

High pressure Cr^{3+} R-line luminescence of zoisite and kyanite: A probe of octahedral site distortion

Earl F. O'Bannon III^{1*} and Quentin Williams²

¹Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

²Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA

*Corresponding Author: obannon2@llnl.gov

Abstract

The Cr^{3+} luminescence spectra of zoisite and kyanite, two geologically important minerals, were studied up to 40 and 20 GPa, respectively, in various pressure media. Cr^{3+} substitutes into the octahedral aluminum sites in both minerals and the R-line luminescence is a particularly sensitive site-specific probe of the octahedral Al site. Unlike many previous studies where Cr^{3+} luminescence was utilized, both these minerals have multiple highly distorted octahedral sites resulting in very large splitting of their R-lines, $\sim 100 \text{ cm}^{-1}$ in zoisite and $\sim 360 \text{ cm}^{-1}$ in kyanite (for reference, ruby is 29 cm^{-1}). For zoisite, the R-line splitting increases as pressure increases and more than triples from its ambient value by 40 GPa, while the R-line splitting in kyanite from the M1 and M2 sites does not change when compressed in a Ne pressure medium up to 20 GPa. We do not observe evidence of any phase transitions in either zoisite or kyanite across the pressure range of these new luminescence measurements. We present some high-pressure luminescence spectra where kyanite was known to be bridged between the diamond anvils and show how these spectra illustrate the different effect of uniaxial relative to hydrostatic stress on luminescence spectra.

Key words: zoisite, kyanite, high-pressure, luminescence, diamond anvil cell

Introduction

Zoisite $[\text{Ca}_2\text{Al}_3(\text{SiO}_4)(\text{Si}_2\text{O}_7)\text{O}(\text{OH})]$ contains ~ 2.0 wt.% and is an important source and carrier of in subduction zones (Dobrzhinetskaya and Green, 2007; Nicholls and Ringwood, 1973; Ono, 1998; k, 1990). For comparison, kyanite $[\text{Al}_2\text{SiO}_5]$ is a common accessory mineral in eclogites, and can be both in subduction zones where certain crustal rocks are subducted, and as a breakdown product inous phases (Ono, 1998). The stability field of zoisite in a basalt + H_2O system extends to ~ 3.1 GPa

27 at 650 °C (Forneris and Holloway, 2003; Forneris and Holloway, 2004). It has a slightly larger stability field
28 in the CaO-Al₂O₃-SiO₂-H₂O (CASH) system, which ranges from 4.0 GPa at 500 °C to as high as 7.0 GPa at
29 over 1000 °C (Poli and Schmidt, 1998; Schmidt and Poli, 1994); beyond these pressures it breaks down to
30 lawsonite-bearing assemblages. Zoisite has been studied with X-ray and spectroscopic techniques up to
31 34 GPa at 300 K, and no phase transitions have been reported (Alvaro et al., 2012; Comodi and Zanazzi,
32 1997; Winkler et al., 1989; Xu et al., 2019), while kyanite has been found to decompose into stishovite
33 and corundum between 5-15 GPa and 1200-1900 K (Ono et al., 2007) and between 14-17.5 GPa and 1272-
34 2273 K (Schmidt et al., 1997). At room temperature, a number of studies of kyanite up to 20 GPa using
35 powder and single crystal X-ray diffraction as well as Raman spectroscopy did not find evidence for any
36 phase transitions (Comodi et al., 1997; Friedrich et al., 2004; Liu et al., 2009; Mernagh and Liu, 1991; Yagi
37 et al., 1998; Yang et al., 1997). However, at pressures >30 GPa and temperatures > 2000 K, other phases
38 of kyanite have been reported to be stable (Ahmed-Zaid and Madon, 1991; Friedrich et al., 2004). New
39 high-pressure phases kyanite-II and kyanite-III have been reported from multi-anvil studies at 13 and 17
40 GPa, but at temperatures exceeding 2000 K (Zhou et al., 2021; Zhou et al., 2018). Recently, (Gao et al.,
41 2020) compressed kyanite up to 18.6 GPa at room temperature using both Raman and infrared
42 spectroscopy and report that a first order phase transition to kyanite-II (which is likely distinct from the
43 high-pressure/high-temperature kyanite-II polymorph) occurs at 9.7 GPa. These results distinctly differ
44 from previous room temperature, high pressure X-ray and spectroscopic studies on kyanite (Comodi et
45 al., 1997; Friedrich et al., 2004; Liu et al., 2009; Mernagh and Liu, 1991; Yang et al., 1997). Thus, part of
46 the motivation for examining kyanite using luminescence is to determine whether a different probe can
47 resolve any possible phase transitions that may occur under pressure at 300 K in this material.

48 Cr³⁺ luminescence spectra in the red typically consist of intense relatively sharp emission bands,
49 and in some cases a broad emission band. The sharp emission bands are commonly referred to as R-lines.
50 These emission bands are associated with the spin-forbidden ²E-⁴A₂ transition, with the ⁴A₂ state being

51 the ground state and the 2E state being split in non-cubic environments (Syassen, 2008). The broad
52 emission band is assigned to the spin-allowed 4T_2 - 4A_2 transition. At high crystal field strengths (Burns,
53 1993; Tanabe and Sugano, 1954), the narrow band 2E - 4A_2 emission dominates the spectrum. For low
54 crystal field strengths (Burns, 1993; Tanabe and Sugano, 1954), the generally broader 4T_2 - 4A_2 emission
55 band may dominate the emission spectrum. Both sharp and broad emission bands are observed at
56 intermediate crystal field strengths. The Cr^{3+} luminescence of ruby ($Al_2O_3:Cr$) is well characterized at
57 ambient and high pressures and has been widely used as an *in situ* pressure calibrant for high pressure
58 experiments (Syassen, 2008). This is due to its sharp strong R-line luminescence, lack of high-pressure
59 phase transitions across a wide pressure and temperature range, and chemical inertness towards
60 commonly used pressure media (Syassen, 2008).

61 Until recently, only a small number of other geologic materials have had their Cr^{3+} luminescence
62 characterized under pressure. These materials were examined for many of the same reasons as ruby and
63 include alexandrite ($BeAl_2O_4$), MgO , spinel ($MgAl_2O_4$) and a range of garnets (Chopelas and Nicol, 1982;
64 Jahren et al., 1992; Jovanic, 2000; Kottke and Williams, 1983; Wamsley and Bray, 1994). Cr^{3+} typically
65 substitutes into the Al^{3+} site and, since it has a slightly larger ionic radius than Al^{3+} , local site distortions
66 can arise from this substitution. Most of the previously minerals characterized by luminescence
67 spectroscopy under high pressures have only one or two unique Cr-bearing octahedral sites that are nearly
68 ideal or only slightly distorted. However, there are a large number of Cr^{3+} luminescence studies on more
69 crystallographically complex natural and synthetic materials at ambient pressure and various
70 temperatures (Gaft et al., 2015 and references therein).

71 Recently, there has been a growing interest in using Cr^{3+} luminescence as a site-specific probe in
72 geologic materials with moderate to highly distorted Cr-bearing octahedral sites, as well as lower
73 symmetry more chemically complex minerals (Hua et al., 2021; O'Bannon et al., 2018; O'Bannon and
74 Williams, 2016a; O'Bannon and Williams, 2016b; O'Bannon and Williams, 2017; O'Bannon and Williams,

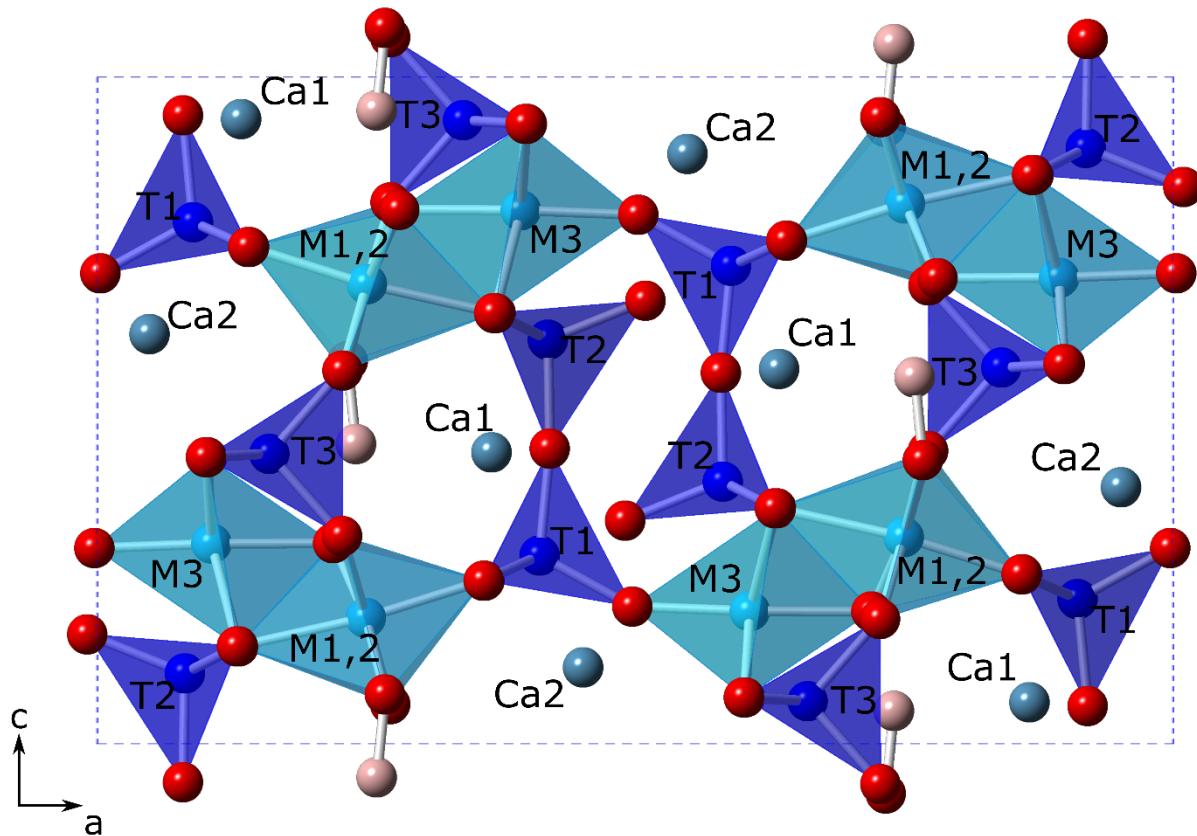
75 2019). Moreover, due to the difference in ionic radius between Al and Cr, there can be extensive local
76 distortion of the octahedral sites in which Cr³⁺ substitutes that cannot readily be characterized with
77 techniques such as X-ray diffraction. Here, we present new high-pressure Cr³⁺ luminescence results on
78 zoisite up to 40 GPa and kyanite up to 16 GPa. These two minerals have multiple highly distorted Al-sites,
79 and they have R-line splittings of > 300 cm⁻¹ at ambient conditions: a separation far in excess of that of
80 ruby (29 cm⁻¹) and other minerals examined to date by luminescence under compression. As such, the
81 primary goals of this study include determining how luminescence from highly distorted sites is altered
82 by compression, and the degree to which shifts in distortion can be monitored using luminescent spectra.

83 **Methods**

84 Trace element concentrations of the kyanite and zoisite samples were measured with a
85 PhotonMachines Analyte 193H, which is a 193-nm ArF excimer laser system coupled with a
86 ThermoScientific ElementXR single-collect or magnetic sector ICP-MS. The instrument was
87 calibrated with a SRM 610 trace element glass from NIST, and Al was used as the internal
88 standard. All reported concentrations are in ppm and are an average from 4 measurements from
89 different locations on the sample, and the standard deviation of the 4 measurements produces
90 the reported uncertainties. The zoisite sample is from the Mundarara Mine, Arusha Region,
91 Tanzania. The following trace elements were measured: Cr 4860 ± 2104, V 51 ± 22, Mn 91 ± 38,
92 and Fe 6464 ± 2763 ppm; the variability is indicative of some possible compositional zoning within
93 the sample. The kyanite sample is a typical light blue kyanite from an unknown locality which was
94 selected for its strong R-line luminescence and low intensity broad band emission. The following
95 trace elements were measured: Cr 2 ± 1, V 32 ± 2, Fe 194 ± 9 ppm, Mn below detection limit. Our
96 utilization of natural samples is unlikely to produce markedly different local deformations
97 associated with Cr-substitution than are present in synthetic samples: the overarching shift in

98 lattice parameters associated with Cr-substitution is quite linear from low Cr-concentrations to
99 nearly 60 mol% Cr₂SiO₅ substitution in Cr-kyanites (Hejny et al., 2019). While no comparable
100 data are available for zoisite, clinozoisite appears to show similarly linear lattice parameter trends
101 with Cr-substitution (Nagashima et al., 2009).

102 High static pressures were generated with either Merrill-Bassett type diamond anvil cells (DACs)
103 (Merrill and Bassett, 1974), symmetric piston-cylinder type DACS, or LLNL type membrane DACs (Jenei et
104 al., 2013). They were equipped with 16 sided type Ia diamond anvils with culets ranging from 500 to 200
105 μm in diameter; the gasket material was either stainless steel, spring steel, or rhenium, and the pressure
106 transmitting medium (PTM) was either methanol:ethanol (4:1), Ne, or He, depending on the particular
107 experiment's target pressure. Single crystals of the sample were loaded in the sample chamber with a
108 ruby sphere (Chervin et al., 2001) which was used for pressure calibration using well-known calibrations
109 (Dewaele et al., 2008; Mao et al., 1986). The sample and the ruby were well separated so that
110 luminescence spectra could be collected from the sample with no contamination from ruby luminescence.
111 Ambient pressure low temperature measurements were carried out for peak assignment purposes, with
112 the samples submerged in liquid nitrogen.


113 Luminescence spectra were collected either using a Horiba LabRAM HR Evolution Raman
114 spectrometer, or a Princeton instruments SP-2500 spectrometer. For the measurements on the Horiba
115 spectrometer, spectra were collected from 650-800 nm (15380-12500 cm^{-1}). The spectrometer focal
116 length of this system is 800 mm. An Olympus BXFM-ILHS microscope with a 50x long working distance
117 objective was used to focus the 532 nm laser beam onto the sample. An 1800 lines/mm grating with a
118 corresponding spectral resolution of $\sim 1 \text{ cm}^{-1}$ (or, equivalently, $\sim 0.05 \text{ nm}$) was utilized. For measurements
119 on the Princeton Instruments spectrometer, luminescence spectra were collected from 680-770 nm. The
120 spectrometer focal length of this system is 500 mm. A long working distance 30X Mitutoyo objective was
121 used to focus the 488 nm laser beam onto the sample. A 1200 lines/mm grating with a corresponding

122 spectral resolution of $\sim 1.14 \text{ cm}^{-1}$ was utilized. Combinations of Gaussian and Lorentzian functions were fit
123 to the luminescence spectra with either Horiba LabSpec6 software or OriginPro software.

124 **Results and Discussion**

125 *Zoisite*

126 Zoisite is orthorhombic, so it is not considered a member of the epidote-group
127 (Armbruster et al., 2006; Mills et al., 2009). It is a sorosilicate with mixed SiO_4 and Si_2O_7 groups
128 and is found in metamorphic and pegmatitic rocks. Zoisite was originally named saualpite for the
129 Saualpe locality in Carinthia, Austria where it occurs in eclogites. The first structural model of
130 zoisite was proposed by Ito (1950). This structural model was later confirmed by Fresenko et al.
131 (1955), Dollase (1968), and Ghose and Tsang (1971). Zoisite has one octahedral chain parallel to
132 [010] with two edge-sharing Al octahedra M1,2 (sometimes referred to as M1) and M3
133 (sometimes referred to as M2). The two metal sites have very different distortions (Figure 1),
134 which can be quantified by calculating the quadratic elongation (QE) and angle variance (AV)
135 described by Robinson et al. (1971). The QE of M1,2 is 1.006 and for M3 it is 1.021, while the AV
136 is 19.4 for M1,2 and 46.4 for M3 using the single-crystal data from Alvaro et al. (2012). These
137 chains are linked by isolated SiO_4 tetrahedra T3 and Si_2O_7 groups T1 and T2, and in between the
138 octahedral chains and the silica tetrahedra are two crystallographically unique 7-fold sites that
139 are occupied by Ca. The hydrogen atom is bonded to O10 of the octahedral chain and hydrogen
140 bonded across to the O4 atom of the adjacent octahedral chain. Neutron diffraction of zoisite
141 has confirmed the configuration of the hydroxyl unit (Camara et al., 2012; Smith et al., 1987).

142

143 **Figure 1.** Crystal structure of zoisite showing the isolated SiO_4 site T3 and the Si_2O_7 sites T1 and
 144 T2, as well as the two octahedral sites M1,2 and M3, with M3 being highly distorted. Crystal
 145 structure diagram generated in CrystalMaker®.

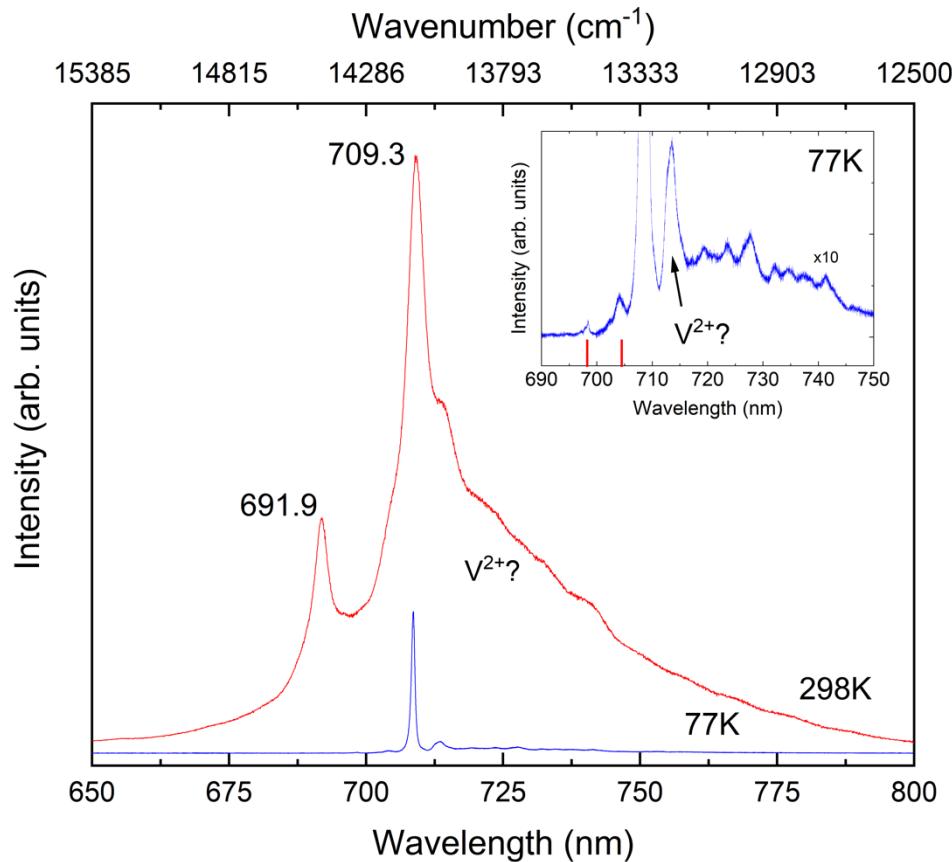
146

147 Our 298 and 77 K spectra (Figure 2) are in good agreement with the spectra of a natural

148 Tanzanian zoisite reported by Koziarska et al. (1994). At 77 K, the R₁ peak shifts to 708.6 nm from

149 its 298 K location of 709.3 nm, and we observe a complete quenching of the R₂ peak that is

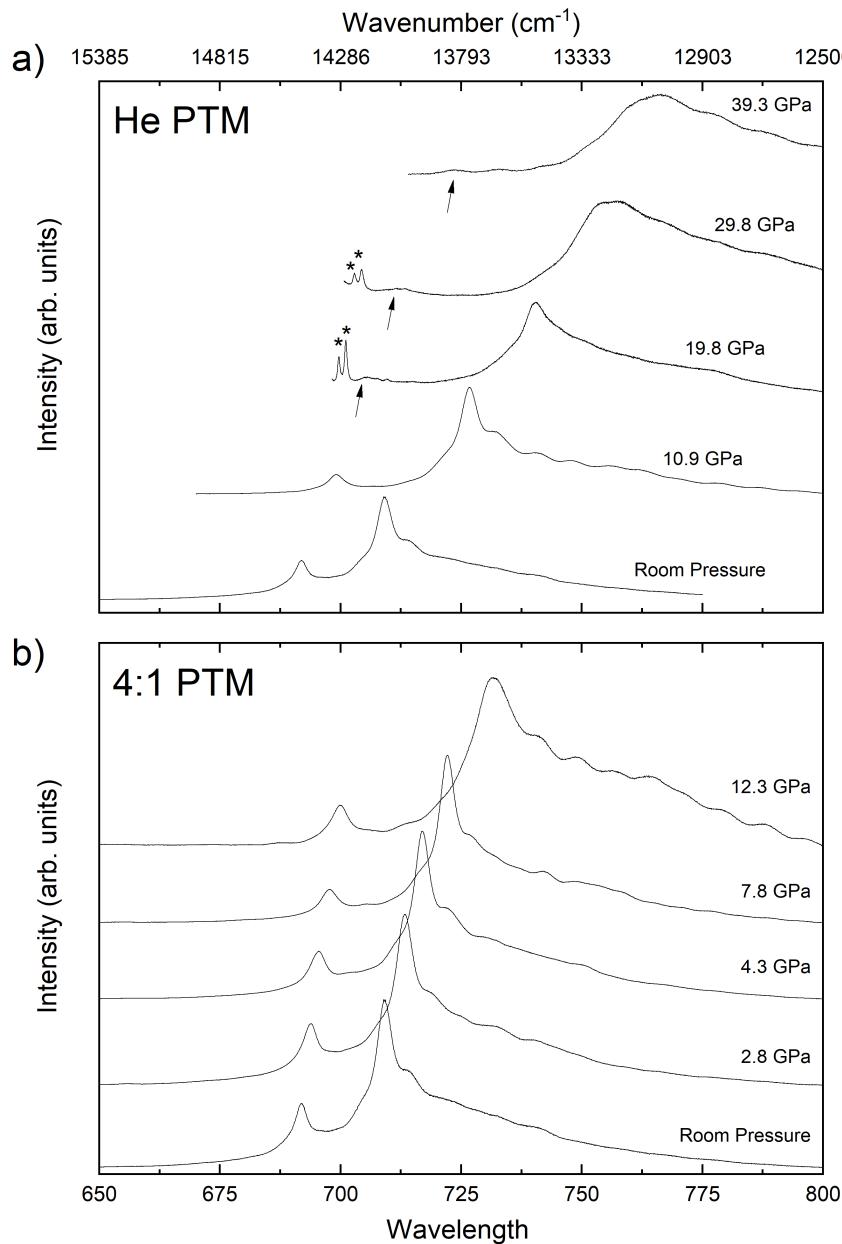
150 observed at 691.9 nm in our 298 K spectrum. Additionally, several sharp bands that are likely


151 associated with R-line emission from the less distorted M1,2 site are also observed. In particular,

152 there is a relatively intense and sharp emission band that becomes resolvable at 77 K which could

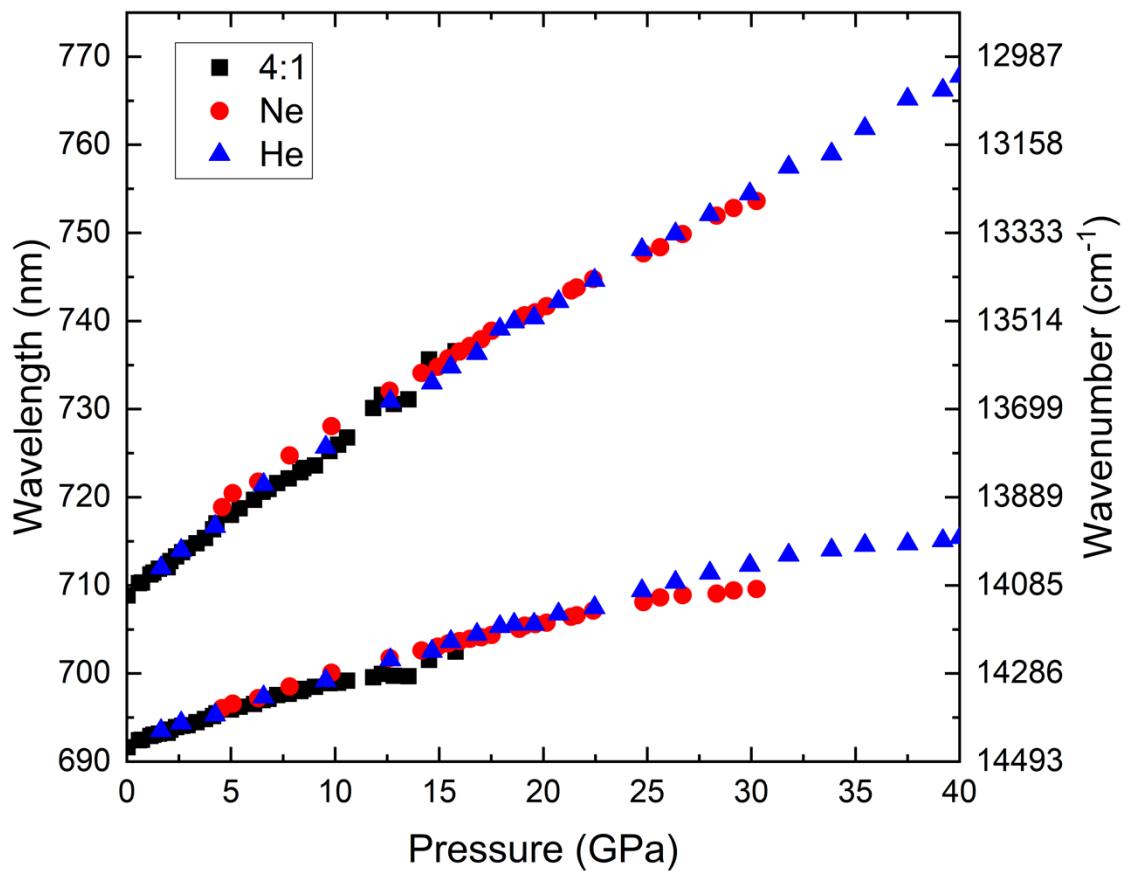
153 be an R-line from V²⁺ emission (Inset Figure 2). Vibronic features and/or paired emission bands

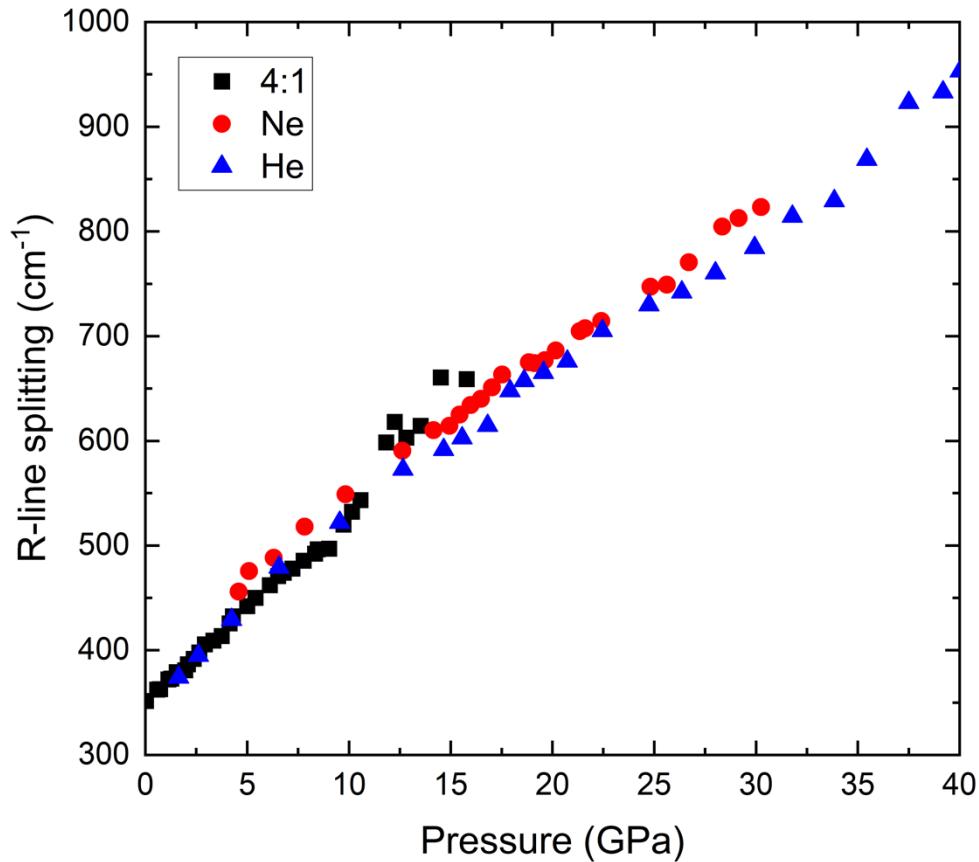
154 (N-Lines) that contribute to the broad, distributed emission on the higher wavelength side of the


155 R_1 peak are also quenched at 77 K. The relatively high temperature at which we observe
156 quenching of R_2 can be explained by the large R-line splitting in zoisite. The temperature range
157 over which R_2 quenches scales exponentially with an activation energy that is roughly the R_1 - R_2
158 separation, obeying the Arrhenius formula (Weinstein, 1986). Speculatively, there are two
159 emission bands (labelled by tick marks in the inset of Figure 2) which could be the R-lines
160 associated with the less distorted M1,2 site. If this were the case, the R-line separation for the R-
161 lines from this site at 77 K is $\sim 115 \text{ cm}^{-1}$, which would be larger than the expected splitting at room
162 temperature. However, the distortion of the M1,2 site in zoisite (Alvaro et al., 2012) is less than
163 the distortion of the M1 site in spodumene (Arlt and Angel, 2000), while this possible R-line
164 separation in zoisite is greater than observed in spodumene at 77 K, which is 90.2 cm^{-1} (O'Bannon
165 and Williams, 2016b). Thus, the observed separation of these two emission bands is not fully
166 consistent with expectations given the distortion of the site. Nevertheless, the volume of the
167 M1,2 site is compatible with the observed emission peak positions. Therefore, luminescence
168 lifetime measurements would likely be needed to unambiguously distinguish whether these
169 emission bands are Cr^{3+} R-lines. The possible emission band from V^{2+} near 714 nm that is
170 observed at 77 K is difficult to consistently resolve across the pressure range of these
171 measurements, but it appears to shift like the Cr^{3+} R_1 emission band, and its relative intensity also
172 increases under compression.

173 **Figure 2.** Representative Cr^{3+} luminescence spectra of zoisite at 298 K and 77 K. The inset shows
 174 a zoom-in of the 77 K spectrum (~ 10), and the vertical lines in the inset mark the possible
 175 positions of R-lines originating from the M1,2 site. Possible emission from V^{2+} is also labelled in
 176 the inset.
 177

178
 179 Representative high-pressure Cr^{3+} luminescence spectra are shown in Figure 3. Three runs
 180 were conducted in three different pressure media (4:1 methanol:ethanol, Ne, and He) to a
 181 maximum pressure of 40 GPa. We fit one peak under each R-line, while the broad emission band
 182 is more difficult to deconvolve since it may be partly due to Cr^{3+} , V^{2+} and/or Fe (Koziarska et al.,
 183 1994). Since the splitting of the ^2E state is produced by deviations from ideal octahedral
 184 symmetry, R-line separation is regarded as an indicator of the degree of octahedral distortion.
 185 Ruby has an Al-site that is close to an ideal octahedron and has an R-line splitting of $\sim 29 \text{ cm}^{-1}$
 186 (Syassen, 2008). The octahedral sites M1,2 and M3 in zoisite are, in comparison, highly distorted


187 (Figure 1) and zoisite has an R-line separation of $\sim 340 \text{ cm}^{-1}$ (Koziarska et al., 1994). M3 is the more
188 distorted octahedral site in zoisite, so given both the size of the observed splitting and its larger
189 size, it is probable that Cr^{3+} preferentially substitutes into the M3 site over the M1,2 site. This
190 perhaps simplified idea of larger transition-metal cations substituting into the larger, more
191 distorted site is supported by single-crystal X-ray diffraction (Dollase, 1968; Dollase, 1969;
192 Dollase, 1971; Grapes, 1981), Mössbauer spectroscopy (Dollase, 1973), and previous ambient-
193 pressure luminescence spectra (Koziarska et al., 1994) of transition-metal bearing zoisite and
194 zoisite-related phases. The diffraction and Mössbauer studies on a suite of closely related
195 minerals (allanite, epidote, hancockite, piemontite) show that larger cations preferentially
196 substitute into the larger more distorted M3 site, although some substitution into the M1,2 site
197 is also observed. The room temperature luminescence spectrum has strong broad band
198 luminescence (Figure 2), which would likely obscure any low intensity sharp line emission from
199 minor levels of substitution in the less distorted M1,2 site. Yet, it is highly likely that the majority
200 of the Cr^{3+} that has substituted into the zoisite structure (and from which we observe emission)
201 is in the M3 site.


Figure 3. Representative high-pressure luminescence spectra of zoisite (a) He pressure medium and (b) 4:1 methanol ethanol pressure medium. In the He run, ruby emission from the pressure calibrant was also observed in our spectra; these are marked with asterisks, and the arrow indicates the position of the R_2 band of zoisite.

R-line positions as a function of pressure are shown in Figure 4. There is no evidence of a high-pressure phase transition within this pressure range, which is consistent with recent single-crystal X-ray diffraction results (Xu et al., 2019). The decompression data show that the changes

211 that occur on compression are fully reversible with no hysteresis. At ambient conditions, the
212 wavelengths of emission associated with R_1 and R_2 are 709.3 and 691.9 nm. The pressure shift
213 from the He run of R_1 is $-27.2(3) \text{ cm}^{-1}/\text{GPa}$, while for R_2 it is $-12.5(1) \text{ cm}^{-1}/\text{GPa}$; these were
214 determined by non-weighted linear fits. The R_1 shift is the largest known pressure shift of Cr^{3+} R-
215 lines in an oxide reported to date. This is most straightforwardly understood in terms of the
216 compressibility of the M3 site in zoisite. The M3 site in zoisite is more compressible than the
217 octahedral sites in most other minerals in which Cr^{3+} substitutes for Al^{3+} (Alvaro et al., 2012), such
218 as spodumene (Arlt and Angel, 2000), ruby (d'Amour et al., 1978; Finger and Hazen, 1978),
219 clinochlore (Welch and Marshall, 2001), and beryl (Hazen et al., 1986). Because of the differing
220 pressure shifts of R_1 and R_2 , the initially large R-line separation increases even more as pressure
221 increases, and by ~ 40 GPa the R-line separation has nearly tripled from its ambient pressure value
222 (Figure 5). Single-crystal X-ray diffraction of zoisite up to 8 GPa confirms that the M3 site becomes
223 more distorted on compression, as manifested by the AV and QE of the M3 site (Alvaro et al.,
224 2012), and our luminescence data indicate that this trend continues to at least 40 GPa.

225
226
227 **Figure 4.** (a) R₁ and R₂ peak positions of zoisite as a function of pressure from three separate
228 runs using different PTM. Error bars are smaller than the symbols.
229

230
231
232 **Figure 5.** R-line splitting as a function of pressure. Note that the R-line separation nearly triples
233 from its ambient value by 40 GPa. The slight differences in R-line separation between different
234 runs is likely due to the different pressure media that were used. Note the increased scatter
235 above ~ 10 GPa in the 4:1 methanol:ethanol data.

236
237 The results of different PTM are primarily manifested in the R_2 peak positions where

238 changes in slope occur at ~ 25 GPa in Ne and ~ 32 GPa in He. It is possible that these changes in

239 slope are indicators of the onset of non-hydrostatic conditions. However, it has been reported

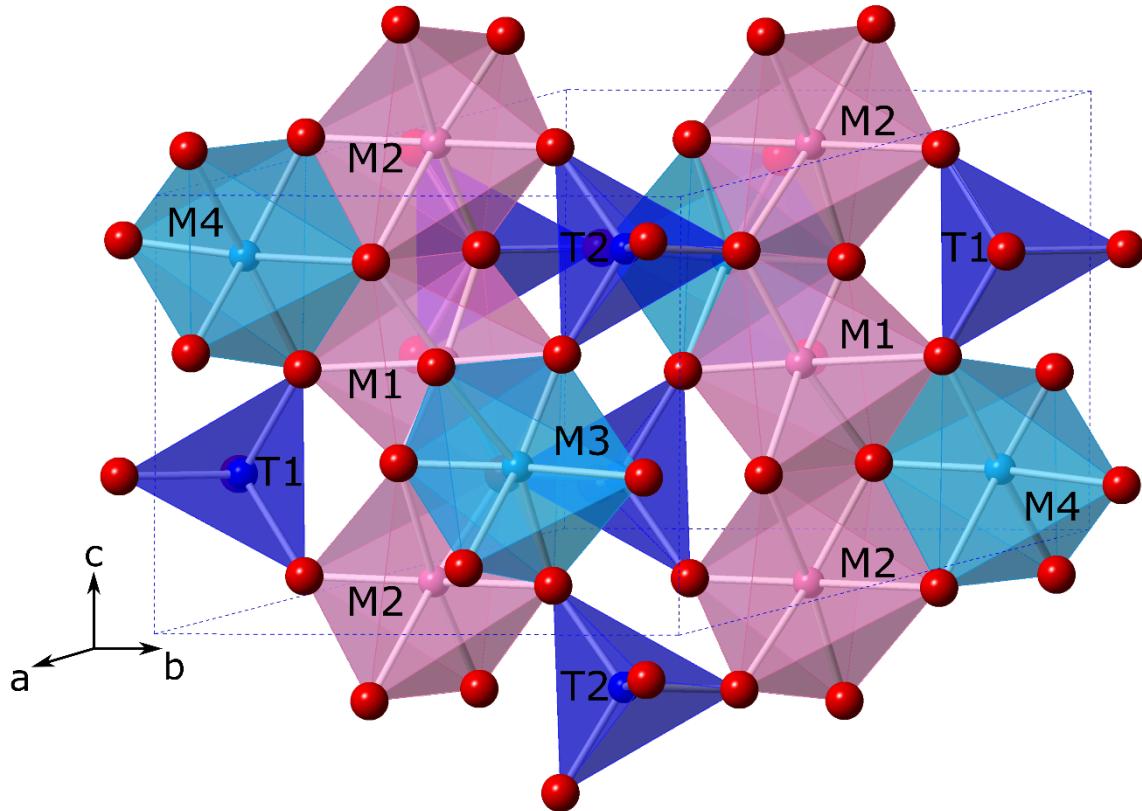
240 that the pressure shift of R_2 in ruby is independent of crystal orientation and non-hydrostatic

241 stresses (Chai and Brown, 1996; Gupta and Shen, 1991), and R_2 may provide a more reliable

242 indicator of the local mean stress. Moreover, the standard deviation in pressure in a He medium

243 at 32 GPa is ~ 0.15 GPa, while it is ~ 0.22 GPa in Ne at 25 GPa (Klotz et al., 2009), so these changes

244 in slope may not be occurring at the same differential stress. It is possible that the change in slope


245 of R_2 is evidence of a change in local compressional mechanism, and/or perhaps be indicative of
246 precursory behavior to a phase transition at pressures > 40 GPa. The intensity of R_2 also decreases
247 dramatically under compression, which increases our uncertainties in the peak position of R_2
248 above ~ 20 GPa. This decrease in intensity is certainly generated by the increase in R-line
249 separation shown in Figure 5: the amplitude of R_2 relative to R_1 is in accord with Boltzmann's law
250 (e.g., Koziarska et al., 1994), and the increased separation thus suppresses the R_2 amplitude. The
251 anticipated reduction in intensity of R_2 at constant temperature for the factor of 3 increase in
252 splitting across the pressure range of our measurements is about a factor of 20, which is in
253 approximate accord with our observations (Figure 3a).

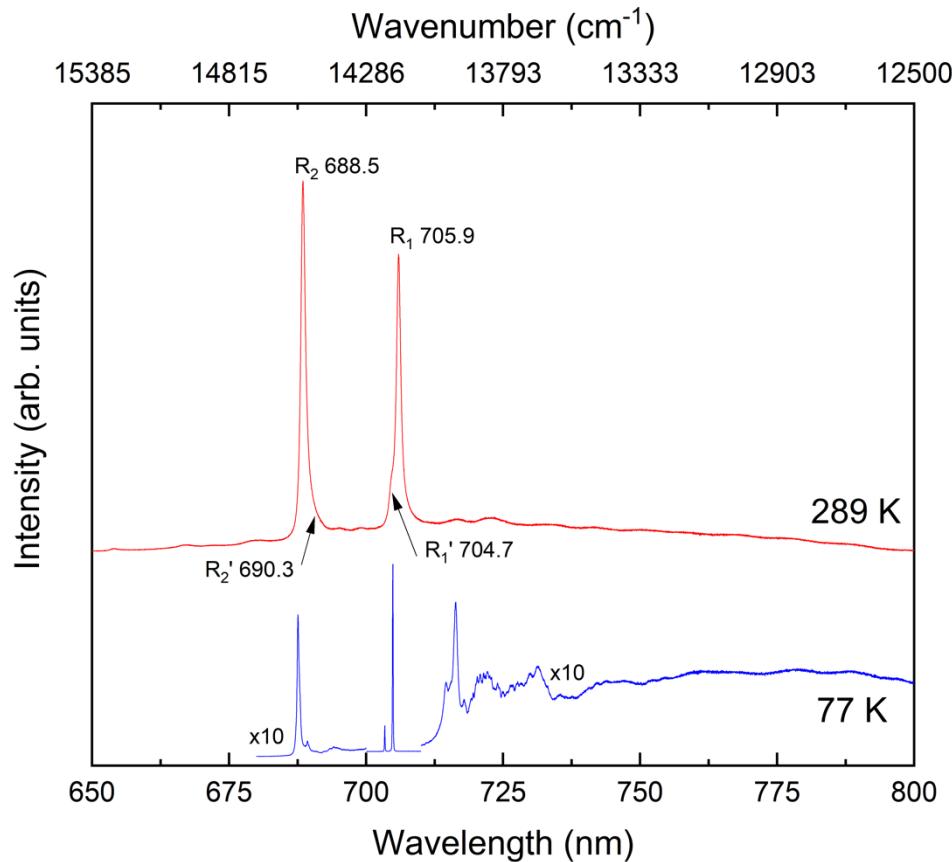
254 The broad band emission to the longer wavelength side of the R-lines is more difficult to
255 assign to a particular dopant. This extended, relatively featureless emission shifts to longer
256 wavelengths, and its relative intensity and its width increase at higher pressures (although it is
257 difficult to fit accurately). This broad band emission occurs at wavelengths that are consistent
258 with the $\text{Cr}^{3+} \ ^4\text{T}_2 \rightarrow \ ^4\text{A}_2$ transition. It has also been suggested that this broad band emission is due
259 to V^{2+} (Koziarska et al., 1994). Since Cr^{3+} and V^{2+} both have a d^3 configuration, their luminescence
260 spectra are quite similar. The main differences lie in intensity, wavelength, and lifetime of
261 emission associated with these transition metals. This broad band is likely the $^4\text{T}_2$ transition from
262 either Cr^{3+} and/or V^{2+} (although there may also be a vibronic component within the broad band),
263 and it shifts to longer wavelength under compression and persists to the highest pressures of this
264 study, suggesting that the crystal field strength remains weak to intermediate across the pressure
265 range of these measurements. In order to unambiguously assign this broad band emission to Cr^{3+}
266 or V^{2+} or both is not possible from steady state luminescent excitation, as lifetime measurements

267 would be needed.

268 *Kyanite*

269 Kyanite is one of the three Al_2SiO_5 polymorphs found in crustal and upper mantle assemblages,
270 with the other two being sillimanite and andalusite. The pressure-temperature range where these
271 polymorphs are stable span the conditions of regional metamorphism. These polymorphs are important
272 index minerals used in metamorphic petrology to estimate the P - T conditions of rocks. The crystal
273 structure of kyanite was first described by Naray-Szabo et al. (1929) and later by Burnham (1963) who
274 used single-crystal X-ray diffraction. Kyanite is the high-pressure, low temperature polymorph, which has
275 four unique octahedral Al sites and two unique tetrahedral Si sites (Figure 6). There are two groups of
276 octahedra, the chain octahedra (M1 and M2) and the chain-connecting octahedra (M3 and M4). The most
277 distorted metal site (based on the QE and AV) is M3, followed by M2 and M1 which have very similar
278 distortion parameters, and the least distorted and smallest volume site is M4, using ambient single-crystal
279 data from Comodi et al. (1997).

280


281 **Figure 6.** Crystal structure of kyanite. The chain octahedra are M1 and M2 and the chain connecting
 282 octahedra are M3 and M4. The two tetrahedral sites are also shown as T1 and T2. Crystal structure
 283 diagram generated in CrystalMaker®.

284

285 Ambient pressure luminescence spectra collected at 298 and 77 K are in good agreement with
 286 previously reported spectra collected at 300 and 26 K (Wojtowicz, 1991), at room temperature and 77 K
 287 (Platonov et al., 1998), and at 16 K (Czaja et al., 1995). Our spectra are shown in Figure 7; in order to
 288 resolve all of the features in the vicinity of the R-lines and the accompanying broad band emission,
 289 different laser powers and collection times were used. At 298 K, two emission bands can be easily
 290 deconvolved from each of the sharp emission lines. At 77 K, the two emission bands present at each of
 291 the 298 K sharp emission lines are clearly distinct and separated. The two higher intensity components
 292 (outer bands) originate from one Cr^{3+} site and are designated R_1 and R_2 , while the two lower intensity
 293 components (the inner emission bands) likely originate from a different Cr^{3+} site and are named R'_1 and

294 R_2' . At 298 K the deconvolved peak positions for R_1 and R_2 are 705.9 and 688.5 nm, while for R_1' and R_2'
295 they are 704.7 and 690.3 nm. At 77 K, the R_1 and R_2 bands shift to 704.9 and 687.5 nm while R_1' and R_2'
296 shift to 703.4 and 689.3 nm.

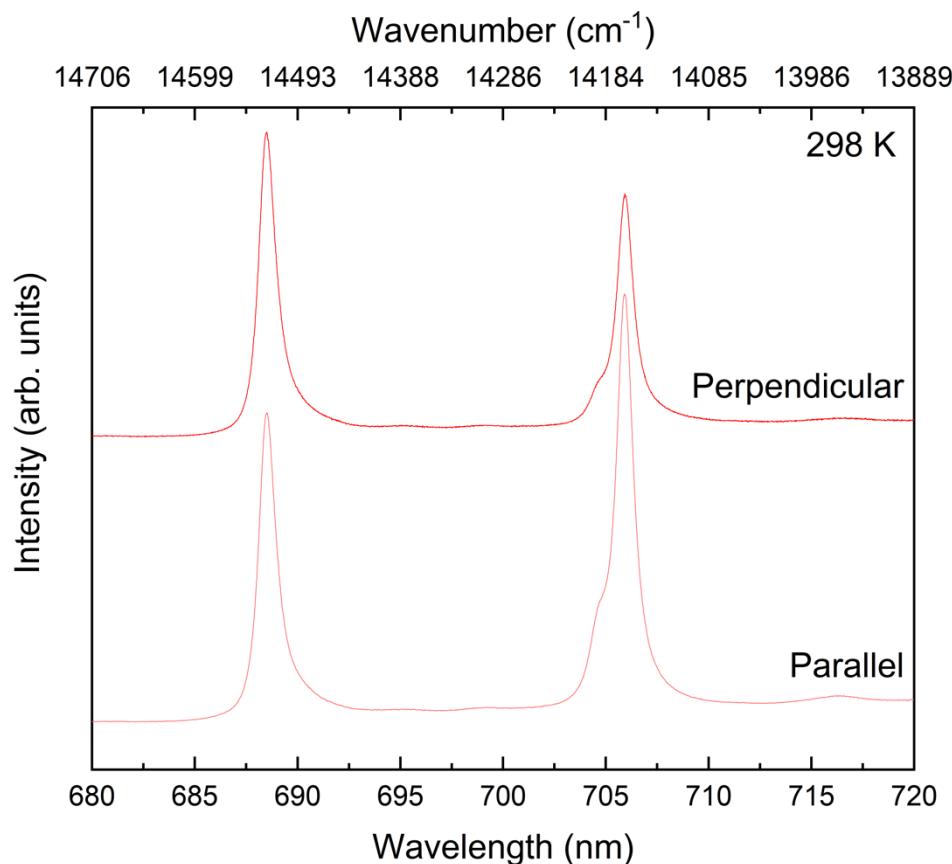
297 Notably, the measured Cr^{3+} concentration in our kyanite sample is lower than the measured V^{2+}
298 concentration, so it is possible that V^{2+} emission is also observed in our luminescence spectra. Our LA-
299 ICPMS results indicate that the trace element distribution was not homogeneous and that our kyanite
300 sample was chemically zoned. We selected samples that were close to the location where the LA-ICPMS
301 analysis was performed but, given the zonation, it is likely that the samples that were loaded into the DAC
302 had trace element concentrations that differed from the ICPMS analysis spot. However, it has been
303 reported that the Cr concentration in natural kyanite samples with strong narrow emission bands can be
304 very low, with emission observed from samples with less than 0.001 Cr^{3+} per formula unit (Platonov et al.
305 1998; Gaft et al. 2015). Thus, the quantum efficiency of Cr^{3+} emission in kyanite is likely quite high, in
306 accord with the assumptions of Wojtowicz (1991). The wavelength of the emission bands we observe at
307 both 77 K and 298 K under steady state excitation agree well with previous time resolved luminescence
308 measurements reported by Gaft et al. (2015). Gaft et al. (2015) report that the decay times of the emission
309 bands are consistent with emission from Cr^{3+} . Therefore, in accord with Gaft et al. (2015), all of our
310 assignments assume that Cr^{3+} is the luminescing species responsible for the observed emission bands. We
311 do note, as did Gaft et al. (2015), that a detailed investigation of synthetic kyanites with different Cr and
312 V concentrations is still needed to fully characterize if emission bands from V^{2+} are observed in kyanite.

313

314 **Figure 7.** Representative steady state Cr^{3+} luminescence spectra of kyanite 298 K and 77 K. Note that the
 315 R_2 emission bands are not entirely quenched in the 77 K spectrum.

316

317 Previous assignments of the emission bands have not been straightforward; as discussed above,
 318 kyanite has four unique octahedral sites (Figure 6), the chain octahedra (M1 and M2) and the chain-
 319 connecting octahedra (M3 and M4). Langer and Seifert (1971) noted that from a geometric point of view,
 320 there is no reason why Cr^{3+} would prefer one group of sites over the other. However, based on a
 321 comparison between observed quotients of structure factors to those calculated from different models
 322 of Cr^{3+} distribution, the best agreement is found when Cr^{3+} does not occupy the M4 site (Langer and
 323 Seifert, 1971). Wojtowicz (1991) examined Cr-kyanite using a combination of absorption, steady state,
 324 time resolved, and luminescence decay measurements and found that Cr^{3+} emission is observed from 3
 325 of the 4 octahedral sites, with M4 being “dark.” Wojtowicz (1991) proposed that the M4 site could contain
 326 Cr^{3+} but that the center might be dark (non-emitting) if the Bartram-Stoneham criterion is fulfilled

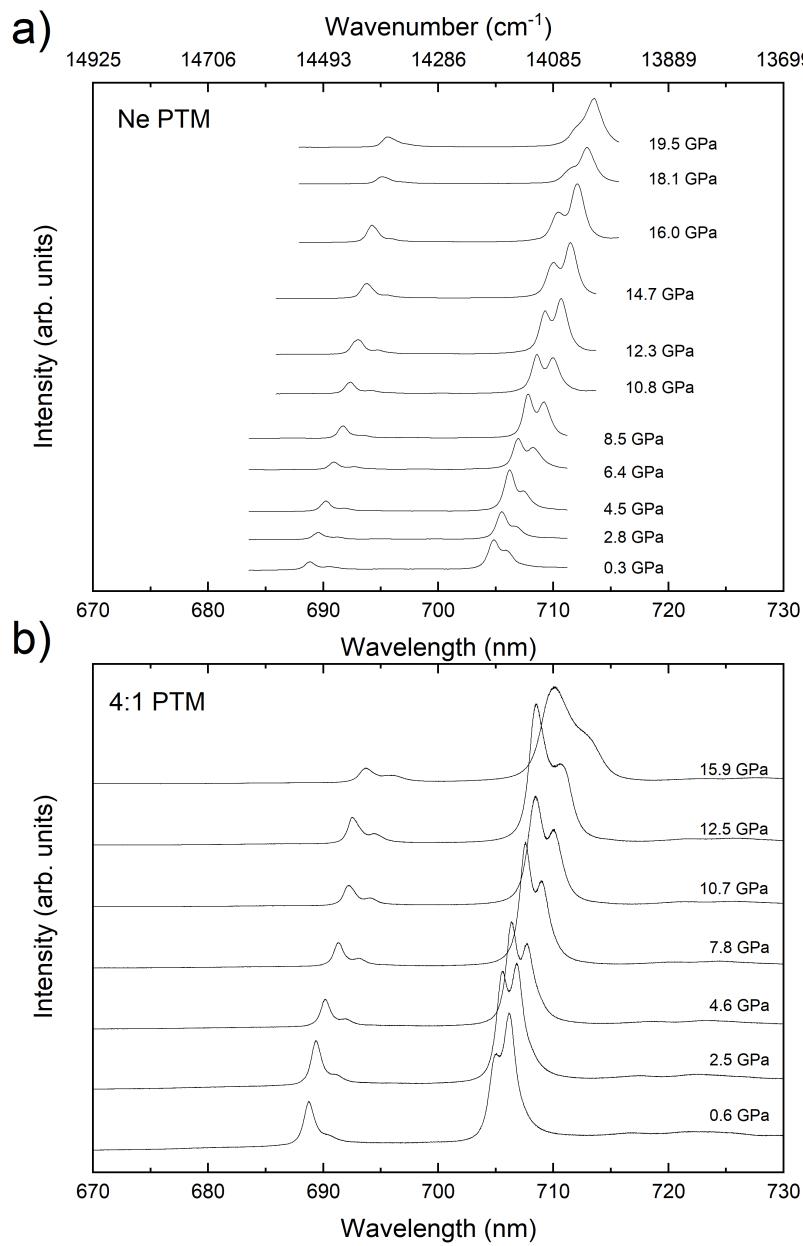

327 (Bartram and Stoneham, 1975). However, Wojtowicz (1991) found that the Bartram-Stoneham criterion
328 was not fulfilled for the M4 site and note that the larger Cr³⁺ ion may not substitute easily into the highest
329 field site (smallest volume site). For comparison, Yeung et al. (1994) conducted a crystal field analysis of
330 the kyanite absorption, emission and excitation spectra and concluded that substitution of Cr³⁺ into the
331 M4 site was unlikely. Three magnetically inequivalent sites were identified in kyanite using electron
332 paramagnetic resonance spectroscopy (Hutton and Troup, 1964), again supporting the presence of one
333 unoccupied site. From a simple crystal structure perspective, M4 is not only the smallest volume site but
334 also the least distorted site (QE = 1.013 and AV = 41.9) meaning Cr³⁺ would be more likely to substitute
335 into the other sites first.

336 Our 77 K spectrum offers additional insight into the nature of the emission bands near 688 nm.
337 At 26 K, Wojtowicz (1991) did not observe these emission bands: they were quenched to the degree that
338 they were not resolved, and they are quite low amplitude (yet resolved) in the spectrum at 16 K of Czaja
339 et al. (1995). At 77 K, they are clearly observed, which is strong evidence that these emission bands can
340 be assigned as the R₂ component of the split ²E emission band. The site nomenclature previously used by
341 different authors in the spectroscopic literature is inconsistent; we use the mineralogically accepted site
342 nomenclature M1-M4 for the four unique octahedral sites in kyanite. Our assignments are based on (1)
343 site volumes, (2) site distortions, (3) intensity of the emission bands, and (4) the assumption that Cr³⁺ does
344 not substitute into the M4 site. We assign the lower wavelength peak near 688 nm and the higher
345 wavelength peak near 705 nm (the strong outer bands in Figure 7) to R₂ and R₁ originating from the M1
346 site; this is in accord with the preferred assignment of Yeung et al. (1994). The higher wavelength peak
347 near 688 nm and the lower wavelength peak near 705 nm to R₂' and R₁' are assigned as being associated
348 with the M2 site (See figure 7). That the QE of M1 and M2 are identical (M1 and M2 QE = 1.016) and their
349 angle variance is similar (M1 AV = 47.7 and M2 AV = 50.8), coupled with the locations and splittings of the
350 two sets of bands being generally similar, provides support for our assignments. These assignments are

351 also in accord with those of the absorption spectrum of blue Tanzanian kyanite of Wildner et al. (2013).
352 The interpretation that the splitting of the emission bands is derived from Cr occupancy within two sites,
353 while in accord with the assignments of Yeung et al. (1994), Czaja et al. (1995), Wojtowicz (1991) and
354 Wildner et al. (2013), is at odds with that of Platonov et al. (1998), who attributed the splitting to a
355 superposition of kyanite emission and emission from a corundum-type exsolving solid solution. Notably,
356 the substitutional behavior of Cr in kyanite may shift at very high Cr contents: in synthetic samples with
357 more than a 1:1 Cr/Al ratio, Hejny et al. (2019) observed a preference of Cr for the M3 site. Within more
358 dilute, natural abundance samples (and perhaps within more dilute synthetic samples: Langer and Seifert,
359 1971), the spectroscopic consensus is that Cr substitution into the M1 and M2 sites predominates. Thus,
360 while emission from Cr-substitution in M1 and M2 clearly dominate the spectrum, there may be evidence
361 of Cr³⁺ emission from the M3 site manifested as the ⁴T₂ emission band (in the 77 K spectrum): a broad
362 feature centered near 770 nm (Czaja et al., 1995), indicating a weaker crystal field at this site. This is in
363 line with crystal structure data which show that M3 is both the largest metal site and the most distorted
364 (QE= 1.019 and AV= 58.0). However, attempts to follow this broad emission band under pressure were
365 unsuccessful.

366 We observed differences in the luminescence spectra with different orientations of the sample
367 with respect to the polarization direction of the laser excitation. Our kyanite sample displayed the typical
368 elongated columnar crystal habit, which was easily seen in the small single crystals that were cut from the
369 main specimen. Therefore, the *a*-axis was commonly parallel to the incident laser during our
370 measurements and the *b-c* plane was perpendicular to the laser probe. In our ambient measurements,
371 the R₁ peak intensity was lower than the R₂ peak intensity when the *c*-axis was perpendicular to the
372 polarization direction of the laser beam. When the *c*-axis was parallel to the polarization direction of the
373 laser, the R₁ peak intensities were greater than the R₂ peak intensities (Figure 8). These differences in the
374 Cr³⁺ luminescence spectra are most likely connected with the different distortions/orientations of the M1

375 and M2 sites which alternate along the *c*-axis oriented chains. Gaft et al. (2013c & 2015) also noted this
 376 polarization behavior in gem quality greenish kyanite and reported the same change in the relative
 377 intensities of R_1 and R_2 with different crystallographic orientations relative to the polarized laser probe.
 378 They suggest that the luminescence lines with long decay times are polarized in different directions.
 379 During our high-pressure measurements, spectra were collected in both orientations at each pressure
 380 step.



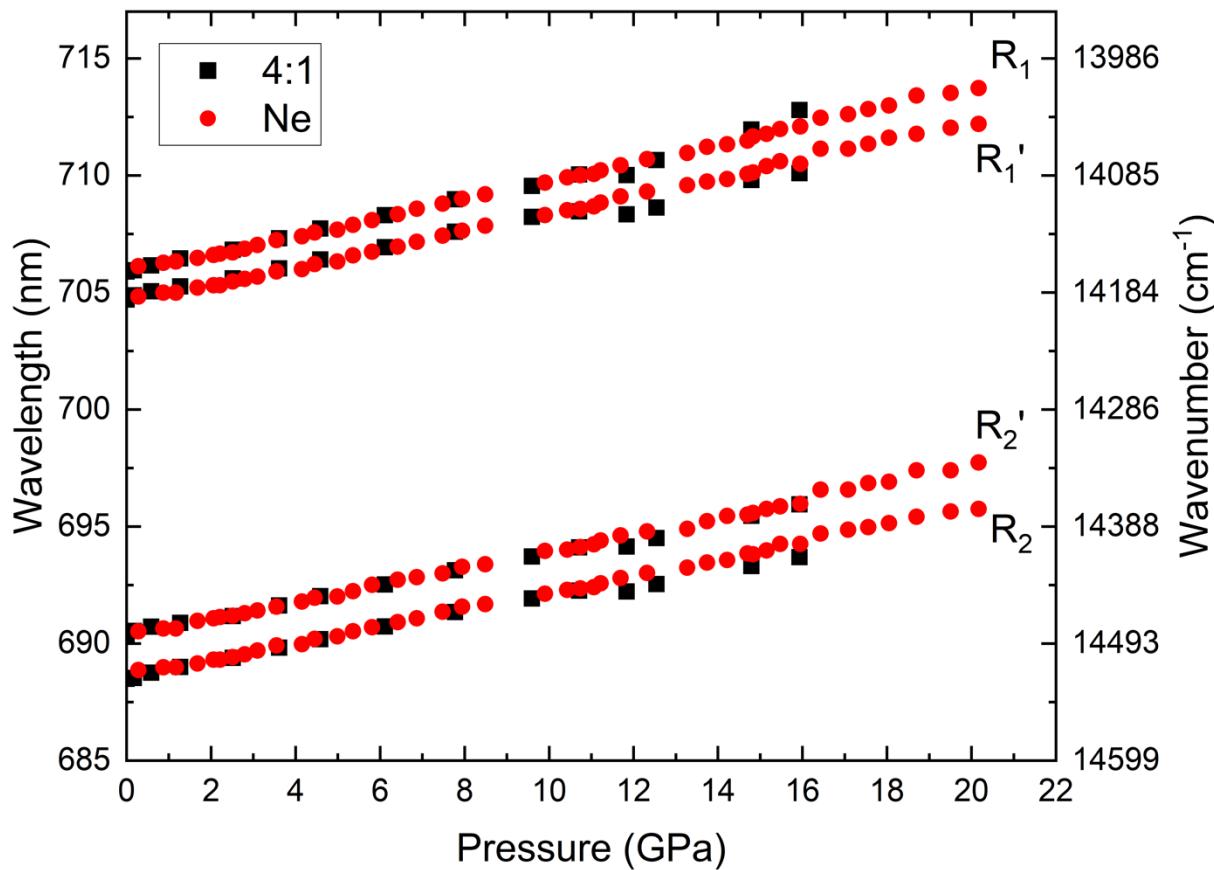
381
 382 **Figure 8.** Steady state luminescence spectra of kyanite at ambient conditions showing changes in relative
 383 intensities with the *c*-axis of the sample both perpendicular and parallel to the polarization direction of
 384 the laser excitation.

385
 386 Representative high pressure luminescence spectra from the parallel orientation compressed in
 387 both a Ne and 4:1 PTM are shown in Figure 9. There are no major differences (beyond relative band
 388 intensities and peak widths) in the luminescence spectra, or their pressure dependence, between the two
 389 runs in different PTM. In the 4:1 PTM run we collected spectra with the *c*-axis both parallel and

390 perpendicular to the laser polarization up to a maximum pressure of \sim 17 GPa. When the c-axis is parallel
391 to the polarization direction of the laser, the two sets of emission bands become well separated above \sim 1
392 GPa and can easily be tracked visually. For the perpendicular orientation (not shown), the R_2' component
393 is more difficult to visually track but can be deconvolved across the entire pressure range of these
394 measurements. Attempts to deconvolve the broad, longer wavelength 4T_2 emission bands associated with
395 both the M1 and M2 sites and possibly the M3 site were unsuccessful. The full width at half maximum
396 (FWHM) of R_1 at ambient conditions is \sim 25 cm^{-1} and in the 4:1 run it remains essentially constant under
397 compression up to \sim 10 GPa. Above this pressure, the FWHM of R_1 begins to increase, reaching \sim 46 cm^{-1}
398 at \sim 16 GPa. In the Ne run, the FWHM of R_1 ranges from \sim 23-28 cm^{-1} across the entire pressure range, and
399 no discontinuous changes or changes in slope are observed. This can be seen clearly in Figure 9 by
400 comparing the spectra collected at \sim 16 GPa in the Ne and 4:1 PTM.

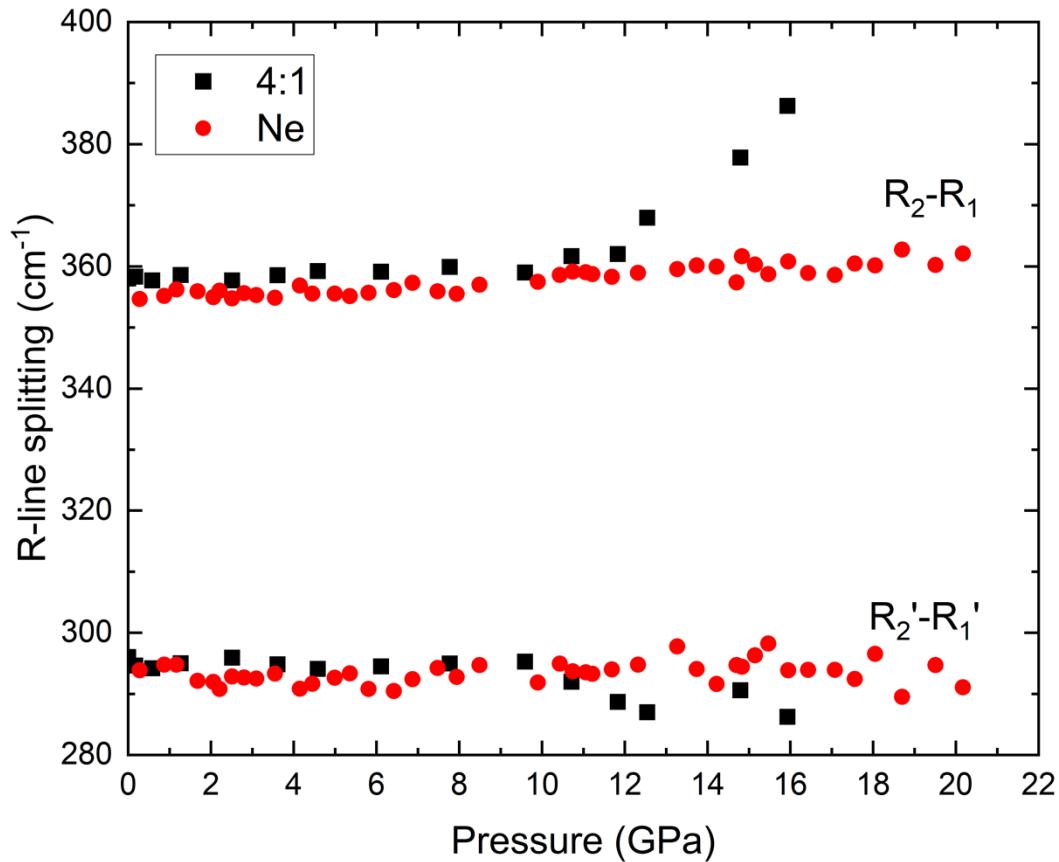
401

403 **Figure 9.** Representative high-pressure Cr^{3+} luminescence spectra of kyanite collected (a) in a Ne PTM with
404 the c -axis roughly parallel to the laser polarization and (b) in a 4:1 PTM with the c -axis parallel to the laser
405 polarization.


406 The pressure shift of the R-lines from both the M1 and M2 sites for the parallel orientation from

408 the Ne and 4:1 PTM runs are shown in Figure 10. All the emission bands show a smooth increase in
409 wavelength as pressure is increased, and no discontinuities or significant changes in the slope are
410 observed up to 16 GPa. There is a slight dip in the trend of the R-lines above ~ 10 GPa in the 4:1 run, and

411 there may be a slight change in the slope above this pressure. In the Ne run, the R-lines shift essentially
412 linearly and no discontinuities or changes in slope are observed up to ~20 GPa. In the 4:1 run, the R-line
413 splitting from both the M1 and M2 sites remains essentially constant until about 10 GPa, where the
414 separation of the bands associated with the M1 site starts to increase, while it slightly decreases for those
415 generated by the M2 site (Figure 11). The sudden change in the R-line separation may be an indication of
416 a change in compression mechanism in which the M1 site becomes more distorted and the M2 site
417 becomes less distorted. However, in the run where a Ne PTM was used the R-line splitting for the M1 site
418 shows a very slight increase of $0.34(2) \text{ cm}^{-1}/\text{GPa}$ (which was determined from a non-weighted linear fit)
419 while the R-line splitting for the M2 sites remains essentially constant up to ~20 GPa. It is likely that the
420 observed changes in the kyanite luminescence spectra from the 4:1 run are due to the onset of non-
421 hydrostatic conditions above ~10 GPa. It is well known that 4:1 methanol:ethanol undergoes a glass
422 transition at ~10.5 GPa and that pressure gradients form above this pressure (Klotz et al., 2009). Kyanite
423 appears to be particularly sensitive to the onset of non-hydrostatic conditions. It is clear from the high-
424 pressure run in a Ne PTM that the behavior observed above 10.5 GPa in the 4:1 run is anomalous. The
425 pressure shift of the R-lines as determined from non-weighted linear fits to the Ne data are $R_1 = -7.86(3)$
426 $\text{cm}^{-1}/\text{GPa}$, $R_1' = -7.67(4) \text{ cm}^{-1}/\text{GPa}$, $R_2 = -7.51(4) \text{ cm}^{-1}/\text{GPa}$, and $R_2' = -7.59(5) \text{ cm}^{-1}/\text{GPa}$. The relative
427 constancy of the R-line separation under pressure is in general accord with previous single-crystal X-ray
428 results to 4.7 GPa that showed that the quadratic elongation of the M1 and M2 sites either remained
429 constant (Comodi et al., 1997) or weakly decreased under compression (Yang et al., 1997).


430 Notably, two prior studies conducted reconnaissance investigations of the pressure shift of the R_1
431 line(s) of kyanite to 14 GPa (Mernagh and Liu, 1991; Parthasarathy, 1997). Both studies tracked only the
432 R_1 emission under pressure. Mernagh and Liu (1991) report that above pressures of 5 GPa a single
433 emission band with a weak shoulder on the high frequency side is observed, while Parthasarathy (1997)
434 report that the two R-lines merge at ~6 GPa with a single broad fluorescence peak observed to 14 GPa.

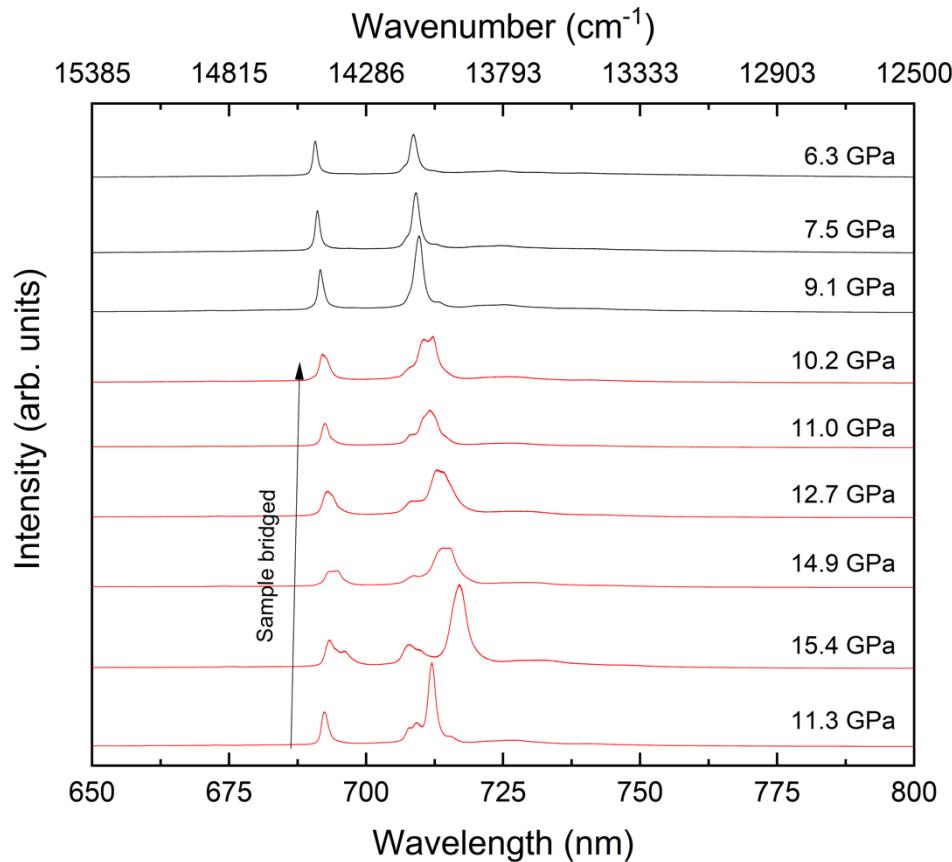
435 Parthasarathy (1997) also misassigns the two emission bands near 705 nm as R_1 and R_2 , which is
 436 inconsistent with this study and previous studies (Czaja et al., 1995; Wojtowicz, 1991). As discussed above
 437 and seen in Figure 9, the two R_1 components remain well separated across the entire pressure range of
 438 our new measurements when the c -axis of the sample is parallel or nearly parallel to the laser polarization.
 439 When the c -axis was perpendicular to the laser polarization, we also observe a decrease in intensity of the
 440 higher frequency component, and by ~10 GPa the emission band is asymmetrical but both components
 441 can still be deconvolved. It is possible that the merging of the peaks reported by Mernagh and Liu (1991)
 442 and Parthasarathy (1997) is the result of changes in sample orientation between pressure steps.

443

444 **Figure 10.** R-line peak positions of kyanite as a function of pressure from two runs; one in a 4:1 PTM and
 445 one in a Ne PTM. R_1 and R_2 are associated with the M1 site, and R_1' and R_2' are from the M2 site.

446

447 **Figure 11.** R-line splitting as a function of pressure. For the sample compressed in a 4:1 PTM, the R-line
 448 splitting from the M1 site begins to increase above ~10 GPa, and the M2 site shows a slight decrease
 449 above 10 GPa. For the sample compressed in a Ne PTM, the R-line splitting changes minimally for both
 450 sites up to ~20 GPa.


451 Recently, a phase transition was reported to occur at 9.7 GPa in kyanite (Gao et al., 2020). Gao et
 452 al. (2020) used either a KBr pressure medium or silicone oil pressure medium and collected both Raman
 453 and infrared spectra up to 18.6 GPa. They used the appearance of new peaks, discontinuous shifts in
 454 certain peaks and changes in the pressure-dependent slope of several peaks as evidence for a phase
 455 transition at ~9.7 GPa to a phase they termed kyanite-II. The present luminescence study, as well as
 456 previous vibrational and X-ray studies at room temperature and pressures up to 30 GPa, have not found
 457 evidence for any phase transitions in kyanite (Comodi et al., 1997; Friedrich et al., 2004; Liu et al., 2009;
 458 Mernagh and Liu, 1991; Yang et al., 1997). In particular, Mernagh and Liu (1991) conducted Raman
 459 spectroscopy to 14 GPa; Liu et al. (2009) performed powder diffraction to 17.5 GPa, and Yagi et al. (1998)

460 to 10.2 GPa. Friedrich et al. (2004) presented evidence for the persistence of kyanite to 30 GPa, with the
461 possible onset of a high-pressure transition above 30 GPa based on powder X-ray diffraction results. Gao
462 et al. (2020) offer three possible explanations for this discrepancy: (1) different PTM, (2) better spectral
463 resolution than previous studies, and (3) differences in trace element concentrations. Gao et al. (2020)
464 used KBr and silicone oil as their pressure media; each of these media is characterized by non-hydrostatic
465 gradients at low pressure conditions, with KBr supporting pressure gradients at low pressure conditions,
466 and silicone oil showing signs of pressure gradients above ~2.5 GPa (Klotz et al., 2009). Therefore, it is
467 possible that non-hydrostatic conditions may be at the root of this discrepancy. Differences in spectral
468 resolution between Gao et al. (2020) and (Mernagh and Liu, 1991) may be a possibility with respect to
469 Raman results, but it does not explain the non-observance of this transition in high-pressure powder
470 diffraction studies (Friedrich et al., 2004; Liu et al., 2009). Lastly, Gao et al. (2020) postulate that the very
471 low Fe content of their sample can possibly explain the phase transition, but the sample used in this study
472 and the study of Yagi et al., (1998) both had low Fe concentrations, and no evidence of the proposed
473 transition at 9.7 GPa was observed in either study.

474 The role of non-hydrostatic stress in generating (or inducing) possible phase transitions is
475 complex. If the proposed 9.7 GPa transition reported by Gao et al. (2020) is generated by non-hydrostatic
476 stress, then an extreme scenario would involve bridging of kyanite within the diamond cell. This would
477 introduce a complex stress field characterized by a large uniaxial component. Indeed, Gao et al. (2020)
478 loaded inhomogeneous thickness samples in a KBr pressure medium for Raman mapping of the
479 coexistence of kyanite and the proposed kyanite-II phases, with the rationale being “to generate a larger
480 concentration of stress”. In one of our spectroscopic experiments, the kyanite sample bridged between
481 the anvils, and we observed several new emission bands within this sample alone. In this run, we
482 compressed the sample directly to ~11 GPa and collected a spectrum (Figure 12). The new emission bands
483 in this spectrum indicated that a subset of the Cr³⁺ ions were present within octahedral sites with different

484 distortions and volumes than the M1 and M2 sites. Within this bridged sample, we increased the pressure
485 to above 15 GPa and collected another spectrum where additional emission bands were observed,
486 indicating that the new stress field had further modified the Cr³⁺ environments. On decompression, by ~
487 9.0 GPa, the sample was no longer bridged. All the spectra collected at ~9.0 GPa and below (within a
488 hydrostatic regime) showed the typical set of emission bands assigned to M1 and M2.

489 Importantly, uniaxial stress has long been known to generate structural changes that can induce
490 splitting of fluorescence lines (Imbusch et al., 1965). For example, ruby luminescence spectra collected
491 with different uniaxial stress applied along the direction $\Theta= 61\pm 2^\circ$ and $\omega=8\pm 2^\circ$ showed splitting due to
492 separation of the Cr³⁺ ions into two σ -sublattices (Monteil et al., 1984). Since our sample was oriented in
493 the DAC when the sample bridged, the applied uniaxial stress was along the a -direction. Thus, while the
494 predominant non-hydrostatic stress would likely be close-to-uniaxial, the full stress tensor in a bridged,
495 oriented sample within a pressure medium is not expected to be simple. The key point here is that Figure
496 12 demonstrates that particularly extreme non-hydrostatic stress in kyanite can induce reversible
497 structural changes within the first nearest neighbor coordination sphere relative to normal kyanite. We
498 speculate that this reversible behavior under differential stress could be driven by a soft shear mode
499 within kyanite's elastic tensor: however, constraints on the individual elastic constants of kyanite at high
500 pressure do not exist.

501

502 **Figure 12.** High pressure Cr^{3+} luminescence spectra of kyanite where the sample bridged between the
 503 diamond anvils during the experiment. The red spectra (11.3 to \sim 10.2 GPa, bottom six spectra) were
 504 collected while the sample was bridged. In the black spectra (9.1 to 6.3 GPa), the sample was no longer
 505 bridged between the diamond anvils and the luminescence spectra show emission bands from only the
 506 M1 and M2 sites.

507 **Conclusions**

508 The Cr^{3+} luminescence spectra of zoisite and kyanite have been characterized up to 40 and 20
 509 GPa, respectively. These two minerals each have very large R-line splittings, and for zoisite the separation
 510 increases as pressure increases and more than triples from its ambient value by 40 GPa. For comparison,
 511 in kyanite the splitting remains virtually constant up to \sim 20 GPa when compressed in a Ne PTM. The
 512 markedly different behavior of the Cr^{3+} substituted octahedral sites (the M3 site in zoisite and the M1 and
 513 M2 sites in kyanite) indicate that the zoisite site increases dramatically in its distortion under pressure,
 514 while the two sites in kyanite are largely unchanged: each of these results are in accord with substantially

515 lower pressure single-crystal diffraction results and demonstrate that R-line luminescence is a particularly
516 sensitive probe of the octahedral metal sites. Notably, kyanite appears to be particularly sensitive to the
517 onset of non-hydrostatic conditions. Phase transitions are not observed in either zoisite or kyanite up to
518 the maximum pressure of each study, consistent with most previous studies. Lastly, we illustrate that the
519 stress field of the sample is important for possible structural changes within kyanite, and that non-
520 hydrostatic/nearly uniaxial stress components can produce anomalous luminescence and structural
521 results in this material.

522 **Acknowledgements**

523 We thank Rob Franks for help with LA-ICPMS measurements, Dan Sampson for help with the
524 Raman spectrometer, and two anonymous reviewers for helpful comments on the manuscript. A portion
525 of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore
526 National Laboratory under Contract No. DE-AC52-07NA27344. Work partially supported by NSF through
527 EAR-1620423 and EAR-2017294, and COMPRES under NSF Cooperative Agreement EAR 11-57758.

528 **Author Contributions**

529 E.F.O. prepared and carried out the experiments. E.F.O. carried out the data analysis with input
530 from Q.W. E.F.O. and Q.W. wrote the manuscript.

531 **Competing Interests**

532 The authors declare no competing interests.

533 **References**

534 Ahmed-Zaid, I., and Madon, M. (1991) A high-pressure form of Al_2SiO_5 as a possible host of aluminum in
535 the lower mantle. *Nature*, 353(6343), 426-428.

536 Alvaro, M., Angel, R.J., and Camara, F. (2012) High-pressure behavior of zoisite. *American Mineralogist*,
537 97(7), 1165-1176.

538 Arlt, T., and Angel, R.J. (2000) Displacive phase transitions in C-centred clinopyroxenes: spodumene,
539 $\text{LiScSi}_2\text{O}_6$ and ZnSiO_3 . *Physics and Chemistry of Minerals*, 27(10), 719-731.

540 Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Giere, R., Heuss-Assbichler, S.,
541 Liebscher, A., Menchetti, S., Pan, Y., and Pasero, M. (2006) Recommended nomenclature of
542 epidote-group minerals. *European Journal of Mineralogy*, 18(5), 551-567.

543 Bartram, R.H., and Stoneham, A.M. (1975) Luminescence and absence of luminescence of F centers.
544 *Solid State Communications*, 17(12), 1593-1598.

545 Burnham, C.W. (1963) Refinement of the crystal structure of kyanite. *Zeitschrift Fur Kristallographie*,
546 118, 337-360.

547 Burns, R. (1993) Mineralogical applications of crystal field theory. Cambridge University Press.

548 Camara, F., Gatta, G.D., Meven, M., and Pasqual, D. (2012) Thermal expansion and high temperature
549 structure evolution of zoisite by single-crystal X-ray and neutron diffraction. *Physics and
550 Chemistry of Minerals*, 39(1), 27-45.

551 Chai, M., and Brown, J.M. (1996) Effects of static non-hydrostatic stress on the R lines of ruby single
552 crystals. *Geophysical Research Letters*, 23(24), 3539-3542.

553 Chervin, J.C., Canny, B., and Mancinelli, M. (2001) Ruby-spheres as pressure gauge for optically
554 transparent high pressure cells. *International Journal of High Pressure Research*, 21(6), 305-314.

555 Chopelas, A., and Nicol, M. (1982) Pressure dependence to 100 kilobars of the phonons of MgO at 90 K
556 and 295 K. *Journal of Geophysical Research*, 87(NB10), 8591-8597.

557 Comodi, P., and Zanazzi, P.F. (1997) The pressure behavior of clinozoisite and zoisite: An X-ray diffraction
558 study. *American Mineralogist*, 82(1-2), 61-68.

559 Comodi, P., Zanazzi, P.F., Poli, S., and Schmidt, M.W. (1997) High-pressure behavior of kyanite:
560 Compressibility and structural deformations. *American Mineralogist*, 82(5-6), 452-459.

561 Czaja, M., Marzurak, Z., and Lukowiak, E. (1995) Spectroscopic properties and crystal-field analysis of
562 Cr^{3+} ions in kyanite Al_2SiO_5 . *Journal of Applied Spectroscopy*, 62(4), 648-655.

563 d'Amour, H., Schiferl, D., Denner, W., Schulz, H., and Holzapfel, W.B. (1978) High-pressure single-crystal
564 structure determinations for ruby up to 90 kbar using an automatic diffractometer. *Journal of
565 Applied Physics*, 49(8), 4411-4416.

566 Dewaele, A., Torrent, M., Loubeyre, P., and Mezouar, M. (2008) Compression curves of transition metals
567 in the Mbar range: Experiments and projector augmented-wave calculations. *Physical Review B*,
568 78(10).

569 Dobrzhinetskaya, L.F., and Green, H.W. (2007) Experimental studies of mineralogical assemblages of
570 metasedimentary rocks at Earth's mantle transition zone conditions. *Journal of Metamorphic
571 Geology*, 25(2), 83-96.

572 Dollase, W.A. (1968) Refinement and comparison of structures of zoisite and clinozoisite. *American
573 Mineralogist*, 53(11-1), 1882-&.

574 -. (1969) Crystal structure and cation ordering of piemontite. *American Mineralogist*, 54(5-6), 710-&.

575 -. (1971) Refinement of the crystal structures of epidote, allanite, and hancockite. *American
576 Mineralogist*, 56(3-4), 447-&.

577 -. (1973) Mossbauer spectra and iron distribution in epidote-group minerals. *Zeitschrift Fur
578 Kristallographie*, 138, 41-63.

579 Finger, L.W., and Hazen, R.M. (1978) Crystal-structure and compression of ruby to 46 kbar. *Journal of*
580 *Applied Physics*, 49(12), 5823-5826.

581 Forneris, J.F., and Holloway, J.R. (2003) Phase equilibria in subducting basaltic crust: implications for H₂O
582 release from the slab. *Earth and Planetary Science Letters*, 214(1-2), 187-201.

583 -. (2004) Evolution of mineral compositions during eclogitization of subducting basaltic crust. *American*
584 *Mineralogist*, 89(10), 1516-1524.

585 Fresenko, E.G., Rumanova, I.M., and Belov, N.V. (1955) The crystal structure of zoiste. *Dokl. Acad. Sci.*
586 *USSR*, 102, 275-278.

587 Friedrich, A., Kunz, M., Winkler, B., and Le Bihan, T. (2004) High-pressure behavior of sillimanite and
588 kyanite: compressibility, decomposition and indications of a new high-pressure phase.
589 *Zeitschrift Fur Kristallographie*, 219(6), 324-329.

590 Gaft, M., Nagli, L., Panczer, G., & Rossman, G. (2013). Long-lived laser induced time-resolved
591 luminescence of Cr³⁺ in kyanite Al₂SiO₅. *Journal of Spectroscopy and Dynamics*, 3, 22-29.

592 Gaft, M., Reisfeld, R., and Panczer, G. (2015) Modern luminescence spectroscopy of minerals and
593 materials. Springer.

594 Gao, J., Wu, W.H., Jia, L.H., Wang, C.P., Liu, Y.X., Xu, C.W., Chen, F., Fei, C.H., and Su, W. (2020) Raman
595 and infrared spectra to monitor the phase transition of natural kyanite under static
596 compression. *Journal of Raman Spectroscopy*, 51(10), 2102-2111.

597 Ghose, S., and Tsang, T. (1971) Ordering of V²⁺, Mn²⁺ and Fe³⁺ ions in zoisite Ca₂Al₃Si₃O₁₂(OH). *Science*,
598 171(3969), 374-&.

599 Grapes, R.H. (1981) Chromian epidote and zoisite in kyanite amphibolite, Southern Alps, New Zealand.
600 *American Mineralogist*, 66(9-10), 974-975.

601 Gupta, Y.M., and Shen, X.A. (1991) Potential use of the ruby R₂ line shift for static high-pressure
602 calibration. *Applied Physics Letters*, 58(6), 583-585.

603 Hazen, R.M., Au, A.Y., and Finger, L.W. (1986) High-pressure crystal chemistry of beryl (Be₃Al₂Si₆O₁₈) and
604 euclase (BeAlSiO₄OH). *American Mineralogist*, 71(7-8), 977-984.

605 Hejny, C., Konzett, J., Pippinger, T., Klotz, T., and Miletich, R. (2019) Pressure-enforced Cr substitution in
606 Cr_{1+x}Al_{1-x}O(SiO₄), synthetic analogues of kyanite. *Physics and Chemistry of Minerals*, 46, 583-594.

607 Hua, H., Ueda, J., Xu, J., Back, M., and Tanabe, S. (2021) High-Pressure Photoluminescence Properties of
608 Cr³⁺-Doped LaGaO₃ Perovskites Modulated by Pressure-Induced Phase Transition. *Inorganic*
609 *Chemistry*.

610 Hutton, D.R., and Troup, G.J. (1964) Paramagnetic resonance of Cr³⁺ in kyanite. *British Journal of Applied*
611 *Physics*, 15(3), 275-&.

612 Imbusch, G.F., Schawlow, A.L., May, A.D., and Sugano, S. (1965) Fluorescence of MgO: Cr³⁺ ions in
613 noncubic sites. *Physical Review*, 140(3A), A830.

614 Ito, T.I. (1950) X-ray studies on polymorphism. Maruzen Company, Limited.

615 Jahren, A.H., Kruger, M.B., and Jeanloz, R. (1992) Alexandrite as a high-temperature pressure calibrant,
616 and implications for the ruby pressure scale. *Journal of Applied Physics*, 71(4), 1579-1582.

617 Jenei, Zs., Cynn, H., Visbeck, K., and Evans, W.J. (2013) High-temperature experiments using a resistively
618 heated high-pressure membrane diamond anvil cell. *Review of Scientific Instruments*, 84(9).

619 Jovanic, B.R. (2000) Effect of high pressure on fluorescence lifetime and position for R1 line in synthetic
620 spinel MgAl₂O₄ : Cr³⁺. In D.P. Uskokovic, G.A. Battiston, J.M. Nedeljkovic, S.K. Milonjic, and D.I.
621 Rakovic, Eds. *Trends in Advanced Materials and Processes*, 352, p. 247-250.

622 Klotz, S., Chervin, J.C., Munsch, P., and Le Marchand, G. (2009) Hydrostatic limits of 11 pressure
623 transmitting media. *Journal of Physics D-Applied Physics*, 42(7).

624 Kottke, T., and Williams, F. (1983) Pressure dependence of the alexandrite emission spectrum. *Physical*
625 *Review B*, 28(4), 1923-1927.

626 Koziarska, B., Godlewski, M., Suchocki, A., Czaja, M., and Mazurak, Z. (1994) Optical properties of zoisite.
627 Physical Review B, 50(17), 12297-12300.

628 Langer, K., and Seifert, F. (1971) High Pressure - High Temperature - Synthesis and properties of
629 chromium kyanite, $(\text{Al},\text{Cr})_2\text{SiO}_5$. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 383(1), 29-
630 &.

631 Liu, X., Shieh, S.R., Fleet, M.E., and Zhang, L. (2009) Compressibility of a natural kyanite to 17.5 GPa.
632 Progress in Natural Science, 19(10), 1281-1286.

633 Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-
634 hydrostatic conditions. Journal of Geophysical Research-Solid Earth and Planets, 91(B5), 4673-
635 4676.

636 Mernagh, T.P., and Liu, L.G. (1991) Raman spectra from the Al_2SiO_5 polymorphs at high pressures and
637 room temperature. Physics and Chemistry of Minerals, 18(2), 126-130.

638 Merrill, L., and Bassett, W.A. (1974) Miniature diamond anvil cell for single-crystal X-ray diffraction
639 studies. Review of Scientific Instruments, 45(2), 290-294.

640 Mills, S.J., Hatert, F., Nickel, E.H., and Ferraris, G. (2009) The standardisation of mineral group
641 hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy,
642 21(5), 1073-1080.

643 Monteil, A., Duval, E., Attar, A., Viliani, G., and Lacroix, R. (1984) Splitting of the ruby fluorescence under
644 stress. Journal De Physique Lettres, 45(22), 1097-1101.

645 Nagashima, M., Geiger, C.A., and Akasaka, M. (2009) A crystal-chemical investigation of clinozoisite
646 synthesized along the join $\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12}(\text{OH})$ - $\text{Ca}_2\text{Al}_2\text{CrSi}_3\text{O}_{12}(\text{OH})$. American Mineralogist, 94,
647 1351-1360.

648 Naray-Szabo, S., Taylor, W.H., and Jackson, W.W. (1929) The structure of kyanite. Zeitschrift Fur
649 Kristallographie, 71, 117-130.

650 Nicholls, L.A., and Ringwood, A.E. (1973) Effect of water on olivine stability in tholeiites and production
651 of silica-saturated magmas in island-arc environment. Journal of Geology, 81(3), 285-300.

652 O'Bannon, E., III, Beavers, C.M., Kunz, M., and Williams, Q. (2018) High-pressure study of dravite
653 tourmaline: Insights into the accommodating nature of the tourmaline structure. American
654 Mineralogist, 103(10), 1622-1633.

655 O'Bannon, E., III, and Williams, Q. (2016a) Beryl-II, a high-pressure phase of beryl: Raman and
656 luminescence spectroscopy to 16.4 GPa. Physics and Chemistry of Minerals, 43(9), 671-687.

657 -. (2016b) A Cr^{3+} luminescence study of spodumene at high pressures: Effects of site geometry, a phase
658 transition, and a level-crossing. American Mineralogist, 101(5-6), 1406-1413.

659 -. (2017) Delocalization in Cr^{3+} luminescence of clinochlore: A pressure-induced transition from single-
660 ion emission to pair emission. Journal of Physics and Chemistry of Solids, 109, 89-99.

661 O'Bannon, E.F., III, and Williams, Q. (2019) A Cr^{3+} luminescence study of natural topaz $\text{Al}_2\text{SiO}_4(\text{F},\text{OH})_2$ up
662 to 60 GPa. American Mineralogist, 104(11), 1656-1662.

663 Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions:
664 Implications for water transport in subduction zones. Journal of Geophysical Research-Solid
665 Earth, 103(B8), 18253-18267.

666 Ono, S., Nakajima, Y., and Funakoshi, K. (2007) In situ observation of the decomposition of kyanite at
667 high pressures and high temperatures. American Mineralogist, 92(10), 1624-1629.

668 Parthasarathy, G. (1997) High-pressure behaviour of chromium ion as a fluorescing cation in Earth
669 materials. Advances in High Pressure Science and Technology: Proceedings of the Fourth
670 National Conference on High Pressure Science and Technology. University Press, Indira Gandhi
671 Center for Atomic Research, Kalpakkam.

672 Peacock, S.M. (1990) Fluid processes in subduction zones. Science, 248(4953), 329-337.

673 Platonov, A.N., Tarashchan, A.N., Langer, K., Andrus, M., Partzsch, G., and Matsyuk, S.S. (1998) Electronic
674 absorption and luminescence spectroscopic studies of kyanite single crystals: differentiation
675 between excitation of FeTi charge transfer and Cr³⁺ dd transitions. *Physics and Chemistry of
676 Minerals*, 25(3), 203-212.

677 Poli, S., and Schmidt, M.W. (1998) The high-pressure stability of zoisite and phase relationships of
678 zoisite-bearing assemblages. *Contributions to Mineralogy and Petrology*, 130(2), 162-175.

679 Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of
680 distortion in coordination polyhedra. *Science*, 172(3983), 567-&.

681 Schmidt, M.W., and Poli, S. (1994) The stability of lawsonite and zoisite at high-pressure: Experiments
682 in CASH to 92 kbar and implications for the presence of hydrous phases in subducted
683 lithosphere. *Earth and Planetary Science Letters*, 124(1-4), 105-118.

684 Schmidt, M.W., Poli, S., Comodi, P., and Zanazzi, P.F. (1997) High-pressure behavior of kyanite:
685 Decomposition of kyanite into stishovite and corundum. *American Mineralogist*, 82(5-6), 460-
686 466.

687 Smith, J.V., Pluth, J.J., Richardson, J.W., and Kvick, A. (1987) Neutron diffraction study of zoisite at 15 K
688 and X-ray study at room temperature. *Zeitschrift Fur Kristallographie*, 179(1-4), 305-321.

689 Syassen, K. (2008) Ruby under pressure. *High Pressure Research*, 28(2), 75-126.

690 Tanabe, Y., and Sugano, S. (1954) On the absorption spectra of complex ions I. *Journal of the Physical
691 Society of Japan*, 9(5), 753-766.

692 Wamsley, P.R., and Bray, K.L. (1994) The effect of pressure on the luminescence of Cr³⁺ - YAG. *Journal of
693 Luminescence*, 59(1-2), 11-17.

694 Weinstein, B.A. (1986) Ruby thermometer for cryobaric diamond anvil cell. *Review of Scientific
695 Instruments*, 57(5), 910-913.

696 Welch, M.D., and Marshall, W.G. (2001) High-pressure behavior of clinochlore. *American Mineralogist*,
697 86(11-12), 1380-1386.

698 Wildner, M., Beran, A., and Koller, F. (2013) Spectroscopic characterisation and crystal field calculations
699 of varicoloured kyanites from Loliondo, Tanzania. *Mineralogy and Petrology*, 107(2), 289-310.

700 Winkler, B., Langer, K., and Johannsen, P.G. (1989) The influence of pressure on the OH valence
701 vibration of zoisite: An infrared spectroscopic study. *Physics and Chemistry of Minerals*, 16(7),
702 668-671.

703 Wojtowicz, A.J. (1991) Luminescence of Cr³⁺ in kyanite. *Journal of Luminescence*, 50(4), 221-230.

704 Xu, J., Zhang, D., Fan, D., Wu, X., Shi, F., and Zhou, W. (2019) Compressional behavior of natural eclogitic
705 zoisite by synchrotron X-ray single-crystal diffraction to 34 GPa. *Physics and Chemistry of
706 Minerals*, 46(4), 333-341.

707 Yagi, T., Inutsuka, S., and Kondo, T. (1998) Isothermal compression curve of Al₂SiO₅ kyanite. 5th US/Japan
708 Seminar on High Pressure-Temperature Research - Properties of Earth and Planetary Materials,
709 101, p. 281-286, Maui, Hi.

710 Yang, H.X., Downs, R.T., Finger, L.W., Hazen, R.M., and Prewitt, C.T. (1997) Compressibility and crystal
711 structure of kyanite, Al₂SiO₅, at high pressure. *American Mineralogist*, 82(5-6), 467-474.

712 Yeung, Y.Y., Qin, J., Chang, Y.M., and Rudowicz, C. (1994) Correlation of spectroscopic properties and
713 substitutional sites of Cr³⁺ in aluminosilicates: I. Kyanite. *Physics and Chemistry of Minerals*,
714 21(8), 526-531.

715 Zhou, Y., Irifune, T., and Kurabayashi, T. (2021) Phase relations of the Al₂O₃-SiO₂ system at 13-21 GPa and
716 2300-2800 K and a new high-pressure Al₂Si₂O₇ phase. *Physics and Chemistry of Minerals*, 48(7).

717 Zhou, Y., Irifune, T., Ohfuchi, H., and Kurabayashi, T. (2018) New high-pressure forms of Al₂SiO₅.
718 *Geophysical Research Letters*, 45(16), 8167-8172.

