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Abstract

A code C: {0,1}F = {0,1}"is a g-locally decodable code (3-LDC) if one can recover any
chosen bit b; of the message b € {0, 1}* with good confidence by randomly querying the encoding
x := C(b) on at most g coordinates. Existing constructions of 2-LDCs achieve n = exp(O(k)),
and lower bounds show that this is in fact tight. However, when q = 3, far less is known: the
best constructions achieve n = exp(k°"), while the best known results only show a quadratic
lower bound 1 > Q(k?) on the blocklength.

In this paper, we prove a near-cubic lower bound of n > Q(k3) on the blocklength of 3-query
LDCs. This improves on the best known prior works by a polynomial factor in k. Our proof
relies on a new connection between LDCs and refuting constraint satisfaction problems with
limited randomness. Our quantitative improvement builds on the new techniques for refuting
semirandom instances of CSPs developed in [GKM?22] and, in particular, relies on bounding the
(00 — 1)-norm of appropriate Kikuchi matrices.
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1 Introduction

A binary locally decodable code (LDC) C: {0, 1} — {0,1}" maps a k-bit message b € {0, 1} to
an n-bit codeword x € {0,1}" with the property that the receiver, when given oracle access to
y € {0,1}" obtained by corrupting x in a constant fraction of coordinates, can recover any chosen
bit b; of the original message with good confidence by only querying v in a few locations. More
formally, a code C is g-locally decodable if for any input i € [k], the decoding algorithm makes
at most g queries to the corrupted codeword y and recovers the bit b; with probability 1/2 + ¢,
provided that A(y,C(b)) = [{v € [n] : yo # C(b)o}| < O6n, where 0, ¢ are constants. Though
formalized later in [KT00], locally decodable codes were instrumental in the proof of the PCP
theorem [AS98, ALM*98], and have deep connections to many other areas of complexity theory (see
Section 7 in [Yek12]), including worst-case to average-case reductions [Tre04], private information
retrieval [Yek10], secure multiparty computation [IK04], derandomization [DS05], matrix rigidity
[Dvil0], data structures [Wol09, CGW10], and fault-tolerant computation [Rom06].

A central research focus in coding theory is to understand the largest possible rate achievable by
a g-query locally decodable code. For the simplest non-trivial setting of g = 2 queries, we have a
complete understanding: the Hadamard code provides an LDC with a blocklength 1 = 2¥ and an
essentially matching lower bound of n = 29(k) was shown in [KW04, GKST06, Bril6, Gop18].

In contrast, there is a wide gap in our understanding of 3 or higher query LDCs. The best
known constructions are based on families of matching vector codes [Yek08, Efr09, DGY11] and
achieve n = 28" In particular, the blocklength is slightly subexponential in k and asymptotically
improves on the rate achievable by 2-query LDCs. The known lower bounds, on the other hand,
are far from this bound. The first LDC lower bounds are due to Katz and Trevisan [KT00], who
proved that g-query LDCs require a blocklength of n > Q(k%). This was later improved in 2004
by Kerenedis and de Wolf [KWO04] via a “quantum argument” to obtain n > ki /polylog(k) when

q is even, and n > k% /polylog(k) when g is odd. For the first nontrivial setting of g = 3, their
result yields a nearly quadratic lower bound of n > Q(k?/log? k) on the blocklength. Subsequently,
Woodruff [Woo07, Woo12] improved this bound by polylog(k) factors to obtain a lower bound of
n > Q(k?/log k) for non-linear codes, and n > Q(k?) for linear codes. Very recently, Bhattacharya,
Chandran, and Ghoshal [BCG20] used a combinatorial method to give a new proof of the quadratic
lower bound of n > Q(k?/log k), albeit with a few additional assumptions on the code.

Our Work. In this work, we show a near-cubic lower bound 7 > k3/polylog(k) on the blocklength
of any 3-query LDC. This improves on the previous best lower bound by a O(k) factor. More
precisely, we prove:

Theorem 1. Let C: {0,1}% — {0, 1}" be a code that is (3, 6, €)-locally decodable. Then, it must hold that
k3 < n-O((log" n)/326'%). In particular, if &, ¢ are constants, then n > k3 /polylog(k).

We have not attempted to optimize the dependence on logn, ¢, and 6 in Theorem 1. We also
suspect that it is simple to extend Theorem 1 to nonbinary alphabets, with a polynomial loss in the
alphabet size. Finally, using known relationships between locally correctable codes (LCCs) and
LDCs (e.g., Theorem A.6 of [BGT17]), Theorem 1 implies a similar lower bound for 3-query LCCs.



Our main tool is a new connection between the existence of locally decodable codes and
refutation of instances of Boolean CSPs with limited randomness. This connection is similar in spirit
to the connection between PCPs and hardness of approximation for CSPs, in which one produces a
g-ary CSP from a PCP with a g-query verifier by adding, for each possible query set of the verifier,
a local constraint that asserts that the verifier accepts when it queries this particular set. To refute
the resulting CSP instance, our proof builds on the spectral analysis of Kikuchi matrices employed
in the recent work of [GKM22], which obtained strong refutation algorithms for semirandom and
smoothed CSPs and proved the hypergraph Moore bound Con]ectured by Feige [Fei08].

Up to polylog(k) factors, the best known lower bound of n > kit 1 /polylog(k) for g-LDCs for
odd g can be obtained by simply observing that a -LDC is also a (g + 1)-LDC, and then invoking
the lower bound for (g + 1)-query LDCs. Our improvement for g = 3 thus comes from obtaining
the same tradeoff with g as in the case of even g, but now for g4 = 3. For technical reasons, our
proof does not extend to odd g > 5; we briefly mention in Section 1.1 the place where the natural

generalization fails. We leave proving a lower bound of n > k'iqTz /polylog(k) for all odd q > 5 as an
intriguing open problem.

1.1 Proof overview

The key insight in our proof is to observe that for any g, a g-LDC yields a collection of g-XOR
instances, one for each possible message. And, a typical instance has a high value, i.e., there’s an
assignment that satisfies % + ¢-fraction of the constraints. To prove a lower bound on the blocklength
n for 3-LDCs, it is then enough to show that for any purported construction with n < k3, the
associated 3-XOR instance corresponding to a uniformly random message has a low value. We
establish such a claim by producing a refutation (i.e., a certificate of low value), building on tools
from the recent work on refuting smoothed instances of Boolean CSPs [GKM22].

For this overview, we will assume that the code C is a linear g-LDC. We will also write the

code using {-1, 1} notation, so that C: {-1, 1}F — {-1,1}". By standard reductions (Lemma 6.2
in [Yek12]), one can assume that the LDC is in normal form: there exist g-uniform hypergraph
matchings Hj, . . ., Hy, each with Q(n) hyperedges,! and the decoding procedure on input i € [k]
simply chooses a uniformly random C € H;, and outputs [],cc x,. Because C is linear, when
x = C(b) is the encoding of b, the decoding procedure recovers b; with probability 1. In other
words, for any b € {-1,1}*, the assignment x = C(b) satisfies the set of g-XOR constraints
Vielk],CeHi,[lyec xo = bi.
The XOR Instance. The above connection now suggests the following approach: letb € {-1,1}* be
chosen randomly, and consider the 4-XOR instance with constraints Vi € [k], C € H;, [ ec X0 = bi.
Since C is a linear g-LDC, this set of constraints will be satisfiable for every choice of b. Thus,
proving that the instance is unsatisfiable, with high probability for a uniformly random b, implies a
contradiction.

One might expect to show unsatisfiability of a 4-XOR instance produced by a sufficiently

1A g-uniform hypergraph #; is a collection of subsets of [1], called hyperedges, each of size exactly . The hypergraph
H; is a matching if all the hyperedges are disjoint.



random generation process by using natural probabilistic arguments. Indeed, if the instance was
“fully random” (i.e., both H;’s and b;’s chosen uniformly at random from their domain), or even
semirandom (where H;’s are worst-case but each constraint C has a uniformly random “right hand
side” bc € {—1,1}), then a simple union bound argument suffices to prove unsatisfiability.

The main challenge in our setting is that the g-XOR instances have significantly limited random-
ness even compared to the semirandom setting: all the constraints C € H; share the same right hand
side b;. In particular, the g-XOR instance on 7 variables has k < n bits of independent randomness.

We establish the unsatisfiability of such a -XOR instance above by constructing a subexponential-
sized SDP-based certificate of low value. A priori, bounding the SDP value might seem like a rather
roundabout route to show unsatisfiability of a -XOR instance. However, shifting to this stronger
target allows us to leverage the techniques introduced in the recent work of [GKM22] on semirandom
CSP refutation and to show existence of such certificates of unsatisfiability. Despite the significantly
smaller amount of randomness in the g-XOR instances produced in our setting, compared to, e.g.,
semirandom instances, we show that an appropriate adaptation of the techniques from [GKM22] is
powerful enough to exploit the combinatorial structure in our instances and succeed in refuting
them.

Warmup: the case when g is even. Certifying unsatisfiability of -XOR instances when g is even
is known to be, from a technical standpoint, substantially easier compared to the case when g is
odd. As a warmup, we will first sketch a proof of the known lower bound for g-LDCs when g is
even, via our CSP refutation approach. A full formal proof is presented in Appendix A.

The refutation certificate is as follows. Let ¢ be a parameter to be chosen later, and let N := (7).
Foraset C € ([’;]),2 we let A(©) € RN*N be the matrix indexed by sets S € (['Z]), where A©€)(S,T) =1
if S®T = C, and 0 otherwise, where S ® T denotes the symmetric difference of S and T. We note
that S®@T = Cifandonlyif S = CiUQ and T = C, U Q, where Cj is half of the clause C, C; is
the other half of the clause C, and Q is an arbitrary subset of [11] \ Q of size ¢ — q/2. This matrix
A©) is the Kikuchi matrix (also called symmetric difference matrix) of [WAM19]. We then set
A= Zle bi Yicen, A©), By looking at the quadratic form y ™ Ay where y is defined as ys := [],es X0,
where x = C(b), it is simple to observe that || A2 > (¢/n)72 - Y5 |H;| > (¢/n)12Q(kn).

As each b; is an independent bit from {-1, 1}, the matrix A is the sum of k independent, mean 0
random matrices: we can write A = Zle biAi, where A; = Y.ceq A©), We can then bound
||All2 using Matrix Bernstein, which implies that ||Al|2 < O(A)(¢logn + +/k€log n), where A is the
maximum ¢;-norm of a row in any A;. One technical issue is that there are rows with abnormally
large ¢1-norm, so A can be as large as Q(¢); however, using the “row pruning” technique of [GKM22],
we can show that only a small fraction of rows/columns have substantially higher-than-average
f1-norm. This allows us to replace A with the maximum of 1 and the average ¢;-norm of a row,
which is ~ (¢/n)1/2 - |H;|, i.e., (¢/n)7?n. Thatis, A = max(1, (¢/n)7/?n). Hence, for £ > n'=2/1, we
can set A = ({/n)72n.

Combining, we thus have that for £ > nl=2/q,

(¢/n)12Q(kn) < ||All2 < O(A)(Elogn + \Jktlogn) < O(1)(¢/n)"?n - (Elogn + \Jklogn) ,

2We use (['Z ]) to denote the collection of subsets of [1] of size exactly .




which implies that k < ¢ - polylog(n). Taking ¢ = n'~2/1 to be the smallest possible setting of ¢ for
which the above holds, we obtain the desired lower bound.

The case of g =3. When g = 3, or more generally when g is odd, the matrices A(“) are no longer
well-defined, as the condition S ® T = C is never satisfied. A naive attempt to salvage the above
approach is to simply allow the columns of A(©) to be indexed by sets of size ¢ + 1, rather than
{. However, this asymmetry in the matrix causes the spectral certificate to obtain a suboptimal
dependence in terms of g, leading to a final bound of k < n'~2/(*Dpolylog(n) same as the current
state-of-the-art lower bound for odd 4. This is precisely the issue that in general makes refuting
g-XOR instances for odd g technically more challenging than even 4. The asymmetric matrix
effectively pretends that g is g + 1, and thus obtains the “wrong” dependence on 4.

Our idea is to transform a 3-LDC into a 4-XOR instance and then use an appropriate Kikuchi
matrix to find a refutation for the resulting 4-XOR instance. The resulting 4-XOR instance is less
structured than ones arising out of 4-LDCs: as we shall see, the H;’s in the 4-XOR instance will no
longer be matchings. Nevertheless, our techniques succeed in refuting such instances by exploiting
only some elementary combinatorial properties.

Our reduction works as follows. We randomly partition [k] into two sets, L, R, and fix b; = 1
for all j € R. Then, for each intersecting pair of constraints C;, C; that intersect with C; € H;,iel,
Cje ‘H;,j € R, we add the derived constraint C; & C j to our new 4-XOR instance, with right hand
side b;.3 Because the 3-XOR instance was satisfiable, the 4-XOR instance is also satisfiable. Moreover,
the 4-XOR instance has ~ k%1 constraints, as a typical v € [n] participates in ~ k hyperedges in
Uf.‘:ﬂ-(i, and hence can be “canceled” to form k? derived constraints.

The partition (L, R) is a technical trick that allows us to produce ~ k?n constraints in the
4-XOR instance while preserving k independent bits of randomness in the right hand sides of
the constraints. If we considered all derived constraints, rather than just those that cross the
partition (L, R), then it would be possible to produce derived constraints where the right hand sides
have nontrivial correlations. Specifically, one could produce 3 constraints with right hand sides
bibj, bjbt, biby, which are pairwise independent but not 3-wise independent. With the partitioning,
however, the right hand sides of any two constraints must either be equal or independent, and in
particular there are no nontrivial correlations.

The fact that we have produced more constraints in the 4-XOR instance is crucial, as otherwise
we could only hope to obtain the same bound as in the g = 4 case in the warmup earlier. However,
our reduction does not produce an instance with the same structure as a 4-XOR instance arising
from a 4-LDC: if we let 7-(1 ! for i € L denote the set of derived constraints with right hand side b;,
then we clearly can see that H is not a matching. In fact, the typical size of H is Q)(nk), whereas a
matching can have at most n/g hyperedges.

Nonetheless, we can still apply the CSP refutation machinery to try to refute this 4-XOR instance.
However, because each H! is no longer a matching, the “row pruning step” now only works if we
assume that any pair p = (u, v) of vertices appears in at most polylog(n) hyperedges in the original
3-uniform hypergraph Ui.‘:ﬂ-{i. But, if we make this assumption, the rest of the proof follows the

SIfIC;NC j| = 2, then the derived constraint is a 2-XOR constraint, not 4-XOR. This is a minor technical issue that can
be circumvented easily, so we will ignore it for the proof overview.



blueprint of the even g case, and we can prove that n > k3/polylog(k). We note that a recent
work [BCG20] managed to reprove that n > k?/polylog(k) under a similar assumption about pairs
of vertices.

Thus, the final step of the proof is to remove the assumption by showing that no pair of vertices
can appear in too many hyperedges. Suppose that we do have many “heavy” pairs p = (1, v) that
appear in > log n clauses in the original 3-uniform hypergraph H := Ui.‘:ﬂ-(i. Now, we transform
the 3-XOR instance into a bipartite 2-XOR instance ([AGK21, GKM22]) by replacing each heavy pair
p with a new variable y,. That is, the 3-XOR clause C = (u, v, w) in H; now becomes the 2-XOR
clause (p, w), where p is a new variable. In other words, the constraint x, x,x, = b; is replaced by
YpXw = b;. Bach clause in the bipartite 2-XOR instance now uses one variable from the set of heavy
pairs, and one from the original set of variables [72]. We then show that if there are too many heavy
pairs, then this instance has a sufficient number of constraints in order to be refuted, and is thus not
satisfiable, which is again a contradiction.

Finally, we note that for larger odd q > 5, the proof showing that there not too many heavy pairs
breaks down, and this is what prevents us from generalizing Theorem 1 to all odd 4.

1.2 Discussion: LDCs and the CSP perspective

Prior work on lower bounds for g-LDCs reduce g-query LDCs with even g to 2-query LDCs, and
then apply the essentially tight known lower bounds for 2-query LDCs. (To handle the odd g case,
they essentially observe that a g-LDC is also a (g + 1)-LDC.) While the warmup proof we sketched
earlier (and present in Appendix A) for even g is in the language of CSP refutation, it is in fact
very similar to the reduction from g-LDCs to 2-LDCs for g even used in the proof in [KWO04]. The
reduction in [KW04] (see also Exercise 4 in [Gop19]) employs a certain tensor product, and while it
is not relevant to their argument, the natural matrix corresponding to the 2-LDC produced by their
reduction is in fact very closely related to the Kikuchi matrix A of [WAM19].

The main advantage of the CSP refutation viewpoint is that it suggests a natural route to analyze
g-LDCs for odd q via an appropriately modified Kikuchi matrix. By viewing the 3-LDC as a 3-XOR
instance, we obtain a natural way to produce a related 4-XOR instance using a reduction that does
not correspond to a 4-LDC. In fact, if our reduction were to only produce a 4-LDC, then we would not
expect to obtain an improved 3-LDC lower bound without improving the 4-LDC lower bound as
well. In a sense, this relates to the key strength of the CSP viewpoint in that it arguably the “right”
level of abstraction. On one hand, it naturally suggests reductions from 3-LDCs to 4-XOR that are
rather unnatural if one were to follow the more well-trodden route of reducing odd query LDCs
to even query ones. On the other hand, the ideas from semirandom CSP refutation are resilient
enough to apply, with some effort, to even the more general, non-semirandom instances arising in
such reductions, and so we can still prove lower bounds. Further exploration of such an approach
to obtain stronger lower bounds for LDCs is an interesting research direction.



2 Preliminaries

2.1 Basic notation

We let [n] denote the set {1, ..., n}. For two subsets S, T C [n], we let S @ T denote the symmetric
difference of Sand T,ie., S®T :={i: (i€ SAi ¢T)V (i ¢ SAi€T)}. Foranatural numbert € N,
we let (['Z]) be the collection of subsets of [11] of size exactly ¢.

For a rectangular matrix A € R™", we let |A||2 = maXyeRm, yeR":||x|l=]lyll2=1 x T Ay denote the
spectral norm of A, and [|All_1 = MaXye(—1,1}m,ye{-1,1)=: X' Ay denote the (co — 1)-norm of A.
We note that ||A||_; < Vnm|All.

2.2 Locally decodable codes and hypergraphs

Definition 2.1. A hypergraph H with vertices [1] is a collection of subsets C C [1] called hyperedges.
We say that a hypergraph H is g-uniform if |C| = q for all C € H, and we say that H is a matching if
all the hyperedges in H are disjoint. For a subset Q C [n], we define the degree of Q in H, denoted
deg,(Q), tobe [{C € H :Q C C}|.

Definition 2.2 (Locally Decodable Code). A code C: {0,1}f — {0,1}" is (g, , €)-locally decodable
if there exists a randomized decoding algorithm Dec(-) with the following properties. The algorithm
Dec(-) is given oracle access to some y € {0, 1}", takes an i € [k] as input, and satisfies the following;:
(1) the algorithm Dec makes at most g queries to the string y, and (2) for all b € {0, 1}, i € [k], and
all y € {0, 1}" such that A(y, C(b)) < 6, Pr[Dec”(i) = b;] > % + ¢. Here, A(x, y) denotes the relative
Hamming distance between x and y, i.e., the fraction of indices v € [n] where x, # .

Following known reductions [Yek12], locally decodable codes can be reduced to the following
normal form, which is more convenient to work with.

Definition 2.3 (Normal LDC). A code C: {-1,1}% — {-1,1}"is (g, 6, ¢)-normally decodable if for
each i € [k], there is a g-uniform hypergraph matching H; with at least 0n hyperedges such that for
every C € H;, it holds that Pryq_q13¢ [bi = [1pec C(b)o] = % + e.

Fact 2.4 (Reduction to LDC Normal Form, Lemma 6.2 in [Yek12]). Let C: {0,1}* — {0,1}" be a
code that is (q, 6, €)-locally decodable. Then, there is a code C": {~1,1}F — {-1, 1390 that is (g,0,¢)
normally decodable, with &' > €5/3¢*27! and &’ > ¢/224.

2.3 Concentration inequalities

Our work will rely on the following concentration inequalities. The first is the expectation form of
the standard rectangular Matrix Bernstein inequality.

Fact 2.5 (Expectation Form of Rectangular Matrix Bernstein, Theorem 1.6.2 of [Trol5]). Let
Xi, ..., Xy be independent random dy X dy matrices with E[X;] = 0 and ||X;|| < R for all i. Let 6% >

max(|E[ZE, X XTI, IE[ZE, X7 X]II). Then, E[|I L, Xill] < O(Rlog(d: +da) + /0% log(d1 + da)).



The second concentration inequality is a result for combinatorial polynomials due to Schudy
and Sviridenko [SS12] that is the culmination of an influential line of work begun by Kim and
Vu [KV00].

Fact 2.6 (Concentration of polynomials, Theorem 1.2 of [SS12], specialized). Let H C (['Z]) be a
collection of multilinear monomials of degree t in n {0, 1}-valued variables, and let f(x) = Y ceq [licc Xi-
LetY1,Ya, ..., Yy beindependent and identically distributed Bernoulli random variables with Pr[Y; = 1] = 7.
Then, for some absolute constant R > 1,

(A \r
Pr(|f(Y) — Ef(Y)] > A] < e max{ max te—Az/VOWR’, max e (ore)
r=12,..., r=1,2,...,

}

where, for every 0 < r < t, v, = t'"" maxgcpuy,joj=[{C € H : Q C C}.

In this work, we will instead be working with a more convenient form of the Schudy-Sviridenko
inequality, which we also prove. For our 3-query lower bound, we only require the graph version of
this statement, which gives a tail bound for the number of edges that fall within a random ¢-sized
subset of vertices.

IA

Corollary 2.7 (Fact 2.6 for sets of size {). Let H C (['tl]) be a t-uniform hypergraph. Let {
n be an integer, and let S be drawn uniformly at random from (['Z]). Forr = 0,...,t, let v, =
(¢/n)' " maxgcay,jo|=r degg (Q), where degy (Q) = [{C € H : Q € C}|, and let v = maxy—q,. ¢ Vy.
Then, for any constant d > 0, there is an absolute constant ¢ such that

Pr[{C e H:Cc S} > cvloghn] < 1/n .

Proof. Define the polynomial f(x1,...,x,) = X ceqr Xc. Foreach S C [n], we associate S with the
vector x5) where xgs) = 1ifi € S, and is 0 otherwise. We note that f(x®)) = |{C € H : C C S}|.
Hence, it suffices to show that Pr () [f(x®) > (v +1) - polylog(n)] < 1/poly(n).
{
Let D be the distribution over T C [n] where each i is added to T with probability p = £8

n
independently, and = 8(d + 1) Inn. We will show that for any A, it holds that

Pr [f(x®)>A]< Pr [f(xT) > A]+1/n%! (1)
S<—([’;1) T—D
This implies Corollary 2.7. Indeed, we use Fact 2.6 to bound Prrp[f(xT) > A]. The param-

eters of interest are v, = p'~" max|g|-, deg(Q) = B'"v, < B'v. Hence, by Fact 2.6, using that
Erep[f(x™M)] = vj < B'v, we conclude that there is an absolute constant ¢ such that

P [f(xT)) > cplviog n] < 1/n%*1 .

It thus remains to prove Eq. (1). To do this, we will couple the two distributions as follows. First,
sample T < D conditioned on |T| > ¢, and then choose S to be a uniformly random subset of T of
size exactly {. Let D’ be the joint distribution over pairs (S, T) with this coupling, and observe that



the induced distribution on S is simply the uniform distribution on ([?]). By Chernoff bound, we
have that for every 6 € [0, 1],

6%
Pr [|T 1-90)Bl] < —.
P lIT] < (1= 093] < exp 7
Setting 6 = 1/2, we have that

514

B
— 5
2

Eﬁ d+1

< < — | < < .
LTI <€l < PrliT| < =] < eXP( 3 ) <es <1/n
We also observe that f(x(T) > f(x®) for any S C T. In particular, if f(x®)) > A, then f(x(T)) > A.
We thus have

P Eh>Al= P ENY>A|ITI=€01< P MY > AT = ¢
S(_(r[};])[f(x ) > A] s D,[f(x )= A||T| > ¢] s z),[f(x ) | T| > ¢]

< P (T) > 1 d+1
< Pr [FG7) 2 A+ 10t

which proves Eq. (1) and finishes the proof. O

3 Lower Bound for 3-Query Locally Decodable Codes

In this section, we will prove Theorem 1, our main result.

By Fact 2.4, it suffices for us to show that for any code C: {-1, 1}* — {-1,1}" thatis (3,9, ¢)-
normally decodable, it holds that K<n- O(:?ég; 146”). As Cis (3, 9, €)-normally decodable, this implies
that there are 3-uniform hypergraph matchings Hj, . . ., Hj satisfying the property in Definition 2.3.
Let m = Y| || be the total number of hyperedges in the hypergraph H := Uk H;.

The key idea in our proof is to define a 3-XOR instance corresponding to the decoder in
Definition 2.3. By Definition 2.3, the 3-XOR instance will have high value, i.e., there is an assignment

to the variables satisfying a nontrivial fraction of the constraints. To finish the proof, we show that
if n < k3, then the 3-XOR instance must have small value, which is a contradiction.
We define the 3-XOR instances below.

The Key 3-XOR Instances
For each b € {-1,1}*, we define the 3-XOR instance ¥}, where:
(1) The variables are x1,...,x, € {-1,1},
(2) The constraints are, for each i € [k] and C € H;, [,ec Xv = bi.

The value of W}, denoted val(\V},), is the maximum fraction of constraints satisfied by any
assignment x € {-1,1}".
We associate an instance W, with the polynomial ¢, (x) = 1 Zi'(:l bi Y.cent [vec X0, and




define val(yp) := maxye(—1,1}» Ps(x). We note that val(W¥;) = % + %Val(ybb).

The first observation is that the properties of Definition 2.3 imply that the 3-XOR instances W,
defined above must have reasonably large value. Formally, we have that

Ep(-11y[val(@p)] 2 By 1 1[5 (C(D))] 2 2¢ , (2)

where the first inequality is by definition of val(-), and the second inequality uses Definition 2.3, as
for each constraint C € H; for some i, the encoding C(b) of b satisfies this constraint with probability
% + ¢ for a random b.

Overview: refuting the XOR instances. To finish the proof, it thus suffices to argue that
Ej_1,13¢[val(yp)] is small. We will do this by using a CSP refutation algorithm inspired
by [GKM22]. Our argument proceeds in two steps. First, we take any pair Q = {u,v} of
vertices that appears in > log n of the hyperedges in H = Ui;l?—(i, and we replace this pair with a
new variable yg in all the constraints containing this pair. This process decomposes the 3-XOR
instance into a bipartite 2-XOR instance ([AGK21, GKM22]), and the residual 3-XOR instance. We
then refute the bipartite 2-XOR instance, showing that its expected value is small, and then we
refute the residual 3-XOR instance, where now any pair of variables appears in at most O(log 1)
constraints in the 3-XOR instance. Combining, we conclude that IE,_;_; 13¢[val(yp)] is also small,
which finishes the proof.

We now formally define the decomposition process. We recall the definition of degree in
hypergraphs.

Definition 3.1 (Degree). Let H be a g-uniform hypergraph on n vertices, and let Q C [n]. The
degree of Q, deg,,(Q), is the number of C € H with Q € C.

Lemma 3.2 (Hypergraph Decomposition). Let H;, ..., H be 3-uniform hypergraphs on n vertices,
and let H = Uleﬂ. Let d € N be a threshold. Let P := {{u,v} : deg,,({u,v}) > d}. Then, there are
3-uniform hypergraphs HJ, ..., H] and bipartite graphs Gy, . .., G, with the following properties.

(1) Each G; is a bipartite graph with left vertices [n] and right vertices P.
(2) Each H is a subset of H;.

(3) For each i € [k], there is a one-to-one correspondence between hyperedges C € H; \ H and edges e in
G, givenby e = (w, {u,v}) — C = {u,v, w}.

(4) Let H" = Uleﬂi’. Then, for any u # v € [n], it holds that deg,,({u,v}) < d.
(5) If H; is a matching, then H! and G; are also matchings.

The proof of Lemma 3.2 is simple, and is given in Section 3.1.
Given the decomposition, the two main steps in our refutation are captured in the following
two lemmas, which handle the 2-XOR and 3-XOR instances, respectively.



Lemma 3.3 (2-XOR refutation). Let P be a set, and let Gy, ..., Gy be bipartite matchings with left
vertices [n] and right vertices P, where k > log, n and |P| < nk/d for some d € N. For b € {-1, 1}k,

let gy(x,y) be the polynomial defined as gp(x,y) = Zle bi Yie={o,pyoen] pep Xolp, and let val(gy) =
MaXye(_1,1}7,ye{-1,1} gv(x,y). Then, By (4 1yval(gy) < O(nk+/(logn)/d).

Lemma 3.4 (3-XOR refutation). Let H], ..., H] be 3-uniform hypergraph matchings on n vertices, and
let H' := U H!. Suppose that for any {u,v} C [n], degy,({u,v}) < d, where d = O((logn)/&26%). Let
fo(x) = 25 bi X ceqr Tloec *o. Then, it holds that

1/4
Epe1ayval(fy) < nVk - O((log®? n)/e0) - ((%) Viogn + (nk)/®log!/* n

We prove Lemma 3.3 in Section 3.2, and we prove Lemma 3.4 in Section 4.
With the above ingredients, we can now finish the proof of Theorem 1.

Proof of Theorem 1. Applying Lemma 3.2 with d = O((log 1)/ &%62) for a sufficiently large constant,
we decompose the instance W} into 2-XOR and 3-XOR subinstances.* Note that as m < nk, we
will have |P| < m/d < nk/d. We have that mval(y,) < val(fp) + val(gp) because of the one-to-one
correspondence property in Lemma 3.2. We also note that m > 6nk, as |H;| > on for each i. By
Lemma 3.3 and by taking the constant in the choice of d sufficiently large, we can ensure that
Ej(_1,13¢[val(gp)] < eonk/3. Hence, by Eq. (2) and Lemma 3.4, we have

2e6mk < 2em < mBy,(_y 1y[val(¥p)] < By y_q pye[val(fy) + val(gy)]
1/4
< 663”k +nVk - O((log** n)/5) ((%) Viogn + (nk)'/? log1/4n)

1/4
— £25°Vk < O(log*? n) - ((%) flog 1 + (k)18 log!/4 n)

1/2 1/4
= ot ot () e ) )

\12 VA
There are now two cases. If (F) log, n > (F) log,"” n, then we have that

n

st logdn < 0 (1)1 = k> <n-0(log®n)/e%"
€ 0g,n < 3 ogn <n og n)je P

L \12 YA
and if (ﬁ) log, n < (F) log,”” n, then we conclude that

1/4
5464/log3 n<0 ((%) logl/2 n) — K¥<n- O(log14 n)/etosle .

14
We thus conclude that k> < n - O (lflgé—élz), which finishes the proof. m]

“We remark that it is possible that one (but not both!) of the 2-XOR or 3-XOR subinstances has very few constraints, or
even no constraints at all. This is not a problem, however, as then the upper bound on the value of the instance shown in
corresponding lemma (either Lemma 3.3 or Lemma 3.4) becomes trivial.
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3.1 Hypergraph decomposition: proof of Lemma 3.2
We prove Lemma 3.2 by analyzing the following greedy algorithm.

Algorithm 3.5.
Given: 3-uniform hypergraphs Hj, ..., Hy.
Output: 3-uniform hypergraphs HJ, ..., H, and bipartite graphs Gy, ..., Gg.
Operation:
1. Initialize: H! = H; for all i € [k], P = {{u,v} : degy,({u,v}) > d}, where
H' = Uie[k]ﬂi’.
2. While P is nonempty:
(1) Choose p = {u, v} € P arbitrarily.
(2) For each i € [k], C € H/ with p € C, remove C from H_, and add the edge

(C\p,p)toGi.
(3) Recompute P = {{u, v} : deg,, ({u,v}) > d}.

3. Output H/, ... ,7{]:, G1,...,Gg.

Indeed, properties (1), (2) and (5) in Lemma 3.2 trivially hold. Property (4) holds because otherwise
the algorithm would not have terminated, as the set P would still be nonempty. Property (3) holds
because each hyperedge C € H; starts in H/, and is either removed exactly once and added to G; as
(C\ p,p), or remains in H_ for the entire operation of the algorithm. This finishes the proof.

3.2 Refuting the 2-XOR instance: proof of Lemma 3.3

We now prove Lemma 3.3. We do this as follows. Foreach e = {v,p}, withv € [n], p € P, define the
matrix A©) € R™, where A©)(v’, p’) =1ifv’ =vand p’ = p, and 0 otherwise. Let A; := } <, Al
which is the bipartite adjacency matrix of G;. Finally, let A = Zle b;A;.

First, we observe that val(gy) < WHAHZ Indeed, this is because for any x € {-1,1}",y €
{~1,1}", we have g,(x,y) = xTAy < |lx|2llyl2llAll2 = Vr[P[|All2. Thus, in order to bound
By (_11yx[val(gp)], it suffices to bound Eyp[||All2]-

We use Fact 2.5 to bound [E[||Al|2]. Indeed, we observe that ||A;||> < 1 for each i, as each
row /column of A; has at most one nonzero entry of magnitude 1 because each G; is a matching.
Next, we observe that E[AAT] = Zle AZ-AZ.T and E[ATA] = Zle AZ.TAZ-, as the b;’s are independent,
and so we conclude that max(||[E[AAT]||, [[E[ATA]|]) < k. Hence, by Fact 2.5, we have that
E[[|All2] < O(logn + 4/klogn) < O(y/klogn) where we use that k > log, n. It thus follows that

El[val(gy)] < \/anlO(\/k logn) < O(nk+/(logn)/d).
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4 Refuting the 3-XOR Instance: Proof of Lemma 3.4

In this proof, we will write H; instead of H_ everywhere, to avoid cumbersome notation. For a
vertex u € [n] and a subset C € ([ ]) we will use the notation (#, C) to denote the set {u} U C.

The main idea is to construct a 4-XOR instance by “canceling” out every x, that appears in
two different clauses. Concretely, we first randomly partition [k] into two sets, L, R. Then, given
(u,C1) € H; with i € L and (u,C2) € H; with j € R, we construct the derived clause C; & C3
obtained by canceling x,,. We relate the value of the derived instance to the original instance, and
then produce a spectral refutation for the derived instance via an appropriate subexponential-sized
matrix. This will show that the expected value of the derived instance, over the randomness of the
bi’s, is small, and completes the proof.

For notation, we will let f := f;, i.e., we omit the subscript, as it is clear from context. We will
alsoletm := |H| = Zlelﬂil.
Relating the derived 4-XOR to the original 3-XOR. First, let (L, R) be a partition of [k] into two
sets. Let fr r(x) be the following polynomial:

for(x) = Z Z Z bibjxc,xc, ,

i€l ue[n] (u,Cq)eH;

JeR (u,C2)eH;
where xc is defined as [],¢c x». We note that because the H;’s are matchings, after fixing i, j, and u,
there is at most one pair Cy, C; in the inner sum. As mentioned in the proof overview, the partition
allows us to preserve ~ k independent bits of randomness in the right hand sides of the 4-XOR
instance while eliminating nontrivial correlations. This, in particular, is crucial when we eventually
apply a Matrix Bernstein inequality for spectral norm of sums of independent random matrices.

The following lemma relates val(fr r) to val(f).

Lemma 4.1 (Cauchy-Schwarz Trick). It holds that val(f)* < nm + 4nE gryval(f,r). In particular,
Epe(-11yeval(f)? < nm + 4nE g)Bye(_q 1y¢[val(fr,r)]-

Proof. Fix any assignment to x € {—1,1}". We have that

2 2

f(x)? = ZX“Z Z bixc| < Z Z Z Z bixc

ue[n] i€[k] (u,C)eH; ueln] ue[n] \ie[k] (u,C)eH;

Z Z bibjxc,xc, =n Zl?—(i|+ Z Z Z bibjxc,xc,

u€[n] i jelk] (u,C1)eH; ie[k] ueln]i,jelk),i#j (u,C1)eH;
(u,Cr)eH; (1,C2)eH;

=nm+4n - Eyg ) fL,r(x) ,

where the inequality follows by the Cauchy-Schwarz inequality, and the last equality follows
because for a pair of hypergraphs H; and H;, we have i € L and j € R with probability 1/4. Hence,
we have that val(f)? < nm + 4n - B gyval(fi ). O
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4.1 Bounding val(f; r) using CSP refutation

It remains to bound E,¢;_; jyxval(fr,r) for each choice of partition (L, R). We will do this by
introducing a matrix A for each b € {-1,1}* and partition (L, R), and relating val fir 1O Al
Note that A will depend on the choice of b and the partition (L,R). Then, we will bound

Eper1,1 ANl o]

Definition 4.2. Let C C [n] be a set. We let CY) and C® denote the subsets of [1] x [2] defined as
C® = {(i,b):i € C} for b € 2], i.e., if we think of [r] x [2] as two copies of [1], C!) is the set C
using the first copy, and C? is the set C using the second copy.

If S C [n]x[2], we will sometimes think of S as a pair (S1, Sz), with S1, S, C [n],and S = Sgl) U Séz).

Definition 4.3 (Our Kikuchi Matrix). Let ¢ := 2[+/n/k] and let N := (2(7) For any two sets
S,T C [n]x[2]and sets C,C’ € ([’;]), we say that S S rif

1. SeT=CVeqC®,
2.1SNnCO =1SNC@|=TnCY|=|TnC?|=1.

Note that CV) @ C"@ = CM y C"®, as CV and C"? are disjoint by construction.
Foreach C,C’ € ([Z]), define the N x N matrix A©¢", indexed by sets S C [1] x [2] of size ¢, by

, cc .
setting ACC)S,T)=1if S & T, and 0 otherwise.
We let

Al’,]' = Z Z A(C’C/), Ai = Z b]'Ai,j, and A = Z biAi .

ueln] (u,C)eH;,(u,C')eH; jER i€l

We observe that for a fixed choice of (C, C’), the matrix A€-€) has exactly D = 4(2(,”__24) nonzero
entries. Indeed, this is the purpose of using subsets of [#n] X [2] rather than just [n]. If we used
subsets of [11] only, the number of nonzero entries in ACLC) would depend on |C & C’|, whereas
with subsets of [1] X [2] we always have IcCH @ @] = 4.

Fixanassignmentx € {-1,1}",andletz € {-1, 1}N be defined as z5 := [Ties, xu [Tyes, X0 for S =
(S1,S2) € [n] x [2] satisfying |S| = ¢. We observe that D fi r(x) = z" Az. Indeed, this is because for
any sets S,TcC [1’1] X [2]/ Z8ZT = Hu651 Xy HUESZ Xv Hu’eT1 Xu HU'ETZ Xo = Hu651®T1 Xu HUGSQEBTZ Xy =
[Tucc xu [Toecr Xo. In particular, this implies

val(fi ) < & 1Al - ©

It thus remains to bound Ej¢(_1 1)¢[[|Allco—1]-

Towards this goal, we first remove all rows/columns of A where the ¢;-norm of that row /column
is large in some A;, and we show that this does not appreciably affect the (co — 1)-norm. Then, we
bound the spectral norm of the “pruned” matrix, and use the spectral norm to conclude a bound on
the (co — 1)-norm. This is captured in the following two lemmas.
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Definition 4.4. For a row/column S, let A;(S) denote the f;-norm of the S-th row/column in A;. Let
A=c- (logg n)/e25%, where c is a sufficiently large absolute constant. Let B := {S: 3i € L, A;(S) >
A} denote the set of “heavy” rows/columns. Let G be the matrix obtained by taking A and zero-ing
out all of the heavy rows/columns, and let B = A - G.

The following lemma bounds the number of heavy rows/columns, and thus ||B||_;-

Lemma 4.5 (Row pruning). Forany b € {-1, 1}*, we have |B| < N /n*. In particular, for any choice of
b € {~1,1}%, it holds that ||B||_,; < 2N /n.

The following lemma bounds the expected spectral norm of the matrix after removing the heavy
rows/columns.

Lemma 4.6 (Spectral norm bound). Ej¢_; 13«[[|G|l2] < A- O(flogn + k€ logn).
We postpone the proofs of Lemmas 4.5 and 4.6 to Sections 4.2 and 4.3, and now finish the proof.

Proof of Lemma 3.4. By Eq. (3) and Lemmas 4.5 and 4.6, we have that

N
D Evef-1,1)¢ [IGll2]

2
% +A-O(llogn ++/kllogn)| < %O((log3 n)/e*6%) - O(¢logn + ktlogn)
=nk- O((log3 n)/e26?) - O(vyn/klogn + (nk)1/4\/10g n),

where we use that { = 2[n/k],A=c- (logg n)/e262, and the following simple claim.

Claim4.7. Letn >2,2< ¢ <n,N = (¥),D = 4(33}). Then, ¥ < 162,

1 1
Epeq,1p¢[val(fr)] < EJEBE{—l,l}k[”A”oo—)]] < B”B”oo—)] +

Proof.
N @n)!  (-22n-0=2) 1 (2n!) ((-2)!@2n-{-2)
D 0@n-0 4(2n - 4)! T4Qn-4) 00 (2un-0)
1 2 2 16n?
Syt Ea=g

Finally, combining with Lemma 4.1 and using that m < nk, we have that

E[val(f)]* < E[val(f)*] < n’k + 4nE( g)Epc(_1 1yc[val(fLr)]
< n%k - O((log® n)/€26%) - O(Wn/klogn + (nk)/*\logn) .

Hence,

E[val(f)] < nVkO((log”* n)/£0) - O ((%)1/4 Viogn + (nk)!*log!*n| -,

which finishes the proof of Lemma 3.4. m]
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4.2 Row pruning: proof of Lemma 4.5

We will show that for a fixed i € L, the number of rows with A;(S) > A is at most N/n°. Lemma 4.5
then follows by union bounding over all i € L, and using the fact that |L| < k < n.

We bound |8| using Corollary 2.7. Let H’ denote the 4-uniform hypergraph with vertices
[n]x[2], and hyperedges {CV @ C"® : Ju € [n],j € R s.t. (u, C) € H;, (u, C’) € H;}. Let H” denote
the 2-uniform hypergraph where the hyperedges are the set of all P C [n] X [2] with |P| = 2 such
that P is contained in some hyperedge CHeC@inH’, and |[PNCD| = |PNC"?| =1. Weinclude
such P’s with multiplicity, i.e., if a P can be defined using different choices of hyperedges in H’,
then we add P to H” with that multiplicity. (Note the similarity with Definition 4.3.)

Now, let v be the parameter from Corollary 2.7 for the hypergraph H”. Corollary 2.7 implies
if A > O(v logg n), then |{S : Ai(S) > A}| < N/n°. It thus remains to argue that A satisfies this
condition.

To do this, it suffices to compute v. Recall from Corollary 2.7 that v = max(vg, v1, v2), where

f 2—r
=— d " ,
' (Zn) ocinxi2kiQl=r © BH Q)

and degg,,(Q) = [{P € H” : Q C P}|. Note that degy,,(Q) < O(1)degy,(Q), as once we fix a
hyperedge CV @ C"® € H’, it adds at most O(1) hyperedges P to H".
Fix r, and let us write Q = (Q1, Q2), and let r1 = |Q1], and 7, = |Q>|. Let

f 2—1’]—1’2
Vo =\ 5, max deg,,(Q1,Q2) .
e (2”) (Q1,Q2):1Q1=r1,1Q21=12 EH

It suffices to compute v, ,, for all valid choices of 1,1, 1.e.,0 < r1, 72 < 1. We now compute vy, ,.

(1) Case 1: r1 = r; = 0. We observe that for any fixed u € [n], there are at most k hyperedges in
UjerH; containing u, because the #’s are matchings. As H; is matching, each u € [n] appears
in at most one C € H;, and so it follows that deg,,(0) < nk. So, vo,0 < O(£?k/n).

(2) Case2: r1 = 0,7, = 1. Observe that for any hyperedge C!) @ C"® containing Q, we must have
Q> C C’. It then follows that there are at most k choices for C’. This is because we must have
(u, C’) € UjerH; for some u € [n], and there is at most one choice of C’ per j € R, as the H|’s
are matchings. For each choice of C’, there are at most 3 choices of C € H;. Hence, we have
deg,,(Q) < O(k). It follows that vo 1 < O(¢k/n).

(3) Case 3: 1 = 1,7, = 0. Observe that for any hyperedge C) @ C® containing Q, we must have
Q1 € C. Note that we have (u, C) € H; for some u € [n], and H; is a matching. Hence, there
is at most one choice for C, and in particular at most 3 choices for u € [n] as well. For each
choice of u, there are at most k choices of C’ with (1, C") € Uje R7{]~. Hence, we conclude that
deg,,(Q) < O(k), and so v1,90 < O(fk/n).

(4) Case 4: r1 =1, = 1. Asin Case 3, there are at most 3 choices for u € [n]. Now, because
Q2 = {v} is nonempty, each C’ must satisfy v € C" and (u, C’) € UjerH;. This fixes two elements
of (#, C’). Note that by assumption, the pair {1, v} can appear in at most d constraints in Ule‘Hi.
Hence, there are at most d choices of C’, and so deg,,,(Q) < O(d). Hence, v11 < O(d).

15



Now, as { = [W‘I and d = O(logn/&25?%), it follows that vop < O(1), v1,0,v01 < O(1), and
v11 < O((logn)/e262). Hence, v = O((logn)/e26%). As A =c - (logg n)/e262, for a sufficiently large
constant ¢, Lemma 4.5 follows.

To argue the “in particular”, we first observe that 8 does not depend on b. We then note
that || Bl < 2|8| - R, where R is the maximum number of nonzero entries in a row of B. The
maximum number of nonzero entries in a row is upper bounded by nk? < 13, as each pair CV @ C"®
contributes at most one entry per row, and there are at most nk? of these pairs.

4.3 Spectral norm bound: proof of Lemma 4.6

Let G; denote the matrix obtained by taking A; and zero-ing out all heavy rows/columns. We
have that G = }};.; b;G; is a sum of independent, mean 0 random matrices. By construction, the
f1-norm of each row/column of G; is at most A. Hence, ||G;||2 < A. This additionally implies that
| Xier GiG['ll2 < |L|A? < kA?, and that [|3,; G] Gill2 < |L|A? < kA%, Applying Matrix Bernstein
(Fact 2.5), we conclude that E[||G||2] < AO(log N + W}. AslogN = O(flogn), Lemma 4.6
follows.
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A CSP Refutation Proof of Existing LDC Lower Bounds

In this section, we prove the following theorem, which are the existing LDC lower bounds (up to
poly(log(n), €, 6) factors), using the connection between LDCs and CSP refutation.

Theorem A.1. Let C: {0,1}% — {0,1}" be a code that is (g, 5, )-locally decodable, for constant q > 2.
Then, the following hold:

(1) If g =2,k < O((logn)/*6?),
(2) If g # 2is even, k < n*~2/10((log"" n)/*6%), and
(3) If g is odd, k < n'=2/@*DO((log"? n)/e*6?).

Proof. By Fact 2.4, it suffices to show that for a code C: {-1,1}¥ — {~1,1}" thatis (g, 5, €)-normally
decodable, it holds that (1) k < O((logn)/e?6%)if g =2, (2) k < 711‘2/‘70((logqul n)/e262)if g # 2 is
even, and (3) k < 711‘2/(‘7+1)O((10gqu2 n)/e262) if g is odd.

We first observe for any g4, we can transform C into a code C’ thatis (g + 1,0/2, ¢)-normally
decodable. In particular, it suffices to prove the lower bound in the case when g is even. We note
that one can also prove the g odd case directly using a similar approach to the even case, just
with asymmetric matrices. For simplicity, we do not present this proof, but the definition of the
asymmetric matrices are given in Remark A 4.

Claim A.2. Let C: {-1,1}F — {~1,1}" be a code that is (g, 6, ¢)-normally decodable. Then, there is
acode C": {-1,1}F — {-1,1}*" thatis (g + 1,5/2, ¢)-normally decodable.

Proof. Let C": {-1,1}f — {~1,1}?" be defined by setting C’(b) = C(b)||1", i.e., the encoding of b
under the original code C concatenated with n 1’s. For each hypergraph H;, we construct the
hypergraph H_ as follows. First, let 7t;: H; — [n] be an arbitrary ordering of the hyperedges of #;,
and then let H! = {C U {n + 11;(C)} : C € H;}. That is, the hypergraph H is obtained by taking
each hyperedge in H; and appending one of the new coordinates, and each new coordinate is added
to at most one hyperedge, so that ] remains a matching. It is now obvious from construction that
C’is (g +1,0/2, e)-normally decodable, which finishes the proof. O

It thus remains to show that for any code C: {-1,1}f — {-1,1}" that is (g, 6, €)-normally
decodable with g even, it holds that n > Q(quj) for g > 4 and n > exp(Q(k)) for g = 2.

Similar to the proof of Theorem 1, we construct a -XOR instance associated with C’, and argue
via CSP refutation that its value must be small. For each b € {~1,1}*, let ¥, denote the g-XOR
instance with variables x € {-1,1}" and constraints [],cc x, = b; for all i € [k],C € H;. We let
m = Zfﬂl?{il denote the total number of constraints. Let i,(x) := % ZZ‘:l bi Y.cept; [yec X0, and
let val(yp) = maxye(—1,13» Pp(x). As in the proof of Theorem 1, we observe that Definition 2.3
implies that E;_(_; 1yc[val(yp)] > 2e.

It thus remains to upper bound E,_(_; 13¢[val(ip)]. We do this by introducing a matrix A for
each b € {—1,1}*, where ||Al|o,_,; is related to val(y;). We then upper bound By (1 13+ [[|Allco—1]-
We note that the matrix A depends on the choice of b € {-1, 1}* but we suppress this dependence
for notational simplicity.
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Definition A.3. Let ¢ := [n'"2/1], and let N := (). For C € ([Z]), we let A©) € RN*N denote the

matrix indexed by sets S, T € (['g]) where A©)(S,T) =1if S& T = C, and is 0 otherwise.
Welet A; = Ycep, A©),and A = ¥ biA;.

Remark A.4 (Matrices for g odd). As mentioned earlier, when g is odd we can prove the lower bound
directly by choosing slightly different matrices, although we do not present the proof in full. The
matrices used are defined as follows. We let the matrix A‘“) now be indexed by rows S C (['(f]) and

columns T C ( t,[ﬂ), and let A€)(S, T)=1if S®T = C. The matrices A; and A are defined as before.

Our proof now proceeds as in Section 4. We similarly observe that val(i;) < m% |Alleo—1, Where

D = (q‘}z) (/272) is, for a fixed C e ([Z]), the number of pairs (S, T) € ([’Z]) X ([’Z]) withSeT =C,

and m = Z;‘zl |H;| is the total number of constraints. It thus remains to bound Ej, . (_1 1y¢[[|Allco—1]-

As before, we remove all rows/columns of A where the {;-norm of that row/column is large in
some A;, and we show that this does not appreciably affect the co — 1 norm. Then, we bound the
expected spectral norm of the “pruned” matrix, and use the expected spectral norm to conclude a
bound on the expected co — 1 norm. This is captured in the following two lemmas.

Definition A.5. For a row/column S, let A;(S) denote the ¢;-norm of the S-th row/column in
Ai. LetA =c logg/ 1 fora large enough absolute constant c if g > 3, and A = 1if g = 2. Let
B :={S:3i eL,Ai(S) > A} denote the set of “heavy” rows/columns. Let G denote the complement
of B. Let G be the matrix obtained by taking A and zero-ing out all of the heavy rows/columns,
andletB=A-G.

The following lemma bounds the number of heavy rows/columns, and thus ||B||,_,1-

Lemma A.6 (Row pruning). Forany b € {-1, 1}*, we have |B| < N /n®. In particular, for any choice of
b € {~1,1}%, it holds that ||B||_,; < 2N /n.

The following lemma bounds the expected spectral norm of the matrix after removing the heavy
rows/columns.

Lemma A.7 (Spectral norm bound). E,¢(_1 1)¢[||Gl2] < AO(¢logn + y/kllogn).

We postpone the proofs of Lemmas A.6 and A.7 to Appendix A.1, and now finish the proof of
Theorem A.1.
By Lemmas A.6 and A.7, it follows that

Epe(1, 1yl Allcom1] < 1Blloost + NEpe,1)[lGll2] < 2N /n + NAO(¢log n + 'kt logn)
= NAO(llogn ++/kllogn) .

Hence,
1
28 < ]Ebe{—l,l}k [Val(l’bb)] < ENAO(@ IOgT’l + \/kf IOg 7’[) .

As |H;| > On for all i, it follows that m > 6nk. Therefore,

n

2
€< M%AO(@ logn + +/kllogn) < (331_]( (?)q O(logq/2 n)(tlogn + ktlogn)
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nl=2/q nl-2/q
. logn + P logn| ,

1
< SO(A)

where we use that ¢ = [1172/9] and also the following claim to bound %.

Claim A.8. Suppose that n > 2{ + g and ¢ > g —2. Then, X < 29(n/¢)1/2,

Proof.
N _ n! ‘(f—q/Z)!(n—f—q/Z)! - n! ‘(f—q/Z)! .(n—f—q/Z)!
D 0(n-10) (qu)(n —)! ~(n-q) 0! (n—10)
. 1 1 poa. L (112
gz 0 Gz < = (7)o

Hence, we have shown that

k k

nl-2/q nl-2/q
logn + logn| .

1-2/ 1-2
We now have two cases. If *— log, 1 > 4" T il log, n, then we have

1-2/q
%SO(” logn) = kSnl_Z/qO(Alogn)/e(S ,

k
and if ”1;(2/'7 log, n < 4/ ”1;:/‘7 log, n, then we have
b nl=2/a

Tlogzn) = k< nl_z/"O(Azlogn)/ezé2 .

We thus conclude that k < n'=%/7 - O(A?log n)/26?. To finish the proof, we observe that for g = 2,
we have A = 1, and hence we must have k < O((log n)/£26?%), and for g > 4, we have A = O(logq/2 n),
and so we must have k < n1=2/4 . O((log’rrl n)/e262). O

A.1 Deferred proofs

Proof of Lemma A.6. 1If g = 2, so that A = 1, then we have that ¢ = 1. Let S = {u} be a row/column.
As H; is a matching, it follows that u can appear in at most 1 hyperedge C € H;. Thus, A;(S) <1=A
always holds, and so |8| = 0.

Now, suppose that g > 3, so that A = clogq/ 2 n, where c is a sufficiently large absolute
constant, to be chosen later. We clearly have that A;(S) = {C € H; : [SNC| = gq/2}|. Let
H = {C": C" € C € H; : |C'| = q/2} denote the set of half-edges from H;. We have that
Ai(S) < {C" € H! : C" C S}|. Hence, in order to prove Lemma A.6, it suffices to argue that
PI‘S(_([,;])H{C/ S 7"(1., :C' C S}| > A] < %
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By Corollary 2.7, it thus suffices to argue that A > O(v logq/ 211), and so we need to compute
the parameter v in Corollary 2.7. Observe that for any set Q, deg,(Q) < O(1) degﬂi(Q), as each
hyperedge C € H; creates (q‘}z) = O(1) hyperedges in H; (see Definition 3.1 for a definition of
degy,(Q)). Second, as H; is a matching, it follows that degg, (Q) < 1if Q # 0, and deg, (Q) < n
if Q = 0. Thus, we have that the parameter vy is at most (%)q/Z O(n),and v, for1 <r < g/2isat
A=c logq/ 2, for a sufficiently large constant ¢, Lemma A.6 follows.

To see the “in particular”, we observe that each row in A©) has at most one nonzero entry of

magnitude 1. This implies that each row of A has ¢;-norm at most nk < n2. Hence, ||B||o_; <
n?-2|8| <2N/n. o

Proof of Lemma A.7. We will use Matrix Bernstein (Fact 2.5) to bound E[||G|[2]. We write G =
Zle b;G;, where G; is the matrix obtained by taking A; and zero-ing out all heavy rows/columns.
We observe that ||G;[[> < A by construction, as the ¢;-norm of any row /column of G; is at most A.
It then follows that ||[E[G?]|l» = ||ZX, G2 < S¥_NIGill? < kA% Hence, by Fact 2.5, it follows that
E[[|Gl2] £ O(A(log N + y/klog N)). Finally, we observe that log, N < ¢log, n, which finishes the
proof. m]
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