛 ≥ 𝑘3/polylog(𝑘) on the blocklength

of any 3-query LDC. This improves on the previous best lower bound by a 𝑂̃(𝑘) factor. More

precisely, we prove:

Theorem 1. Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 be a code that is (3, 𝛿, 𝜀)-locally decodable. Then, it must hold that

𝑘3 ≤ 𝑛 · 𝑂((log14 𝑛)/𝜀32𝛿16). In particular, if 𝛿, 𝜀 are constants, then 𝑛 ≥ 𝑘3/polylog(𝑘).

We have not attempted to optimize the dependence on log 𝑛, 𝜀, and 𝛿 in Theorem 1. We also

suspect that it is simple to extend Theorem 1 to nonbinary alphabets, with a polynomial loss in the

alphabet size. Finally, using known relationships between locally correctable codes (LCCs) and

LDCs (e.g., Theorem A.6 of [BGT17]), Theorem 1 implies a similar lower bound for 3-query LCCs.
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Our main tool is a new connection between the existence of locally decodable codes and

refutation of instances of Boolean CSPs with limited randomness. This connection is similar in spirit

to the connection between PCPs and hardness of approximation for CSPs, in which one produces a

𝑞-ary CSP from a PCP with a 𝑞-query veriőer by adding, for each possible query set of the veriőer,

a local constraint that asserts that the veriőer accepts when it queries this particular set. To refute

the resulting CSP instance, our proof builds on the spectral analysis of Kikuchi matrices employed

in the recent work of [GKM22], which obtained strong refutation algorithms for semirandom and

smoothed CSPs and proved the hypergraph Moore bound conjectured by Feige [Fei08].

Up to polylog(𝑘) factors, the best known lower bound of 𝑛 ≥ 𝑘
𝑞+1
𝑞−1 /polylog(𝑘) for 𝑞-LDCs for

odd 𝑞 can be obtained by simply observing that a 𝑞-LDC is also a (𝑞 + 1)-LDC, and then invoking

the lower bound for (𝑞 + 1)-query LDCs. Our improvement for 𝑞 = 3 thus comes from obtaining

the same tradeoff with 𝑞 as in the case of even 𝑞, but now for 𝑞 = 3. For technical reasons, our

proof does not extend to odd 𝑞 ≥ 5; we brieŕy mention in Section 1.1 the place where the natural

generalization fails. We leave proving a lower bound of 𝑛 ≥ 𝑘
𝑞

𝑞−2 /polylog(𝑘) for all odd 𝑞 ≥ 5 as an

intriguing open problem.

1.1 Proof overview

The key insight in our proof is to observe that for any 𝑞, a 𝑞-LDC yields a collection of 𝑞-XOR

instances, one for each possible message. And, a typical instance has a high value, i.e., there’s an

assignment that satisőes 1
2 + 𝜀-fraction of the constraints. To prove a lower bound on the blocklength

𝑛 for 3-LDCs, it is then enough to show that for any purported construction with 𝑛 ≪ 𝑘3, the

associated 3-XOR instance corresponding to a uniformly random message has a low value. We

establish such a claim by producing a refutation (i.e., a certiőcate of low value), building on tools

from the recent work on refuting smoothed instances of Boolean CSPs [GKM22].

For this overview, we will assume that the code 𝒞 is a linear 𝑞-LDC. We will also write the

code using {−1, 1} notation, so that 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 . By standard reductions (Lemma 6.2

in [Yek12]), one can assume that the LDC is in normal form: there exist 𝑞-uniform hypergraph

matchingsℋ1 , . . . ,ℋ𝑘 , each with Ω(𝑛) hyperedges,1 and the decoding procedure on input 𝑖 ∈ [𝑘]
simply chooses a uniformly random 𝐶 ∈ ℋ𝑖 , and outputs

∏
𝑣∈𝐶 𝑥𝑣 . Because 𝒞 is linear, when

𝑥 = 𝒞(𝑏) is the encoding of 𝑏, the decoding procedure recovers 𝑏𝑖 with probability 1. In other

words, for any 𝑏 ∈ {−1, 1}𝑘 , the assignment 𝑥 = 𝒞(𝑏) satisőes the set of 𝑞-XOR constraints

∀𝑖 ∈ [𝑘], 𝐶 ∈ ℋ𝑖 ,
∏

𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 .

The XOR Instance. The above connection now suggests the following approach: let 𝑏 ∈ {−1, 1}𝑘 be

chosen randomly, and consider the 𝑞-XOR instance with constraints ∀𝑖 ∈ [𝑘], 𝐶 ∈ ℋ𝑖 ,
∏

𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 .

Since 𝒞 is a linear 𝑞-LDC, this set of constraints will be satisőable for every choice of 𝑏. Thus,

proving that the instance is unsatisőable, with high probability for a uniformly random 𝑏, implies a

contradiction.

One might expect to show unsatisőability of a 𝑞-XOR instance produced by a sufficiently

1A 𝑞-uniform hypergraphℋ𝑖 is a collection of subsets of [𝑛], called hyperedges, each of size exactly 𝑞. The hypergraph

ℋ𝑖 is a matching if all the hyperedges are disjoint.
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random generation process by using natural probabilistic arguments. Indeed, if the instance was

łfully randomž (i.e., bothℋ𝑖’s and 𝑏𝑖’s chosen uniformly at random from their domain), or even

semirandom (whereℋ𝑖 ’s are worst-case but each constraint 𝐶 has a uniformly random łright hand

sidež 𝑏𝐶 ∈ {−1, 1}), then a simple union bound argument suffices to prove unsatisőability.

The main challenge in our setting is that the 𝑞-XOR instances have signiőcantly limited random-

ness even compared to the semirandom setting: all the constraints 𝐶 ∈ ℋ𝑖 share the same right hand

side 𝑏𝑖 . In particular, the 𝑞-XOR instance on 𝑛 variables has 𝑘 ≪ 𝑛 bits of independent randomness.

We establish the unsatisőability of such a 𝑞-XOR instance above by constructing a subexponential-

sized SDP-based certiőcate of low value. A priori, bounding the SDP value might seem like a rather

roundabout route to show unsatisőability of a 𝑞-XOR instance. However, shifting to this stronger

target allows us to leverage the techniques introduced in the recent work of [GKM22] on semirandom

CSP refutation and to show existence of such certiőcates of unsatisőability. Despite the signiőcantly

smaller amount of randomness in the 𝑞-XOR instances produced in our setting, compared to, e.g.,

semirandom instances, we show that an appropriate adaptation of the techniques from [GKM22] is

powerful enough to exploit the combinatorial structure in our instances and succeed in refuting

them.

Warmup: the case when 𝒒 is even. Certifying unsatisőability of 𝑞-XOR instances when 𝑞 is even

is known to be, from a technical standpoint, substantially easier compared to the case when 𝑞 is

odd. As a warmup, we will őrst sketch a proof of the known lower bound for 𝑞-LDCs when 𝑞 is

even, via our CSP refutation approach. A full formal proof is presented in Appendix A.

The refutation certiőcate is as follows. Let ℓ be a parameter to be chosen later, and let 𝑁 ≔
(𝑛
ℓ

)
.

For a set 𝐶 ∈
([𝑛]
𝑞

)
,2 we let 𝐴(𝐶) ∈ ℝ𝑁×𝑁 be the matrix indexed by sets 𝑆 ∈

([𝑛]
ℓ

)
, where 𝐴(𝐶)(𝑆, 𝑇) = 1

if 𝑆 ⊕ 𝑇 = 𝐶, and 0 otherwise, where 𝑆 ⊕ 𝑇 denotes the symmetric difference of 𝑆 and 𝑇. We note

that 𝑆 ⊕ 𝑇 = 𝐶 if and only if 𝑆 = 𝐶1 ∪ 𝑄 and 𝑇 = 𝐶2 ∪ 𝑄, where 𝐶1 is half of the clause 𝐶, 𝐶2 is

the other half of the clause 𝐶, and 𝑄 is an arbitrary subset of [𝑛] \ 𝑄 of size ℓ − 𝑞/2. This matrix

𝐴(𝐶) is the Kikuchi matrix (also called symmetric difference matrix) of [WAM19]. We then set

𝐴 =
∑𝑘

𝑖=1 𝑏𝑖
∑

𝐶∈ℋ𝑖
𝐴(𝐶). By looking at the quadratic form 𝑦⊤𝐴𝑦 where 𝑦 is deőned as 𝑦𝑆 ≔

∏
𝑣∈𝑆 𝑥𝑣 ,

where 𝑥 = 𝒞(𝑏), it is simple to observe that ∥𝐴∥2 ≥ (ℓ/𝑛)𝑞/2 ·
∑𝑘

𝑖=1 |ℋ𝑖 | ≥ (ℓ/𝑛)𝑞/2Ω(𝑘𝑛).
As each 𝑏𝑖 is an independent bit from {−1, 1}, the matrix 𝐴 is the sum of 𝑘 independent, mean 0

random matrices: we can write 𝐴 =
∑𝑘

𝑖=1 𝑏𝑖𝐴𝑖 , where 𝐴𝑖 ≔
∑

𝐶∈ℋ𝑖
𝐴(𝐶). We can then bound

∥𝐴∥2 using Matrix Bernstein, which implies that ∥𝐴∥2 ≤ 𝑂(Δ)(ℓ log 𝑛 +
√
𝑘ℓ log 𝑛), where Δ is the

maximum ℓ1-norm of a row in any 𝐴𝑖 . One technical issue is that there are rows with abnormally

large ℓ1-norm, so Δ can be as large as Ω(ℓ ); however, using the łrow pruningž technique of [GKM22],

we can show that only a small fraction of rows/columns have substantially higher-than-average

ℓ1-norm. This allows us to replace Δ with the maximum of 1 and the average ℓ1-norm of a row,

which is ∼ (ℓ/𝑛)𝑞/2 · |ℋ𝑖 |, i.e., (ℓ/𝑛)𝑞/2𝑛. That is, Δ = max(1, (ℓ/𝑛)𝑞/2𝑛). Hence, for ℓ ≫ 𝑛1−2/𝑞 , we

can set Δ = (ℓ/𝑛)𝑞/2𝑛.

Combining, we thus have that for ℓ ≫ 𝑛1−2/𝑞 ,

(ℓ/𝑛)𝑞/2Ω(𝑘𝑛) ≤ ∥𝐴∥2 ≤ 𝑂(Δ)(ℓ log 𝑛 +
√
𝑘ℓ log 𝑛) ≤ 𝑂(1)(ℓ/𝑛)𝑞/2𝑛 · (ℓ log 𝑛 +

√
𝑘ℓ log 𝑛) ,

2We use
([𝑛]
𝑡

)
to denote the collection of subsets of [𝑛] of size exactly 𝑡.
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which implies that 𝑘 ≤ ℓ · polylog(𝑛). Taking ℓ = 𝑛1−2/𝑞 to be the smallest possible setting of ℓ for

which the above holds, we obtain the desired lower bound.

The case of 𝒒 = 3. When 𝑞 = 3, or more generally when 𝑞 is odd, the matrices 𝐴(𝐶) are no longer

well-deőned, as the condition 𝑆 ⊕ 𝑇 = 𝐶 is never satisőed. A naive attempt to salvage the above

approach is to simply allow the columns of 𝐴(𝐶) to be indexed by sets of size ℓ + 1, rather than

ℓ . However, this asymmetry in the matrix causes the spectral certiőcate to obtain a suboptimal

dependence in terms of 𝑞, leading to a őnal bound of 𝑘 ≤ 𝑛1−2/(𝑞+1)polylog(𝑛) same as the current

state-of-the-art lower bound for odd 𝑞. This is precisely the issue that in general makes refuting

𝑞-XOR instances for odd 𝑞 technically more challenging than even 𝑞. The asymmetric matrix

effectively pretends that 𝑞 is 𝑞 + 1, and thus obtains the łwrongž dependence on 𝑞.

Our idea is to transform a 3-LDC into a 4-XOR instance and then use an appropriate Kikuchi

matrix to őnd a refutation for the resulting 4-XOR instance. The resulting 4-XOR instance is less

structured than ones arising out of 4-LDCs: as we shall see, theℋ𝑖’s in the 4-XOR instance will no

longer be matchings. Nevertheless, our techniques succeed in refuting such instances by exploiting

only some elementary combinatorial properties.

Our reduction works as follows. We randomly partition [𝑘] into two sets, 𝐿, 𝑅, and őx 𝑏 𝑗 = 1

for all 𝑗 ∈ 𝑅. Then, for each intersecting pair of constraints 𝐶𝑖 , 𝐶 𝑗 that intersect with 𝐶𝑖 ∈ ℋ𝑖 , 𝑖 ∈ 𝐿,

𝐶 𝑗 ∈ ℋ𝑗 , 𝑗 ∈ 𝑅, we add the derived constraint 𝐶𝑖 ⊕ 𝐶 𝑗 to our new 4-XOR instance, with right hand

side 𝑏𝑖 .3 Because the 3-XOR instance was satisőable, the 4-XOR instance is also satisőable. Moreover,

the 4-XOR instance has ∼ 𝑘2𝑛 constraints, as a typical 𝑣 ∈ [𝑛] participates in ∼ 𝑘 hyperedges in

∪𝑘
𝑖=1
ℋ𝑖 , and hence can be łcanceledž to form 𝑘2 derived constraints.

The partition (𝐿, 𝑅) is a technical trick that allows us to produce ∼ 𝑘2𝑛 constraints in the

4-XOR instance while preserving 𝑘 independent bits of randomness in the right hand sides of

the constraints. If we considered all derived constraints, rather than just those that cross the

partition (𝐿, 𝑅), then it would be possible to produce derived constraints where the right hand sides

have nontrivial correlations. Speciőcally, one could produce 3 constraints with right hand sides

𝑏𝑖𝑏 𝑗 , 𝑏 𝑗𝑏𝑡 , 𝑏𝑖𝑏𝑡 , which are pairwise independent but not 3-wise independent. With the partitioning,

however, the right hand sides of any two constraints must either be equal or independent, and in

particular there are no nontrivial correlations.

The fact that we have produced more constraints in the 4-XOR instance is crucial, as otherwise

we could only hope to obtain the same bound as in the 𝑞 = 4 case in the warmup earlier. However,

our reduction does not produce an instance with the same structure as a 4-XOR instance arising

from a 4-LDC: if we letℋ ′
𝑖

for 𝑖 ∈ 𝐿 denote the set of derived constraints with right hand side 𝑏𝑖 ,

then we clearly can see thatℋ ′
𝑖

is not a matching. In fact, the typical size ofℋ ′
𝑖

is Ω(𝑛𝑘), whereas a

matching can have at most 𝑛/𝑞 hyperedges.

Nonetheless, we can still apply the CSP refutation machinery to try to refute this 4-XOR instance.

However, because eachℋ ′
𝑖

is no longer a matching, the łrow pruning stepž now only works if we

assume that any pair 𝑝 = (𝑢, 𝑣) of vertices appears in at most polylog(𝑛) hyperedges in the original

3-uniform hypergraph ∪𝑘
𝑖=1
ℋ𝑖 . But, if we make this assumption, the rest of the proof follows the

3If |𝐶𝑖 ∩ 𝐶 𝑗 | = 2, then the derived constraint is a 2-XOR constraint, not 4-XOR. This is a minor technical issue that can

be circumvented easily, so we will ignore it for the proof overview.
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blueprint of the even 𝑞 case, and we can prove that 𝑛 ≥ 𝑘3/polylog(𝑘). We note that a recent

work [BCG20] managed to reprove that 𝑛 ≥ 𝑘2/polylog(𝑘) under a similar assumption about pairs

of vertices.

Thus, the őnal step of the proof is to remove the assumption by showing that no pair of vertices

can appear in too many hyperedges. Suppose that we do have many łheavyž pairs 𝑝 = (𝑢, 𝑣) that

appear in≫ log 𝑛 clauses in the original 3-uniform hypergraphℋ ≔ ∪𝑘
𝑖=1
ℋ𝑖 . Now, we transform

the 3-XOR instance into a bipartite 2-XOR instance ([AGK21, GKM22]) by replacing each heavy pair

𝑝 with a new variable 𝑦𝑝 . That is, the 3-XOR clause 𝐶 = (𝑢, 𝑣, 𝑤) inℋ𝑖 now becomes the 2-XOR

clause (𝑝, 𝑤), where 𝑝 is a new variable. In other words, the constraint 𝑥𝑢𝑥𝑣𝑥𝑤 = 𝑏𝑖 is replaced by

𝑦𝑝𝑥𝑤 = 𝑏𝑖 . Each clause in the bipartite 2-XOR instance now uses one variable from the set of heavy

pairs, and one from the original set of variables [𝑛]. We then show that if there are too many heavy

pairs, then this instance has a sufficient number of constraints in order to be refuted, and is thus not

satisőable, which is again a contradiction.

Finally, we note that for larger odd 𝑞 ≥ 5, the proof showing that there not too many heavy pairs

breaks down, and this is what prevents us from generalizing Theorem 1 to all odd 𝑞.

1.2 Discussion: LDCs and the CSP perspective

Prior work on lower bounds for 𝑞-LDCs reduce 𝑞-query LDCs with even 𝑞 to 2-query LDCs, and

then apply the essentially tight known lower bounds for 2-query LDCs. (To handle the odd 𝑞 case,

they essentially observe that a 𝑞-LDC is also a (𝑞 + 1)-LDC.) While the warmup proof we sketched

earlier (and present in Appendix A) for even 𝑞 is in the language of CSP refutation, it is in fact

very similar to the reduction from 𝑞-LDCs to 2-LDCs for 𝑞 even used in the proof in [KW04]. The

reduction in [KW04] (see also Exercise 4 in [Gop19]) employs a certain tensor product, and while it

is not relevant to their argument, the natural matrix corresponding to the 2-LDC produced by their

reduction is in fact very closely related to the Kikuchi matrix 𝐴 of [WAM19].

The main advantage of the CSP refutation viewpoint is that it suggests a natural route to analyze

𝑞-LDCs for odd 𝑞 via an appropriately modiőed Kikuchi matrix. By viewing the 3-LDC as a 3-XOR

instance, we obtain a natural way to produce a related 4-XOR instance using a reduction that does

not correspond to a 4-LDC. In fact, if our reduction were to only produce a 4-LDC, then we would not

expect to obtain an improved 3-LDC lower bound without improving the 4-LDC lower bound as

well. In a sense, this relates to the key strength of the CSP viewpoint in that it arguably the łrightž

level of abstraction. On one hand, it naturally suggests reductions from 3-LDCs to 4-XOR that are

rather unnatural if one were to follow the more well-trodden route of reducing odd query LDCs

to even query ones. On the other hand, the ideas from semirandom CSP refutation are resilient

enough to apply, with some effort, to even the more general, non-semirandom instances arising in

such reductions, and so we can still prove lower bounds. Further exploration of such an approach

to obtain stronger lower bounds for LDCs is an interesting research direction.
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2 Preliminaries

2.1 Basic notation

We let [𝑛] denote the set {1, . . . , 𝑛}. For two subsets 𝑆, 𝑇 ⊆ [𝑛], we let 𝑆 ⊕ 𝑇 denote the symmetric

difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 ≔ {𝑖 : (𝑖 ∈ 𝑆 ∧ 𝑖 ∉ 𝑇) ∨ (𝑖 ∉ 𝑆 ∧ 𝑖 ∈ 𝑇)}. For a natural number 𝑡 ∈ ℕ,

we let
([𝑛]
𝑡

)
be the collection of subsets of [𝑛] of size exactly 𝑡.

For a rectangular matrix 𝐴 ∈ ℝ𝑚×𝑛 , we let ∥𝐴∥2 ≔ max𝑥∈ℝ𝑚 ,𝑦∈ℝ𝑛 :∥𝑥∥2=∥𝑦∥2=1 𝑥
⊤𝐴𝑦 denote the

spectral norm of 𝐴, and ∥𝐴∥∞→1 ≔ max𝑥∈{−1,1}𝑚 ,𝑦∈{−1,1}𝑛 : 𝑥
⊤𝐴𝑦 denote the (∞ → 1)-norm of 𝐴.

We note that ∥𝐴∥∞→1 ≤
√
𝑛𝑚∥𝐴∥2.

2.2 Locally decodable codes and hypergraphs

Definition 2.1. A hypergraphℋ with vertices [𝑛] is a collection of subsets 𝐶 ⊆ [𝑛] called hyperedges.

We say that a hypergraphℋ is 𝑞-uniform if |𝐶 | = 𝑞 for all 𝐶 ∈ ℋ , and we say thatℋ is a matching if

all the hyperedges inℋ are disjoint. For a subset 𝑄 ⊆ [𝑛], we deőne the degree of 𝑄 inℋ , denoted

degℋ (𝑄), to be |{𝐶 ∈ ℋ : 𝑄 ⊆ 𝐶}|.

Definition 2.2 (Locally Decodable Code). A code 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 is (𝑞, 𝛿, 𝜀)-locally decodable

if there exists a randomized decoding algorithm Dec(·)with the following properties. The algorithm

Dec(·) is given oracle access to some 𝑦 ∈ {0, 1}𝑛 , takes an 𝑖 ∈ [𝑘] as input, and satisőes the following:

(1) the algorithm Dec makes at most 𝑞 queries to the string 𝑦, and (2) for all 𝑏 ∈ {0, 1}𝑘 , 𝑖 ∈ [𝑘], and

all 𝑦 ∈ {0, 1}𝑛 such that Δ(𝑦, 𝒞(𝑏)) ≤ 𝛿, Pr[Dec𝑦(𝑖) = 𝑏𝑖] ≥ 1
2 + 𝜀. Here, Δ(𝑥, 𝑦) denotes the relative

Hamming distance between 𝑥 and 𝑦, i.e., the fraction of indices 𝑣 ∈ [𝑛]where 𝑥𝑣 ≠ 𝑦𝑣 .

Following known reductions [Yek12], locally decodable codes can be reduced to the following

normal form, which is more convenient to work with.

Definition 2.3 (Normal LDC). A code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 is (𝑞, 𝛿, 𝜀)-normally decodable if for

each 𝑖 ∈ [𝑘], there is a 𝑞-uniform hypergraph matchingℋ𝑖 with at least 𝛿𝑛 hyperedges such that for

every 𝐶 ∈ ℋ𝑖 , it holds that Pr𝑏←{−1,1}𝑘 [𝑏𝑖 =
∏

𝑣∈𝐶 𝒞(𝑏)𝑣] ≥ 1
2 + 𝜀.

Fact 2.4 (Reduction to LDC Normal Form, Lemma 6.2 in [Yek12]). Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 be a

code that is (𝑞, 𝛿, 𝜀)-locally decodable. Then, there is a code 𝒞′ : {−1, 1}𝑘 → {−1, 1}𝑂(𝑛) that is (𝑞, 𝛿′, 𝜀′)
normally decodable, with 𝛿′ ≥ 𝜀𝛿/3𝑞22𝑞−1 and 𝜀′ ≥ 𝜀/22𝑞 .

2.3 Concentration inequalities

Our work will rely on the following concentration inequalities. The őrst is the expectation form of

the standard rectangular Matrix Bernstein inequality.

Fact 2.5 (Expectation Form of Rectangular Matrix Bernstein, Theorem 1.6.2 of [Tro15]). Let

𝑋1 , . . . , 𝑋𝑘 be independent random 𝑑1 × 𝑑2 matrices with 𝔼[𝑋𝑖] = 0 and ∥𝑋𝑖 ∥ ≤ 𝑅 for all 𝑖. Let 𝜎2 ≥
max(∥𝔼[∑𝑘

𝑖=1 𝑋𝑖𝑋
⊤
𝑖
]∥ , ∥𝔼[∑𝑘

𝑖=1 𝑋
⊤
𝑖
𝑋𝑖]∥). Then, 𝔼[∥∑𝑘

𝑖=1 𝑋𝑖 ∥] ≤ 𝑂(𝑅 log(𝑑1+ 𝑑2)+
√
𝜎2 log(𝑑1 + 𝑑2)).
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The second concentration inequality is a result for combinatorial polynomials due to Schudy

and Sviridenko [SS12] that is the culmination of an inŕuential line of work begun by Kim and

Vu [KV00].

Fact 2.6 (Concentration of polynomials, Theorem 1.2 of [SS12], specialized). Let ℋ ⊆
([𝑛]
𝑡

)
be a

collection of multilinear monomials of degree 𝑡 in 𝑛 {0, 1}-valued variables, and let 𝑓 (𝑥) ≔ ∑
𝐶∈ℋ

∏
𝑖∈𝐶 𝑥𝑖 .

Let𝑌1 , 𝑌2 , . . . , 𝑌𝑛 be independent and identically distributed Bernoulli random variables with Pr[𝑌𝑖 = 1] = 𝜏.

Then, for some absolute constant 𝑅 ≥ 1,

Pr[| 𝑓 (𝑌) −𝔼 𝑓 (𝑌)| ≥ 𝜆] ≤ 𝑒2 max{ max
𝑟=1,2,...,𝑡

𝑒−𝜆
2/𝜈0𝜈𝑟𝑅

𝑡
, max
𝑟=1,2,...,𝑡

𝑒
−( 𝜆

𝜈𝑟 𝑅𝑡
)1/𝑟 } ,

where, for every 0 ≤ 𝑟 ≤ 𝑡, 𝜈𝑟 = 𝜏𝑡−𝑟 max𝑄⊆[𝑛],|𝑄 |=𝑟 |{𝐶 ∈ ℋ : 𝑄 ⊆ 𝐶}|.

In this work, we will instead be working with a more convenient form of the Schudy-Sviridenko

inequality, which we also prove. For our 3-query lower bound, we only require the graph version of

this statement, which gives a tail bound for the number of edges that fall within a random ℓ -sized

subset of vertices.

Corollary 2.7 (Fact 2.6 for sets of size ℓ ). Let ℋ ⊆
([𝑛]
𝑡

)
be a 𝑡-uniform hypergraph. Let ℓ ≤

𝑛 be an integer, and let 𝑆 be drawn uniformly at random from
([𝑛]
ℓ

)
. For 𝑟 = 0, . . . , 𝑡, let 𝜈𝑟 =

(ℓ/𝑛)𝑡−𝑟 max𝑄⊆[𝑛],|𝑄 |=𝑟 degℋ (𝑄), where degℋ (𝑄) = |{𝐶 ∈ ℋ : 𝑄 ⊆ 𝐶}|, and let 𝜈 = max𝑟=0,...,𝑡 𝜈𝑟 .

Then, for any constant 𝑑 ≥ 0, there is an absolute constant 𝑐 such that

Pr
𝑆
[|{𝐶 ∈ ℋ : 𝐶 ⊆ 𝑆}| ≥ 𝑐𝜈 log𝑡

2 𝑛] ≤ 1/𝑛𝑑 .

Proof. Deőne the polynomial 𝑓 (𝑥1 , . . . , 𝑥𝑛) ≔
∑

𝐶∈ℋ 𝑥𝐶 . For each 𝑆 ⊆ [𝑛], we associate 𝑆 with the

vector 𝑥(𝑆) where 𝑥
(𝑆)
𝑖

= 1 if 𝑖 ∈ 𝑆, and is 0 otherwise. We note that 𝑓 (𝑥(𝑆)) = |{𝐶 ∈ ℋ : 𝐶 ⊆ 𝑆}|.
Hence, it suffices to show that Pr

𝑆∈([𝑛]ℓ )[ 𝑓 (𝑥
(𝑆)) ≥ (𝜈 + 1) · polylog(𝑛)] ≤ 1/poly(𝑛).

Let 𝒟 be the distribution over 𝑇 ⊆ [𝑛] where each 𝑖 is added to 𝑇 with probability 𝑝 = ℓ
𝑛 𝛽

independently, and 𝛽 = 8(𝑑 + 1) ln 𝑛. We will show that for any 𝜆, it holds that

Pr
𝑆←([𝑛]ℓ )

[ 𝑓 (𝑥(𝑆)) ≥ 𝜆] ≤ Pr
𝑇←𝒟
[ 𝑓 (𝑥(𝑇)) ≥ 𝜆] + 1/𝑛𝑑+1 (1)

This implies Corollary 2.7. Indeed, we use Fact 2.6 to bound Pr𝑇←𝒟[ 𝑓 (𝑥(𝑇)) ≥ 𝜆]. The param-

eters of interest are 𝜈′𝑟 ≔ 𝑝𝑡−𝑟 max|𝑄 |=𝑟 deg(𝑄) = 𝛽𝑡−𝑟𝜈𝑟 ≤ 𝛽𝑡𝜈. Hence, by Fact 2.6, using that

𝔼𝑇←𝒟[ 𝑓 (𝑥(𝑇))] = 𝜈′
0
≤ 𝛽𝑡𝜈, we conclude that there is an absolute constant 𝑐 such that

Pr
𝑇←𝒟
[ 𝑓 (𝑥(𝑇)) ≥ 𝑐𝛽𝑡𝜈 log𝑡 𝑛] ≤ 1/𝑛𝑑+1 .

It thus remains to prove Eq. (1). To do this, we will couple the two distributions as follows. First,

sample 𝑇 ← 𝒟 conditioned on |𝑇 | ≥ ℓ , and then choose 𝑆 to be a uniformly random subset of 𝑇 of

size exactly ℓ . Let𝒟′ be the joint distribution over pairs (𝑆, 𝑇) with this coupling, and observe that
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the induced distribution on 𝑆 is simply the uniform distribution on
([𝑛]
ℓ

)
. By Chernoff bound, we

have that for every 𝛿 ∈ [0, 1],

Pr
𝑇←𝒟
[|𝑇 | < (1 − 𝛿)𝛽ℓ ] ≤ exp

(
𝛿2ℓ𝛽

2

)
.

Setting 𝛿 = 1/2, we have that

Pr
𝑇←𝒟
[|𝑇 | < ℓ ] ≤ Pr

𝑇←𝒟
[|𝑇 | < 𝛽ℓ

2
] ≤ exp

(
ℓ𝛽

8

)
≤ 𝑒

𝛽
8 ≤ 1/𝑛𝑑+1 .

We also observe that 𝑓 (𝑥(𝑇)) ≥ 𝑓 (𝑥(𝑆)) for any 𝑆 ⊆ 𝑇. In particular, if 𝑓 (𝑥(𝑆)) ≥ 𝜆, then 𝑓 (𝑥(𝑇)) ≥ 𝜆.

We thus have

Pr
𝑆←([𝑛]ℓ )

[ 𝑓 (𝑥(𝑆)) ≥ 𝜆] = Pr
(𝑆,𝑇)∼𝒟′

[ 𝑓 (𝑥(𝑆)) ≥ 𝜆 | |𝑇 | ≥ ℓ ] ≤ Pr
(𝑆,𝑇)∼𝒟′

[ 𝑓 (𝑥(𝑇)) ≥ 𝜆 | |𝑇 | ≥ ℓ ]

≤ Pr
𝑇←𝒟′

[ 𝑓 (𝑥(𝑇)) ≥ 𝜆] + 1/𝑛𝑑+1 ,

which proves Eq. (1) and őnishes the proof. □

3 Lower Bound for 3-Query Locally Decodable Codes

In this section, we will prove Theorem 1, our main result.

By Fact 2.4, it suffices for us to show that for any code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 that is (3, 𝛿, 𝜀)-
normally decodable, it holds that 𝑘3 ≤ 𝑛 · 𝑂(log14 𝑛)

𝜀16𝛿16 . As 𝒞 is (3, 𝛿, 𝜀)-normally decodable, this implies

that there are 3-uniform hypergraph matchingsℋ1 , . . . ,ℋ𝑘 satisfying the property in Deőnition 2.3.

Let 𝑚 ≔
∑𝑘

𝑖=1 |ℋ𝑖 | be the total number of hyperedges in the hypergraphℋ ≔ ∪𝑘
𝑖=1
ℋ𝑖 .

The key idea in our proof is to deőne a 3-XOR instance corresponding to the decoder in

Deőnition 2.3. By Deőnition 2.3, the 3-XOR instance will have high value, i.e., there is an assignment

to the variables satisfying a nontrivial fraction of the constraints. To őnish the proof, we show that

if 𝑛 ≪ 𝑘3, then the 3-XOR instance must have small value, which is a contradiction.

We deőne the 3-XOR instances below.

The Key 3-XOR Instances

For each 𝑏 ∈ {−1, 1}𝑘 , we deőne the 3-XOR instance Ψ𝑏 , where:

(1) The variables are 𝑥1 , . . . , 𝑥𝑛 ∈ {−1, 1},

(2) The constraints are, for each 𝑖 ∈ [𝑘] and 𝐶 ∈ ℋ𝑖 ,
∏

𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 .

The value of Ψ𝑏 , denoted val(Ψ𝑏), is the maximum fraction of constraints satisőed by any

assignment 𝑥 ∈ {−1, 1}𝑛 .

We associate an instance Ψ𝑏 with the polynomial 𝜓𝑏(𝑥) ≔ 1
𝑚

∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈ℋ𝑖

∏
𝑣∈𝐶 𝑥𝑣 , and
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deőne val(𝜓𝑏) ≔ max𝑥∈{−1,1}𝑛 𝜓𝑏(𝑥). We note that val(Ψ𝑏) = 1
2 + 1

2val(𝜓𝑏).

The őrst observation is that the properties of Deőnition 2.3 imply that the 3-XOR instances Ψ𝑏

deőned above must have reasonably large value. Formally, we have that

𝔼𝑏←{−1,1}𝑘 [val(𝜓𝑏)] ≥ 𝔼𝑏←{−1,1}𝑘 [𝜓𝑏(𝒞(𝑏))] ≥ 2𝜀 , (2)

where the őrst inequality is by deőnition of val(·), and the second inequality uses Deőnition 2.3, as

for each constraint 𝐶 ∈ ℋ𝑖 for some 𝑖, the encoding 𝒞(𝑏) of 𝑏 satisőes this constraint with probability
1
2 + 𝜀 for a random 𝑏.

Overview: refuting the XOR instances. To őnish the proof, it thus suffices to argue that

𝔼𝑏←{−1,1}𝑘 [val(𝜓𝑏)] is small. We will do this by using a CSP refutation algorithm inspired

by [GKM22]. Our argument proceeds in two steps. First, we take any pair 𝑄 = {𝑢, 𝑣} of

vertices that appears in≫ log 𝑛 of the hyperedges inℋ ≔ ∪𝑘
𝑖=1
ℋ𝑖 , and we replace this pair with a

new variable 𝑦𝑄 in all the constraints containing this pair. This process decomposes the 3-XOR

instance into a bipartite 2-XOR instance ([AGK21, GKM22]), and the residual 3-XOR instance. We

then refute the bipartite 2-XOR instance, showing that its expected value is small, and then we

refute the residual 3-XOR instance, where now any pair of variables appears in at most 𝑂(log 𝑛)
constraints in the 3-XOR instance. Combining, we conclude that 𝔼𝑏←{−1,1}𝑘 [val(𝜓𝑏)] is also small,

which őnishes the proof.

We now formally deőne the decomposition process. We recall the deőnition of degree in

hypergraphs.

Definition 3.1 (Degree). Let ℋ be a 𝑞-uniform hypergraph on 𝑛 vertices, and let 𝑄 ⊆ [𝑛]. The

degree of 𝑄, degℋ (𝑄), is the number of 𝐶 ∈ ℋ with 𝑄 ⊆ 𝐶.

Lemma 3.2 (Hypergraph Decomposition). Let ℋ1 , . . . ,ℋ𝑘 be 3-uniform hypergraphs on 𝑛 vertices,

and letℋ ≔ ∪𝑘
𝑖=1
ℋ𝑖 . Let 𝑑 ∈ ℕ be a threshold. Let 𝑃 ≔ {{𝑢, 𝑣} : degℋ ({𝑢, 𝑣}) > 𝑑}. Then, there are

3-uniform hypergraphsℋ ′1 , . . . ,ℋ ′𝑘 and bipartite graphs 𝐺1 , . . . , 𝐺𝑘 , with the following properties.

(1) Each 𝐺𝑖 is a bipartite graph with left vertices [𝑛] and right vertices 𝑃.

(2) Eachℋ ′
𝑖

is a subset ofℋ𝑖 .

(3) For each 𝑖 ∈ [𝑘], there is a one-to-one correspondence between hyperedges 𝐶 ∈ ℋ𝑖 \ ℋ ′𝑖 and edges 𝑒 in

𝐺𝑖 , given by 𝑒 = (𝑤, {𝑢, 𝑣}) ↦→ 𝐶 = {𝑢, 𝑣, 𝑤}.

(4) Letℋ ′ ≔ ∪𝑘
𝑖=1
ℋ ′

𝑖
. Then, for any 𝑢 ≠ 𝑣 ∈ [𝑛], it holds that degℋ ′({𝑢, 𝑣}) ≤ 𝑑.

(5) Ifℋ𝑖 is a matching, thenℋ ′
𝑖

and 𝐺𝑖 are also matchings.

The proof of Lemma 3.2 is simple, and is given in Section 3.1.

Given the decomposition, the two main steps in our refutation are captured in the following

two lemmas, which handle the 2-XOR and 3-XOR instances, respectively.

9



Lemma 3.3 (2-XOR refutation). Let 𝑃 be a set, and let 𝐺1 , . . . , 𝐺𝑘 be bipartite matchings with left

vertices [𝑛] and right vertices 𝑃, where 𝑘 ≥ log2 𝑛 and |𝑃 | ≤ 𝑛𝑘/𝑑 for some 𝑑 ∈ ℕ. For 𝑏 ∈ {−1, 1}𝑘 ,
let 𝑔𝑏(𝑥, 𝑦) be the polynomial defined as 𝑔𝑏(𝑥, 𝑦) ≔

∑𝑘
𝑖=1 𝑏𝑖

∑
𝑒={𝑣,𝑝}:𝑣∈[𝑛],𝑝∈𝑃 𝑥𝑣𝑦𝑝 , and let val(𝑔𝑏) ≔

max𝑥∈{−1,1}𝑛 ,𝑦∈{−1,1}𝑃 𝑔𝑏(𝑥, 𝑦). Then, 𝔼𝑏←{−1,1}𝑘val(𝑔𝑏) ≤ 𝑂(𝑛𝑘
√
(log 𝑛)/𝑑).

Lemma 3.4 (3-XOR refutation). Letℋ ′
1
, . . . ,ℋ ′

𝑘
be 3-uniform hypergraph matchings on 𝑛 vertices, and

letℋ ′ ≔ ∪𝑘
𝑖=1
ℋ ′

𝑖
. Suppose that for any {𝑢, 𝑣} ⊆ [𝑛], degℋ ({𝑢, 𝑣}) ≤ 𝑑, where 𝑑 = 𝑂((log 𝑛)/𝜀2𝛿2). Let

𝑓𝑏(𝑥) ≔
∑𝑘

𝑖=1 𝑏𝑖
∑

𝐶∈ℋ ′
𝑖

∏
𝑣∈𝐶 𝑥𝑣 . Then, it holds that

𝔼𝑏←{−1,1}𝑘val( 𝑓𝑏) ≤ 𝑛
√
𝑘 · 𝑂((log3/2 𝑛)/𝜀𝛿) ·

((𝑛
𝑘

)1/4 √
log 𝑛 + (𝑛𝑘)1/8 log1/4 𝑛

)
.

We prove Lemma 3.3 in Section 3.2, and we prove Lemma 3.4 in Section 4.

With the above ingredients, we can now őnish the proof of Theorem 1.

Proof of Theorem 1. Applying Lemma 3.2 with 𝑑 = 𝑂((log 𝑛)/𝜀2𝛿2) for a sufficiently large constant,

we decompose the instance Ψ𝑏 into 2-XOR and 3-XOR subinstances.4 Note that as 𝑚 ≤ 𝑛𝑘, we

will have |𝑃 | ≤ 𝑚/𝑑 ≤ 𝑛𝑘/𝑑. We have that 𝑚val(𝜓𝑏) ≤ val( 𝑓𝑏) + val(𝑔𝑏) because of the one-to-one

correspondence property in Lemma 3.2. We also note that 𝑚 ≥ 𝛿𝑛𝑘, as |ℋ𝑖 | ≥ 𝛿𝑛 for each 𝑖. By

Lemma 3.3 and by taking the constant in the choice of 𝑑 sufficiently large, we can ensure that

𝔼𝑏←{−1,1}𝑘 [val(𝑔𝑏)] ≤ 𝜀𝛿𝑛𝑘/3. Hence, by Eq. (2) and Lemma 3.4, we have

2𝜀𝛿𝑛𝑘 ≤ 2𝜀𝑚 ≤ 𝑚𝔼𝑏←{−1,1}𝑘 [val(𝜓𝑏)] ≤ 𝔼𝑏←{−1,1}𝑘 [val( 𝑓𝑏) + val(𝑔𝑏)]

≤ 𝜀𝛿𝑛𝑘

3
+ 𝑛
√
𝑘 · 𝑂((log3/2 𝑛)/𝜀𝛿) ·

((𝑛
𝑘

)1/4 √
log 𝑛 + (𝑛𝑘)1/8 log1/4 𝑛

)

=⇒ 𝜀2𝛿2
√
𝑘 ≤ 𝑂(log3/2 𝑛) ·

((𝑛
𝑘

)1/4 √
log 𝑛 + (𝑛𝑘)1/8 log1/4 𝑛

)

=⇒ 𝜀4𝛿4 ≤ 𝑂(log3 𝑛) ·
(( 𝑛

𝑘3

)1/2
log 𝑛 +

( 𝑛
𝑘3

)1/4
log1/2 𝑛

)
.

There are now two cases. If
(
𝑛
𝑘3

)1/2
log2 𝑛 ≥

(
𝑛
𝑘3

)1/4
log

1/2
2

𝑛, then we have that

𝜀4𝛿4/log3
2 𝑛 ≤ 𝑂

(( 𝑛
𝑘3

)1/2
log 𝑛

)
=⇒ 𝑘3 ≤ 𝑛 · 𝑂(log8 𝑛)/𝜀8𝛿8 ,

and if
(
𝑛
𝑘3

)1/2
log2 𝑛 ≤

(
𝑛
𝑘3

)1/4
log

1/2
2

𝑛, then we conclude that

𝜀4𝛿4/log3
2 𝑛 ≤ 𝑂

(( 𝑛
𝑘3

)1/4
log1/2 𝑛

)
=⇒ 𝑘3 ≤ 𝑛 · 𝑂(log14 𝑛)/𝜀16𝛿16 .

We thus conclude that 𝑘3 ≤ 𝑛 · 𝑂
(

log14 𝑛

𝜀16𝛿16

)
, which őnishes the proof. □

4We remark that it is possible that one (but not both!) of the 2-XOR or 3-XOR subinstances has very few constraints, or

even no constraints at all. This is not a problem, however, as then the upper bound on the value of the instance shown in

corresponding lemma (either Lemma 3.3 or Lemma 3.4) becomes trivial.
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3.1 Hypergraph decomposition: proof of Lemma 3.2

We prove Lemma 3.2 by analyzing the following greedy algorithm.

Algorithm 3.5.

Given: 3-uniform hypergraphsℋ1 , . . . ,ℋ𝑘 .

Output: 3-uniform hypergraphsℋ ′
1
, . . . ,ℋ ′

𝑘
and bipartite graphs 𝐺1 , . . . , 𝐺𝑘 .

Operation:

1. Initialize: ℋ ′
𝑖
= ℋ𝑖 for all 𝑖 ∈ [𝑘], 𝑃 = {{𝑢, 𝑣} : degℋ ′({𝑢, 𝑣}) > 𝑑}, where

ℋ ′ = ∪𝑖∈[𝑘]ℋ ′𝑖 .
2. While 𝑃 is nonempty:

(1) Choose 𝑝 = {𝑢, 𝑣} ∈ 𝑃 arbitrarily.

(2) For each 𝑖 ∈ [𝑘], 𝐶 ∈ ℋ ′
𝑖

with 𝑝 ∈ 𝐶, remove 𝐶 from ℋ ′
𝑖
, and add the edge

(𝐶 \ 𝑝, 𝑝) to 𝐺𝑖 .

(3) Recompute 𝑃 = {{𝑢, 𝑣} : degℋ ′({𝑢, 𝑣}) > 𝑑}.
3. Outputℋ ′

1
, . . . ,ℋ ′

𝑘
, 𝐺1 , . . . , 𝐺𝑘 .

Indeed, properties (1), (2) and (5) in Lemma 3.2 trivially hold. Property (4) holds because otherwise

the algorithm would not have terminated, as the set 𝑃 would still be nonempty. Property (3) holds

because each hyperedge 𝐶 ∈ ℋ𝑖 starts inℋ ′
𝑖
, and is either removed exactly once and added to 𝐺𝑖 as

(𝐶 \ 𝑝, 𝑝), or remains inℋ ′
𝑖

for the entire operation of the algorithm. This őnishes the proof.

3.2 Refuting the 2-XOR instance: proof of Lemma 3.3

We now prove Lemma 3.3. We do this as follows. For each 𝑒 = {𝑣, 𝑝}, with 𝑣 ∈ [𝑛], 𝑝 ∈ 𝑃, deőne the

matrix 𝐴(𝑒) ∈ ℝ𝑛×𝑃 , where 𝐴(𝑒)(𝑣′, 𝑝′) = 1 if 𝑣′ = 𝑣 and 𝑝′ = 𝑝, and 0 otherwise. Let 𝐴𝑖 ≔
∑

𝑒∈𝐺𝑖
𝐴(𝑒),

which is the bipartite adjacency matrix of 𝐺𝑖 . Finally, let 𝐴 ≔
∑𝑘

𝑖=1 𝑏𝑖𝐴𝑖 .

First, we observe that val(𝑔𝑏) ≤
√
𝑛 |𝑃 |∥𝐴∥2. Indeed, this is because for any 𝑥 ∈ {−1, 1}𝑛 , 𝑦 ∈

{−1, 1}𝑃 , we have 𝑔𝑏(𝑥, 𝑦) = 𝑥⊤𝐴𝑦 ≤ ∥𝑥∥2∥𝑦∥2∥𝐴∥2 =
√
𝑛 |𝑃 |∥𝐴∥2. Thus, in order to bound

𝔼𝑏←{−1,1}𝑘 [val(𝑔𝑏)], it suffices to bound 𝔼𝑏[∥𝐴∥2].
We use Fact 2.5 to bound 𝔼[∥𝐴∥2]. Indeed, we observe that ∥𝐴𝑖 ∥2 ≤ 1 for each 𝑖, as each

row/column of 𝐴𝑖 has at most one nonzero entry of magnitude 1 because each 𝐺𝑖 is a matching.

Next, we observe that 𝔼[𝐴𝐴⊤] = ∑𝑘
𝑖=1 𝐴𝑖𝐴

⊤
𝑖

and 𝔼[𝐴⊤𝐴] = ∑𝑘
𝑖=1 𝐴

⊤
𝑖
𝐴𝑖 , as the 𝑏𝑖’s are independent,

and so we conclude that max(∥𝔼[𝐴𝐴⊤]∥ , ∥𝔼[𝐴⊤𝐴]∥) ≤ 𝑘. Hence, by Fact 2.5, we have that

𝔼[∥𝐴∥2] ≤ 𝑂(log 𝑛 +
√
𝑘 log 𝑛) ≤ 𝑂(

√
𝑘 log 𝑛) where we use that 𝑘 ≥ log2 𝑛. It thus follows that

𝔼[val(𝑔𝑏)] ≤
√
𝑛 |𝑃 |𝑂(

√
𝑘 log 𝑛) ≤ 𝑂(𝑛𝑘

√
(log 𝑛)/𝑑).
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4 Refuting the 3-XOR Instance: Proof of Lemma 3.4

In this proof, we will write ℋ𝑖 instead of ℋ ′
𝑖

everywhere, to avoid cumbersome notation. For a

vertex 𝑢 ∈ [𝑛] and a subset 𝐶 ∈
([𝑛]

2

)
, we will use the notation (𝑢, 𝐶) to denote the set {𝑢} ∪ 𝐶.

The main idea is to construct a 4-XOR instance by łcancelingž out every 𝑥𝑢 that appears in

two different clauses. Concretely, we őrst randomly partition [𝑘] into two sets, 𝐿, 𝑅. Then, given

(𝑢, 𝐶1) ∈ ℋ𝑖 with 𝑖 ∈ 𝐿 and (𝑢, 𝐶2) ∈ ℋ𝑗 with 𝑗 ∈ 𝑅, we construct the derived clause 𝐶1 ⊕ 𝐶2

obtained by canceling 𝑥𝑢 . We relate the value of the derived instance to the original instance, and

then produce a spectral refutation for the derived instance via an appropriate subexponential-sized

matrix. This will show that the expected value of the derived instance, over the randomness of the

𝑏𝑖’s, is small, and completes the proof.

For notation, we will let 𝑓 ≔ 𝑓𝑏 , i.e., we omit the subscript, as it is clear from context. We will

also let 𝑚 ≔ |ℋ | = ∑𝑘
𝑖=1 |ℋ𝑖 |.

Relating the derived 4-XOR to the original 3-XOR. First, let (𝐿, 𝑅) be a partition of [𝑘] into two

sets. Let 𝑓𝐿,𝑅(𝑥) be the following polynomial:

𝑓𝐿,𝑅(𝑥) ≔
∑
𝑖∈𝐿
𝑗∈𝑅

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶1)∈ℋ𝑖

(𝑢,𝐶2)∈ℋ𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶1𝑥𝐶2 ,

where 𝑥𝐶 is deőned as
∏

𝑣∈𝐶 𝑥𝑣 . We note that because theℋ𝑖 ’s are matchings, after őxing 𝑖, 𝑗, and 𝑢,

there is at most one pair 𝐶1 , 𝐶2 in the inner sum. As mentioned in the proof overview, the partition

allows us to preserve ∼ 𝑘 independent bits of randomness in the right hand sides of the 4-XOR

instance while eliminating nontrivial correlations. This, in particular, is crucial when we eventually

apply a Matrix Bernstein inequality for spectral norm of sums of independent random matrices.

The following lemma relates val( 𝑓𝐿,𝑅) to val( 𝑓 ).

Lemma 4.1 (Cauchy-Schwarz Trick). It holds that val( 𝑓 )2 ≤ 𝑛𝑚 + 4𝑛𝔼(𝐿,𝑅)val( 𝑓𝐿,𝑅). In particular,

𝔼𝑏∈{−1,1}𝑘val( 𝑓 )2 ≤ 𝑛𝑚 + 4𝑛𝔼(𝐿,𝑅)𝔼𝑏∈{−1,1}𝑘 [val( 𝑓𝐿,𝑅)].

Proof. Fix any assignment to 𝑥 ∈ {−1, 1}𝑛 . We have that

𝑓 (𝑥)2 =
©­
«
∑
𝑢∈[𝑛]

𝑥𝑢
∑
𝑖∈[𝑘]

∑
(𝑢,𝐶)∈ℋ𝑖

𝑏𝑖𝑥𝐶
ª®
¬

2

≤ ©­
«
∑
𝑢∈[𝑛]

𝑥2
𝑢
ª®
¬
©­­
«
∑
𝑢∈[𝑛]

©­
«
∑
𝑖∈[𝑘]

∑
(𝑢,𝐶)∈ℋ𝑖

𝑏𝑖𝑥𝐶
ª®
¬

2ª®®
¬

= 𝑛
∑
𝑢∈[𝑛]

∑
𝑖 , 𝑗∈[𝑘]

∑
(𝑢,𝐶1)∈ℋ𝑖

(𝑢,𝐶2)∈ℋ𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶1𝑥𝐶2 = 𝑛

©­­­­
«
∑
𝑖∈[𝑘]
|ℋ𝑖 | +

∑
𝑢∈[𝑛]

∑
𝑖 , 𝑗∈[𝑘],𝑖≠𝑗

∑
(𝑢,𝐶1)∈ℋ𝑖

(𝑢,𝐶2)∈ℋ𝑗

𝑏𝑖𝑏 𝑗𝑥𝐶1𝑥𝐶2

ª®®®®
¬

= 𝑛𝑚 + 4𝑛 · 𝔼(𝐿,𝑅) 𝑓𝐿,𝑅(𝑥) ,

where the inequality follows by the Cauchy-Schwarz inequality, and the last equality follows

because for a pair of hypergraphsℋ𝑖 andℋ𝑗 , we have 𝑖 ∈ 𝐿 and 𝑗 ∈ 𝑅 with probability 1/4. Hence,

we have that val( 𝑓 )2 ≤ 𝑛𝑚 + 4𝑛 · 𝔼(𝐿,𝑅)val( 𝑓𝐿,𝑅). □
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4.1 Bounding val( 𝑓𝐿,𝑅) using CSP refutation

It remains to bound 𝔼𝑏∈{−1,1}𝑘val( 𝑓𝐿,𝑅) for each choice of partition (𝐿, 𝑅). We will do this by

introducing a matrix 𝐴 for each 𝑏 ∈ {−1, 1}𝑘 and partition (𝐿, 𝑅), and relating val 𝑓𝐿,𝑅 to ∥𝐴∥∞→1.

Note that 𝐴 will depend on the choice of 𝑏 and the partition (𝐿, 𝑅). Then, we will bound

𝔼𝑏∈{−1,1}𝑘 [∥𝐴∥∞→1].

Definition 4.2. Let 𝐶 ⊆ [𝑛] be a set. We let 𝐶(1) and 𝐶(2) denote the subsets of [𝑛] × [2] deőned as

𝐶(𝑏) = {(𝑖 , 𝑏) : 𝑖 ∈ 𝐶} for 𝑏 ∈ [2], i.e., if we think of [𝑛] × [2] as two copies of [𝑛], 𝐶(1) is the set 𝐶

using the őrst copy, and 𝐶(2) is the set 𝐶 using the second copy.

If 𝑆 ⊆ [𝑛]×[2], we will sometimes think of 𝑆 as a pair (𝑆1 , 𝑆2), with 𝑆1 , 𝑆2 ⊆ [𝑛], and 𝑆 = 𝑆
(1)
1
∪𝑆(2)

2
.

Definition 4.3 (Our Kikuchi Matrix). Let ℓ ≔ 2⌈
√
𝑛/𝑘⌉ and let 𝑁 ≔

(2𝑛
ℓ

)
. For any two sets

𝑆, 𝑇 ⊆ [𝑛] × [2] and sets 𝐶, 𝐶′ ∈
([𝑛]

2

)
, we say that 𝑆

𝐶,𝐶′↔ 𝑇 if

1. 𝑆 ⊕ 𝑇 = 𝐶(1) ⊕ 𝐶′(2),

2. |𝑆 ∩ 𝐶(1) | = |𝑆 ∩ 𝐶′(2) | = |𝑇 ∩ 𝐶(1) | = |𝑇 ∩ 𝐶′(2) | = 1.

Note that 𝐶(1) ⊕ 𝐶′(2) = 𝐶(1) ∪ 𝐶′(2), as 𝐶(1) and 𝐶′(2) are disjoint by construction.

For each 𝐶, 𝐶′ ∈
([𝑛]

2

)
, deőne the 𝑁 × 𝑁 matrix 𝐴(𝐶,𝐶′), indexed by sets 𝑆 ⊆ [𝑛] × [2] of size ℓ , by

setting 𝐴(𝐶,𝐶′)(𝑆, 𝑇) = 1 if 𝑆
𝐶,𝐶′↔ 𝑇, and 0 otherwise.

We let

𝐴𝑖 , 𝑗 ≔

∑
𝑢∈[𝑛]

∑
(𝑢,𝐶)∈ℋ𝑖 ,(𝑢,𝐶′)∈ℋ𝑗

𝐴(𝐶,𝐶′) , 𝐴𝑖 ≔

∑
𝑗∈𝑅

𝑏 𝑗𝐴𝑖 , 𝑗 , and 𝐴 ≔
∑
𝑖∈𝐿

𝑏𝑖𝐴𝑖 .

We observe that for a őxed choice of (𝐶, 𝐶′), the matrix 𝐴(𝐶,𝐶′) has exactly 𝐷 ≔ 4
(2𝑛−4
ℓ−2

)
nonzero

entries. Indeed, this is the purpose of using subsets of [𝑛] × [2] rather than just [𝑛]. If we used

subsets of [𝑛] only, the number of nonzero entries in 𝐴(𝐶,𝐶′) would depend on |𝐶 ⊕ 𝐶′ |, whereas

with subsets of [𝑛] × [2]we always have |𝐶(1) ⊕ 𝐶′(2) | = 4.

Fix an assignment 𝑥 ∈ {−1, 1}𝑛 , and let 𝑧 ∈ {−1, 1}𝑁 be deőned as 𝑧𝑆 ≔
∏

𝑢∈𝑆1
𝑥𝑢

∏
𝑣∈𝑆2

𝑥𝑣 for𝑆 =

(𝑆1 , 𝑆2) ∈ [𝑛] × [2] satisfying |𝑆 | = ℓ . We observe that 𝐷 𝑓𝐿,𝑅(𝑥) = 𝑧⊤𝐴𝑧. Indeed, this is because for

any sets 𝑆, 𝑇 ⊆ [𝑛] × [2], 𝑧𝑆𝑧𝑇 =
∏

𝑢∈𝑆1
𝑥𝑢

∏
𝑣∈𝑆2

𝑥𝑣
∏

𝑢′∈𝑇1
𝑥𝑢

∏
𝑣′∈𝑇2

𝑥𝑣 =
∏

𝑢∈𝑆1⊕𝑇1
𝑥𝑢

∏
𝑣∈𝑆2⊕𝑇2

𝑥𝑣 =∏
𝑢∈𝐶 𝑥𝑢

∏
𝑣∈𝐶′ 𝑥𝑣 . In particular, this implies

val( 𝑓𝐿,𝑅) ≤
1

𝐷
∥𝐴∥∞→1 . (3)

It thus remains to bound 𝔼𝑏∈{−1,1}𝑘 [∥𝐴∥∞→1].
Towards this goal, we őrst remove all rows/columns of 𝐴 where the ℓ1-norm of that row/column

is large in some 𝐴𝑖 , and we show that this does not appreciably affect the (∞ → 1)-norm. Then, we

bound the spectral norm of the łprunedž matrix, and use the spectral norm to conclude a bound on

the (∞ → 1)-norm. This is captured in the following two lemmas.
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Definition 4.4. For a row/column 𝑆, let Δ𝑖(𝑆) denote the ℓ1-norm of the 𝑆-th row/column in 𝐴𝑖 . Let

Δ ≔ 𝑐 · (log3
2 𝑛)/𝜀2𝛿2, where 𝑐 is a sufficiently large absolute constant. Let ℬ ≔ {𝑆 : ∃𝑖 ∈ 𝐿,Δ𝑖(𝑆) >

Δ} denote the set of łheavyž rows/columns. Let 𝐺 be the matrix obtained by taking 𝐴 and zero-ing

out all of the heavy rows/columns, and let 𝐵 = 𝐴 − 𝐺.

The following lemma bounds the number of heavy rows/columns, and thus ∥𝐵∥∞→1.

Lemma 4.5 (Row pruning). For any 𝑏 ∈ {−1, 1}𝑘 , we have |ℬ| ≤ 𝑁/𝑛4. In particular, for any choice of

𝑏 ∈ {−1, 1}𝑘 , it holds that ∥𝐵∥∞→1 ≤ 2𝑁/𝑛.

The following lemma bounds the expected spectral norm of the matrix after removing the heavy

rows/columns.

Lemma 4.6 (Spectral norm bound). 𝔼𝑏∈{−1,1}𝑘 [∥𝐺∥2] ≤ Δ · 𝑂(ℓ log 𝑛 +
√
𝑘ℓ log 𝑛).

We postpone the proofs of Lemmas 4.5 and 4.6 to Sections 4.2 and 4.3, and now őnish the proof.

Proof of Lemma 3.4. By Eq. (3) and Lemmas 4.5 and 4.6, we have that

𝔼𝑏∈{−1,1}𝑘 [val( 𝑓𝐿,𝑅)] ≤
1

𝐷
𝔼𝑏∈{−1,1}𝑘 [∥𝐴∥∞→1] ≤

1

𝐷
∥𝐵∥∞→1 +

𝑁

𝐷
𝔼𝑏∈{−1,1}𝑘 [∥𝐺∥2]

≤ 𝑁

𝐷

(
2

𝑛
+ Δ · 𝑂(ℓ log 𝑛 +

√
𝑘ℓ log 𝑛)

)
≤ 𝑛2

ℓ 2
𝑂((log3 𝑛)/𝜀2𝛿2) · 𝑂(ℓ log 𝑛 +

√
𝑘ℓ log 𝑛)

= 𝑛𝑘 · 𝑂((log3 𝑛)/𝜀2𝛿2) · 𝑂(
√
𝑛/𝑘 log 𝑛 + (𝑛𝑘)1/4

√
log 𝑛) ,

where we use that ℓ = 2⌈
√
𝑛/𝑘⌉ ,Δ = 𝑐 · (log3

2 𝑛)/𝜀2𝛿2, and the following simple claim.

Claim 4.7. Let 𝑛 ≥ 2, 2 ≤ ℓ ≤ 𝑛, 𝑁 =
(2𝑛
ℓ

)
, 𝐷 = 4

(2𝑛−4
ℓ−2

)
. Then, 𝑁

𝐷 ≤ 16𝑛2

ℓ2 .

Proof.

𝑁

𝐷
=

(2𝑛)!
ℓ !(2𝑛 − ℓ )! ·

(ℓ − 2)!(2𝑛 − ℓ − 2)!
4(2𝑛 − 4)! =

1

4

(2𝑛!)
(2𝑛 − 4)!

(ℓ − 2)!
ℓ !

(2𝑛 − ℓ − 2)!
(2𝑛 − ℓ )!

≤ 1

4
· (2𝑛)4 · 2

ℓ 2
· 2

𝑛2
=

16𝑛2

ℓ 2
. □

Finally, combining with Lemma 4.1 and using that 𝑚 ≤ 𝑛𝑘, we have that

𝔼[val( 𝑓 )]2 ≤ 𝔼[val( 𝑓 )2] ≤ 𝑛2𝑘 + 4𝑛𝔼(𝐿,𝑅)𝔼𝑏∈{−1,1}𝑘 [val( 𝑓𝐿,𝑅)]
≤ 𝑛2𝑘 · 𝑂((log3 𝑛)/𝜀2𝛿2) · 𝑂(

√
𝑛/𝑘 log 𝑛 + (𝑛𝑘)1/4

√
log 𝑛) .

Hence,

𝔼[val( 𝑓 )] ≤ 𝑛
√
𝑘𝑂((log3/2 𝑛)/𝜀𝛿) · 𝑂

((𝑛
𝑘

)1/4 √
log 𝑛 + (𝑛𝑘)1/8 log1/4 𝑛

)
,

which őnishes the proof of Lemma 3.4. □
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4.2 Row pruning: proof of Lemma 4.5

We will show that for a őxed 𝑖 ∈ 𝐿, the number of rows with Δ𝑖(𝑆) > Δ is at most 𝑁/𝑛5. Lemma 4.5

then follows by union bounding over all 𝑖 ∈ 𝐿, and using the fact that |𝐿| ≤ 𝑘 ≤ 𝑛.

We bound |ℬ| using Corollary 2.7. Let ℋ ′ denote the 4-uniform hypergraph with vertices

[𝑛]×[2], and hyperedges {𝐶(1)⊕𝐶′(2) : ∃𝑢 ∈ [𝑛], 𝑗 ∈ 𝑅 s.t. (𝑢, 𝐶) ∈ ℋ𝑖 , (𝑢, 𝐶′) ∈ ℋ𝑗}. Letℋ ′′ denote

the 2-uniform hypergraph where the hyperedges are the set of all 𝑃 ⊆ [𝑛] × [2]with |𝑃 | = 2 such

that 𝑃 is contained in some hyperedge 𝐶(1) ⊕ 𝐶′(2) inℋ ′, and |𝑃 ∩ 𝐶(1) | = |𝑃 ∩ 𝐶′(2) | = 1. We include

such 𝑃’s with multiplicity, i.e., if a 𝑃 can be deőned using different choices of hyperedges inℋ ′,
then we add 𝑃 toℋ ′′ with that multiplicity. (Note the similarity with Deőnition 4.3.)

Now, let 𝜈 be the parameter from Corollary 2.7 for the hypergraphℋ ′′. Corollary 2.7 implies

if Δ ≥ 𝑂(𝜈 log2
2 𝑛), then |{𝑆 : Δ𝑖(𝑆) > Δ}| ≤ 𝑁/𝑛5. It thus remains to argue that Δ satisőes this

condition.

To do this, it suffices to compute 𝜈. Recall from Corollary 2.7 that 𝜈 = max(𝜈0 , 𝜈1 , 𝜈2), where

𝜈𝑟 ≔

(
ℓ

2𝑛

)2−𝑟
max

𝑄⊆[𝑛]×[2]:|𝑄 |=𝑟
degℋ ′′(𝑄) ,

and degℋ ′′(𝑄) ≔ |{𝑃 ∈ ℋ ′′ : 𝑄 ⊆ 𝑃}|. Note that degℋ ′′(𝑄) ≤ 𝑂(1)degℋ ′(𝑄), as once we őx a

hyperedge 𝐶(1) ⊕ 𝐶′(2) ∈ ℋ ′, it adds at most 𝑂(1) hyperedges 𝑃 toℋ ′′.
Fix 𝑟, and let us write 𝑄 = (𝑄1 , 𝑄2), and let 𝑟1 = |𝑄1 |, and 𝑟2 = |𝑄2 |. Let

𝜈𝑟1 ,𝑟2 =

(
ℓ

2𝑛

)2−𝑟1−𝑟2

max
(𝑄1 ,𝑄2):|𝑄1 |=𝑟1 ,|𝑄2 |=𝑟2

degℋ ′(𝑄1 , 𝑄2) .

It suffices to compute 𝜈𝑟1 ,𝑟2 for all valid choices of 𝑟1 , 𝑟2, i.e., 0 ≤ 𝑟1 , 𝑟2 ≤ 1. We now compute 𝜈𝑟1 ,𝑟2 .

(1) Case 1: 𝑟1 = 𝑟2 = 0. We observe that for any őxed 𝑢 ∈ [𝑛], there are at most 𝑘 hyperedges in

∪𝑗∈𝑅ℋ𝑗 containing 𝑢, because theℋ𝑗’s are matchings. Asℋ𝑖 is matching, each 𝑢 ∈ [𝑛] appears

in at most one 𝐶 ∈ ℋ𝑖 , and so it follows that degℋ ′(∅) ≤ 𝑛𝑘. So, 𝜈0,0 ≤ 𝑂(ℓ 2𝑘/𝑛).

(2) Case 2: 𝑟1 = 0, 𝑟2 = 1. Observe that for any hyperedge 𝐶(1) ⊕ 𝐶′(2) containing 𝑄, we must have

𝑄2 ⊆ 𝐶′. It then follows that there are at most 𝑘 choices for 𝐶′. This is because we must have

(𝑢, 𝐶′) ∈ ∪𝑗∈𝑅ℋ𝑗 for some 𝑢 ∈ [𝑛], and there is at most one choice of 𝐶′ per 𝑗 ∈ 𝑅, as theℋ𝑗’s

are matchings. For each choice of 𝐶′, there are at most 3 choices of 𝐶 ∈ ℋ𝑖 . Hence, we have

degℋ ′(𝑄) ≤ 𝑂(𝑘). It follows that 𝜈0,1 ≤ 𝑂(ℓ 𝑘/𝑛).

(3) Case 3: 𝑟1 = 1, 𝑟2 = 0. Observe that for any hyperedge 𝐶(1) ⊕ 𝐶′(2) containing 𝑄, we must have

𝑄1 ⊆ 𝐶. Note that we have (𝑢, 𝐶) ∈ ℋ𝑖 for some 𝑢 ∈ [𝑛], andℋ𝑖 is a matching. Hence, there

is at most one choice for 𝐶, and in particular at most 3 choices for 𝑢 ∈ [𝑛] as well. For each

choice of 𝑢, there are at most 𝑘 choices of 𝐶′ with (𝑢, 𝐶′) ∈ ∪𝑗∈𝑅ℋ𝑗 . Hence, we conclude that

degℋ ′(𝑄) ≤ 𝑂(𝑘), and so 𝜈1,0 ≤ 𝑂(ℓ 𝑘/𝑛).

(4) Case 4: 𝑟1 = 1, 𝑟2 = 1. As in Case 3, there are at most 3 choices for 𝑢 ∈ [𝑛]. Now, because

𝑄2 = {𝑣} is nonempty, each 𝐶′must satisfy 𝑣 ∈ 𝐶′ and (𝑢, 𝐶′) ∈ ∪𝑗∈𝑅ℋ𝑗 . This őxes two elements

of (𝑢, 𝐶′). Note that by assumption, the pair {𝑢, 𝑣} can appear in at most 𝑑 constraints in ∪𝑘
𝑖=1
ℋ𝑖 .

Hence, there are at most 𝑑 choices of 𝐶′, and so degℋ ′(𝑄) ≤ 𝑂(𝑑). Hence, 𝜈1,1 ≤ 𝑂(𝑑).
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Now, as ℓ = ⌈
√
𝑛/𝑘⌉ and 𝑑 = 𝑂(log 𝑛/𝜀2𝛿2), it follows that 𝜈0,0 ≤ 𝑂(1), 𝜈1,0 , 𝜈0,1 ≤ 𝑂(1), and

𝜈1,1 ≤ 𝑂((log 𝑛)/𝜀2𝛿2). Hence, 𝜈 = 𝑂((log 𝑛)/𝜀2𝛿2). As Δ = 𝑐 · (log3
2 𝑛)/𝜀2𝛿2, for a sufficiently large

constant 𝑐, Lemma 4.5 follows.

To argue the łin particularž, we őrst observe that ℬ does not depend on 𝑏. We then note

that ∥𝐵∥∞→1 ≤ 2|ℬ| · 𝑅, where 𝑅 is the maximum number of nonzero entries in a row of 𝐵. The

maximum number of nonzero entries in a row is upper bounded by 𝑛𝑘2 ≤ 𝑛3, as each pair 𝐶(1)⊕𝐶′(2)
contributes at most one entry per row, and there are at most 𝑛𝑘2 of these pairs.

4.3 Spectral norm bound: proof of Lemma 4.6

Let 𝐺𝑖 denote the matrix obtained by taking 𝐴𝑖 and zero-ing out all heavy rows/columns. We

have that 𝐺 =
∑

𝑖∈𝐿 𝑏𝑖𝐺𝑖 is a sum of independent, mean 0 random matrices. By construction, the

ℓ1-norm of each row/column of 𝐺𝑖 is at most Δ. Hence, ∥𝐺𝑖 ∥2 ≤ Δ. This additionally implies that

∥∑𝑖∈𝐿 𝐺𝑖𝐺
⊤
𝑖
∥2 ≤ |𝐿|Δ2 ≤ 𝑘Δ2, and that ∥∑𝑖∈𝐿 𝐺

⊤
𝑖
𝐺𝑖 ∥2 ≤ |𝐿|Δ2 ≤ 𝑘Δ2. Applying Matrix Bernstein

(Fact 2.5), we conclude that 𝔼[∥𝐺∥2] ≤ Δ𝑂(log 𝑁 +
√
𝑘 log 𝑁). As log 𝑁 = 𝑂(ℓ log 𝑛), Lemma 4.6

follows.
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A CSP Refutation Proof of Existing LDC Lower Bounds

In this section, we prove the following theorem, which are the existing LDC lower bounds (up to

poly(log(𝑛), 𝜀, 𝛿) factors), using the connection between LDCs and CSP refutation.

Theorem A.1. Let 𝒞 : {0, 1}𝑘 → {0, 1}𝑛 be a code that is (𝑞, 𝛿, 𝜀)-locally decodable, for constant 𝑞 ≥ 2.

Then, the following hold:

(1) If 𝑞 = 2, 𝑘 ≤ 𝑂((log 𝑛)/𝜀4𝛿2),

(2) If 𝑞 ≠ 2 is even, 𝑘 ≤ 𝑛1−2/𝑞𝑂((log𝑞+1 𝑛)/𝜀4𝛿2), and

(3) If 𝑞 is odd, 𝑘 ≤ 𝑛1−2/(𝑞+1)𝑂((log𝑞+2 𝑛)/𝜀4𝛿2).

Proof. By Fact 2.4, it suffices to show that for a code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 that is (𝑞, 𝛿, 𝜀)-normally

decodable, it holds that (1) 𝑘 ≤ 𝑂((log 𝑛)/𝜀2𝛿2) if 𝑞 = 2, (2) 𝑘 ≤ 𝑛1−2/𝑞𝑂((log𝑞+1 𝑛)/𝜀2𝛿2) if 𝑞 ≠ 2 is

even, and (3) 𝑘 ≤ 𝑛1−2/(𝑞+1)𝑂((log𝑞+2 𝑛)/𝜀2𝛿2) if 𝑞 is odd.

We őrst observe for any 𝑞, we can transform 𝒞 into a code 𝒞′ that is (𝑞 + 1, 𝛿/2, 𝜀)-normally

decodable. In particular, it suffices to prove the lower bound in the case when 𝑞 is even. We note

that one can also prove the 𝑞 odd case directly using a similar approach to the even case, just

with asymmetric matrices. For simplicity, we do not present this proof, but the deőnition of the

asymmetric matrices are given in Remark A.4.

Claim A.2. Let 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 be a code that is (𝑞, 𝛿, 𝜀)-normally decodable. Then, there is

a code 𝒞′ : {−1, 1}𝑘 → {−1, 1}2𝑛 that is (𝑞 + 1, 𝛿/2, 𝜀)-normally decodable.

Proof. Let 𝒞′ : {−1, 1}𝑘 → {−1, 1}2𝑛 be deőned by setting 𝒞′(𝑏) = 𝒞(𝑏)∥1𝑛 , i.e., the encoding of 𝑏

under the original code 𝒞 concatenated with 𝑛 1’s. For each hypergraph ℋ𝑖 , we construct the

hypergraphℋ ′
𝑖

as follows. First, let 𝜋𝑖 : ℋ𝑖 → [𝑛] be an arbitrary ordering of the hyperedges ofℋ𝑖 ,

and then letℋ ′
𝑖
= {𝐶 ∪ {𝑛 + 𝜋𝑖(𝐶)} : 𝐶 ∈ ℋ𝑖}. That is, the hypergraphℋ ′

𝑖
is obtained by taking

each hyperedge inℋ𝑖 and appending one of the new coordinates, and each new coordinate is added

to at most one hyperedge, so thatℋ ′
𝑖

remains a matching. It is now obvious from construction that

𝒞′ is (𝑞 + 1, 𝛿/2, 𝜀)-normally decodable, which őnishes the proof. □

It thus remains to show that for any code 𝒞 : {−1, 1}𝑘 → {−1, 1}𝑛 that is (𝑞, 𝛿, 𝜀)-normally

decodable with 𝑞 even, it holds that 𝑛 ≥ Ω̃(𝑘
𝑞

𝑞−2 ) for 𝑞 ≥ 4 and 𝑛 ≥ exp(Ω(𝑘)) for 𝑞 = 2.

Similar to the proof of Theorem 1, we construct a 𝑞-XOR instance associated with 𝒞′, and argue

via CSP refutation that its value must be small. For each 𝑏 ∈ {−1, 1}𝑘 , let Ψ𝑏 denote the 𝑞-XOR

instance with variables 𝑥 ∈ {−1, 1}𝑛 and constraints
∏

𝑣∈𝐶 𝑥𝑣 = 𝑏𝑖 for all 𝑖 ∈ [𝑘], 𝐶 ∈ ℋ𝑖 . We let

𝑚 ≔
∑𝑘

𝑖=1 |ℋ𝑖 | denote the total number of constraints. Let 𝜓𝑏(𝑥) ≔ 1
𝑚

∑𝑘
𝑖=1 𝑏𝑖

∑
𝐶∈ℋ𝑖

∏
𝑣∈𝐶 𝑥𝑣 , and

let val(𝜓𝑏) ≔ max𝑥∈{−1,1}𝑛 𝜓𝑏(𝑥). As in the proof of Theorem 1, we observe that Deőnition 2.3

implies that 𝔼𝑏←{−1,1}𝑘 [val(𝜓𝑏)] ≥ 2𝜀.

It thus remains to upper bound 𝔼𝑏←{−1,1}𝑘 [val(𝜓𝑏)]. We do this by introducing a matrix 𝐴 for

each 𝑏 ∈ {−1, 1}𝑘 , where ∥𝐴∥∞→1 is related to val(𝜓𝑏). We then upper bound 𝔼𝑏←{−1,1}𝑘 [∥𝐴∥∞→1].
We note that the matrix 𝐴 depends on the choice of 𝑏 ∈ {−1, 1}𝑘 but we suppress this dependence

for notational simplicity.
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Definition A.3. Let ℓ ≔ ⌈𝑛1−2/𝑞⌉, and let 𝑁 ≔
(𝑛
ℓ

)
. For 𝐶 ∈

([𝑛]
𝑞

)
, we let 𝐴(𝐶) ∈ ℝ𝑁×𝑁 denote the

matrix indexed by sets 𝑆, 𝑇 ∈
([𝑛]
ℓ

)
where 𝐴(𝐶)(𝑆, 𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶, and is 0 otherwise.

We let 𝐴𝑖 ≔
∑

𝐶∈ℋ𝑖
𝐴(𝐶), and 𝐴 ≔

∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 .

Remark A.4 (Matrices for 𝑞 odd). As mentioned earlier, when 𝑞 is odd we can prove the lower bound

directly by choosing slightly different matrices, although we do not present the proof in full. The

matrices used are deőned as follows. We let the matrix 𝐴(𝐶) now be indexed by rows 𝑆 ⊆
([𝑛]
ℓ

)
and

columns 𝑇 ⊆
( [𝑛]
ℓ+1

)
, and let 𝐴(𝐶)(𝑆, 𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶. The matrices 𝐴𝑖 and 𝐴 are deőned as before.

Our proof now proceeds as in Section 4. We similarly observe that val(𝜓𝑏) ≤ 1
𝑚𝐷 ∥𝐴∥∞→1, where

𝐷 ≔
( 𝑞

𝑞/2
) ( 𝑛−𝑞

ℓ−𝑞/2
)

is, for a őxed 𝐶 ∈
([𝑛]
𝑞

)
, the number of pairs (𝑆, 𝑇) ∈

([𝑛]
ℓ

)
×

([𝑛]
ℓ

)
with 𝑆 ⊕ 𝑇 = 𝐶,

and 𝑚 ≔
∑𝑘

𝑖=1 |ℋ𝑖 | is the total number of constraints. It thus remains to bound 𝔼𝑏←{−1,1}𝑘 [∥𝐴∥∞→1].
As before, we remove all rows/columns of 𝐴 where the ℓ1-norm of that row/column is large in

some 𝐴𝑖 , and we show that this does not appreciably affect the∞→ 1 norm. Then, we bound the

expected spectral norm of the łprunedž matrix, and use the expected spectral norm to conclude a

bound on the expected∞→ 1 norm. This is captured in the following two lemmas.

Definition A.5. For a row/column 𝑆, let Δ𝑖(𝑆) denote the ℓ1-norm of the 𝑆-th row/column in

𝐴𝑖 . Let Δ ≔ 𝑐 log
𝑞/2
2

𝑛 for a large enough absolute constant 𝑐 if 𝑞 ≥ 3, and Δ = 1 if 𝑞 = 2. Let

ℬ ≔ {𝑆 : ∃𝑖 ∈ 𝐿,Δ𝑖(𝑆) > Δ} denote the set of łheavyž rows/columns. Let𝒢 denote the complement

of ℬ. Let 𝐺 be the matrix obtained by taking 𝐴 and zero-ing out all of the heavy rows/columns,

and let 𝐵 = 𝐴 − 𝐺.

The following lemma bounds the number of heavy rows/columns, and thus ∥𝐵∥∞→1.

Lemma A.6 (Row pruning). For any 𝑏 ∈ {−1, 1}𝑘 , we have |ℬ| ≤ 𝑁/𝑛3. In particular, for any choice of

𝑏 ∈ {−1, 1}𝑘 , it holds that ∥𝐵∥∞→1 ≤ 2𝑁/𝑛.

The following lemma bounds the expected spectral norm of the matrix after removing the heavy

rows/columns.

Lemma A.7 (Spectral norm bound). 𝔼𝑏∈{−1,1}𝑘 [∥𝐺∥2] ≤ Δ𝑂(ℓ log 𝑛 +
√
𝑘ℓ log 𝑛).

We postpone the proofs of Lemmas A.6 and A.7 to Appendix A.1, and now őnish the proof of

Theorem A.1.

By Lemmas A.6 and A.7, it follows that

𝔼𝑏∈{−1,1}𝑘 [∥𝐴∥∞→1] ≤ ∥𝐵∥∞→1 + 𝑁𝔼𝑏∈{−1,1}𝑘 [∥𝐺∥2] ≤ 2𝑁/𝑛 + 𝑁Δ𝑂(ℓ log 𝑛 +
√
𝑘ℓ log 𝑛)

= 𝑁Δ𝑂(ℓ log 𝑛 +
√
𝑘ℓ log 𝑛) .

Hence,

2𝜀 ≤ 𝔼𝑏∈{−1,1}𝑘 [val(𝜓𝑏)] ≤
1

𝑚𝐷
𝑁Δ𝑂(ℓ log 𝑛 +

√
𝑘ℓ log 𝑛) .

As |ℋ𝑖 | ≥ 𝛿𝑛 for all 𝑖, it follows that 𝑚 ≥ 𝛿𝑛𝑘. Therefore,

𝜀 ≤ 𝑁

𝛿𝑛𝑘𝐷
Δ𝑂(ℓ log 𝑛 +

√
𝑘ℓ log 𝑛) ≤ 1

𝛿𝑛𝑘

(𝑛
ℓ

) 𝑞/2
𝑂(log𝑞/2 𝑛)(ℓ log 𝑛 +

√
𝑘ℓ log 𝑛)
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≤ 1

𝛿
𝑂(Δ)

(
𝑛1−2/𝑞

𝑘
log 𝑛 +

√
𝑛1−2/𝑞

𝑘
log 𝑛

)
,

where we use that ℓ = ⌈𝑛1−2/𝑞⌉ and also the following claim to bound 𝑁
𝐷 .

Claim A.8. Suppose that 𝑛 ≥ 2ℓ + 𝑞 and ℓ ≥ 𝑞 − 2. Then, 𝑁
𝐷 ≤ 2𝑞(𝑛/ℓ )𝑞/2.

Proof.

𝑁

𝐷
=

𝑛!

ℓ !(𝑛 − ℓ )! ·
(ℓ − 𝑞/2)!(𝑛 − ℓ − 𝑞/2)!( 𝑞

𝑞/2
)
(𝑛 − 𝑞)!

≤ 𝑛!

(𝑛 − 𝑞)! ·
(ℓ − 𝑞/2)!

ℓ !
· (𝑛 − ℓ − 𝑞/2)!
(𝑛 − ℓ )!

≤ 𝑛𝑞 · 1

(ℓ − 𝑞/2 + 1)𝑞/2
· 1

(𝑛/2)𝑞/2
≤ 2𝑞/2𝑛𝑞/2 · 1

(ℓ/2)𝑞/2
= 2𝑞

(𝑛
ℓ

) 𝑞/2
. □

Hence, we have shown that

𝜀𝛿

Δ
≤ 𝑂

(
𝑛1−2/𝑞

𝑘
log 𝑛 +

√
𝑛1−2/𝑞

𝑘
log 𝑛

)
.

We now have two cases. If 𝑛1−2/𝑞
𝑘 log2 𝑛 ≥

√
𝑛1−2/𝑞

𝑘 log2 𝑛, then we have

𝜀𝛿

Δ
≤ 𝑂

(
𝑛1−2/𝑞

𝑘
log 𝑛

)
=⇒ 𝑘 ≤ 𝑛1−2/𝑞𝑂(Δ log 𝑛)/𝜀𝛿 ,

and if 𝑛1−2/𝑞
𝑘 log2 𝑛 ≤

√
𝑛1−2/𝑞

𝑘 log2 𝑛, then we have

𝜀𝛿

Δ
≤ 𝑂

(√
𝑛1−2/𝑞

𝑘
log2 𝑛

)
=⇒ 𝑘 ≤ 𝑛1−2/𝑞𝑂(Δ2 log 𝑛)/𝜀2𝛿2 .

We thus conclude that 𝑘 ≤ 𝑛1−2/𝑞 · 𝑂(Δ2 log 𝑛)/𝜀2𝛿2. To őnish the proof, we observe that for 𝑞 = 2,

we have Δ = 1, and hence we must have 𝑘 ≤ 𝑂((log 𝑛)/𝜀2𝛿2), and for 𝑞 ≥ 4, we have Δ = 𝑂(log𝑞/2 𝑛),
and so we must have 𝑘 ≤ 𝑛1−2/𝑞 · 𝑂((log𝑞+1 𝑛)/𝜀2𝛿2). □

A.1 Deferred proofs

Proof of Lemma A.6. If 𝑞 = 2, so that Δ = 1, then we have that ℓ = 1. Let 𝑆 = {𝑢} be a row/column.

Asℋ𝑖 is a matching, it follows that 𝑢 can appear in at most 1 hyperedge 𝐶 ∈ ℋ𝑖 . Thus, Δ𝑖(𝑆) ≤ 1 = Δ

always holds, and so |ℬ| = 0.

Now, suppose that 𝑞 ≥ 3, so that Δ ≔ 𝑐 log𝑞/2 𝑛, where 𝑐 is a sufficiently large absolute

constant, to be chosen later. We clearly have that Δ𝑖(𝑆) = |{𝐶 ∈ ℋ𝑖 : |𝑆 ∩ 𝐶 | = 𝑞/2}|. Let

ℋ ′
𝑖
≔ {𝐶′ : 𝐶′ ⊆ 𝐶 ∈ ℋ𝑖 : |𝐶′ | = 𝑞/2} denote the set of half-edges from ℋ𝑖 . We have that

Δ𝑖(𝑆) ≤ |{𝐶′ ∈ ℋ ′𝑖 : 𝐶′ ⊆ 𝑆}|. Hence, in order to prove Lemma A.6, it suffices to argue that

Pr
𝑆←([𝑛]ℓ )[|{𝐶

′ ∈ ℋ ′
𝑖

: 𝐶′ ⊆ 𝑆}| > Δ] ≤ 1
𝑛3 .
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By Corollary 2.7, it thus suffices to argue that Δ ≥ 𝑂(𝜈 log𝑞/2 𝑛), and so we need to compute

the parameter 𝜈 in Corollary 2.7. Observe that for any set 𝑄, degℋ ′
𝑖
(𝑄) ≤ 𝑂(1)degℋ𝑖

(𝑄), as each

hyperedge 𝐶 ∈ ℋ𝑖 creates
( 𝑞

𝑞/2

)

= 𝑂(1) hyperedges in ℋ ′
𝑖

(see Deőnition 3.1 for a deőnition of

degℋ𝑖
(𝑄)). Second, as ℋ𝑖 is a matching, it follows that degℋ𝑖

(𝑄) ≤ 1 if 𝑄 ≠ ∅, and degℋ𝑖
(𝑄) ≤ 𝑛

if 𝑄 = ∅. Thus, we have that the parameter 𝜈0 is at most
(

ℓ
𝑛

) 𝑞/2
𝑂(𝑛), and 𝜈𝑟 for 1 ≤ 𝑟 ≤ 𝑞/2 is at

most 𝑂(1). As ℓ = ⌈𝑛1−2/𝑞⌉, we have that 𝜈0 ≤ 𝑂(1) also. Hence, 𝜈 = max𝑟=0,...,𝑞/2 𝜈𝑟 is 𝑂(1). As

Δ = 𝑐 log𝑞/2 𝑛, for a sufficiently large constant 𝑐, Lemma A.6 follows.

To see the łin particularž, we observe that each row in 𝐴(𝐶) has at most one nonzero entry of

magnitude 1. This implies that each row of 𝐴 has ℓ1-norm at most 𝑛𝑘 ≤ 𝑛2. Hence, ∥𝐵∥∞→1 ≤

𝑛2 · 2|ℬ| ≤ 2𝑁/𝑛. □

Proof of Lemma A.7. We will use Matrix Bernstein (Fact 2.5) to bound 𝔼[∥𝐺∥2]. We write 𝐺 =
∑𝑘

𝑖=1 𝑏𝑖𝐺𝑖 , where 𝐺𝑖 is the matrix obtained by taking 𝐴𝑖 and zero-ing out all heavy rows/columns.

We observe that ∥𝐺𝑖 ∥2 ≤ Δ by construction, as the ℓ1-norm of any row/column of 𝐺𝑖 is at most Δ.

It then follows that ∥𝔼[𝐺2]∥2 = ∥
∑𝑘

𝑖=1 𝐺
2
𝑖
∥2 ≤

∑𝑘
𝑖=1∥𝐺𝑖 ∥

2
2
≤ 𝑘Δ2. Hence, by Fact 2.5, it follows that

𝔼[∥𝐺∥2] ≤ 𝑂(Δ(log 𝑁 +
√

𝑘 log 𝑁)). Finally, we observe that log2 𝑁 ≤ ℓ log2 𝑛, which őnishes the

proof. □
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