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Abstract. This paper addresses the overdetermined problem of in-
verting the n-dimensional cone (or Compton) transform that integrates
a function over conical surfaces in Rn. The study of the cone transform
originates from Compton camera imaging, a nuclear imaging method for
the passive detection of gamma-ray sources. We present a new identity
relating the n-dimensional cone and Radon transforms through spherical
convolutions with arbitrary weight functions. This relationship, which
generalizes a previously obtained identity, leads to various inversion for-
mulas in n-dimensions under a mild assumption on the geometry of
detectors. We present two such formulas along with the results of their
numerical implementation using synthetic phantoms. Compared to our
previously discovered inversion techniques, the new formulas are more
stable and simpler to implement numerically.

1. Introduction

We address analytic inversion of the cone transform that is defined for a
function f on Rn by

Cfpu,�, q “
ª

Su,�, 

fpxqdSpxq,(1)

where dSpxq denote the Lebesgue measure on the surface cone
Su,�, “ tx P Rn : px ´ uq ¨ � “ |x ´ u| cos u.

Here, u P D Ä Rn denotes the vertex (apex) of a cone and D is the set of cone
vertices (which can be lower dimensional than n), � P Sn´1 is cone’s central
axis direction and  P p0,⇡q is the (half-)opening angle (see fig. 1(b)). We
denote the unit sphere in Rn by Sn´1, and its area by |Sn´1| (we consider
|S0| “ 2).

In the case that the support of the integrand f is required to be disjoint
from the set of cone vertices D, the integral (1) is also called the Comp-
ton transform. This terminology is due to that the data provided by a
�-ray detection system called Compton camera (fig. 1(b)) can be modeled
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as (weighted) integrals of the radiation source distribution over conical sur-
faces having vertex on the scattering detector. Hence, one can obtain the
source distribution map by inverting the Compton transform. More infor-
mation about Compton camera imaging can be found, for example, in [1–8]
and references there.

In the integral model of the realistic Compton camera measurements, one
may need to include some non-unit integration weights [4, 9]. Variations of
(1) corresponding to different integration weights, some of which originated
from the Compton imaging application, were considered in [4, 7, 10–13, and
references therein]. Some analytic properties of the cone transform were
studied in [12,14,15].

Cone transform inversion is an overdetermined problem because the di-
mension of the space of cones in Rn is equal to n+dim(D), which is greater
than n unless D is a singleton. Therefore, it is expected that there would
be multiple left inversions that agree on the ideal measurements but behave
differently in the case of noisy measurements. Several inversion formulas for
the cone transform with pure surface measure on the cone exist in the lit-
erature ( [1–3, 7, 16–27, see also their references]). In some of the references
listed above, an n´dimensional subset of the space of cones was chosen and
hence a unique inversion formula was derived. In this paper, we consider all
possible cones with vertices in a given set D, and eliminate the extra param-
eters by averaging over them later in the reconstruction process. This has
the advantage of reducing the noise present in the forward data and hence
stabilizing the reconstruction. We also note that the developed formulas are
independent of the geometry of the vertex set D as long as it satisfies a
nonrestrictive assumption.

To the author’s knowledge, inverting the cone transform by exploiting its
relation with the Radon transform was first proposed in [3]. Later, in [7],
the three-dimensional cone and the Radon transforms were linked via an
integral identity involving integration of the cone transform with respect to
the opening angles and convolution of the Radon transform with respect to
the affine variable. A generalization of this integral relation for weighted cone
transforms in n-dimensions was presented in [11]. In a previous work, we
formulated yet another relation between the cone and the Radon transforms:
the sine-weighted average of the cone transform of a function with respect to
opening angles is a special spherical convolution (called the cosine transform)
of the Radon transform of that function (see [20, Theorem 5]). This led to a
new reconstruction procedure based on the inversion of the cosine transform
[20,21]. Although we were able to successfully reconstruct the images, doing
so was difficult due to the differentiations that the algorithm required. In
this paper, we generalize this relation in such a way that it admits arbitrary
spherical convolution kernels. The flexibility in the choice of the convolution
kernel leads to a wider variety of inversion methods, some of which, as we
show, are more stable and simpler than the previous formula obtained in
[20,21].
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(a) (b)

Figure 1. Schematic representation of (a) Compton scattering princi-

ple and (b) a planar Compton camera consisting of double layer position

and energy sensitive detectors. When an incoming gamma photon hits

the camera, it undergoes Compton scattering in the front detector (scat-

terer) and photoelectric absorption in the second detector (absorber).

The recorded energies and the positions of interactions on both detectors

provide a cone of possible incident directions of the gamma-ray.

The paper is organized as follows. In section 2, we recall some relevant
integral transforms and their properties. Section 3 includes the formulation
of the integral identity relating n-dimensional cone and Radon transforms
via spherical convolutions (theorem 3.1). In section 4, we outline how this
relation can be used in deriving a family of inversion formulas for the n-
dimensional cone transform. Then, we present two inversion formulas (the-
orems 4.1 and 4.4) and discuss the condition on the set of cone vertices
that guarantee stable reconstruction. Section 5 contains the results of the
numerical implementation of the proposed inversion formulas in dimension
three.

2. Preliminaries

We first recall that the n-dimensional Radon transform of a function f on
Rn is defined by the integral

Rfp!, sq “ Rsfp!q “
ª

x¨!“s

fpxqdx,(2)

where x ¨ ! “ s is the equation of the hyperplane orthogonal to ! P Sn´1

at the signed distance s P R from the origin. The following well known
inversion formula for the Radon transform will be useful in the sequel (see
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e.g. [28–30]). For any smooth fast decaying function f P SpRnq,

fpxq “ p2⇡q1´n

2

$
’’’’’&

’’’’’%

p´1qpn´1q{2
ª

Sn´1

pRfqpn´1qp!, x ¨ !qd!, if n is odd,

p´1qpn´2q{2
ª

Sn´1

HpRfqpn´1qp!, x ¨ !qd!, if n is even,

(3)

where H is the Hilbert transform in R defined as the principal value integral

Hgptq “ 1

⇡
p.v.

ª

R

gpsq
t ´ s

ds,

and

pRfqpn´1qp!, sq :“ Bn´1

Bsn´1
Rp!, sq.

The Funk transform of a continuous function g on Sn´1 is defined, for any
� P Sn´1, by

Fgp�q “
ª

Sn´1X�K

gp!qd�! “
ª

Sn´1

gp!q�p! ¨ �qd!,(4)

where d�! is the Lebesgue measure on the pn´2q-dimensional sphere Sn´1X
�K and � is the one-dimensional Dirac-delta distribution. Here, the symbol
�K represents the hyperplane orthogonal to � P Sn´1, and ! ¨ � denotes the
dot product of !,� P Sn´1.

It is known that the Funk transform is invertible for smooth even functions
on the unit sphere [28,29,31,32]. The following inversion formula for the Funk
transform [32, Chapter 5, Theorem 5.37] will be used in the sequel.

Theorem 2.1 ( [32], Theorem 5.37). Let ' “ Ff , f P C8
evenpSn´1q, n • 3.

If n is even, then

f “ cP p�SqF', c “ |Sn´1||Sn´2|
4⇡n´2

,

where

P p�Sq “ 41´n{2
pn´4q{2π

k“0

r´�S ` p2k ` 1qpn ´ 3 ´ 2kqs .

If n is odd, then

fp!q “
ª

Sn´1

'p�qd� ´ 2n´1Qp�Sq
pn ´ 2q!

ª

Sn´1

'p�q logp|! ¨ �|qd�,
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where

Qp�Sq “ 4p1´nq{2
pn´3q{2π

k“0

r´�S ` p2k ` 1qpn ´ 3 ´ 2kqs .

3. A relation between the cone and the Radon transforms in
n-dimensions

In the following, we consider f P SpRnq. However, as in the case of the
Radon transform (see, e.g. [30,33]), the formulas hold in more general func-
tion spaces, which can be shown by using extension by continuity (see also
section 5 for successful numerical implementations for piecewise continuous
phantoms).

We first note that, using the �´function of a cone’s surface, the integral
in (1) can explicitly be written as

Cfpu,�, q “ sin 

ª

Rn

fpxq�ppx ´ uq ¨ � ´ |x ´ u| cos qdx,(5)

where u P D Ä Rn, � P Sn´1, and  P p0,⇡q.
Let R and F represent the Radon and the Funk transforms defined in (2)

and (4), respectively.
Suppose that h is an integrable function on r´1, 1s, i.e., h P L1r´1, 1s. For

a given � P Sn´1, we define h�p�q :“ hp� ¨ �q on Sn´1 and let w� :“ Fh� .
Then, it is known that

Fh�p�q “ w�p�q “ wp� ¨ �q,(6)

where

wpsq “

$
’’’&

’’’%

h
´a

1 ´ s2
¯

` h
´

´
a
1 ´ s2

¯
, n “ 2,

|Sn´3|
1ª

´1

hp
a
1 ´ s2 tqp1 ´ t2qn´4

2 dt, n • 3.
(7)

For completeness, we present a proof of this fact in the Appendix.

Theorem 3.1. For any f P SpRnq, u P D Ä Rn and � P Sn´1,

⇡ª

0

Cfpu,�, qwpcos qd “
ª

Sn´1

Rfp!, u ¨ !qhp! ¨ �qd!,(8)

where the weight functions w and h are related as in (7).
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Proof. Let f P SpRnq and hp! ¨ �q “ h�p!q P L1pSn´1q for a given � P Sn´1.
For u P D Ä Rn, by definition of the Radon transform, we have

ª

Sn´1

Rfp!, u ¨ !qhp! ¨ �qd! “
ª

Sn´1

ª

Rn

fpxq�ppx ´ uq ¨ !qdx hp! ¨ �qd!

“
ª

Rn

fpxq
ª

Sn´1

�ppx ´ uq ¨ !qhp! ¨ �qd! dx

“
ª

Rn

fpu ` yq
ª

Sn´1

�p y

|y| ¨ !qhp! ¨ �qd! dy

|y| ,

where we first changed the order of integration, and then changed variables
by letting y “ x ´ u and used the homogeneity of �-distribution. Now since
w�p!q “ Fh�p!q, in view of (6), we have

wp y

|y| ¨ �q “
ª

Sn´1

�p y

|y| ¨ !qhp! ¨ �qd!.

Making the substitution

1

|y|wp y

|y| ¨ �q “
1ª

´1

1

|y|�p y

|y| ¨ � ´ tqwptqdt

“
⇡ª

0

�py ¨ � ´ |y| cos qwpcos q sin d ,

we finally obtain
ª

Sn´1

Rfp!, u ¨ !qhp! ¨ �qd!

“
ª

Rn

fpu ` yq
⇡ª

0

�py ¨ � ´ |y| cos qwpcos q sin d dy

“
⇡ª

0

sin 

ª

Rn

fpu ` yq�py ¨ � ´ |y| cos qdy wpcos qd 

“
⇡ª

0

Cfpu,�, qwpcos qd .

⇤
A special case of this relation, namely for hptq “ |t|, was proven in [20]

and was used in deriving an inversion formula for the cone transform [20,21].
The advantage of the generalized relationship is that different choices of the
convolution kernel lead to various methods for the recovery of the Radon
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data, some of which are more stable and/or easier to implement numerically
(see the discussion after corollary 4.2).

4. Inversion formulas for the n-dimensional cone transform

In this section, we discuss how the integral relation (8) can be used for
recovering the Radon transform of a function from its cone transform data
in various ways, and then present two different inversion methods for the
n-dimensional cone transform.

4.1. A method of recovering the Radon transform from the cone
transform data. For a given � P Sn´1, let �� denote the Dirac-delta dis-
tribution on Sn´1, and D be a differential operator on Sn´1 admitting a
Green’s function G� . Then by letting h� “ G� , and applying D in (8) one
can formally recover the Radon transform of f . In the following, we derive
an inversion formula that is obtained by taking D as the Laplace-Beltrami
operator on Sn´1.

Let n • 3, �S denote the Laplace-Beltrami operator on Sn´1, and G�p�q
be its Green’s function for a given � P Sn´1, i.e.,

�SG�p�q “ ��p�q ´ 1

|Sn´1| .

It is known that G�p�q “ gnp� ¨ �q with

gnptq “ 3 ´ n

|Sn´1|pn ´ 2qn ´ 1

1 ` t

1 ´ t
3F2

„
1, 1, 5´n

2

2, n`1
2

;´1 ` t

1 ´ t

⇢
(9)

` 1

|Sn´1|pn ´ 2q log
ˆ
1 ´ t

2

˙
,

when n is odd, and

gnptq “ 1

|Sn´1|p2 ´ nqˆ(10)

pn´4q{2ÿ

k“0

ˆ
k ´ 1

2

k

»̇

–p1 ´ t2q´k
´
1 ` t arccosp´tq?

1 ´ t2

¯
´ 1

3

kÿ

l“1

p1 ´ t2q l´k
2

`l` 1
2

l´1

˘

fi

fl ,

when n is even. Here, 3F2 denotes the generalized hypergeometric function
defined by

pFq

„
a1, . . . , ap
b1, . . . , bq

; z

⇢
“

8ÿ

k“0

pa1qk ¨ ¨ ¨ papqk
pb1qk ¨ ¨ ¨ pbqqk

zk

k!
, paqk “ apa ` 1q . . . pa ` k ´ 1q,

(see [34, Theorems 4.3 and 4.7]. We note that the sign difference is due to
our consideration of Laplace-Beltrami operator as �S , instead of ´�S .)

Now by letting the spherical convolution kernel h in (8) be the function
gn defined above, we obtain the following result.
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Theorem 4.1. Let n • 3 and f P SpRnq. Then, for any u P D Ä Rn and
� P Sn´1,

Rfp�, u ¨ �q “ �S

⇡ª

0

Cfpu,�, qwpcos qd ` |Sn´2|
|Sn´1|

⇡ª

0

Cfpu,�, qd ,

(11)

where �S acts with respect to the variable �, and

wp� ¨ �q “ w�p�q “ FG�p�q,
which is the Funk transform of G�, the Green’s function of �S.

Proof. Let G�p�q be the Green’s function of �S , so G�p�q “ gnp� ¨�q where
gn is as either in (9) or (10), depending the parity of the dimension n.

Applying �S in identity (8) with h “ gn and the corresponding w as given
in (7), we obtain

�S

⇡ª

0

Cfpu,�, qwpcos qd “ �S

ª

Sn´1

Rfp!, u ¨ !qG�p!qd!

“ Rfp�, u ¨ �q ´ 1

|Sn´1|

ª

Sn´1

Rfp!, u ¨ !qd!.(12)

For the integral on the right, we can use (8) with hptq “ 1. The Funk
transform of the unit function on Sn´1 is |Sn´2|, so we have wpsq “ |Sn´2|.
Thus,

|Sn´2|
⇡ª

0

Cfpu,�, qd “
ª

Sn´1

Rfp!, u ¨ !qd!.(13)

Together with (12), this proves (11). ⇤
Corollary 4.2. Let f P SpR3q. For any u P D Ä R3 and � P S2,

Rfp�, u ¨ �q “ �S

2

⇡ª

0

Cfpu,�, q log p| cos | ` 1q d ` 1

2

⇡ª

0

Cfpu,�, qd .

(14)

Proof. In dimension three (n “ 3), we have G�p�q “ g3p� ¨ �q where g3ptq “
1

4⇡
log

ˆ
1 ´ t

2

˙
by equation (9). Therefore, in view of (6) and (7), we obtain

FG�p�q “ wp� ¨ �q with

wpsq “ 2

⇡ª

0

g3p
a
1 ´ s2 cos ✓qd✓ “ 1

2
logp1 ` |s|q ´ log 2,

(see [35, p. 531, eq. 4.225-12]).
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Using theorem 4.1, we obtain

Rfp�, u ¨ �q “ 1

2

⇡ª

0

Cfpu,�, qd ` �S

2

⇡ª

0

Cfpu,�, q log p| cos | ` 1q d 

´ plog 2q�S

⇡ª

0

Cfpu,�, qd .

It remains to show that the last term on the right equals zero. Indeed, the
Laplace-Beltrami operator �S acts in variable �, and, from the relation (13),

we know that
⇡≥

0
Cfpu,�, qd is independent of �.

⇤
We remark that our previously obtained inversion formula in [20] involved

the application of the Laplace–Beltrami operator twice, while the formula
(14) requires its application only once. Since differentiation is an unstable
operation numerically, it is expected that (14) leads to more stable recon-
structions. This is confirmed by our numerical tests in section 5.

We should also mention that the spherical convolution with kernel hptq “
logp1 ´ t2q is known as the zero-order sine transform (see [32, p. 531, eq.
(A.13.41)]), and when n “ 3, it can be inverted by applying the Laplace-
Beltrami operator. This also yields (14), which was proven in [36].

Remark 4.3. For n “ 2, in order to have a nontrivial relation between the
cone and the Radon transforms, in view of (6) and (8), the kernel h needs
to be the Green’s function of a differential operator with order at least two.

In fact, if hptq “ |t|, using (7), we have

2

⇡ª

0

Cfpu,�, q sin d “
ª

S1

Rfp!, u ¨ !q|! ¨ �|d!,(15)

Applying �S ` 1 in (15) and using the identity
p�S ` 1q|! ¨ �| “ �p! ¨ �qp1 ´ p! ¨ �q2q,

one obtains

2p�S ` 1q
⇡ª

0

Cfpu,�, q sin d “
ª

S1

Rfp!, u ¨ !q�p! ¨ �qp1 ´ p! ¨ �q2qd!

“ Rfp�K, u ¨ �Kqp1 ´ p�K ¨ �q2q ` Rfp´�K,´u ¨ �Kqp1 ´ p´�K ¨ �q2q
“ 2Rfp�K, u ¨ �Kq,

by the evenness of the Radon transform. Hence,

Rfp�, u ¨ �q “ p�S ` 1q
⇡ª

0

Cfpu,�K, q sin d ,
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with �S acting with respect to the variable �. We note that a generalization
of this formula to arbitrary even dimensions was proven in [20].

4.2. An alternative inversion formula. For n • 3, an alternative formula
for recovering Radon projections from cone transform data can be obtained
by taking hptq “ �ptq. Then, in view of (6) and (7), we have wpcos q “
|Sn´3| csc .

Now let Tu denote the operator that shifts a function by u P Rn. The
shift invariance property of the Radon transform implies that Rp!, u ¨ !q “
RpTufqp!, 0q “ R0pTufqp!q, which is a continuous even function on Sn´1.
Therefore, the relation (8) reduces to

|Sn´3|
⇡ª

0

Cfpu,�, q csc d “
ª

Sn´1

Rfp!, u ¨ !q�p! ¨ �qd! “ F pR0pTufqqp�q.

(16)

Now applying the inversion formula for the Funk transform, theorem 2.1,
one obtains the following result.

Theorem 4.4. Let f P SpRnq, n • 3. For u P D Ä Rn and ! P Sn´1, we
define

�pu,�q :“ |Sn´3|
|Sn´1||Sn´2|

⇡ª

0

Cfpu,�, q csc d .

Then, if n is odd,

Rfp!, u ¨ !q “
ª

Sn´1

�pu,�qd� ´ 2n´1Qp�Sq
pn ´ 2q!

ª

Sn´1

�pu,�q logp|! ¨ �|qd�
(17)

where the differential polynomial

Qp�Sq “ 4p1´nq{2
pn´3q{2π

k“0

r´�S ` p2k ` 1qpn ´ 3 ´ 2kqs ,

acts with respect to the variable !.
If n is even,

Rfp!, u ¨ !q “ |Sn´1||Sn´2|
4⇡n´2

P p�SqpF�qpu,!q,(18)

where P p�Sq “ 41´n{2
pn´4q{2π

k“0

r´�S ` p2k ` 1qpn ´ 3 ´ 2kqs and the Funk

transform F act with respect to the variables ! and �, respectively.

Proof. In view of the identity (16), the result follows from applying theorem
2.1 to �pu,�q for each fixed u P D Ä Rn. ⇤
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In dimension three, the equation (17) reduces to the following formula.

Corollary 4.5. Let f P SpR3q. For any u P D Ä R3 and ! P S2,

Rfp!, u ¨ !q “ 1

4⇡2

ª

S2

⇡ª

0

Cfpu,�, q csc d d�(19)

` �S

4⇡2

ª

S2

⇡ª

0

Cfpu,�, q csc d log |! ¨ �|d�,

where �S acts with respect to the variable !.

After recovering the Radon transform of a function f from its cone trans-
form data using either theorems 4.1 or 4.4, it remains to invert the Radon
transform using (3) to obtain the function f . Now if one has access to the
complete set of Radon projections, that is Rfp�, sq is available for all s P R
at each direction � P Sn´1, then the application of any Radon transform in-
version yields the reconstruction of f from its cone transform data. In fact,
if any plane intersecting the domain of reconstruction meets a cone vertex,
then for all s P R, we have a u P D such that s “ u ¨ �. Thus, this con-
dition, which is called the Compton admissibility condition [21], guarantees
the availability of a complete set of Radon projections. We refer the reader
to [21, 36] for a more detailed discussion of admissibility. We note that the
same condition was needed in the inversion formulas developed by Smith [7]
and was called as the completeness condition.

5. Numerical reconstructions

We now present the numerical implementation results of inversion formu-
las (14) and (19) obtained using MATLAB. In the examples below, the phantom
was f “ �B1 ´0.5�B2 , where �Bi , i “ 1, 2, denotes the characteristic function
of the three-dimensional ball with radius 0.3 units and center at the origin,
and with radius 0.4 units and center at p0, 0,´0.4q, respectively (see fig. 2).
The cone projections were simulated by numerically integrating f over a set
of discretized cones.

The detector configuration shown in fig. 2(a) was used in the experiments.
It was obtained by uniformly sampling a total of 360 points over the two
perpendicular great semi-circles (corresponding to points with azimuthal and
polar angles of p✓k,⇡{2q, and p3⇡{2, ✓kq, ✓k “ k⇡{180 rad, k “ 1, . . . , 180)
of the sphere of radius

?
2 units and centered at the origin. An example

scanning procedure may involve two small Compton cameras, each moving
along a semi-circle, where the points on these semi-circles correspond to the
center position of the detector. We remark that before applying the Radon
transform inversion after recovering the Radon data of the phantom via
theorems 4.1 or 4.4, one needs to apply interpolation or approximation to
obtain the Radon data for uniformly sampled affine variables for each given
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(a) (b)

(c)

Figure 2. (a) Scanning geometry showing the position of the phantom

f in reference to the detector geometry. Black dots represent the detec-

tion sites. (b) The cross-section of the phantom by the plane x “ 0.
(c) Surface plot of the phantom’s cross-section by the plane x “ 0. The

vertical axis corresponds to the density of the phantom.

direction. Thus, if more detecting sites (aka. cone vertices) are available,
the quality of interpolation/approximation would be better. However, there
is a tradeoff between the quality of the reconstruction and the economics of
having a more compact detector with a shorter scan time. We believe that
the detector geometry shown in 2(a) is one of the most challenging admissible
geometries.

For the opening angles  , we considered 180 uniformly distributed nodes
along p0,⇡q. For the central axis directions, a triangular mesh on the unit
sphere S2 with 7446 nodes was generated using the algorithm given in [37].
The discretization of the Laplace-Beltrami operator on S2 was done by a lin-
ear approximation of the gradient and divergence operators on each triangle
followed by a weighted averaging over the first ring of each vertex in terms
of the triangle area [38].

The Radon projections, for 128 nodes of uniformly sampled s P r´1, 1s
from Rfp�, u ¨ �q at each direction � P S2 (with a total of 7446 points),
were obtained by using MATLAB’s curve fitting toolbox cftool with spline
fitting. Finally, we used the filtered back-projection algorithm (3) to invert
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the Radon transform, and obtained the reconstruction on an array of cubic
voxels of size 90 ˆ 90 ˆ 90 which were obtained by uniform discretization of
r´1, 1s3.

Figure 3 includes the results of the numerical implementation of the in-
version formula (14). Here, part (a) and (b) depict the cross-section of the
reconstruction by the plane x “ 0 and the comparison of z-axis profiles of
the phantom and the reconstruction, respectively. The corresponding plots
for the reconstruction from cone projections that are contaminated with
5% Gaussian white noise are shown in parts (c) and (d), respectively. The
L2´error values for the reconstructions from Compton data without additive
noise and with 5% Gaussian noise were 0.3427 and 0.3779, respectively.

(a) (b)

(c) (d)

Figure 3. The reconstruction (of size 90 ˆ 90 ˆ 90) of the phantom

shown in fig. 2 via (14) from its cone projections that are synthetically

simulated using 360 vertices u (represented by black dots on the sphere

in fig. 2(a)), 7446 directions � P S2
and 180 opening angles  . (a)

The cross-section of the reconstruction by the plane x “ 0. (b) The

comparison of z-axis profiles of the phantom and the reconstruction. (c)
The cross-section by the plane x “ 0 of the reconstruction from cone

projections that are contaminated with 5% Gaussian white noise. (d)
The comparison of z-axis profiles of the phantom and the reconstruction

from noisy cone projections.

The results of the numerical implementation of the inversion formula (19)
are provided in fig. 4. The cross-section of the reconstruction by the plane
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x “ 0 and the comparison of z-axis profiles of the phantom and the recon-
struction are given in fig. 4(a) and fig. 4(b), respectively. Figures 4(c) and
4(d) show the corresponding plots for the reconstruction from cone projec-
tions that are contaminated with 5% Gaussian white noise, respectively. The
L2´error values for the reconstructions from Compton data without additive
noise and with 5% Gaussian noise were 0.3504 and 0.3554, respectively.

According to figures 3 and 4, the quality of reconstruction obtained by
using the formula (19) is worse than the one obtained by using (14). However,
the former is more robust to noise. The lower quality of the reconstruction
may be explained by the extra step of integration over the unit sphere with
a singular kernel present in the formula (19). On the other hand, since this
amounts to a weighted average over the spherical variable, it might be the
reason for the robustness to noise. An amplification of the error is expected
in both formulas because the inversion of the Compton transform, which is
a finite order smoothing operator, is a mildly ill-posed problem [12,14,15].

(a) (b)

(c) (d)

Figure 4. The reconstruction (of size 90 ˆ 90 ˆ 90) via (19) of the

phantom from the cone projections that are described in fig. 3. (a)
The cross-section of the reconstruction by the plane x “ 0. (b) The

comparison of z-axis profiles of the phantom and the reconstruction. (c)
The cross-section by the plane x “ 0 of the reconstruction from cone

projections that are contaminated with 5% Gaussian white noise. (d)
The comparison of z-axis profiles of the phantom and the reconstruction

from noisy cone projections.
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For a comparison, we reimplemented the inversion formula previously ob-
tained by using the convolution kernel hptq “ |t| (see [21, eq. (14)]) in the
present experimental setting. Although it led to successful reconstructions
from a 10% noisy Compton data of size 1080 ˆ 30054 ˆ 90 in the case of
a spherical detector geometry [21], it failed to produce a meaningful result
when we used a 5% noisy Compton data of size 360ˆ7446ˆ180 correspond-
ing to the detector geometry shown in fig. 2(a). This can be attributed to
the use of a more challenging detector geometry and much coarser forward
data this time. We then implemented formulas (19) and [21, eq. (14)] using
10% noisy Compton data of size 1080 ˆ 30054 ˆ 90 obtained from spherical
detectors in the case of a ball phantom of radius 0.5 with center at the ori-
gin. The results of the reconstructions, depicted in Fig. 5, show that the
formula (19) leads to a considerable improvement in stability in comparison
to [21, eq. (14)].

(a)
(b)

(c)
(d)

Figure 5. (a) The cross-section (by the plane x “ 0) and (b) x-axis

profile of the reconstruction (of size 90 ˆ 90 ˆ 90) of a ball phantom of

radius 0.5 centered at the origin from 10% noisy Compton data of size

1080 ˆ 30054 ˆ 90 obtained from spherical detectors via [21, eq. (14)].

(c) and (d) The corresponding plots of the reconstruction via (19).
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6. Conclusions

We proposed new analytical inversion formulas for the n-dimensional cone/
Compton transform in the case of pure surface measure on the cones, which is
an idealized solution to the problem of image reconstruction from Compton
camera measurements. We proved that weighted averaging of the Compton
projections of a source distribution over the opening angles leads to a spher-
ical convolution of the Radon transform of that distribution. This relation
enabled us to invert the Compton transform in two steps: first performing
spherical deconvolution to obtain the Radon transform, and then applying
well-known techniques for Radon transform inversion to recover the original
function. Different choices of the convolution kernel led to various methods
for the recovery of the Radon projections, hence various inversion formulas
for the Compton transform. We developed two analytic inversion formulas
for the n-dimensional Compton transform that hold for a variety of Comp-
ton detector geometries. The numerical implementations in dimension three
demonstrated that the proposed inversion formulas lead to considerable im-
provement in the quality of reconstruction with significantly coarser data
when compared to our previously obtained inversion algorithms.

Appendix

Proof of eq. (6). Let �,� P Sn´1. Suppose that A rotates the north pole en
of Sn´1 to �, that is � “ Aen. Let A´1� “: ⌘ P Sn´1. Since the Lebesgue
measure on the sphere is rotation invariant, we have

w�p�q “ Fh�p�q “
ª

Sn´1

�p! ¨ �qhp! ¨ �qd!

“
ª

Sn´1

�pA! ¨ �qhpA! ¨ �qd! “
ª

Sn´1

�p!nqhp! ¨ ⌘qd!.

Now, if n “ 2, then

ª

S1

�p!2qhp! ¨ ⌘qd!

“
1ª

´1

�p!2q
„
h

`b
1 ´ !2

2⌘1 ` !2⌘2
˘

` h
`

´
b
1 ´ !2

2⌘1 ´ !2⌘2
˘⇢

d!2a
1 ´ !2

2

“ hp⌘1q ` hp´⌘1q “ h
`b

1 ´ ⌘22
˘

` h
`

´
b
1 ´ ⌘22

˘
,
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and, if n • 3, then
ª

Sn´1

�p!nqhp! ¨ ⌘qd! “
ª

Sn´2

1ª

´1

�p!nqhp
a
1 ´ !2

n⇣ ¨ ⌘̄ ` !n⌘nqp1 ´ !2
nqn´3

2 d!nd⇣

“
ª

Sn´2

hp⇣ ¨ ⌘̄qd⇣,

where ⌘ “ p⌘̄, ⌘nq. Again since the Lebesgue measure on the sphere Sn´2 is
rotation invariant, we obtain

ª

Sn´2

hp⇣ ¨ ⌘̄qd⇣ “ |Sn´3|
⇡ª

0

hp|⌘̄| cos�qpsin�qn´3d�

“ |Sn´3|
1ª

´1

hp|⌘̄|tqp1 ´ t2qn´4
2 dt.

Since ⌘n “ ⌘ ¨ en “ A´1� ¨ A´1� “ � ¨ �, we have

|⌘̄| “
a

|⌘|2 ´ ⌘2n “
a
1 ´ p� ¨ �q2,

and thus,

w�p�q “ wp� ¨ �q “

$
’’&

’’%

hp
a
1 ´ p� ¨ �q2q ` hp´

a
1 ´ p� ¨ �q2q, n “ 2,

|Sn´3|
1ª

´1

hp
a
1 ´ p� ¨ �q2 tqp1 ´ t2qn´4

2 dt, n • 3,

which implies (6). ⇤
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