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Abstract—Radio Frequency Interference (RFI) is a serious
threat to the accurate estimation of critical geophysical param-
eters via passive microwave remote sensing and the presence
of RFI in microwave radiometer measurements is increasing
over time. On the other hand, the nature and the occurrence of
RFI captured by radiometers are usually unknown making their
detection and mitigation difficult. To overcome this challenge,
this paper presents a novel RFI detection algorithm that relies
only on the information extracted from the RFI-free radiometer
measurements which can be collected over oceans and rural areas
with limited human activity, i.e., a one-class algorithm, to be
implemented in future remote sensing radiometers. The algo-
rithm transforms raw time-series radiometer measurements into
a heterogeneous feature-based representation. Then, a feature
selection algorithm identifies the most discriminant features to
detect interference based on the probabilities of misdetections
and false alarms. Finally, the optimal decision boundaries that
discriminate the RFI-contaminated radiometer measurements
from the RFI-free ones are computed via support vector ma-
chines (SVM) using only the RFI-free radiometer measurements.
Regardless of the characteristics of RFI contamination, the
algorithm, therefore, outputs a generalized decision boundary
for RFI-free measurements. A performance evaluation of the
proposed algorithm against the traditional RFI detection algo-
rithms has been performed using simulated radiometer data,
and the results have shown that the novel algorithm, unlike the
traditional methods, can successfully detect RFI, even when the
interference-to-noise ratio (INR) of the radiometer measurements
is as low as —18 dB.

Index Terms—Radio frequency interference, RFI, detection,
remote sensing, microwave radiometry, one-class support vector
machines, SVM.

I. INTRODUCTION

HE passive microwave remote sensing measurements of

Earth’s surface and atmosphere have growing relevance
in modern society as they exceedingly impact everyday life.
Data measured by space-borne microwave radiometers are pri-
mary indicators to estimate critical variables of Earth systems
[1]. These measurements are usually performed across various
so-called "protected” frequencies adjacent to the bands used
by active users such as radars and wireless communication
systems [2], [3], and radio frequency interference (RFI) has
been reported to exist in them due to leakage from neighboring
frequency bands and potential illegal emissions present at these
protected frequencies [4]-[7]. Furthermore, the presence of

1. Mohamed Nazar and M. Aksoy are with the Department of Electrical and
Computer Engineering, University at Albany-State University of New York,
Albany, NY, 12222 USA.

Manuscript received April 19, 2021; revised August 16, 2021.

RFI is increasing over time due to the exponential growth
in communication and other active systems. If not detected
and mitigated properly, RFI may cause biases in radiometric
measurements which may translate into erroneous scientific
measurements. Therefore, effective RFI detection and mitiga-
tion techniques are needed to be implemented in space-borne
radiometer systems, especially against low-level interference
which is challenging to identify.

Many single-domain (time, frequency, statistical, etc.) al-
gorithms and methods have been proposed and applied in
microwave radiometry to cope with the RFI problem with
little success against low-level as well as wideband, long-
duration, noise-like interference [8]. Recently, more compre-
hensive techniques have also been developed and implemented
by combining the outputs of several such single-domain
techniques for maximum likelihood of detection [9]. For
instance, NASA’s Soil Moisture Active Passive (SMAP) ra-
diometer implements a multi-domain RFI detection procedure
by combining the detection outputs of several single-domain
algorithms with a logical OR operator [10]. However, SMAP
brightness temperature products have also been reported to
be susceptible to RFI, especially when the contamination is
wideband and continuous [11]. On the other hand, it has been
suggested that better detection performances are achievable
when radiometer measurements are analyzed simultaneously
in multiple domains [12]-[14]. This is understandable consid-
ering the fact that the RFI environment includes interference
signals with various properties such as bandwidth, duration,
and amplitude; thus, the assumption that they are differentiable
from natural emissions in a single domain is not always true
[15]-[18].

Machine learning and deep learning algorithms have also
been tested for RFI detection and mitigation in microwave
radiometry in recent studies. For instance, a convolutional neu-
ral network (CNN) architecture trained with the spectrogram
images generated by the SMAP measurements has revealed
that the detection performance of the deep learning algorithm
is primarily dependent on the quality of the training images
[19]. Other studies utilizing simulated high-resolution times
series of radiometer measurements, on the other hand, have
demonstrated that multi-domain machine learning algorithms
can provide better interference detection performances com-
pared to the state-of-the-art implementations, especially in
cases of low-level interference contamination [20]-[23].

This paper, expanding on the work presented in the
2022 International Geoscience and Remote Sensing Sympo-
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sium (IGARSS) [24], presents a feature-based, multi-domain
machine-learning algorithm developed using support vector
machines (SVM) to detect RFI in microwave radiometer
measurements. In contrast to the previous single and multi-
domain methods, this algorithm is trained using only RFI-free
measurements which can be easily obtained over regions with
low human activity and analyzes an extensive list of radiometer
measurement features in a multi-dimensional feature space
to identify interference contamination. Hence, the time and
effort required for building a reliable training dataset for this
one-class classification algorithm are reduced drastically [25].
Furthermore, as the algorithm is not trained based on the prop-
erties of the RFI signals, it is robust against possible changes in
the characteristics of the RFI environment over space and time.
A statistical method to select the significant signal features
to be used in the algorithm has also been proposed to be
included in the detection process to maximize efficiency. The
effectiveness of the novel algorithm has been tested against
single and multiple pulsed sinusoidal interference signals with
various frequencies, interference-to-noise ratio (INR) levels
and duty cycles (DC) representing variety of RFI conditions.
Furthermore, a performance comparison against traditional
RFI detection methods has been provided. The remainder of
this paper is organized as follows. First, in section II, the
simulated radiometer dataset used to develop and test the novel
RFI detection algorithms is described. In section III, the RFI
detection problem is mathematically formulated. Sections IV
and V explain the novel detection algorithm with the feature
selection procedure. Then, in sections VI and VII, simulation-
based experiments where the algorithm was implemented and
the resulting RFI detection performance are discussed. In the
final section, the main conclusions of this study and possible
future work are summarized.

II. SIMULATED RADIOMETER DATA

The RFI-free thermal noise within a specific narrow fre-
quency band measured by radiometers follows a Gaussian
distribution with a uniform power spectrum [26]. Thus, in
this work, RFI-free radiometric measurements, i.e., radiometer
voltage counts, are modeled as white Gaussian noise with
a mean (u) and standard deviation (o) which can be ex-
pressed as xpr(t) = N(u,02). The interference is additive
to the naturally occurring thermal noise, therefore, the RFI-
contaminated measurements have been simulated by adding
the interference signal to white Gaussian noise. In particular,
pulsed sinusoidal interference signals have been used because
of their ability to create short pulses (low DC) as well as
continuous contamination (high DC, continuous wave) [27].
Multiple such signals with different amplitudes, duty cycles,
and frequencies combined can resemble realistic RFI envi-
ronments with possible distinct features in which microwave
radiometers operate. Eq. (1) mathematically describes the RFI-
contaminated radiometer data used in this study.

K
. 4
xe(t) = apn(t) + Z A;sin (27 fit + ¢;)rect(
i=1
The first term in Eq. (1) denotes the RFI-free radiometer
measurements as mentioned previously and the second term
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Fig. 1. Contours of the Cumulative Distribution Function (CDF) for the
window standard deviation (o) calculated using the SMAPVEX12 data as a
function of the number of samples in the window.

denotes the pulsed sinusoidal interference. Note that the
equation can accommodate K > 1 number of interfering
signals, and the interference parameters A;, f;, and ¢; denote
the amplitude, frequency, and phase shift of each sinusoidal
interference signal, respectively. The rect() function provides
a rectangular pulse envelope indicating the duty cycle, and the
tp and w; denote the time delay and width of this envelope.
The w; is defined in terms of the DC of the interference signal
and the radiometer integration period (1) as DC = %.

To mimic a realistic radiometry scenario, the values of RFI-
free thermal noise and RFI signal parameters used in this study
were extracted, empirically, from the Soil Moisture Active
Passive Validation Experiment 2012 (SMAPVEX12) airborne
data measured by the Passive Active L-Band System (PALS).
Furthermore, the radiometer sampling rate and the integration
period were assumed to be 75 MSPS and T = 350 us, equal
to those of the PALS radiometer, which also allows enough
samples in each integration period for computing data features
[28].

The parameters that determine the RFI-free radiometer
measurements are the mean () and the standard deviation (o)
of the normal distribution. The empirical parameter estimation
is primarily dependent on the number of samples that are
used to compute the value of the parameter. Therefore, the
SMAPVEXI12 radiometer voltage readings were divided into
temporal windows where each window consists of N number
of samples. The value of the NV is varied from 100 to 200, 000.
Fig. 1 shows the variation of window standard deviation as a
function of the number of samples. The figure shows that the
standard deviation of the voltages converges to 8.035 V as the
number of samples in each window increases. Therefore the
value of the o has been assumed to be 8 V. The mean of the
voltage readings on the other hand was 0; thus, p has been
accepted as 0 V.

The variables of the RFI signals, on the other hand,
are the amplitude (A;), frequency (f;), and the duty cycle
(d; = ). For the sake of generality, the distribution of these
parameters was considered uniform in their respective ranges
again extracted from the SMAPVEXI12 data. For instance,
during the SMAPVEX12 campaign, amplitudes of the RFI
signals, mostly shorter than 100 ms, were observed to be
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up to 100 K in 250 K RFI-free thermal noise when the
radiometer measurements were averaged over 2 seconds [28].
For 350 ps integration periods this amplitude range would
translate into INR values up to 10 dB; thus, INR values were
varied randomly between —45 dB and 10 dB. Similarly, RFI
frequencies were varied uniformly within the bandwidth of the
intermediate frequency (IF) signals measured by the PALS
radiometer during the SMAPVEX12 campaign, that ranges
from 15 to 35 MHz. The phase of the interference signals was
also taken as a uniformly distributed random variable between
0 to 27 radians. Finally, the width of the pulse envelopes was
varied in a way that the DC of the interference pulses was
uniformly distributed between 1% to 100%, and the time delay
of the pulses at each integration window was random.

Table I summarizes the simulated radiometer data parame-
ters used in this study. Note that the RFI detection algorithms
discussed in this paper have been evaluated for each INR and
DC case separately; thus, the result of this study is independent
of the abundance of RFI sources with particular INR and DC
values in an RFI environment.

TABLE I
SIMULATION PARAMETERS FOR THE RFI SOURCES AND RFI-FREE
RADIOMETER DATA

RFI source parameters RFI free parameters
Values
Parameters — - Parameters Values
Minimum | Maximum

INR —45 dB 10 dB Standard deviation 8V
Frequency 15 MHz 35 MHz Mean oV

Phase 0 2

DC 1% 100%

The simulated RFI-free and the RFI-contaminated mea-
surements were sequential in time which implies that the
complexity of the data was high. In order to use the simulated
measurements as the input for machine learning algorithms, at
first, they needed to be transformed into well-defined feature
space in a way that features adequately describe the measure-
ments. In this work, each radiometer integration window has
been described using thirty-one commonly used features in
time, statistical, and spectral domains, which are summarized
in Table II.

III. RFI DETECTION PROBLEM

Consider a set R of N radiometer integration windows
where each window r;,4 = {1,2,--- , N} is described by d
number of features, namely Fy, Fs,--- , Fy. The correspond-
ing feature values for window r; are denoted as f;,, n =
{1,2,---,d}. Further, each integration period r; contains M
number of samples. A one-class classification problem can be
formulated where r; may belong to RFI-free (class N) class
or not. In one-class classification, only the RFI-free measure-
ments are used for training. The detection technique creates
a (representational) model of this training data. If a newly
encountered radiometer integration window is too different
from this model, it is labeled as RFI-contaminated (class C).
In this study, one-class support vector machines (OCSVM)
have been used as the data modeling approach where the
decision boundary is computed as a separating hyperplane

[35]. The final class label for a radiometer integration window
is estimated using this decision boundary.

IV. ONE-CLASS SUPPORT VECTOR MACHINES (OCSVM)

For a given set R of RFI-free radiometer integration win-
dows, the OCSVM finds the hyperplane that separates them
from the origin of the training data in a higher dimensional
feature space. It should be noted that the training data consist
only the RFI-free radiometer integration windows. During
the training process, the OCSVM learns a hyperplane that
maximizes the margin between the origin and the data from the
RFI-free radiometer integration windows. Its decision function
projects the test data onto the normal vector w to produce the
SVM scores based on the distance from hyperplane. Primal
problem for one class SVM is defined as follows [36]:

1 9 1
in ——%&—0b
gggQIIWII N 13
subject to )

(w.@(ri)) > b— €i7§i > 0.

The column vector £ = [¢1,&,--- , €N, ] consists of &,
the slack variable corresponding to the i** training radiometer
window. ®(.) is the mapping function that maps the r; into
higher dimensional space. b is the bias term, w is the normal
vector to the hyperplane, and v denotes the trade-off parameter
maximizing the distance of the hyperplane from the origin
and the number of data points that are allowed to cross the
hyperplane (the false positives). Nr denotes the number of
training windows. Scholkopf et al [36] proposed to solve the
problem formulation in Eq. (2) via its dual form as follows:

o1
min 5 Zaiajk(ri,rj)

«
]

subject to (3)

1
Ogai§W7Zai:1

where the k(r;,7;) denotes r; and r; in the high dimen-
sional feature space and «;,¢ € {1,2,---, Ny} denotes the
dual variable. This optimization problem can be solved for
«; and b with one global minimum point. For a new test
integration window 7.4, the class that this window belongs
to is determined by evaluating which side of the hyperplane
it falls in the feature space. The final decision function of the
dual problem is given by:

gtest = Sgn(z aik(Ti7 Ttest) - b) 4)

?

If iest is positive, the test radiometer integration period
Ttest falls in the region of highly dense training measurements.
Therefore, it is classified as RFI-free as it demonstrates similar
characteristics with most of the training data. If ;. is neg-
ative, then 7.5 is different from the training measurements;
therefore, its class label is declared as RFI-contaminated.
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TABLE II

THE LIST OF FEATURES DEFINING RADIOMETER MEASUREMENTS

Time Domain

Statistical Domain

Standard Moments &
Other

Normality Tests

Spectral Domain

Mean [29]

Skewness (m3)

Jarque-Bera (JB)
[30]

test

Power
maximum [29]

spectral

Variance [29]

Kurtosis (m4)

Lilliefors (L) test [30]

Centroid shift [31]

Power [29]

5th standardized moment
(ms)- 10th standardized
moment (1m1g)

Anderson—Darling (AD)
test [30]

Spectral spread [31]

Peak to peak distance (PPdist) [29]

Inter quantile range

Spectral entropy [29]

Median [29]
Average over absolute value of first differences (meanAbsDiff) [29]

Average over time series differences (meanDiff) [29]
Mean of the auto-correlation coefficient (meanACC) [33]
Distance [29]

Ljung—Box (LB) test [34]

Spectral skewness [32]
Spectral kurtosis citetay-
lor2019spectral

Spectral crest [31]
Spectral flatness [31]
Spectral flux [31]

P(fi|RFI-free) P(fi|RFI-contaminated)

Feature value of f;

(@)

(QR) [29]
P( fnr”r/\ A(fm contaminated)

Feature value of f;

Fig. 2. An illustration of the distribution of the (a) non—discriminant features and (b) discriminant features based on their feature value is conditioned on the

class label.

V. FEATURE SELECTION

The goal of the RFI detection algorithm is to decide
if a given set of radiometer integration windows is RFI-
contaminated or not from the heterogeneous feature repre-
sentation of the data. Even though the feature-based dataset
tends to explain the overall dynamics of the data in multiple
domains, various features need to be analyzed and ranked to
determine which ones are more useful. In other words, the
most consistent and relevant features should be prioritized
to improve the efficiency and performance of the machine
learning models. Two error terminologies, i.e., type I error and
type II error have been defined and used for this purpose. Type
I error occurs when an RFI-free window is identified as RFI-
contaminated. Type I error is also known as a false alarm. On
the other hand, type II error occurs when an RFI-contaminated
window is identified as RFI-free, which is a misdetection.
To calculate these errors, the likelihood distribution of each
feature to the given class is analyzed. The best discriminant
features are the ones that show maximum margin between the
conditional probability distributions associated with RFI-free
and RFI-contaminated classes.

Fig. 2 graphically illustrates the distribution of (a) non—
discriminant and (b) discriminant features when their values
(fn) are conditioned on the class label, i.e., RFI-free or
RFI-contaminated. Each feature has been analyzed using this
approach, and the sums of type I and type II errors were
computed. Fig. 2(a) visualizes such sums, which is called
error static, in terms of the likelihood plots as the highlighted

Dataset with Dataset with
extracted features relevant subset of
features
K features d features
Signal _}
generation

N measurements

N measurements

Divide the dataset

d features

Training set
Trained model
Accuracy, RFI-contaminated or

pre:::rx l:anll, RElfree [ Testing set

Evaluate the

Derive the class
performance

label

Fig. 3. Steps in training and testing of the novel RFI detection algorithm.

regions under the curves. Features have been ranked based on
their error static such that a lower error value indicates that the
feature is more discriminant than the feature with the higher
error value.

VI. EXPERIMENTS WITH RFI DETECTION
IMPLEMENTATIONS

A. Experimental Setup

The experimental setup for the novel RFI detection approach
is demonstrated in Fig. 3. RFI-free and RFI-contaminated ra-
diometer integration windows for three thousand one hundred
pairs of INR and DC values have been generated as described
in section II. The features in time, frequency, statistical, and
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spectral domains shown in Table II have been extracted as a
thirty-one dimensional feature vector to describe the generated
radiometer dataset. The relevant subset of features were identi-
fied and selected as described in section V, and the dataset has
been divided into two parts for training and testing. In order to
train the RFI detection model, i.e., to compute the hyperplane
between the RFI-free and RFI-contaminated windows for the
SVM algorithm, the RFI-free training data have been used. The
value of parameter v and the selection of the kernel function
are the hyperparameters for the OCSVM algorithm described
in Section IV need to be decided. In this study, the Gaussian

kerel K (rs,r;) = exp(Z2rL) was used with the width
parameter o to compute the distance between the integration
time windows, 7; and 7;. The kernel width o determines the
distance between the integration time windows in the high-
dimensional feature space. The small values of the o lead to
increased complexity and overfitting since all the training data
will be considered as support vectors. The large values of the
o will provide better separation in high dimensional feature
space [37], [38]. The value of the parameter v € (0, 1] has an
upper bound on the number of false alarms and a lower bound
on the number of support vectors, i.e., model complexity. To
determine the best possible pair of ¢ and v, in the experiments,
a grid search was run by varying o from 27 to 22 in steps of
0.25. Fig. 4 shows the fraction of the training data considered
as the support vectors as a function of v and o.
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Fig. 4. The fraction of training data used as support vectors as a function
of v and o. The color map denotes the fraction ranging between zero and
one. The value one indicates that the algorithm uses all the training data as
support vectors.

In this work, an algorithm with less model complexity (i.e.,
less number of support vectors) was preferred to perform
accurate detection of the RFI-contamination. Therefore, the
value of o was selected as 3 considering that for a given
value of v, the changes in the fraction of the support vectors
are considerably small. To determine the value of v, the
accuracy was analyzed by setting the kernel parameter, o at
3. Fig. 5 shows such accuracy obtained for multi-sinusoidal
RFI for INR ranging from 0 to 10 dB. It should be noted that
the change of the accuracy with respect to v shows similar
characteristics for other INR and RFI scenarios. From the
figure, it can be seen that the change in the accuracy is not very

o
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Fig. 5. The accuracy of the proposed one class SVM as a function of v.

high after v > 0.5. Therefore, v was set to be 0.5. The values
of a;’s in Eq. (3) were computed using Matlab’s sequential
minimal optimization (SMO) solver [39]. Then, the trained
RFI detection model has been evaluated using the test dataset
containing both RFI-free and RFI-contaminated radiometer ra-
diometer integration windows. Separating training and testing
datasets, the performance of the trained detection model can be
evaluated on unseen data. This has been done using the metrics
introduced in the following section. The reported values of
performance metrics have been five-fold cross validated, which
means the data matrix has been divided into five-folds of
approximately equal size, and each fold has been treated as
a validation set for the model trained on the remaining four
folds. The performance metric values have been averaged over
these validation sets for evaluation to prevent the model from
over-fitting to the training data.

B. Evaluation Metrics

The performance of the RFI detection algorithm have
been mathematically quantified using four evaluation metrics,
namely the accuracy, precision, recall, and the area under the
curve (AUC). The accuracy, precision, and recall metrics are
mathematically defined as follows:

) B TP+ TN
Y = TP Y TN + FP + FN
Precision = L (5)
“TP+FP
TP
Recall = 757N

TP, TN, FP, and F'N indicate true positive, true negative,
false positive, and false negative rates, respectively. Thus, the
accuracy denote the total number of correct classifications
(RFI-contaminated classified as RFI-contaminated, and RFI-
free classified as RFI-free) out of total number of cases. And
the precision is the fraction of the true RFI-contaminated cases
out of the total number of integration windows predicted as
RFI-contaminated that may include RFI-free data as well.
Finally, the recall indicates the fraction of the truely RFI-
contaminated data correctly classified as RFI-contaminated
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by the detection algorithm. The values of these performance
metrics range from zero to one where values closer to one
indicates better performance in differentiating RFI-free and
RFI-contaminated data. The AUC metric, on the other hand, is
the integration of the receiver operating characteristics (RoC)
curve which gives the performance of the detection model
versus false alarm rates. Similar to the other metrics, the higher
the AUC value is, or the closer it is to one, the better the
performance of the detection algorithm is.

VII. RESULTS

A. Performance of the OCSVM Algorithm: Detection of a
Single RFI Source

The OCSVM RFI detection algorithm has been first tested
against a single RFI source with various DC and INR levels
contaminating the radiometer measurements. In order to select
the most discriminant subset of relevant features listed in
Table II for RFI detection, the sums of type I and type II errors,
i.e., the combined error static values have been computed for
all features for the simulated radiometer dataset and ranked.
The feature with the lowest error static value is the best for RFI
detection as it indicates that the overlap between the likelihood
probabilities for RFI-free and RFI-contamination cases is
less likely. For example, Fig.6 demonstrates the ranking of
the “mean of the auto-correlation coefficient” feature as a
function of INR and DC of the RFI-contaminated radiometer
measurements. Rank 1 corresponding to a specific INR-DC
pair implies that the feature has output the lowest error static
for RFI-contaminated measurements with those INR and DC
values, whereas rank 31 means the highest error static. As
seen in the figure, the auto-correlation coefficient, with low
error static values, has performed well against most of the RFI
cases except when the INR and DC values are both very low.
Similar ranking analyses have been performed for all other
features as well and the following features have been selected
to be included as the better half of the features in the novel
OCSVM REFI detection algorithm as their average rankings
over all possible INR and DC cases were below 15: Variance,
power, average over absolute value of first differences, mean
of the auto-correlation coefficient, power spectral maximum,
spectral entropy, spectral skewness, spectral kurtosis, spectral
crest, spectral flatness, and spectral flux.

The OCSVM model has been trained using the RFI-free
radiometer integration periods and the optimal decision bound-
ary around the origin of the RFI-free measurements has been
identified in the feature space. The resulting RFI detection
performance metrics, demonstrated as functions of the INR
and DC of the RFI-contaminated radiometer measurements in
Fig. 7, have been five-fold cross-validated. The dataset has
been randomly divided into five parts. Then the proposed
one-class SVM algorithm has been trained on the RFI-free
integration widows from the four parts of the dataset (i.e.,
approximately 80% of the data), and the algorithm has been
tested on the remaining part of the data (i.e., around 20% of the
data). The performance metric values have been computed on
the test set. This process has been repeated five times, and each
time one fold is treated as the testing set for the model trained
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Fig. 6. The ranking of the "mean of the auto-correlation coefficient” feature
as a function of the INR and DC of the RFI-contaminated radiometer
measurements. Lower rankings indicate better RFI-detection capability.
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for the single RFI source detection using the one-class SVM with eleven
features as functions of the INR and DC of the RFI-contaminated radiometer
measurements.

on the remaining four folds. Finally, the average performance
has been reported over the number of folds. It can be seen from
the figure that nearly perfect accuracy, precision, recall, and
AUC have been achieved for INR levels as low as —10 dB.
This performance can be also extended to even lower INR
cases if the DC is high enough.

B. Performance of the OCSVM Algorithm: Detection of Mul-
tiple RFI Sources

The novel RFI detection algorithm has also been tested
against multiple RFI signals contaminating the simulated ra-
diometer measurements. Specifically, five RFI sources have
been generated for each RFI-contaminated radiometer inte-
gration period (The number was kept low for computational
simplicity) by varying the amplitude and DC of the RFI signals
as described in section II, resulting in INR values from —45 dB
to 10 dB and DC levels from low (DC ranges from 0% to 25%)
to high (DC ranges from 75% to 100%). In total, five hundred
RFI-free and RFI-contaminated radiometer integration periods
have been generated.

In order to identify the most discriminating features for
RFI detection in this multiple RFI sources dataset, a feature
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selection analysis has been performed. The error statics for
each feature have been computed as described in section V
and shown in Figure 8 for RFI contamination with low and
high DC levels. The features with lower error statics (i.e.,
better features for RFI detection) for both low and high DC
interference sources are the variance, power, peak-to-peak
distance, the average over absolute value of first differences,
mean of the auto-correlation coefficient, distance, inter quan-
tile range, centroid shift, spectral spread, power spectral max-
imum, spectral entropy, spectral skewness, spectral kurtosis,
spectral crest, spectral flatness, spectral flux, and Ljung-Box
test. It should be also noted that the error static values for the
peak-to-peak distance, centroid shift, spectral spread, spectral
skewness, spectral kurtosis, spectral crest, spectral flatness, and
spectral flux increase with the DC of the RFI contamination.
On the other hand, the standardized moments i.e., skewness,
kurtosis, ms—myg, and the normality tests including Jarque-
Bera, Lilliefors, and Anderson-Darling tests perform poorly
in discriminating between RFI-free and RFI-contaminated
measurements which is expected as an increased number
of interference sources leads to a convergence to a normal
distribution similar to the RFI-free measurements. Considering
these observations, and for the sake of consistency with the
single RFI source cases, the variance, power, mean of the
absolute value of first differences, mean of the auto-correlation
coefficient, power spectral maximum, spectral entropy, spectral
skewness, spectral kurtosis, spectral crest, spectral flatness, and
spectral flux were selected for the OCSVM algorithm against
RFI contamination with multiple sources. However, one should
note that the best features to detect RFI may change as a
function of number and type of RFI sources, specifically as the
number of sources increases and the total RFI contamination
becomes noise-like.
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Fig. 8. The error static values for each feature in case of RFI contamination
by low and high DC interference sources.

The OCSVM algorithm, trained using these eleven features
of the RFI-free radiometer measurements, has been imple-
mented on the dataset, and the accuracy, precision, and recall
performance metrics have been calculated. The rows identified

as OCSVM 11 in Table III shows the values of these metrics
for various INR levels. From the table, it can be observed that
the RFI detection algorithm is capable of efficiently identify
RFI contamination with INR levels as low as —15 dB.

TABLE III
PERFORMANCE METRICS OF ONE CLASS SVM AND THE OR METHOD
AGAINST MULTIPLE RFI SOURCES

INR Range Algorithm | Accuracy | Precision | Recall
OCSVM 2 0.5556 0.5000 0.0024
(—45) — (—36) | OCSVM 11 0.5567 0.5000 0.0075
OR 0.5544 0.3333 0.0026
OCSVM 2 0.5589 0.8750 0.0103
(—35) — (—26) | OCSVM 11 0.5556 0.5000 0.0048
OR 0.5589 0.7500 0.0126
OCSVM 2 0.6567 0.9920 0.2316
(—25) — (—16) | OCSVM 11 0.6922 0.9886 0.3135
OR 0.6533 0.9799 0.2228
OCSVM 2 0.9967 0.9924 1
(=15) — (—=6) | OCSVM 11 0.9978 0.9949 1
OR 0.9978 0.9947 1
OCSVM 2 0.9978 0.9952 1
(=5) — (4) OCSVM 11 0.9978 0.9952 1
OR 0.9978 0.9952 1
OCSVM 2 0.9978 0.9952 1
0-10 OCSVM 11 0.9978 0.9957 1
OR 0.9978 0.9952 1

C. Performance of the State-of-the-Art Algorithms

It is imperative to compare the performance of the novel RFI
detection method introduced in this paper with that of the tradi-
tional state-of-the-art algorithms such as the kurtosis detection
and pulse blanking techniques [40], as well as the combination
of those with a logical OR operator as implemented in the
SMAP mission, hereinafter referred to as the ‘OR method’.
Thus, the state-of-the-art algorithms have been implemented
on the simulated data where the RFI-contamination included
a single RFI source with varying INR and DC levels.

The kurtosis is the fourth standardized moment of the
radiometer measurements which estimates the total tailedness
of the integration window. For a zero-mean white Gaussian
noise representing RFI-free measurements, the kurtosis esti-
mate itself is a Gaussian random variable with a mean value
of three. A kurtosis detection algorithm has been implemented
on the simulated dataset in a way that radiometer integration
periods with kurtosis values more than three standard devi-
ations away from the mean kurtosis value are considered as
RFI-contaminated. This threshold would allow only 0.3% false
alarm rate [41]. Fig. 9 shows the accuracy, precision, and
recall values of the kurtosis detection as functions of INR
and DC of the RFI-contaminated radiometer measurements.
In addition, the threshold has been varied to calculate the
empirical AUC values which is also demonstrated. As seen in
the figure, the kurtosis algorithm performs well in detecting
the RFI-contaminated cases with INR > —5 dB except for the
RFI cases with DC values around 50%. The blind spot of the
kurtosis detection against pulsed sinusoidal signals with 50%
DC is a well-known fact; thus, this is expected.

The pulse blanking method is applied on the power of
the radiometer measurements assuming that the RFI is local-
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Fig. 9. (i) Accuracy, (ii) precision, (iii) recall, and (iv) AUC of the kurtosis
detection algorithm as functions of the INR and DC of the RFI-contaminated
radiometer measurements.

ized in time and large instantaneous amplitudes imply RFI-
contamination. The detection threshold in this study has been
defined in terms of the mean and standard deviation of the RFI-
free power measurements. Specifically, power values deviate
from three standard deviations from the mean have been
flagged as RFI-contaminated, resulting in 0.3% false alarms
similar to the kurtosis detection [41]. The performance of the
pulse blanking algorithm in terms of the accuracy, precision,
and recall is shown in Fig. 10. Again, the detection threshold
has been varied to calculate the AUC values as well. It can
ben observed from the figure that the pulse blanking method
achieves high accuracy, precision, and recall for RFI cases
with INR > —10 dB, depending on the DC value. Comparing
with the kurtosis detection, pulse blanking eliminates the blind
spot for the 50% DC RFI cases.
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Fig. 10. (i) Accuracy, (ii) precision, (iii) recall, and (iv) AUC of the pulse
blanking algorithm as functions of the INR and DC of the RFI-contaminated
radiometer measurements.

The OR method combines the detection outputs of the kur-
tosis detection and pulse blanking algorithms for the maximum
likelihood of detection. The method flags a measurement as
RFI-contaminated if RFI-contamination is detected by either
of the two algorithms. Fig. 11 depicts the accuracy, precision,
and recall values of the OR method as functions of the INR
and DC of the RFI-contaminated radiometer measurements.
The performance of the OR method has been found to be
similar to that of the pulse blanking algorithm.

8
(i) (if) (iii) 4
0.8
0.6
0.4
]
I 0.2
Ll
Ll J
|
0
50% 100% 50% 100% 50% 100%
Duty cycle Duty cycle Duty cycle

Fig. 11. (i) Accuracy, (ii) precision, and (iii) recall of the OR method as
functions of the INR and DC of the RFI-contaminated radiometer measure-
ments.
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Fig. 12. (i) Accuracy, (ii) precision (ii), and (iii) recall differences between
the OCSVM and OR algorithms as functions of the INR and DC of the RFI-
contaminated radiometer measurements. Note that positive differences indicate
higher efficiency of the OCSVM algorithm for RFI detection.

D. Comparisons of RFI Detection Performances

The performance of the OCSVM RFI detection algorithm
has been compared with the state-of-the-art OR algorithm.
Fig. 12 demonstrates the performance differences between
the two algorithms against single source RFI contamination
calculated by subtracting the values of the accuracy, precision,
and recall metrics associated with the OR algorithm from those
of the OCSVM algorithm as functions of the INR and DC of
the RFI-contaminated radiometer measurements. The figure
highlights the improvements in RFI detection capabilities,
especially for lower INR cases, due to the multidimensional
nature of the OCSVM approach with additional features in
the time, spectral, and statistical domains of the radiometer
measurements.

VIII. CONCLUSION

In this paper, a novel feature-based, multi-dimensional, one-
class support vector machine algorithm for detecting RFI in
microwave radiometer measurements has been described and
analyzed. RFI-free and RFI-contaminated radiometer mea-
surements have been simulated and defined by their thirty-
one heterogeneous features which characterize them in time,
frequency, and spectral domains. Then, the novel algorithm
selects the most relevant set of features for RFI detection
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and computes the hypersurface separating RFI-free and RFI-
contaminated measurements based on its training using RFI-
free measurements only. Radiometer measurements are clas-
sified as RFI-free or RFI-contaminated based on their loca-
tion in the feature space with respect to this hypersurface.
Note that characterizing RFI sources contaminating radiometer
measurements in many remote sensing applications is difficult
due to the large footprint sizes of space-borne antennas, thus
an algorithm trained with RFI-free measurements, which can
be obtained over low human activity regions, only is highly
desirable.

RFI detection performance of the novel OCSVM algorithm
has been compared with state-of-the-art methods such as
pulse blanking and kurtosis detection techniques, as well
as their combination, i.e., the OR algorithm. It has been
demonstrated that the OCSVM algorithm performs better in
low INR RFI contamination cases owing to its multi-domain
nature analyzing various properties of the measurements in
time, frequency, and statistical domains. To highlight the
RFI detection performances of the multi-domain OCSVM
algorithm itself rather than the number of features utilized in it,
a separate analysis has been conducted in which only power
and kurtosis features were used in the OCSVM algorithm,
and the RFI detection performances have been compared
with those of the OR algorithm against a single RFI source.
Fig. 12 demonstrates the differences in RFI detection perfor-
mances between this 2-feature OCSVM and the OR algorithm
in terms of the accuracy, recall, and precision metrics. As
shown in the figure, the OCSVM algorithm with only two
features still provides similar RFI detection performances
as the state-of-the-art OR method. Including more relevant
features, however, enables the algorithm to detect low-level,
i.e., low-INR, RFI contamination. Fig. 14 demonstrates this
fact by comparing the performance of the OCSVM algorithm
against RFI contamination due to multiple sources when it
utilizes only kurtosis and power features versus all the features
reported in section VII-B. In the figure, the receiver operating
characteristics demonstrates that the full-scale OCSVM algo-
rithm significantly improves the detection performance against
RFI contamination with INR levels between —16 dB and
—25 dB. Similar information can be seen in Table III as well
by comparing the performance metrics of the OR algorithm
(OR), as well as the 2-feature (OCSVM 2) and full-scale
(OCSVM 11) OCSVM algorithms against RFI contamination
with various INR levels due to multiple sources. This is very
important as low-level RFI, being difficult to differentiate from
natural variations in radiometer measurements, is the most
challenging problem to overcome in microwave radiometry.

Future research will include investigations on detecting RFI
other than pulsed sinusoidals such as chirps and wideband
continuous noise-like signals so that new features that give
a better representation of the dynamic RFI environment can
be identified and included in the novel algorithm. In addition,
much higher number of RFI sources will be included in the
analyses to represent large radiometer footprints observing
high-human activity regions. As mentioned in section VII-B,
such cases may weaken statistical features mentioned in this
paper for RFI detection; thus, additional features may need to
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Fig. 13. (i) Accuracy, (ii) precision (ii), and (iii) recall differences between
the 2-feature OCSVM and OR algorithms as functions of the INR and
DC of the RFI-contaminated radiometer measurements. Note that positive
differences indicate higher efficiency of the 2-feature OCSVM algorithm for
RFI detection.

be incorporated in the OCSVM process. Also, the algorithm
will be implemented on real radiometer data. The high-
resolution SMAP validation experiment 2012 (SMAPVEX12)
data measured by the PALS instrument [42] will be utilized
and the resulting RFI detection performances will be compared
with SMAP’s state-of-the-art procedure. Finally, the feasibility
of the implementation of the novel algorithm in real hardware
will be tested as space instruments have varying data sam-
pling, integration, processing, and power limitations and the
multi-dimensional RFI detection procedures like the OCSVM
algorithm may require fine temporal and spectral resolution,
high precision, and can be computationally expensive. In a
real remote sensing scenario, the training parameters for the
algorithm can be computed offline prior to launch and the
algorithm can be updated during the mission lifetime by
recomputing the hypersurfaces using the most recent RFI-free
data observed online.
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