
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Radio Frequency Interference Detection in Passive

Microwave Remote Sensing Using One-Class

Support Vector Machines
Imara Mohamed Nazar, Student Member, IEEE, Mustafa Aksoy, Member, IEEE

AbstractÐRadio Frequency Interference (RFI) is a serious
threat to the accurate estimation of critical geophysical param-
eters via passive microwave remote sensing and the presence
of RFI in microwave radiometer measurements is increasing
over time. On the other hand, the nature and the occurrence of
RFI captured by radiometers are usually unknown making their
detection and mitigation difficult. To overcome this challenge,
this paper presents a novel RFI detection algorithm that relies
only on the information extracted from the RFI-free radiometer
measurements which can be collected over oceans and rural areas
with limited human activity, i.e., a one-class algorithm, to be
implemented in future remote sensing radiometers. The algo-
rithm transforms raw time-series radiometer measurements into
a heterogeneous feature-based representation. Then, a feature
selection algorithm identifies the most discriminant features to
detect interference based on the probabilities of misdetections
and false alarms. Finally, the optimal decision boundaries that
discriminate the RFI-contaminated radiometer measurements
from the RFI-free ones are computed via support vector ma-
chines (SVM) using only the RFI-free radiometer measurements.
Regardless of the characteristics of RFI contamination, the
algorithm, therefore, outputs a generalized decision boundary
for RFI-free measurements. A performance evaluation of the
proposed algorithm against the traditional RFI detection algo-
rithms has been performed using simulated radiometer data,
and the results have shown that the novel algorithm, unlike the
traditional methods, can successfully detect RFI, even when the
interference-to-noise ratio (INR) of the radiometer measurements
is as low as −18 dB.

Index TermsÐRadio frequency interference, RFI, detection,
remote sensing, microwave radiometry, one-class support vector
machines, SVM.

I. INTRODUCTION

THE passive microwave remote sensing measurements of

Earth’s surface and atmosphere have growing relevance

in modern society as they exceedingly impact everyday life.

Data measured by space-borne microwave radiometers are pri-

mary indicators to estimate critical variables of Earth systems

[1]. These measurements are usually performed across various

so-called ºprotectedº frequencies adjacent to the bands used

by active users such as radars and wireless communication

systems [2], [3], and radio frequency interference (RFI) has

been reported to exist in them due to leakage from neighboring

frequency bands and potential illegal emissions present at these

protected frequencies [4]±[7]. Furthermore, the presence of
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RFI is increasing over time due to the exponential growth

in communication and other active systems. If not detected

and mitigated properly, RFI may cause biases in radiometric

measurements which may translate into erroneous scientific

measurements. Therefore, effective RFI detection and mitiga-

tion techniques are needed to be implemented in space-borne

radiometer systems, especially against low-level interference

which is challenging to identify.

Many single-domain (time, frequency, statistical, etc.) al-

gorithms and methods have been proposed and applied in

microwave radiometry to cope with the RFI problem with

little success against low-level as well as wideband, long-

duration, noise-like interference [8]. Recently, more compre-

hensive techniques have also been developed and implemented

by combining the outputs of several such single-domain

techniques for maximum likelihood of detection [9]. For

instance, NASA’s Soil Moisture Active Passive (SMAP) ra-

diometer implements a multi-domain RFI detection procedure

by combining the detection outputs of several single-domain

algorithms with a logical OR operator [10]. However, SMAP

brightness temperature products have also been reported to

be susceptible to RFI, especially when the contamination is

wideband and continuous [11]. On the other hand, it has been

suggested that better detection performances are achievable

when radiometer measurements are analyzed simultaneously

in multiple domains [12]±[14]. This is understandable consid-

ering the fact that the RFI environment includes interference

signals with various properties such as bandwidth, duration,

and amplitude; thus, the assumption that they are differentiable

from natural emissions in a single domain is not always true

[15]±[18].

Machine learning and deep learning algorithms have also

been tested for RFI detection and mitigation in microwave

radiometry in recent studies. For instance, a convolutional neu-

ral network (CNN) architecture trained with the spectrogram

images generated by the SMAP measurements has revealed

that the detection performance of the deep learning algorithm

is primarily dependent on the quality of the training images

[19]. Other studies utilizing simulated high-resolution times

series of radiometer measurements, on the other hand, have

demonstrated that multi-domain machine learning algorithms

can provide better interference detection performances com-

pared to the state-of-the-art implementations, especially in

cases of low-level interference contamination [20]±[23].

This paper, expanding on the work presented in the

2022 International Geoscience and Remote Sensing Sympo-

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2023.3293393

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/





JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

up to 100 K in 250 K RFI-free thermal noise when the

radiometer measurements were averaged over 2 seconds [28].

For 350 µs integration periods this amplitude range would

translate into INR values up to 10 dB; thus, INR values were

varied randomly between −45 dB and 10 dB. Similarly, RFI

frequencies were varied uniformly within the bandwidth of the

intermediate frequency (IF) signals measured by the PALS

radiometer during the SMAPVEX12 campaign, that ranges

from 15 to 35 MHz. The phase of the interference signals was

also taken as a uniformly distributed random variable between

0 to 2π radians. Finally, the width of the pulse envelopes was

varied in a way that the DC of the interference pulses was

uniformly distributed between 1% to 100%, and the time delay

of the pulses at each integration window was random.

Table I summarizes the simulated radiometer data parame-

ters used in this study. Note that the RFI detection algorithms

discussed in this paper have been evaluated for each INR and

DC case separately; thus, the result of this study is independent

of the abundance of RFI sources with particular INR and DC

values in an RFI environment.

TABLE I
SIMULATION PARAMETERS FOR THE RFI SOURCES AND RFI±FREE

RADIOMETER DATA

RFI source parameters RFI free parameters

Parameters
Values

Parameters Values
Minimum Maximum

INR −45 dB 10 dB Standard deviation 8 V

Frequency 15 MHz 35 MHz Mean 0 V
Phase 0 2π
DC 1% 100%

The simulated RFI-free and the RFI-contaminated mea-

surements were sequential in time which implies that the

complexity of the data was high. In order to use the simulated

measurements as the input for machine learning algorithms, at

first, they needed to be transformed into well-defined feature

space in a way that features adequately describe the measure-

ments. In this work, each radiometer integration window has

been described using thirty-one commonly used features in

time, statistical, and spectral domains, which are summarized

in Table II.

III. RFI DETECTION PROBLEM

Consider a set R of N radiometer integration windows

where each window ri, i = {1, 2, · · · , N} is described by d

number of features, namely F1, F2, · · · , Fd. The correspond-

ing feature values for window ri are denoted as fin, n =
{1, 2, · · · , d}. Further, each integration period ri contains M

number of samples. A one-class classification problem can be

formulated where ri may belong to RFI-free (class N ) class

or not. In one-class classification, only the RFI-free measure-

ments are used for training. The detection technique creates

a (representational) model of this training data. If a newly

encountered radiometer integration window is too different

from this model, it is labeled as RFI-contaminated (class C).

In this study, one-class support vector machines (OCSVM)

have been used as the data modeling approach where the

decision boundary is computed as a separating hyperplane

[35]. The final class label for a radiometer integration window

is estimated using this decision boundary.

IV. ONE-CLASS SUPPORT VECTOR MACHINES (OCSVM)

For a given set RN of RFI-free radiometer integration win-

dows, the OCSVM finds the hyperplane that separates them

from the origin of the training data in a higher dimensional

feature space. It should be noted that the training data consist

only the RFI±free radiometer integration windows. During

the training process, the OCSVM learns a hyperplane that

maximizes the margin between the origin and the data from the

RFI±free radiometer integration windows. Its decision function

projects the test data onto the normal vector w to produce the

SVM scores based on the distance from hyperplane. Primal

problem for one class SVM is defined as follows [36]:

min
ω,ξ,b

1

2
||ω||2 +

1

νNT

Σiξi − b

subject to

(ω.Φ(ri)) ≥ b− ξi, ξi ≥ 0.

(2)

The column vector ξ = [ξ1, ξ2, · · · , ξNT
]⊤ consists of ξi,

the slack variable corresponding to the ith training radiometer

window. Φ(.) is the mapping function that maps the ri into

higher dimensional space. b is the bias term, ω is the normal

vector to the hyperplane, and ν denotes the trade-off parameter

maximizing the distance of the hyperplane from the origin

and the number of data points that are allowed to cross the

hyperplane (the false positives). NT denotes the number of

training windows. SchÈolkopf et al [36] proposed to solve the

problem formulation in Eq. (2) via its dual form as follows:

min
α

1

2

∑

ij

αiαjk(ri, rj)

subject to

0 ≤ αi ≤
1

νN
,
∑

i

αi = 1

(3)

where the k(ri, rj) denotes ri and rj in the high dimen-

sional feature space and αi, i ∈ {1, 2, · · · , NT } denotes the

dual variable. This optimization problem can be solved for

αi and b with one global minimum point. For a new test

integration window rtest, the class that this window belongs

to is determined by evaluating which side of the hyperplane

it falls in the feature space. The final decision function of the

dual problem is given by:

ŷtest = sgn(
∑

i

αik(ri, rtest)− b) (4)

If ŷtest is positive, the test radiometer integration period

rtest falls in the region of highly dense training measurements.

Therefore, it is classified as RFI-free as it demonstrates similar

characteristics with most of the training data. If ŷtest is neg-

ative, then rtest is different from the training measurements;

therefore, its class label is declared as RFI-contaminated.
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spectral domains shown in Table II have been extracted as a

thirty-one dimensional feature vector to describe the generated

radiometer dataset. The relevant subset of features were identi-

fied and selected as described in section V, and the dataset has

been divided into two parts for training and testing. In order to

train the RFI detection model, i.e., to compute the hyperplane

between the RFI-free and RFI-contaminated windows for the

SVM algorithm, the RFI-free training data have been used. The

value of parameter ν and the selection of the kernel function

are the hyperparameters for the OCSVM algorithm described

in Section IV need to be decided. In this study, the Gaussian

kernel K(ri, rj) = exp(
−|ri−rj |

2

2σ2 ) was used with the width

parameter σ to compute the distance between the integration

time windows, ri and rj . The kernel width σ determines the

distance between the integration time windows in the high-

dimensional feature space. The small values of the σ lead to

increased complexity and overfitting since all the training data

will be considered as support vectors. The large values of the

σ will provide better separation in high dimensional feature

space [37], [38]. The value of the parameter ν ∈ (0, 1] has an

upper bound on the number of false alarms and a lower bound

on the number of support vectors, i.e., model complexity. To

determine the best possible pair of σ and ν, in the experiments,

a grid search was run by varying σ from 2−6 to 22 in steps of

0.25. Fig. 4 shows the fraction of the training data considered

as the support vectors as a function of ν and σ.
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Fig. 4. The fraction of training data used as support vectors as a function
of ν and σ. The color map denotes the fraction ranging between zero and
one. The value one indicates that the algorithm uses all the training data as
support vectors.

In this work, an algorithm with less model complexity (i.e.,

less number of support vectors) was preferred to perform

accurate detection of the RFI-contamination. Therefore, the

value of σ was selected as 3 considering that for a given

value of ν, the changes in the fraction of the support vectors

are considerably small. To determine the value of ν, the

accuracy was analyzed by setting the kernel parameter, σ at

3. Fig. 5 shows such accuracy obtained for multi-sinusoidal

RFI for INR ranging from 0 to 10 dB. It should be noted that

the change of the accuracy with respect to ν shows similar

characteristics for other INR and RFI scenarios. From the

figure, it can be seen that the change in the accuracy is not very
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Fig. 5. The accuracy of the proposed one class SVM as a function of ν.

high after ν > 0.5. Therefore, ν was set to be 0.5. The values

of αi’s in Eq. (3) were computed using Matlab’s sequential

minimal optimization (SMO) solver [39]. Then, the trained

RFI detection model has been evaluated using the test dataset

containing both RFI-free and RFI-contaminated radiometer ra-

diometer integration windows. Separating training and testing

datasets, the performance of the trained detection model can be

evaluated on unseen data. This has been done using the metrics

introduced in the following section. The reported values of

performance metrics have been five-fold cross validated, which

means the data matrix has been divided into five-folds of

approximately equal size, and each fold has been treated as

a validation set for the model trained on the remaining four

folds. The performance metric values have been averaged over

these validation sets for evaluation to prevent the model from

over-fitting to the training data.

B. Evaluation Metrics

The performance of the RFI detection algorithm have

been mathematically quantified using four evaluation metrics,

namely the accuracy, precision, recall, and the area under the

curve (AUC). The accuracy, precision, and recall metrics are

mathematically defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(5)

TP , TN , FP , and FN indicate true positive, true negative,

false positive, and false negative rates, respectively. Thus, the

accuracy denote the total number of correct classifications

(RFI-contaminated classified as RFI-contaminated, and RFI-

free classified as RFI-free) out of total number of cases. And

the precision is the fraction of the true RFI-contaminated cases

out of the total number of integration windows predicted as

RFI-contaminated that may include RFI-free data as well.

Finally, the recall indicates the fraction of the truely RFI-

contaminated data correctly classified as RFI-contaminated
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by the detection algorithm. The values of these performance

metrics range from zero to one where values closer to one

indicates better performance in differentiating RFI-free and

RFI-contaminated data. The AUC metric, on the other hand, is

the integration of the receiver operating characteristics (RoC)

curve which gives the performance of the detection model

versus false alarm rates. Similar to the other metrics, the higher

the AUC value is, or the closer it is to one, the better the

performance of the detection algorithm is.

VII. RESULTS

A. Performance of the OCSVM Algorithm: Detection of a

Single RFI Source

The OCSVM RFI detection algorithm has been first tested

against a single RFI source with various DC and INR levels

contaminating the radiometer measurements. In order to select

the most discriminant subset of relevant features listed in

Table II for RFI detection, the sums of type I and type II errors,

i.e., the combined error static values have been computed for

all features for the simulated radiometer dataset and ranked.

The feature with the lowest error static value is the best for RFI

detection as it indicates that the overlap between the likelihood

probabilities for RFI-free and RFI-contamination cases is

less likely. For example, Fig.6 demonstrates the ranking of

the ºmean of the auto-correlation coefficientº feature as a

function of INR and DC of the RFI-contaminated radiometer

measurements. Rank 1 corresponding to a specific INR-DC

pair implies that the feature has output the lowest error static

for RFI-contaminated measurements with those INR and DC

values, whereas rank 31 means the highest error static. As

seen in the figure, the auto-correlation coefficient, with low

error static values, has performed well against most of the RFI

cases except when the INR and DC values are both very low.

Similar ranking analyses have been performed for all other

features as well and the following features have been selected

to be included as the better half of the features in the novel

OCSVM RFI detection algorithm as their average rankings

over all possible INR and DC cases were below 15: Variance,

power, average over absolute value of first differences, mean

of the auto-correlation coefficient, power spectral maximum,

spectral entropy, spectral skewness, spectral kurtosis, spectral

crest, spectral flatness, and spectral flux.

The OCSVM model has been trained using the RFI-free

radiometer integration periods and the optimal decision bound-

ary around the origin of the RFI-free measurements has been

identified in the feature space. The resulting RFI detection

performance metrics, demonstrated as functions of the INR

and DC of the RFI-contaminated radiometer measurements in

Fig. 7, have been five-fold cross-validated. The dataset has

been randomly divided into five parts. Then the proposed

one-class SVM algorithm has been trained on the RFI±free

integration widows from the four parts of the dataset (i.e.,

approximately 80% of the data), and the algorithm has been

tested on the remaining part of the data (i.e., around 20% of the

data). The performance metric values have been computed on

the test set. This process has been repeated five times, and each

time one fold is treated as the testing set for the model trained
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Fig. 6. The ranking of the ºmean of the auto-correlation coefficientº feature
as a function of the INR and DC of the RFI-contaminated radiometer
measurements. Lower rankings indicate better RFI-detection capability.
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Fig. 7. (i) Accuracy, (ii) precision, (iii) recall, and (iv) AUC values
for the single RFI source detection using the one-class SVM with eleven
features as functions of the INR and DC of the RFI-contaminated radiometer
measurements.

on the remaining four folds. Finally, the average performance

has been reported over the number of folds. It can be seen from

the figure that nearly perfect accuracy, precision, recall, and

AUC have been achieved for INR levels as low as −10 dB.

This performance can be also extended to even lower INR

cases if the DC is high enough.

B. Performance of the OCSVM Algorithm: Detection of Mul-

tiple RFI Sources

The novel RFI detection algorithm has also been tested

against multiple RFI signals contaminating the simulated ra-

diometer measurements. Specifically, five RFI sources have

been generated for each RFI-contaminated radiometer inte-

gration period (The number was kept low for computational

simplicity) by varying the amplitude and DC of the RFI signals

as described in section II, resulting in INR values from −45 dB

to 10 dB and DC levels from low (DC ranges from 0% to 25%)

to high (DC ranges from 75% to 100%). In total, five hundred

RFI-free and RFI-contaminated radiometer integration periods

have been generated.

In order to identify the most discriminating features for

RFI detection in this multiple RFI sources dataset, a feature
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selection analysis has been performed. The error statics for

each feature have been computed as described in section V

and shown in Figure 8 for RFI contamination with low and

high DC levels. The features with lower error statics (i.e.,

better features for RFI detection) for both low and high DC

interference sources are the variance, power, peak-to-peak

distance, the average over absolute value of first differences,

mean of the auto-correlation coefficient, distance, inter quan-

tile range, centroid shift, spectral spread, power spectral max-

imum, spectral entropy, spectral skewness, spectral kurtosis,

spectral crest, spectral flatness, spectral flux, and Ljung-Box

test. It should be also noted that the error static values for the

peak-to-peak distance, centroid shift, spectral spread, spectral

skewness, spectral kurtosis, spectral crest, spectral flatness, and

spectral flux increase with the DC of the RFI contamination.

On the other hand, the standardized moments i.e., skewness,

kurtosis, m5±m10, and the normality tests including Jarque-

Bera, Lilliefors, and Anderson-Darling tests perform poorly

in discriminating between RFI-free and RFI-contaminated

measurements which is expected as an increased number

of interference sources leads to a convergence to a normal

distribution similar to the RFI-free measurements. Considering

these observations, and for the sake of consistency with the

single RFI source cases, the variance, power, mean of the

absolute value of first differences, mean of the auto-correlation

coefficient, power spectral maximum, spectral entropy, spectral

skewness, spectral kurtosis, spectral crest, spectral flatness, and

spectral flux were selected for the OCSVM algorithm against

RFI contamination with multiple sources. However, one should

note that the best features to detect RFI may change as a

function of number and type of RFI sources, specifically as the

number of sources increases and the total RFI contamination

becomes noise-like.
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Fig. 8. The error static values for each feature in case of RFI contamination
by low and high DC interference sources.

The OCSVM algorithm, trained using these eleven features

of the RFI-free radiometer measurements, has been imple-

mented on the dataset, and the accuracy, precision, and recall

performance metrics have been calculated. The rows identified

as OCSVM 11 in Table III shows the values of these metrics

for various INR levels. From the table, it can be observed that

the RFI detection algorithm is capable of efficiently identify

RFI contamination with INR levels as low as −15 dB.

TABLE III
PERFORMANCE METRICS OF ONE CLASS SVM AND THE OR METHOD

AGAINST MULTIPLE RFI SOURCES

INR Range Algorithm Accuracy Precision Recall

(−45)− (−36)
OCSVM 2 0.5556 0.5000 0.0024
OCSVM 11 0.5567 0.5000 0.0075

OR 0.5544 0.3333 0.0026

(−35)− (−26)
OCSVM 2 0.5589 0.8750 0.0103
OCSVM 11 0.5556 0.5000 0.0048

OR 0.5589 0.7500 0.0126

(−25)− (−16)
OCSVM 2 0.6567 0.9920 0.2316
OCSVM 11 0.6922 0.9886 0.3135

OR 0.6533 0.9799 0.2228

(−15)− (−6)
OCSVM 2 0.9967 0.9924 1
OCSVM 11 0.9978 0.9949 1

OR 0.9978 0.9947 1

(−5)− (4)
OCSVM 2 0.9978 0.9952 1
OCSVM 11 0.9978 0.9952 1

OR 0.9978 0.9952 1

0− 10
OCSVM 2 0.9978 0.9952 1
OCSVM 11 0.9978 0.9957 1

OR 0.9978 0.9952 1

C. Performance of the State-of-the-Art Algorithms

It is imperative to compare the performance of the novel RFI

detection method introduced in this paper with that of the tradi-

tional state-of-the-art algorithms such as the kurtosis detection

and pulse blanking techniques [40], as well as the combination

of those with a logical OR operator as implemented in the

SMAP mission, hereinafter referred to as the ‘OR method’.

Thus, the state-of-the-art algorithms have been implemented

on the simulated data where the RFI-contamination included

a single RFI source with varying INR and DC levels.

The kurtosis is the fourth standardized moment of the

radiometer measurements which estimates the total tailedness

of the integration window. For a zero-mean white Gaussian

noise representing RFI-free measurements, the kurtosis esti-

mate itself is a Gaussian random variable with a mean value

of three. A kurtosis detection algorithm has been implemented

on the simulated dataset in a way that radiometer integration

periods with kurtosis values more than three standard devi-

ations away from the mean kurtosis value are considered as

RFI-contaminated. This threshold would allow only 0.3% false

alarm rate [41]. Fig. 9 shows the accuracy, precision, and

recall values of the kurtosis detection as functions of INR

and DC of the RFI-contaminated radiometer measurements.

In addition, the threshold has been varied to calculate the

empirical AUC values which is also demonstrated. As seen in

the figure, the kurtosis algorithm performs well in detecting

the RFI-contaminated cases with INR ≥ −5 dB except for the

RFI cases with DC values around 50%. The blind spot of the

kurtosis detection against pulsed sinusoidal signals with 50%
DC is a well-known fact; thus, this is expected.

The pulse blanking method is applied on the power of

the radiometer measurements assuming that the RFI is local-
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Fig. 9. (i) Accuracy, (ii) precision, (iii) recall, and (iv) AUC of the kurtosis
detection algorithm as functions of the INR and DC of the RFI-contaminated
radiometer measurements.

ized in time and large instantaneous amplitudes imply RFI-

contamination. The detection threshold in this study has been

defined in terms of the mean and standard deviation of the RFI-

free power measurements. Specifically, power values deviate

from three standard deviations from the mean have been

flagged as RFI-contaminated, resulting in 0.3% false alarms

similar to the kurtosis detection [41]. The performance of the

pulse blanking algorithm in terms of the accuracy, precision,

and recall is shown in Fig. 10. Again, the detection threshold

has been varied to calculate the AUC values as well. It can

ben observed from the figure that the pulse blanking method

achieves high accuracy, precision, and recall for RFI cases

with INR ≥ −10 dB, depending on the DC value. Comparing

with the kurtosis detection, pulse blanking eliminates the blind

spot for the 50% DC RFI cases.
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Fig. 10. (i) Accuracy, (ii) precision, (iii) recall, and (iv) AUC of the pulse
blanking algorithm as functions of the INR and DC of the RFI-contaminated
radiometer measurements.

The OR method combines the detection outputs of the kur-

tosis detection and pulse blanking algorithms for the maximum

likelihood of detection. The method flags a measurement as

RFI-contaminated if RFI-contamination is detected by either

of the two algorithms. Fig. 11 depicts the accuracy, precision,

and recall values of the OR method as functions of the INR

and DC of the RFI-contaminated radiometer measurements.

The performance of the OR method has been found to be

similar to that of the pulse blanking algorithm.
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Fig. 11. (i) Accuracy, (ii) precision, and (iii) recall of the OR method as
functions of the INR and DC of the RFI-contaminated radiometer measure-
ments.
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Fig. 12. (i) Accuracy, (ii) precision (ii), and (iii) recall differences between
the OCSVM and OR algorithms as functions of the INR and DC of the RFI-
contaminated radiometer measurements. Note that positive differences indicate
higher efficiency of the OCSVM algorithm for RFI detection.

D. Comparisons of RFI Detection Performances

The performance of the OCSVM RFI detection algorithm

has been compared with the state-of-the-art OR algorithm.

Fig. 12 demonstrates the performance differences between

the two algorithms against single source RFI contamination

calculated by subtracting the values of the accuracy, precision,

and recall metrics associated with the OR algorithm from those

of the OCSVM algorithm as functions of the INR and DC of

the RFI-contaminated radiometer measurements. The figure

highlights the improvements in RFI detection capabilities,

especially for lower INR cases, due to the multidimensional

nature of the OCSVM approach with additional features in

the time, spectral, and statistical domains of the radiometer

measurements.

VIII. CONCLUSION

In this paper, a novel feature-based, multi-dimensional, one-

class support vector machine algorithm for detecting RFI in

microwave radiometer measurements has been described and

analyzed. RFI-free and RFI-contaminated radiometer mea-

surements have been simulated and defined by their thirty-

one heterogeneous features which characterize them in time,

frequency, and spectral domains. Then, the novel algorithm

selects the most relevant set of features for RFI detection
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and computes the hypersurface separating RFI-free and RFI-

contaminated measurements based on its training using RFI-

free measurements only. Radiometer measurements are clas-

sified as RFI-free or RFI-contaminated based on their loca-

tion in the feature space with respect to this hypersurface.

Note that characterizing RFI sources contaminating radiometer

measurements in many remote sensing applications is difficult

due to the large footprint sizes of space-borne antennas, thus

an algorithm trained with RFI-free measurements, which can

be obtained over low human activity regions, only is highly

desirable.

RFI detection performance of the novel OCSVM algorithm

has been compared with state-of-the-art methods such as

pulse blanking and kurtosis detection techniques, as well

as their combination, i.e., the OR algorithm. It has been

demonstrated that the OCSVM algorithm performs better in

low INR RFI contamination cases owing to its multi-domain

nature analyzing various properties of the measurements in

time, frequency, and statistical domains. To highlight the

RFI detection performances of the multi-domain OCSVM

algorithm itself rather than the number of features utilized in it,

a separate analysis has been conducted in which only power

and kurtosis features were used in the OCSVM algorithm,

and the RFI detection performances have been compared

with those of the OR algorithm against a single RFI source.

Fig. 12 demonstrates the differences in RFI detection perfor-

mances between this 2-feature OCSVM and the OR algorithm

in terms of the accuracy, recall, and precision metrics. As

shown in the figure, the OCSVM algorithm with only two

features still provides similar RFI detection performances

as the state-of-the-art OR method. Including more relevant

features, however, enables the algorithm to detect low-level,

i.e., low-INR, RFI contamination. Fig. 14 demonstrates this

fact by comparing the performance of the OCSVM algorithm

against RFI contamination due to multiple sources when it

utilizes only kurtosis and power features versus all the features

reported in section VII-B. In the figure, the receiver operating

characteristics demonstrates that the full-scale OCSVM algo-

rithm significantly improves the detection performance against

RFI contamination with INR levels between −16 dB and

−25 dB. Similar information can be seen in Table III as well

by comparing the performance metrics of the OR algorithm

(OR), as well as the 2-feature (OCSVM 2) and full-scale

(OCSVM 11) OCSVM algorithms against RFI contamination

with various INR levels due to multiple sources. This is very

important as low-level RFI, being difficult to differentiate from

natural variations in radiometer measurements, is the most

challenging problem to overcome in microwave radiometry.

Future research will include investigations on detecting RFI

other than pulsed sinusoidals such as chirps and wideband

continuous noise-like signals so that new features that give

a better representation of the dynamic RFI environment can

be identified and included in the novel algorithm. In addition,

much higher number of RFI sources will be included in the

analyses to represent large radiometer footprints observing

high-human activity regions. As mentioned in section VII-B,

such cases may weaken statistical features mentioned in this

paper for RFI detection; thus, additional features may need to
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Fig. 13. (i) Accuracy, (ii) precision (ii), and (iii) recall differences between
the 2-feature OCSVM and OR algorithms as functions of the INR and
DC of the RFI-contaminated radiometer measurements. Note that positive
differences indicate higher efficiency of the 2-feature OCSVM algorithm for
RFI detection.

be incorporated in the OCSVM process. Also, the algorithm

will be implemented on real radiometer data. The high-

resolution SMAP validation experiment 2012 (SMAPVEX12)

data measured by the PALS instrument [42] will be utilized

and the resulting RFI detection performances will be compared

with SMAP’s state-of-the-art procedure. Finally, the feasibility

of the implementation of the novel algorithm in real hardware

will be tested as space instruments have varying data sam-

pling, integration, processing, and power limitations and the

multi-dimensional RFI detection procedures like the OCSVM

algorithm may require fine temporal and spectral resolution,

high precision, and can be computationally expensive. In a

real remote sensing scenario, the training parameters for the

algorithm can be computed offline prior to launch and the

algorithm can be updated during the mission lifetime by

recomputing the hypersurfaces using the most recent RFI-free

data observed online.
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