Check for
Updates

Better Cardinality Estimators for HyperLogLog,
PCSA, and Beyond

Dingyu Wang
wangdy@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

ABSTRACT

Cardinality Estimation (aka Distinct Elements) is a classic problem
in sketching with many applications in databases, networking, and
security. Although sketching algorithms are fairly simple, analyzing
the cardinality estimators is notoriously difficult, and even today the
analyses of state-of-the-art sketches like HyperLogLog and PCSA
are not very accessible.

In this paper we introduce a new class of estimators called z-
Generalized-Remaining-Area estimators, as well as a dramatically
simpler approach to analyzing estimators. The estimators of Durand
and Flajolet [11], Flajolet et al. [15], and Lang [24] can be seen as
7-GRA estimators for integer values of 7. By using fractional values
of 7 we derive improved estimators for HyperLogLog and PCSA
whose variance comes very close to the Cramér-Rao lower bounds.

We also derive 7-GRA-based estimators for the class of Curtain
sketches introduced by Pettie, Wang, and Yin [29], which can be
seen as a hybrid of HyperLoglLog and PCSA with a more attractive
simplicity-accuracy tradeoff than both.
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1 INTRODUCTION

The Problem. A stream x = (xy, ..., xp) of elements from a uni-
verse [U] is received one at a time. We wish to maintain a small
sketch S, whose size is independent of n, so that we can return an
estimate A to the cardinality A = |{x1,...,xn}|. Because x may be
partitioned among many machines and processed separately, it is
desirable that the resulting sketches be mergeable. For this reason
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we only consider sketches whose state S depends only on the set
{x1,...,xn}, Le,, it is insensitive to duplicates and is not a func-
tion of the order in which elements are processed. See [28] for a
longer discussion of mergeability and [9, 29, 32] for non-mergeable
cardinality sketching.

The Model. The Cardinality Estimation/Distinct Elements prob-
lem is studied under two models, each with its own conventions. In
the RANDOMORACLE model it is assumed that we have access to a
uniformly random hash function 4 : [U] — [0, 1]. By mapping x to
h(x) = (h(x1),...,h(xp)), the state of the sketch S can be updated
according to a deterministic transition function. In particular, the
distribution of the state of S depends only on the cardinality A, not
x. By convention, estimators for sketches in the RANDOMORACLE
model are unbiased (or close to unbiased), and their efficiency is
measured by the relative variance A72V(A), or equivalently, the

standard error 1~14/V(1).! The leading constants in the space
usage and variance are typically stated explicitly. See [4, 7, 11, 13-
16, 18, 24-28].

In the STANDARD model we can generate independent random
bits, but must explicitly store any hash functions. By convention, the
estimators in this model come with an (¢, §)-guarantee (rather than
bias and variance guarantees), i.e., P(i ¢[(1-e)A (1+e)A]) <6.
The space depends on €, 8, U, and is expressed in big-Oh notation,
often with large hidden constants. In this model ©@(e~2log 61 +
log U) bits of space is necessary and sufficient. See Jayram and
Woodruff [21] and Alon, Matias, and Szegedy [1] for the lower
bound and Blasiok [5] for the upper bound. See also [2, 3, 17, 20, 22]
for other results in the STANDARD model.

In this paper we assume the RANDOMORACLE model. The sketches
used in practice (HyperLoglLog, PCSA, k-Min, etc.) all originate in
the RANDOMORACLE model and despite being implemented with
imperfect hash functions, their empirical behavior closely matches
their theoretical analysis [19, 24, 31].

Sketches and Estimators. In 1983 Flajolet and Martin [16] devel-
oped the first non-trivial sketch called Probabilistic Counting with
Stochastic Averaging (PCSA). A PCSA sketch Spcsa consists of an
array of m bit vectors or subsketches. The random oracle produces a
pair (h, g)(x), where h(x) € [m] is a uniformly random subsketch
index and g(x) € Z* is equal to k with probability 27%. The bit
Spcsa (J, k) is 1 if there exists an x; in the stream with h(x;) = j and
g(xi) = k, and 0 otherwise. Define z(j) = min{k : Spcsa (j, k) = 0)
to be the position of the least significant zero in the jth subsketch.
Each z(j) is individually a decent estimate of log(A/m). Flajolet and

1We use P, E, and V for probability mass, expectation, and variance.
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Martin [16] analyzed the “first zero” estimator for PCSA, namely

Ara(Spesa) o m - 2 X7 20)

and proved it has relative variance about 0.6/m and hence standard
error about 0.78/+/m. It suffices to keep log U bits per subsketch,
so PCSA requires mlog U bits. Although the “first zero” has better
concentration than the “last one,” the latter is much cheaper to
store. In 2003 Durand and Flajolet [11] implemented this idea in
the LoglLog sketch Sy, which requires only mloglog U bits. Here
St (j) = max{k : Spcsa(j,k) = 1}. Durand and Flajolet proved
that the estimator

App(SiL) o m - 27 27 S.0)

has relative variance about Cpp/m and standard error about
2 2

VCpr/m = 1.3/+/m, where Cpg = % < 1.69.2 This esti-

mator can be regarded as taking the geometric mean of individual

estimates ZSLL(U, el 251L(m) I 2007, Flajolet, Fusy, Gandouet, and

Meunier [15] proposed a better estimator for LoglLog based on the

harmonic mean:
1

m _
Arrem(SLL) o m? - Z 9=51L ()
j=1

and called the resulting sketch HyperLogLog. It has relative vari-
ance roughly Cppgpm/m and standard error \/Crrgy/m ~ 1.04/+/m,
where Crrgm = 31n2—1 = 1.07944. (The constants Cpr and Crrgm
are, in fact, limiting constants as m — 0.)

Optimal Cardinality Sketching. The sketches above consist of
m subsketches, where the memory scales linearly with m, and
the relative variance with m~!. The most reasonable way to mea-
sure the overall efficiency of a sketch is by its memory-variance
product (MVP). Scheuermann and Mauve [30] experimented with
compressed versions of PCSA and (Hyper)LoglLog,® and found
Compressed-PCSA to be slightly MVP-superior to Compressed-
HyperLogLog. Lang [24] also experimented with these compressed
sketches, but used maximum likelihood estimators (MLE) instead.
He found that using MLE, Compressed-PCSA is substantially bet-
ter than Compressed-HyperLogLog. In general, the MLE AMmee(S)
of a sketch S is the A* that maximizes the probability of seeing S,
conditioned on A = A* being the true cardinality. The MLE is cum-
bersome to compute and update. Lang [24] also found that a simple
“coupon collector” estimator based on counting the number of 1s
in a PCSA sketch gives better estimates than Flajolet and Martin’s
original estimator )A.FM.

iLang(SPCSA) ocm- 2# 221 Liexr Seesa (k)
Lang [24] argued informally that the relative variance of iLang
should be about (log? 2)/m, which agreed with his experiments.

One annoying feature of all the sketches cited above is that their
relative variance (and bias) are not fixed but multiplicatively periodic
with period factor 2. The magnitude of these periodic functions is
tiny, but independent of m. Pettie and Wang [28] gave a generic
“smoothing” mechanism to get rid of this periodic behavior. They

2All logarithms are natural unless specified otherwise.
31t is straightforward to show that the entropy of both sketches is O (m) bits.
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studied the optimality of sketches under the memory-variance prod-
uct (MVP), where both “memory” and “variance” are interpreted
as taking on their information-theorically optimum values. They
defined the Fish-number of a sketch in terms of (1) its Fisher in-
formation, which controls the variance of an optimal estimator
(e.g., MLE is asymptotically optimal), and (2) its Shannon entropy,
which controls its memory under optimal compression. They found
closed form expressions for the entropy and Fisher information of
base-q variants of PCSA and Loglog, and discovered that g-PCSA
has Fish-number Hy /I ~ 1.98 for all g, and g-LogLog has a Fish-
number strictly larger than Hy/Iy, but that it tends to Hy/Iy in the
limit, as ¢ — co. Here Hy and Iy are precisely defined constants.*
The Fishmonger sketch of [28] is a smoothed, entropy compressed
version of PCSA with an MLE estimator, which achieves 1/y/m
standard error with (1 + o(1))mHy /Iy bits of space. Moreover, they
give circumstantial evidence that Fishmonger is optimal, i.e., no
sketch can achieve Fish-number (memory-variance product) better
than Hy /I. For example, to achieve 1% standard error, [28] indicates
that one needs (Hp/Ip)/(0.01)? bits, which is about 2.42 kilobytes.

1.1 Dartboards and Remaining Area

Ting [32] introduced a very intuitive visual way to think about
cardinality sketches he called the area cutting process. Pettie, Wang,
and Yin [28, 29] described a constrained version of Ting’s process
they called the Dartboard model. The elements of this model are as
follows:

Dartboard and Darts. The dartboard is a unit square [0, 1]2.
When an element (dart) x € [U] arrives, it is thrown at a
point h(x) € [0,1]? in the dartboard determined by the
random oracle h.

Cells and States. The dartboard is partitioned into a count-
able set C of cells. Every cell may be occupied or free. The
state of the sketch is defined by the set ¢ € C of occupied
cells. The state space is some subset of 2€.

Occupation Rules. If a dart is thrown at an occupied cell, the
state does not change. If a dart is thrown at a free cell ¢, and
the current state is o, the new state is f(o,c) 2 o U {c} in
the state space.

Note that the state transition function f(o, ¢) may force a cell to
become occupied even though it contains no dart, which occurs in
(Hyper)LogLog, for example. See Figure 1. It was observed [28, 32]
that the Dartboard model includes all mergeable sketches, and even
some non-mergeable ones like the S-Bitmap [8].

A useful summary statistic of state o is its remaining area
RA(0) = Ycec\o lcl, where |c| is the size of cell c. In other words,
the remaining area is the total size of all free cells, or equivalently,
the probability that the sketch changes upon seeing the next distinct
element. Remaining area plays a key role in the (non-mergeable)
Martingale sketches of [9, 29, 32]. It also gives us a less fancy
way to describe the HyperLoglLog estimator without mentioning
harmonic means: iFFGM(SLL) o« m (RA(S 1)), Estimating the
cardinality proportional to the reciprocal of the remaining area is

4y = % /6 measures the Fisher information and Hy = @ + e % log, (1+1/k)
the Shannon entropy of a PCSA sketch.
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reasonable for any sketch. This is the optimal estimator for k-Min-
type sketches [7, 26], and as we will see, superior to Flajolet and
Martin’s original Apy; estimator for PCSA.

m columns

(@)

m columns

(b)

Figure 1: The cell partition used by PCSA and (Hyper)LogLog. (a)
A possible state of PCSA. Occupied (red) cells are precisely those
containing darts. (b) The corresponding state of (Hyper)LogLog. Oc-
cupied (red) cells contain a dart, or lie below a cell in the same column
that contains a dart.

Generalized Remaining Area. Rather than have each cell ¢ ¢ o
contribute |c| to the remaining area, we could let it contribute |c|*
for some fixed exponent 7 > 0. The resulting summary statistic is
called r-generalized remaining area.

7-GRA(0) = Z lc|”.
ceC\o
Note that 0-GRA counts the number of free cells, which we
regard as equivalent to counting the number of occupied cells, as is
done explicitly by Apang.

2 RELATED WORK

One weakness of HyperLogLog is its poor performance on small
cardinalities A = O(m). Heule et al. [19] proposed improvements
to [15]’s estimator on small cardinalities, as well as some more effi-
cient sketch encodings when A is small. Ertl [12] experimented with
maximum likelihood estimation (MLE) for HyperLogLog sketches,
which behaves well at all cardinalities.

Lukasiewicz and Uznanski [25] developed a HyperLogLog-like
sketch that, in our terminology, samples g(x) from a Gumbel dis-
tribution rather than a geometric distribution. As the maximum of
several Gumbel-distributed variables is Gumbel-distributed, this
resulted in a simpler analysis relative to [15].

It is well known that the entropy of HyperLoglLog is O(m). Du-
rand [10] gave a prefix-free code for (Hyper)LoglLog with expected
length 3.01m, and Pettie and Wang [28] gave a precise expression for
the entropy of (Hyper)LogLog, which is about 2.83m. Xiao et al. [34]
proposed lossy compressions of HyperLoglLog to 4m and even 3m
bits, but their variance calculation is incorrect; see [28] for a dis-
cussion of the problems of lossy compression in this context. Very
recently Karppa and Pagh [23] presented a lossless compression of
HyperLogLog to (1 + 0(1))mlogloglogU bits (‘HyperLogLogLog’)
while still allowing fast update times.

Pettie, Wang, and Yin [28] proposed a class of Curtain sketches
that combine elements of Loglog and PCSA while being easily
compressible, but they only analyzed them in the non-mergeable
setting of [9, 32]. Ohayon [27] analyzed the most practical (and
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mergeable) Curtain(2, oo, 1) sketch, and found it to be substantially
more efficient than HyperLoglLog in terms of memory-variance
product. In particular, its limiting variance is C/m, C = zui_zgz -
1 = 0.776 while using only m more bits than HyperLogLog or any

lossless compression thereof, e.g. [31] or [23].

2.1 New Results

A conceptual contribution of this paper is the introduction of
the 7-GRA summary statistic. The main technical contribution
is a relatively simple analysis of the limiting relative variance of
7-GRA-based estimators for PCSA, (Hyper)LogLog, and Curtain(d)
sketches [29]. A Curtain(d) sketch uses the same cell-partition
as PCSA/Loglog. A cell is occupied iff it is hit by a dart, or a
cell at least d + 1 spots above it in its column is hit by a dart, so
PCSA=Curtain(oo) and LogLog=Curtain(0). The space complexity
for Curtain(d) is just dm bits more than LogLog.
Our analysis has several benefits.

A Unified View. HyperLoglog is based on 1-GRA and, if
properly interpreted, LogLog is based on 0-GRA. More-
over, Lang’s “coupon collector” estimator iLang for PCSA
is based on 0-GRA. Our analysis confirms Lang’s back-of-
the-envelope calculations that iLaHg has limiting relative
variance (log? 2)/m.

Simplicity. We use two techniques to dramatically simplify
the analysis of 7-GRA-based estimators. The first, which has
been used before [15, 16, 28, 29], is to consider a “Poissonized”
dartboard model, which allows us to avoid issues with small
cardinalities and infinitesimal negative correlations between
cells. The second is a smoothing operation similar to the one
introduced in [28]. The combined effect of Poissonization
and smoothing is to make the sketch truly scale-invariant at
every cardinality, without any periodic behavior.

Efficiency. A statistically optimal estimator for PCSA or
LoglLog meets the Cramér-Rao lower bound, which depends
on the Fisher information of the given sketch; see [28].
It is known [6, 33] that the maximum likelihood estima-
tor /iMLE meets the Cramér-Rao lower bound asymptoti-
cally, as m — oo, but MLE is not particularly simple to
update as the sketch changes. The limiting relative variance
of HyperLoglog’s /iFFGM is (3log2 — 1)/m =~ 1.07944/m,
plus a tiny periodic function. Pettie and Wang’s analy-
sis [28, Lemmas 4,5] shows that the Cramér-Rao lower bound
for (Hyper)LogLog is % 1.07475/m, which does
not leave much room for improvement! In contrast, there
is a wider gap between the limiting variance of PCSA’s
iDF, namely 0.6/m, or Lang’s improvement /iLang, namely
(log? 2)/m ~ 0.48/m, and the Cramér-Rao lower bound [28,
Theorem 3] of #;/m ~ 0.42138/m. By choosing the opti-
mal s, our -GRA-based estimators achieve relative variance
1.0750/m for the LogLog sketch and 0.435532/m for the PCSA
sketch, in both cases nearly closing the gap between the best
known explicit estimators and the Cramér-Rao lower bound.
HyperLoglLog is simple and widely deployed, and PCSA is
notable for being the most efficient sketch (in its compressed
state) [24, 28, 31]. However, the most attractive sketch in

2 /m ~
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terms of simplicity of implementation and statistical effi-
ciency are the Curtain(d) sketches of [29]. We prove the lim-
iting relative variance of Curtain(1) sketches is 0.77275/m
that of Curtain(2) sketches is 0.61699/m, the latter being at
least a 14.26% improvement over HyperLoglLog at the same
space footprint; see Appendix B for more details.

Figure 2 illustrates the efficiency of 7-GRA-based estimators
relative to other estimators. See Table 1 for a symbolic summary of
this data.

3 POISSONIZATION AND SMOOTHING

Suppose we have an estimator E, at cardinality A. Ideally, for a
statistic to be a measurement of cardinality the relative error should
distribute identically for any cardinality, i.e., E; should be scale-
invariant.

Definition 1 (scale-invariance). Let E; be an estimator of 1. We
Ex

say E) is scale-invariant if for any 4 > 0, =% ~ ES

Note that scale-invariance implies unbiasedness and constant
relative variance that is independent of A. Since EE), = AEE;, if
EE; # 1 then we can replace E; with E%l to make it an unbiased

estimate of A. Moreover, V(E;) = A2V(E), where V(E;) is some
fixed constant independent of A.

Much of the simplicity and elegance of our analysis relies on
beginning from this definition of strict scale-invariance. Unfor-
tunately, in the real world the PCSA and HyperLoglLog sketches
are only approximately scale-invariant, stemming from two causes
mentioned earlier: the “edge effects” when A = O(m) is small or
A = Q(U) is very large, and the periodic behavior due to base-2
discretization.

We consider a smoothed, Poissonized, and infinite dartboard model
to make the task of variance analysis dramatically simpler.

Definition 2 (Smoothed, Poissonized, Infinite model). The dart-
board model and cell partition of PCSA and (Hyper)LoglLog are
changed as follows.

Smoothing. The sketch consists of m subsketches; these cor-
respond to the columns in Figure 1. Pick a vector R =
(R1, ..., Rm) of offsets. Cell j in column i now covers the ver-
tical interval (2=/=Ri 2= (=1 -Ri] We will normally pick
each R; € [0, 1) uniformly at random.

Infinite Dartboard. Rather than index cells by Z*, index them
by Z, i.e., the dartboard has unit width and infinite height. For
example, cell —5 covers the vertical interval (25_Ri, 26_Ri].

Poissonization. In the usual dartboard, the probability that
a cell ¢ remains free at cardinality A is (1 — |c|)’1 — e~ leld

and the correlation between cells vanishes as A — oo. For

simplicity, these asymptotic properties can be achieved even
for small A with Poissonization. Informally speaking, with

Poissonization, for each insertion, instead of throwing one

dart at the board, darts appear on the board memorylessly

with density 1. Formally speaking, for every new insertion,

a Poisson point process on the infinite board with density

1 is added to the board, where each point in the process

5For two random variables X and Y, we write X ~ Y if X and Y has the same
distribution.
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corresponds to a dart. Thus, after A insertions, the darts
on the board form a Poisson point process with density
A. By construction, for any A—even A = 1—the cells are
independent and a cell ¢ will remain free with probability
precisely e~ 1¢l4.

Smoothing eliminates periodic behavior, and the combination of
Poissonization and the Infinite Dartboard makes the distribution
of the sketch scale invariant for all A.° From this point on, the
smoothed, Poissonized, and infinite dartboard model is assumed.

4 ESTIMATION BY GENERALIZED
REMAINING AREA

Cardinality estimation can be viewed as a point estimation problem
where the number of subsketches is the number of independent
samples/observations. Classically, one can produce ii.d. estimates
(=)

A Jie[,m]
mean as the combined estimator. A more general framework is

of A with each subsketch and then use the sample

to produce estimates (E(i) of f(A) for some monotonic

Af )i e[1,m]
function f, then take the sample mean % i E/(llj)r,
centrated around f(1). Thus we can recover an estimator of A by
applying f~! to the sample mean. This process is summarized as

follows.

which is con-

(1) p2) (m)
E)L;f’E/l;f" . "E/l;f
(m independent estim. of £ (1))
sample mean # 7 Ejll}
(concentrated estim. of f (1))
wnr [ (b

(concentrated estim. of 1)

An important example is its application to the remaining area.
The remaining area (of one subsketch) offers a natural estimate
for A=1. One can get a concentrated estimation for A~! using the
sample mean of remaining areas of the subsketches and then take
the reciprocal to get a concentrated estimator for A. This is exactly
what the HyperLogLog estimator AprGu does.

The remaining area estimates 1~! and in general, the -GRA
estimates A77. Let A).; be the r-generalized remaining area of one

subsketch and AfllT)Ang) .. ,Ag'?;) be m ii.d. copies. Thus by the

same process, we get a generic estimator /ir;m based on 7-GRA.
-1

~ ; -7

Arym & (% " A;lz) . For any sketch, it turns out that the

induced estimator A;;, is scale-invariant if the 7-GRA statistic
itself is r-scale-invariant. Refer to Appendix A for proofs.

%Qur justification for these changes is that they make the analysis simpler, and it does
not really matter whether they are implemented in practice once A is not too small. For
example, w.h.p., there is no way to detect whether we are in a unit or infinite dartboard
once A = Q(mlogm) as all cells indexed by Z — Z* will be occupied. Moreover,
as A — oo the distribution of the true dartboard converges toward the Poissonized
dartboard. Smoothing eliminates the tiny periodic behavior of the estimator, but these
effects are too small to worry about unless the magnitude of this periodic function
is close to the desired variance, in which case smoothing should be implemented in
practice.
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SKETCH & ESTIMATOR LiMITING RELATIVE VARIANCE CITATION
PCSA Flajolet & Martin 1983 [16]
First Zero (Apm) ~ 0.6/m+0(A) [16]
Coupon Collector (iLang) ~ (log?2)/m + 6(X) ~ 0.48/m [24]

Smoothed 0-GRA
Smoothed 1-GRA

(log?2)/m
3102 /m ~ 0.51986/m

Theorem 5
Theorem 5

Smoothed 7-GRA 7=0.343557 | ~ 0.435532/m Theorem 5
MLE / Cramér-Rao Lower Bound #;Z/m ~ 0.42138/m [28]
Loglog Durand and Flajolet 2003 [11]
. 2 272 +log? 2
Geometric Mean (%DF) g /m+0(1) = 1.69/m [11]
Harmonic Mean (Appgm) (Blog2—1)/m+0(1) = 1.07944/m | [15]

Smoothed 0-GRA
Smoothed 1-GRA

2% +log? 2
12

/m=~1.69/m
(3log2—-1)/m ~ 1.07944/m

Theorem 3
Theorem 3

Smoothed 7-GRA 7=10.889897 | ~ 1.07507/m Theorem 3
MLE / Cramér-Rao Lower Bound ”.I;;géil /m ~ 1.07475/m [28]

Table 1: Relative variance as m, A — oco. All 8(1) functions are multiplicatively periodic with period 2, which have a small
magnitude independent of m. The “smoothing” mechanism (Section 3) eliminates periodic behavior.

relative variance

-GRA

Cramér Rao lower bound

-0.5

relative variance
0.9

-GRA
0.8

Flajolet & Martin's First Zero

Lang's
coupon collector remaining area

T-GRA

Cramér Rao lower bound

0.5 15 20

Figure 2: Left: Relative variance of estimators for the LogLog sketch. The 7-GRA estimator attains minimum variance at
¥ = 0.88989, which comes within 0.02% of the Cramér-Rao lower bound. As a comparison, HyperLoglLog is 0.4% over the bound.
Right: Relative variance of estimators for the PCSA sketch. The 7-GRA estimator attains minimum variance at r* = 0.343557,

which comes within 3% of the Cramér-Rao lower bound.

Definition 3 (r-scale-invariance). Let A).; be the r-generalized
remaining area of a sketch. We say A, ., is r-scale-invariantif Ay., ~
A7TA;., forany A > 0.

Theorem 1. If A, is t-scale-invariant, then )L:m =

(4

We prove the following useful theorem that expresses the asymp-
totic mean and variance of A7,,,, by the mean and variance of Ay as

-1
N\ =T

" A/({)) is a scale-invariant estimator for A.

=14,

m — oo. Although /i;m is scale-invariant, it is not yet normalized
to be unbiased; the estimator i,;m will be the unbiased version of
iﬁ.m. The asymptotic relative variance after normalization is also
gi\’/en in the theorem.

Theorem 2. IfAy;; is r-scale-invariant with finite variance, we have
forany A > 0,

(1) ,,}E»noo E/i:;m = A(EAl;T)_T_I'
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@ lim mA2V(d,,) = e A BAL) T AV (Agy).

(3) For any A > 0, the normalized estimator if;m =
(EAl;T)flij_i;m is asymptotically unbiased and has limit rela-

tive variance lim mxl_zV(ir;m) =772 (IElAl;T)_2 V(A1;r).
m—0oo

Theorems 1 and 2 give us a simple 3-step recipe for calculating
the limiting relative variance of 7-GRA-based estimators.

(1) Calculate the mean y = EA;.; and the variance 62 = V(A;.;)
of the 7-generalized remaining area at density 1.

(2) By Theorem 1, the induced estimator A7, =

1 (i)

(ﬁ lr'r=11 AA;T

A, but possibly biased.

-1
-7
) is a scale-invariant estimator for

. . . b -1
(3) After normalization, we get the estimator Ar;m = p* A7,
which is asymptotically unbiased. By Theorem 2, its relative
variance is asymptotically 772202 /m.
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Results. We apply the 3-step recipe to analyze the relative
variance of 7-GRA-based estimators for LogLog and Curtain(d)
sketches. See Appendix B for proofs of Theorems 3 and 4.

Theorem 3. [t-GRA for the Loglog sketch] Let the offset vector

(R;) € [0,1)™ be selected uniformly at random. Let X)(Li) be the
integer index of the highest one in the ith subsketch after A insertions.
Then for any t > 0,

7! m T
1-2 T)T (l > z—r(R,»+Xj”))
log 2 m

is a scale-invariant estimator for A that is asymptotically unbiased.
The asymptotic normalized relative variance is
- 1) .

T'(2r)log2 1+27°7
[(r)2 1-27°

The celebrated estimator Appaa of HyperLogLog corresponds to

setting 7 = 1 in Theorem 3, with I'(2) = T'(1) = 1 and the leading

constant of the variance being 3log 2 — 1 ~ 1.07944. As the 7-mean

converges toward the geometric mean as 7 — 0, Durand and Fla-

/ir;m =m (F(T)

lim mA~2V () = r—z(
m—oo

jolet’s estimator Apf corresponds to 7 — 0, with the limiting rela-
T(2r)log2 14277 _ 1) _

T(r)? 1-2°
% ~ 1.68497, matching Durand and Flajolet [10, 11]. By
numerical optimization, the minimal variance 1.07507 is obtained
at 7% = 0.889897. This comes quite close to the Cramér-Rao lower
bound for LoglLog sketches, which Pettie and Wang [28] computed

log2
to be 261 ~ 1.07475.

Theorem 4. [t-GRA for the Curtain sketch withd = 1,2] Let the

offset vector (R;) € [0,1)™ be selected uniformly at random. Let Xy)
be the integer index of the highest cell hit in the ith subsketch after A

insertions. Let A/) and BY) be indicators for whether cells X/{i) -1

tive variance constant being lim;_,o 2 (

and X;i) — 2 have been hit (and are occupied) in the ith subsketch.
e Whend =1, foranyt > 0,

-1

. 2 1\ 1 & 1 (i)
Aroy, = — (1) —— — _Z—T(Ri‘*'XA )
wm 3m( (T)logz) (m;(ZT—l *

-1
(1 _A(i))z—'r(R,-+X/§i)—l))) ‘

is a scale-invariant estimator for A that is asymptotically un-
biased. The asymptotic normalized relative variance is

=2t

lim mA=2V () =

m—0oo

((log 2T(27)(1 +2 +

1
72T ()2
2.3%72757) — F(T)z).

o Whend =2, foranyt > 0,

4 1\ (1
5" (r(r)logZ) (E

(1 _A(i))z_T(Ri"'X}(Li)_l)_'_

1-277

P i LX),
e 2T -1

i=1

-1

(1- B(i))z—T(RﬁXf) —2)))_T
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is a scale-invariant estimator for A that is asymptotically un-
biased. The asymptotic normalized relative variance is

”}i_)moo mA_ZV(ir;m) = m ((log 2)I'(27) (l +2 1 __;iT+
27/5)77277 + 2(6/5) 227 -
f(f)z) .

4.1 Optimal Choice of d

The natural way to implement Curtain(d) is to begin with an im-
plementation of (Hyper)LoglLog and then supplement it with a
(d X m)-bit matrix of indicators for the d cells under the highest cell
hit in each subsketch. If U = 2%4, and one dedicates loglog U = 6
bits per LogLog-subsketch, then a (loglog U + d)-bit-per-subsketch
implementation of Curtain(d) will be superior even for rather large
values of d > 3.

A common implementation of HyperLoglLog [31] is to store the
minimum index of any subsketch, and then store each subsketch
index as a 4-bit offset, with {0, 1, . .., 14} being offsets, and the value
15 indicating that the true offset is > 15 and stored in a separate
exception list. For reasonable values of m, the length of the exception
list is small, and barely influences the space or update time of the
data structure. If one begins with a 4-bit implementation of LoglLog,
Table 2 indicates that the optimal choice of d is 2, using a 7-GRA-
based estimator with 7 = 0.7551.

Ohayon [27] analyzed the Curtain(1) sketch with the usual 1-
GRA (remaining area) based estimator. He called this sketch Ex-
tendedHyperLoglLog. A good parameterization of Theorem 4 is
to set d = 2 and 7 = 0.7551, yielding relative variance 0.61699/m.
Compared to a common 4-bit-per-column implementation of Hyper-
LoglLog [31], a 6-bit-per-column implementation of Curtain(d = 2)
is superior in terms of memory-variance product. See Table 2 for
more on these details.

d T standard error note

0 o0 1.4513% LogLog [11]

0 1 1.1616% HyperLogLog [15]

0 0.8899 1.1592% optimal 7-GRA estimator
1 1 1.1012% ExtendedHyperLogLog [27]
1 0.8941 1.0988% optimal 7-GRA estimator
2 0.7551 1.0756% optimal 7-GRA estimator
3 0.6151 1.0794% optimal 7-GRA estimator

Table 2: 4KB memory is assumed, which is 32000 bits. Assume
the baseline HyperLogLog implementation uses 4 bits per
subsketch. A Curtain(d) implementation uses d additional
bits per subsketch. This table compares algorithms with the
same memory. For example, with 4KB, there are 32000/4 =
8000 subsketches for HyperLogLog while if d = 1, then each
subsketch needs 5 bits and there are only 32000/5 = 6400 sub-
sketches. The standard error (i.e., square root of the relative
variance) is calculated from Proposition 1 and Theorem 2.
The calculated standard errors of LogLog, HyperLogLog and
ExtendedHyperLogLog match their respective authors’ re-
sult as m — oo.
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We also analyze 7-GRA-based estimators for PCSA. Theorem 5
is proved in Appendix C.

Theorem 5. [t-GRA for the PCSA sketch] Let A/(fi be the -
generalized remaining area of the ith subsketch with ’uniform off-
setting, and A = ;ZlAflli be the t-GRA. Then for any t > 0,

o = () (2]

that is asymptotically unbiased. The asymptotic normalized relative
variance is

is a scale-invariant estimator for A

(1-27)Ir(21) log 2
72T (1)?
Ast — 0, if;m is essentially counting the number of free cells (0s
in the sketch), which corresponds to Lang’s [24] “coupon collector”

lim m/TZV(/iT;m) =
m—oo

estimator iLang that counts occupied cells (1s in the sketch). The
(1-2727)I'(27) log2 _

72T (7)? -
log? 2 ~ 0.480453, which confirms Lang’s [24] back-of-the-envelope
calculation that it should be log? 2. By numerical optimization, the
minimal variance 0.435532 is obtained at z* = 0.343557. This comes
very close to the Cramér-Rao lower bound of ~ 0.42138 for

PCSA sketches, as computed in [28].

limiting variance of this estimator is lim; 0

-

6log2
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PrOOF. By default, ii;m is the estimator at cardinality . When

needed, we use i;m [A] to indicate that it is being evaluated on
a sketch with cardinality A”. By the r-scale-invariance of A).;, we
have A).; ~ A77Aj;;. Thus

-1 -1

A 1 m ) -7 1 m ) -T
L~ (=] A_TAST)) = (—A‘T > Ay
m i=1 m i=1
=1 )L:Lk';m[ll

A.2 Proof of Theorem 2

Theorem 2. IfAy;; is r-scale-invariant with finite variance, we have
forany A > 0,

(1) lim BA%, = A(BAp) ™" .

m—oo ’
@) Jim ma*V(37) = 7 (BAL) T TV (Are).
(3) For any A >

(EAI;T)T_lif.;m is asymptotically unbiased and has limit rela-
tive variance lim m)L_ZV(/iT;m) =772 (IE,AI;T)_2 V(A1r).
m—oo

0, the normalized estimator iz—;m =

PRrROOF. By scale-invariance, it suffices to consider the case A = 1.

LetX = A and Yy, = % 1'.';1 Aili), be the mean of m copies of X.

Define f(x) = x~7 . Then if.;m = f(Y). Since we consider the
case as m — oo, by the central limit theorem, Yy, is asymptotically
normal around EX. With high probability we have Y, € (EX —

IC’L’Z’, EX + li%m). Consider the first order approximation in this

small neighborhood.
f(x) = f(EX) + (x —EX) f' (EX) + O((x — EX)?)

= (BEX)™ T - (x-EX)r HEX)"T 1 +0((x - EX)?).

(1)
Note that EY,, = EX and V(Y;,) = %V(X) = O(%). Then we have
Ef (Ym) = (BX)™" = (BYm ~ EX)r 1 (EX) ™" 1+ O(V(Ym))

= (EX)™" +0(2). @)

Turning now to the variance, by (1) and (2)
V(f(Ym)) = E (f(Ym) = Ef (Ym))®
o 2
-E ((Ym ~EX)rNEX)TT Ty 0(%))
= V(Ym)r 2(EX) 72 24 0(L),

where we note that E(Y;, — EX)? = V(Y;,) and E(Y;,, — EX) = 0.
AsV(Yy) = %V(X ), this implies that the normalized variance is

mV(f(Ym)) = V() 2(EX) 7% 2 +0(L). &)
We can now obtain a
(BAm [11) 71 A%, where A%, [1] is the output of the esti-

mator at cardinality (density) 1. We do not know precisely
what EA%,[1] is, but limp—e BA%,[1] = '

strictly unbiased estimator

(EAI;T)_f , SO
j.f;m = (EAI;T)Til/i;m is asymptotically unbiased, establishing
Part (1). Part (2) follows from Part (1) and Eqn (3). Finally,
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observe that V(drm) = (BA10)?" V(A%,,). Since limpm_e
mA~2V (J%,,) = 772 (BA1,) ™27 "2 V(Ay,), we have

lim mA_ZV(iT;m) = T_z (EAlgT)_z V(AI;T):
m—oo

proving Part (3). O

B GENERALIZED REMAINING AREA FOR
LOGLOG AND CURTAIN SKETCHES

In a Loglog sketch we store the index of the highest cell in each
of the m subsketches (columns in Figure 1) that has been hit by a
dart. Every cell at or below the highest hit cell is implicitly occu-
pied, regardless of whether it has been hit. A Curtain(d) sketch is
like a LogLog sketch, except that we explicitly maintain, for each
subsketch, the hit/unhit status of the d cells below the highest hit
cell; those at least d + 1 cells below the highest hit cell are implicitly
occupied. In other words, the cell with index i in its subsketch is
unoccupied if and only if both

(1) it has not been hit by a dart, and

(2) cellsi+d+1,i+d+2,...in the same subsketch have all not

been hit by a dart.

Let us focus on one subsketch with offset R. To simplify notation,
let X(t) be a “fresh” binary random variable for each ¢ such that

1,
X(1) = . s ¢
0, with probability 1 —e™".

with probability e ~*

Note that the height of the ith cell is 2~ (*R) Thus X; =
X(27*R) ) /m) is the emptiness indicator of the ith cell at car-
dinality A. The 7-GRA is then defined as

A = Z Xl {Xj =1,VYj > i+d} 9~ 7(i+R)
j=—00

We now prove that A, is 7-scale-invariant.

Lemma 1. Foranyt > 0, A).; is a r-scale-invariant estimator for
ATE
Proor. We need to prove that, for any 7,4 > 0, A}, ~ A7"Ay,;.

Now note that,

(e8]

Ape= . X2 R 3 m)

i=—00
1 {X(Z_(j+R)A/m) =1,Vj>i+ d} 2~ T(+R)
Since R is uniform over [0, 1) and we are summing over Z, this sum

is invariant under shifts, e.g., by log, A. Continuing,
Ape =277 30 X (@R m)
i=—00
1 {X(Z‘(”R)/l/m) =1,Vj>i+ d} (A2~ (+R)yT

0o

~ 7T Y X (27 R /)

i=—o0
1 {X(z-<f+R>/m) LV > i+ d} (2~ (+R))7
= AT Ay
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Recall that T is the continuous extension of the factorial func-
tion, with I'(n + 1) = n! when n € N. Its integral form is
T(z) = _/000 wFle U duy.

Proposition 1. Foranyrt > 0,

1 1
TBAy=—————T(r), and
m Lz log2 (-4 + 1)7 (r), an
—z(d+1)
m 2T EAZ = (279 +1) 7% (log2) 'T(20) (1 + 2 —=)

d
+2 Z(Z‘d +1+27M) 72727 (1og 2) 71T (20).
=

Proor. Note that R is picked beforehand. Conditioning on a
certain value of R, X; and X are independent if i # j.

1 i
EA;, = /0 3 Ex(@ 0 /m)

j=—o0
El {X(z—U”)A/m) —LVj> i+d} 9= (i+1) 4,
:/1 i e—%z_(”r)(2_d+1)(2—(i+r))1'dr
0 =

/ 67%2*"(2*‘1“) (27%)7 dx
m

= (— )T/")067%27)((27'1_‘_1)(&273((27[1 + 1))de
AM279+1)) Jowo m

shifting x and we have
)Tfoo
T (o) _

) [t enray
. —00

) I'(7).

_ ( m
A(274 +1)
setting y = x log 2

e 27 (27 dx

1 m
_@(A(z-dﬂ)
1 m
_@(A(z—dn)
Note that by setting z e Y, f_o; e (V)T dy

fooo e ?z"1dz = T(). This is generalized in the following lemma.

Lemma 2. Leta,b,q,v > 0. Then

L.

ProOF. Set y = (x —loga) loggq. ]

€™ " (bg™*) dx = a”"b" (log q) "'T(1).

Now to understand the second moment, we consider the ex-
pectations of the product of all the pairs of the terms in the sum
Apr = X2 _ Xl {X;=1Vj>i+d} 277(H#R)  Consider pair
i < jwherej—i=h.

e If h = 0, since X;js are indicators, thus
E(X;1 {Xg = 1,Vk > i +d})?
=EX1{X; =1,Vk >i+d})

_ e—%z-“’”)(z-dﬂ).
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e If h € [1,d], then
E(XiX;1{Xg = 1L,Vk > i+d}1{X; = 1,Vt > j+d})
ZE(XinI]. {Xp =LVk >i+d})

A o—(i ~do-h
— e w2 (@2

e If h € (d, ), then
EXiXj1{Xy = L,Vk > i+d} 1{X; = 1,Vt > j+d})
=EB(X;1{Xy =1,Vk >i+d})

_ e—%Z‘(i+’)(2_d+1).

Combining these three cases, use linearity of expectation, we have

/01 (i_i)o - A2 (27d41) (2—(i+r))2T
o d

+2 Z 267%2*(””(2*&“2*”) (27(i+r)q7(i+h+r))‘[

i=—o00 h=1

2 i i e_%zf(i+r)(2’d+1) (2—(i+r)2_(i+h+r))T)

i=—co h=d+1
o A o—x(9—-d
/ e—EZ (2 +1)(2—X)2de
-0
& e —A o> (gmdyqya ) [, —xo—(x+h) T
+2Z e~ m (2 2 ) dx
h=1Y"%°

0 I e r
Z / - A2 (244 (z—xz—(x+h)) dx
h=d+1* ~%

Apply Lemma 2 to each term and we have

2
EA e

dr

+2

p) J —-27
:(—(2‘ +1)) (log 2)~'T(27)
m
d 2 -2
+ 22 (;(2‘”’ +1+ 2‘h)) 27" (log 2) 71T (27)
h=1

+2

0 27
Z (i(z*dn)) 27" (log 2) 1T (21)
h=de V"

m 1-277

-2t —7(d+1)
(i(z*d+ 1)) (log 2)~'T(2r) (1+22 : )

d 1 -27
(—(2*”’ +1+ 2*’1)) 27" (log2) 7T (21).
bt
O

Setting d = 0, this leads to, for example, the following generalized
HyperLoglog theorem.

Theorem 3. [t-GRA for the Loglog sketch] Let the offset vector
(R;i) € [0,1)™ be selected uniformly at random. Let XA(i) be the
integer index of the highest one in the ith subsketch after A insertions.
Then for any v > 0,

-1
1

m i =T
) (l D Z—T(R,-erj’)))
m i=1

1-27°
log 2

Arm =m (r(r)
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is a scale-invariant estimator for A that is asymptotically unbiased.

The asymptotic normalized relative variance is

I'(2r)log2 1+277
I'(r)? 1-277

lim mAfZV()IT;m) =72 (
m—oo

Proor. Note that for a subsketch with highest occupied X}, the

7-GRA is calculated as
Apr = Z 9=T(i+R) _ 2*T(X,1+R)ﬁ’
i>X)
where R is the random offset. Thus to conform with the style of
HyperLogLog, we choose A:l;f = (2 =1)A),; as the 7-GRA. By Prop
1 with d = 0, we have the normalized first and second moments as
1- Z_TF(T), and m~%"EA”? = rena-277) 27
log 2 log 2

The variance is implied from the first two moments. Apply Theo-
rem 2 and we get the result. ]

m~TEA" =

Remark 1. The celebrated estimator Appgy; of HyperLoglog cor-
responds to 7 = 1. Inserting 7 = 1 to the variance formula, we
have I'(2) = T'(1) = 1 and the leading constant of the variance is
3log2 — 1 = 1.07944. The bias term at 7 = 1 is ngw which match
the constants from Flajolet et al. [15] as m — oo.

Remark 2. Note that for any x1, x2,...,xm > 0,
_r1 m-1
' 1o . m
lim [ — Z x; = l_[ Xi >
0\ m 4 :
i=1 i=1
i.e,, the 7-mean converges towards the geometric mean as 7 — 0.
In other words, Durand and Flajolet’s estimator Apf for LoglLog
corresponds to 0-GRA. We have the normalized relative variance’

I'(2r)log2 1+277 ) a 272 + log? 2

~ 1.68497,
I'(r)? 1-277 12

which matches the limiting constant calculated by Durand and
Flajolet [10, 11].

7—0

lim 72 (

See Figure 2 for a visualization of the relative variance of the
7-GRA estimators for the LogLog sketch. By numerical optimiza-
tion, the minimal variance 1.07507 is obtained at r* = 0.889897.
This comes quite close to the Cramér-Rao lower bound for LoglLog
sketches, which Pettie and Wang [28] computed to be nio/g; T
1.07475.

For demonstration, one can insert d = 1, 2 to Proposition 1 and
apply Theorem 2 to obtain the following theorem.

Theorem 4. [t-GRA for the Curtain sketch withd = 1,2] Let the

offset vector (R;) € [0,1)™ be selected uniformly at random. Let X}(Li)
be the integer index of the highest cell hit in the ith subsketch after A

insertions. Let A/) and BY) be indicators for whether cells X/{i) -1

=

and Xﬁi) — 2 have been hit (and are occupied) in the ith subsketch.

7This limit calculation is done in the algebraic system Mathematica.

e Whend =1, foranyt > 0,

-1
" 2 1\ (1< 1 ()
A = Zm(r LN (L ey
wm 3m( (T)logz) (m;(ZT—l *

-1
(1—A(”)2‘T(Ri+x§”—l>)) '

Dingyu Wang & Seth Pettie

is a scale-invariant estimator for A that is asymptotically un-
biased. The asymptotic normalized relative variance is
-2t

_ 2 1
Jim mA 2V (Aem) = EED ((log 2T (20)(1+2 +

2.3%72757) T(r)z) )

1-277

e Whend =2, foranyt > 0,

—1
. 4 1\ 1 & 1 (i)
Ay = — T - — _Z_T(Ri*'XA )
m 5”1( (T)logZ) (m;(zf—l +

(1 - AD)z=rReX;=1)

|
(1- B(i))z‘T<Rf+X§i)-2>))

is a scale-invariant estimator for A that is asymptotically un-
biased. The asymptotic normalized relative variance is

. B R 1 -37
n}gnoo ml Zv(AT;m) = m ((log Z)F(ZT) (1 +2 1— 2*T+
2(7/5)"%727 T + 2(6/5)_272_27) -
F(T)Z) .

C GENERALIZED REMAINING AREA FOR
THE PCSA SKETCH

Consider a PCSA sketch with m subsketches. Due to Poissoniza-
tion, the sketch consists of a set of independent indicator variables
corresponding to whether each cell has been hit by at least one dart.
As the section above, let X (t) be a “fresh” binary random variable
such that

X(1) = {1, with probability e™*

0, with probability 1 — ™.

Consider one subsketch with offset R. Cell i has height 2= (+R)
and width 1/m. At cardinality A the number of points in the cell
is Poisson(m 112~ ("*R))_ Thus the bit vector representing this
subsketch distributes identically with (X (m_1/12_(i+R))) icz. The
r-generalized remaining area for the PCSA sketch is then defined
as follows.

Aﬁ"[ — ZX(m_l/IZ_(i+R))2_(i+R)T.
i€Z
Lemma 3. Foranyrt > 0, A)., is a t-scale-invariant estimator for
s ’
Proor. We need to prove that for any A > 0, Ay, ~ A7 "Ay;;.
Note that
A/l;z' — ZX(M_I).Z_(i+R))2_T(i+R)
i€Z
=17 Z X(m_12_(i+R_l°g2 /1))2—7(1'+R—10g2 A)
i€Z
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Note that because R is uniform over [0, 1) and we are summing over
Z, this sum is invariant under shifts, e.g., by log, A. Continuing,

App ~ AT Z 1 {X(m*lzf(”R)) = 0} 27T(HR) — 3=7py
i€Z
]

In contrast to our smoothing of (Hyper)LogLog, it actually does
matter that we use the uniform offset vector R = (0,1/m,..., (m —
1)/m) rather than random offsets. Random offsets would intro-
duce subtle correlations between cells in the same column, and
increase the variance by some tiny constant. Uniform offsets have
the property that there is a cell of size 2~/ for every i € Z, so the
conceptual organization of cells into columns is no longer relevant.

Proposition 2. Let Ailr)AEZT) .. ,AYZ) be the T-GRA of m subs-

ketches with uniform offsetting. For t > 0,

lim m~1°*7 Z E(A; (l) F(T) nd
m—oo
—-27
o i-2r (i) o 1=2779)T0)
rr}g‘noo m Z V(A log 2 '

Proor. First note the following identity. Assume ¢ > 1,7 >
0,4 > 0. Then

Jogn= [

_ 1

"~ loggq
Here t = g~ *. After uniform offsetting, a PCSA sketch with m
subsketches have cells of size 27 /™ for all i € Z. Thus we we have

R (400
—1-7 ; E (Al;r)

-1 ZE (X(m—lz—i/m)(m—lz—(i/m))r)
i€Z

Setting h(t) = E(X(27)(27H)7) =

comes m~! ez h(i/m + log, m). Since we are summing over

Z, the shift log, m in the argument affects the sum vanish-

e—q'”q—”dx=/ eIt/ (tlogq) "t dt
0

AT (7).

lim m
m—oo

= lim m

e_zitZ_”, the sum be-

ingly as m — oo. Thus limy—e m™! Y;ez h(i/m + log, m) =
limp—co m™! ¥ez h(i/m) = [* h(t)dt. Thus,

m .
—1-7 ;E (Ag,ll)—)

—_ / e—Z—IZ—Tt dt = lp(l 2, ) —

lim m
m—oo

F(r)
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Note that by Poissonization, cells are independent and thus all
co-variances are zero.

-1-27 Z V(A(l)

lim m
m—0oo

= lim m™!
m-—0oo

v (X(mflzfi/m)(mflzfi/m)r)
i€Z
by the same limiting argument laid out above, this is equal to

= /00 V(X(27H27 ") dr

(o]
—o~t __ —2.27t __
=/ 82 22rt_622 221tdt
—00

=9(1,2,2r) — (2,2,27) = %(1 — 2727,

[m]

Theorem 5. [t-GRA for the PCSA sketch] Let A(l) be the t-
generalized remammg area of the ith subsketch wzth umform off-

setting, and A = Y7 A/(llz be the t-GRA. Then for any v > 0,

N ro\" (4 -7

Aem = m (logz) (E) is a scale-invariant estimator for A
that is asymptotically unbiased. The asymptotic normalized relative
variance is

(1-27%7)r(21) log 2
72T (1)2
Proor. This follows directly from Theorem 2 and Proposition
2. a

lim mA_ZV(iT;m) =
m—0o0

Remark 3. The remaining area estimator (1-GRA) has normalized

% 0.51986, which is

better than Flajolet and Martin’s original “first zero” estimator Arm.

relative variance log2 = % log2 =

Remark 4. As 7 goes to 0, if;m is essentially counting the number
of free cells (0s in the sketch), which corresponds to Lang’s [24]

“coupon collector” estimator /iLang that counts occupied cells (1s in

the sketch). The limiting variance of this estimator is®

(1-27%9)I(21) log 2
2T (1)

which confirms Lang’s [24] back-of-the-envelope calculation that

it should be log? 2.

lim

7—0

=log? 2 ~ 0.480453,

See Figure 2 for a visualization of the relative variance of the
7-GRA estimators for the PCSA sketch. By numerical optimiza-
tion, the minimal variance 0.435532 is obtained at 7* = 0.343557.
This comes very close to the Cramér-Rao lower bound of -+
0.42138 for PCSA sketches, as computed in [28].

z
6log2 ~

8This calculation is done in the algebraic system Mathematica.
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