
12

Almost Optimal Exact Distance Oracles for Planar Graphs

PANAGIOTIS CHARALAMPOPOULOS, Birkbeck, University of London, UK
PAWEŁ GAWRYCHOWSKI, University of Wrocław, Poland
YAOWEI LONG, Tsinghua University, China
SHAY MOZES, Reichmann University, Israel
SETH PETTIE, University of Michigan, USA
OREN WEIMANN, University of Haifa, Israel
CHRISTIAN WULFF-NILSEN, University of Copenhagen, Denmark

We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer exact
distance queries. The main tension in this problem is between space S and query time Q , and since the mid-
1990s all results had polynomial time-space tradeo"s, e.g., Q = Θ̃(n/

√
S) or Q = Θ̃(n5/2/S3/2).

In this article we show that there is no polynomial tradeo" between time and space and that it is possible
to simultaneously achieve almost optimal space n1+o (1) and almost optimal query time no (1) . More precisely,
we achieve the following space-time tradeo"s:

n1+o (1) space and log2+o (1) n query time,
n log2+o (1) n space and no (1) query time,
n4/3+o (1) space and log1+o (1) n query time.

We reduce a distance query to a variety of point location problems in additively weighted Voronoi diagrams
and develop new algorithms for the point location problem itself using several partially persistent dynamic
tree data structures.

CCS Concepts: • Theory of computation→ Data structures design and analysis; Shortest paths;
Additional Key Words and Phrases: Planar graphs, Voronoi diagrams, distance oracles, persistent data
structures

This article is derived from extended abstracts presented at SODA’18 [32], STOC’19 [14], and SODA’21 [50]. This work was
supported by NSF grants CCF-1637546 and CCF-1815316; a grant from IIIS, Tsinghua University; Israel Science Foundation
grants 592/17 and 810/21; and the Starting Grant 7027-00050B from the Independent Research Fund Denmark under the
Sapere Aude research career program.
Authors’ addresses: P. Charalampopoulos, Birkbeck, University of London, Department of Computer Science and In-
formation Systems, Malet Street, London, WC1E 7HX, United Kingdom; email: p.charalampopoulos@bbk.ac.uk; P.
Gawrychowski, Instytut Informatyki Uniwersytetu Wrocławskiego, ul. Joliot-Curie 15, 50-383 Wrocław, Poland; email:
gawry@cs.uni.wroc.pl; Y. Long, Tsinghua University, Institute for Interdisciplinary Information Sciences, Beijing, China,
100084; email: yaoweil@umich.edu; S. Mozes, Reichman University, E# Arazi School of Computer Science, 167, Herzliya,
4610101, Israel; email: smozes@runi.ac.il; S. Pettie, University of Michigan, Computer Science and Engineering, 2260 Hay-
ward St., Ann Arbor, MI 48109, USA; email: pettie@umich.edu; O. Weimann, City Campus, University of Haifa, Ha-Namal
St. 67, Haifa, 3303221, Israel; email: oren@cs.haifa.ac.il; C. Wul"-Nilsen, University of Copenhagen, BARC, Department of
Computer Science, Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark; email: koolooz@di.ku.dk.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro#t or commercial advantage and that copies bear this notice and
the full citation on the #rst page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speci#c permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0004-5411/2023/03-ART12 $15.00
https://doi.org/10.1145/3580474

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

https://orcid.org/0000-0002-6024-1557
https://orcid.org/0000-0002-6993-5440
https://orcid.org/0000-0002-1891-9897
https://orcid.org/0000-0001-9262-1821
https://orcid.org/0000-0002-0495-3904
https://orcid.org/0000-0002-4510-7552
https://orcid.org/0000-0002-3699-7821
mailto:permissions@acm.org
https://doi.org/10.1145/3580474
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580474&domain=pdf&date_stamp=2023-03-25

12:2 P. Charalampopoulos et al.

ACM Reference format:
Panagiotis Charalampopoulos, Paweł Gawrychowski, Yaowei Long, Shay Mozes, Seth Pettie, Oren Weimann,
and Christian Wul"-Nilsen. 2023. Almost Optimal Exact Distance Oracles for Planar Graphs. J. ACM 70, 2,
Article 12 (March 2023), 50 pages.
https://doi.org/10.1145/3580474

1 INTRODUCTION
A distance oracle is a data structure that gives oracle access to the pairwise distance function
distG (·, ·) with respect to some graphG. There are two trivial solutions to this problem: store distG
explicitly in Θ(n2) space or store the graph itself and answer queries in Ω(m) time. The goal is to
achieve a time-space tradeo" that approaches the constant query time of the #rst trivial scheme
and the linear space of the second.

On general graphs G it seems that incorporating approximation into the distance estimates is
necessary to get an attractive space-time tradeo". There are approximate distance oracles for undi-
rected graphs [18, 64] that trade spaceO (n1+1/k) against multiplicative approximation 2k −1, with
optimal O (1) query time. Others [1, 58] pit space against a mix of multiplicative and additive ap-
proximation, or in sparse graphs [2, 61], space against query time. Refer to Sommer [60] for a
survey on distance oracles.

When G is known to come from a structured class of graphs, we can aspire to #nd exact
distance oracles with attractive space-time tradeo"s. In this article we develop new distance
oracles for weighted, directed planar graphs. This problem has been studied for 25 years in both
the exact [3, 9, 14, 19, 20, 24, 28, 32, 45, 54, 56, 67] and the approximate [13, 34, 42–44, 63, 68]
settings. Our oracles are the #rst exact oracles to simultaneously achieve almost optimal space
n1+o (1) and almost optimal query time no (1) see Figure 1. Theorem 1.1 provides a #ne-grained
tradeo" between space and query time.

1.1 History of Planar Distance Oracles
The planar distance oracle problem was introduced in 1996 by Arikati et al. [3] and Djidjev [24]. The
main technical tool used in the early planar distance oracles [3, 19, 24] is Lipton and Tarjan’s planar
separator theorem [49], and its re#nements by Miller [52] and Frederickson [29]. Let the query
time and the space of an oracle be denoted by Q and S , respectively. The early oracles achieved a
space-query tradeo" of Q = Õ (n/

√
S) for S ∈ [n4/3,n2] but a weaker tradeo" of Q = O (n2/S) for

S ∈ [n,n4/3).
In a very in$uential article Fakcharoenphol and Rao [28] introduced Monge matrices to planar

graph algorithms and devised a distance oracle with Õ (n) space and Õ (
√
n) query time; i.e., they

added an additional point to the generalQ = Õ (n/
√
S) tradeo". Eventually, Mozes and Sommer [54]

extended this tradeo" to nearly the full range [n log logn,n2], using [28] and ideas from Klein’s [44]
multiple source shortest path (MSSP) data structure.

The work of [30, 54, 56, 67] focused on achieving optimal time or space at the expense of the other
measure. Wul"-Nilsen’s [67] distance oracle occupies subquadratic space O (n2 log4 logn/ logn)
and answers queries in optimal O (1) time, whereas Nussbaum [56] and Mozes and Sommer’s [54]
distance oracle occupies optimalO (n) space and answers distance queries inO (n1/2+ϵ) time, for any
ϵ > 0. On undirected, unweighted planar graphs, the recent distance oracle of Fredslund-Hansen
et al. [30] occupies O (n5/3+ϵ) space and answers queries in O (log(1/ϵ)) time for any ϵ > 0.

In 2017 Cabello [10] introduced a new idea, additively weighted planar Voronoi diagrams,1 and
used them to solve problems concerning planar metrics (diameter, sum-of-distances) in strongly

1Voronoi diagrams have also been used for facility location problems in planar graphs [51].

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

https://doi.org/10.1145/3580474

Almost Optimal Exact Distance Oracles for Planar Graphs 12:3

Fig. 1. Tradeo" of the space (S) vs. the query time (Q) for exact distance oracles in planar graphs on a doubly
logarithmic scale, hiding subpolynomial factors. The previous tradeo"s are indicated by solid black lines and
points, while our new tradeo" is indicated by the red point.

subquadratic time. Inspired by this idea, Cohen-Addad et al. [20] realized that Voronoi diagrams
can be used to obtain the #rst exact distance oracle for planar graphs with subquadratic space and
polylogarithmic query time. The Voronoi diagram-based oracle in their breakthrough paper has a
space-time tradeo" of Q = Õ (n5/2/S3/2) for S ∈ [n3/2,n5/3].

All of the distance oracles cited above report exact distances. Thorup [63] proved that on non-
negatively weighted planar graphs, (1 + ϵ)-approximate distances can be reported in O (ϵ−1 +
log logn) time by an oracle of space O (nϵ−1 log2 n). Refer to [13, 34, 42–44, 48, 68] for other space-
time-approximation tradeo"s on undirected planar graphs and to [48] for an improved tradeo" on
directed planar graphs. See Table 1.

1.2 New Results
In this article we show that there is no polynomial tradeo! between space and query time, and that
near-optimality in both measures can be achieved simultaneously: withn1+o (1) space exact distance
queries can be answered in no (1) query time. Our main distance oracle (Theorem 1.1) does have a
space-time tradeo", the extremes of which let us achieve either Õ (n) space or Õ (1) query time but
not both.

Theorem 1.1. Let G be an n-vertex weighted planar digraph with no negative cycles, and let
κ,m ≥ 1 be parameters. A distance oracle occupying space O (mκn1+1/m+1/κ) can be constructed
in Õ (n3/2+1/m + n1+1/m+1/κ) time to answer exact distance queries in O (2mκ log2 n log logn) time.
At the two extremes of the space-time tradeo! curve, we can construct oracles in n3/2+o (1) time with
either

• n1+o (1) space and log2+o (1) n query time, or
• n log2+o (1) n space and no (1) query time.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:4 P. Charalampopoulos et al.

Table 1. Space-query Time Tradeo"s for Exact and Approximate Planar Distance Oracles

Exact Oracles Space 1ery Time
Arikati, Chen, Chew,
Das, Smid, & Zaroliagis 1996 S ∈ [n3/2,n2] O (n2

S)

Djidjev 1996
S ∈ [n,n2] O (n2

S)

S ∈ [n4/3,n3/2] O (n√
S

logn)

Chen & Xu 2000 S ∈ [n4/3,n2] O (n√
S

log(n√
S

))

Fakcharoenphol & Rao 2006 O (n logn) O (
√
n log2 n)

Wul"-Nilsen 2010 O (n2 log4 log n
log n) O (1)

Nussbaum 2011
O (n) O (n1/2+ϵ)

S ∈ [n4/3,n2] O (n√
S

)

Mozes & Sommer 2012
S ∈ [n log logn,n2] O (n√

S
log2 n log3/2 logn)

O (n) O (n1/2+ϵ)

Cohen-Addad, Dahlgaard,
& Wul"-Nilsen 2017 S ∈ [n3/2,n5/3] O (n5/2

S 3/2 logn)

Gawrychowski, Mozes,
Weimann, & Wul"-Nilsen 2018

O (n3/2) O (logn)

S ∈ [n,n3/2] O (n3/2

S log2 n)

Fredslund-Hansen, Mozes,
& Wul"-Nilsen 2020 O (n5/3+ϵ) log(1/ϵ) (Undir.,Unweight.)

new

n1+o (1) log2+o (1) n Theorem 1.1

n log2+o (1) n no (1) Theorem 1.1

O (n4/3 log1/3 n) O (log2 n) Theorem 4.1

n4/3+o (1) log1+o (1) n Theorem 4.1

(1 + ϵ)-Approx. Oracles Space 1ery Time

Thorup 2001
O (nϵ−1 log2 n) O (log logn + ϵ−1)

O (nϵ−1 logn) O (ϵ−1) (Undir.)

Klein 2002 O (n(logn + ϵ−1 log ϵ−1)) O (ϵ−1) (Undir.)
Kawarabayashi,
Klein, & Sommer 2011 O (n) O (ϵ−2 log2 n) (Undir.)

Kawarabayashi,
Sommer, & Thorup 2013

O (n logn) O (ϵ−1) (Undir.)

O (n) O (ϵ−1) (Undir.,Unweight.)
Gu & Xu 2015 O (n logn(ϵ−1 logn + 2O (1/ϵ))) O (1) (Undir.)
Wul"-Nilsen 2016 O (nϵ−2) O (ϵ−2) (Undir.)
Chan & Skrepetos 2019 O (n logn(ϵ−1 logn + ϵ−4−δ)) O (1) (Undir.)
Le & Wul"-Nilsen 2021 O (nϵ−2) O (ϵ−2) (Undir.)
Le & Wul"-Nilsen 2021 o(nϵ−1 logn) O (log logn + ϵ−5.01)

All exact distance oracles apply to weighted, directed graphs without negative cycles. Approximate
distance oracles apply to non-negatively weighted graphs; some are restricted to undirected and/or
unweighted graphs. O hides log(ϵ−1 log n) factors. The bounds for approximate distance oracles in
directed planar graphs assume that the ratio between the largest and smallest edge weights is
polynomial in n.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:5

At a high level, Theorem 1.1 reduces a distance query distG (u,v) to a series of point location prob-
lems in additively weighted planar Voronoi diagrams. We compute an m-level !r -division [29, 46]
where regions on level i haveO (ni/m) vertices andO (

√
ni/m) boundary vertices (vertices shared by

other regions). In the course of answering a distance query distG (u,v) we #nd (u1,u2, . . .), whereui
is the last vertex of the shortestu-to-v path lying on the boundary of a level-i region that containsu.

Theorem 3.2 proves that the point location problem itself is reducible to O (logn) distance-type
queries2 via a kind of binary search. We employ two strategies for answering these distance-type
queries. The #rst is to store many MSSP structures for various subgraphs. This is time-e5cient
but requires space linear in the size of these subgraphs. The second is to use recursion. Speci#cally,
given (u1, . . . ,ui), we can narrow the number of possibilities forui+1 down to two candidates s1, s2
in Õ (1) time via point location queries that are solved without recursion. We determine which
of these two sites actually is ui+1 with two recursive calls to compute dist(s1,v) and dist(s2,v).
This branching process leads to a query time Õ (2m) that depends exponentially onm, whereas the
space of the data structure is about Õ (n1+1/m). Thus, by setting m appropriately, we can achieve
Õ (1) query time and n1+o (1) space or no (1) query time and Õ (n) space.

Using existing MSSP structures [44], the query time would be O (2m log3 n). We develop a
new MSSP data structure based on Euler-tour trees [38] and partially persistent arrays [21] that
may be of independent interest. It uses O (κn1+1/κ) space and answers distance-type queries in
O (κ log logn) time, for any parameter κ ≥ 1. The #rst tradeo" of Theorem 1.1 (minimizing query
time) is obtained by setting both κ,m to be ω (1) and o(log logn).

In Theorem 4.1 we describe a simpler distance oracle that achieves di"erent space-time tradeo"s,
namely Õ (n4/3) space and O (log2 n) query time, or n4/3+o (1) space and log1+o (1) n query time.

Finally, we complement our almost optimal distance oracle with an e5cient preprocessing al-
gorithm that runs in n3/2+o (1) time. In particular, we show an e5cient algorithm for computing
Voronoi diagrams in planar graphs, which we believe is of independent interest.

Provenance of the Article. This article is derived from three extended abstracts. The #rst [31],
which appeared in SODA 2018, characterized the tree structure of the dual representation of
Voronoi diagrams and developed the point location mechanism described in Section 3. The dis-
tance oracle of [31] achieved a tradeo" of Q = Õ (n3/2/S) for S ∈ [n,n3/2], which is completely
subsumed by Theorem 1.1. Therefore, it is not described in this article. The second paper [14],
which appeared in STOC 2019, observed that the same point location mechanism can be used
in an external Voronoi diagram, i.e., the Voronoi diagram for the complement of a region in an
r -division. Furthermore, it developed the recursive query structure using m-level !r -divisions. A
query at level i of the recursion reduces to O (logn) queries at level i + 1. Thus, the query time
in [14] is proportional to (logn)m rather than to 2m as in Theorem 1.1. The resulting distance or-
acle of [14] achieved n1+o (1) space and no (1) query-time. The third paper [50], which appeared in
SODA 2021, modi#ed and extended the point location mechanism. It showed that, by using appro-
priate persistent data structures and further exploiting planarity, much of the point location work
can be done e5ciently without recursion, and that only two recursive calls at a higher level su5ce.
The MSSP data structure based on Euler-tour trees was also introduced in [50].

1.3 Organization
In Section 2 we review background on planar embeddings, planar separators, and MSSPs. In
Section 3 we review additively weighted Voronoi diagrams and prove that the point location

2Speci#cally, deciding whether the shortest s-to-v path is a pre#x of the shortest s-to-x path for some vertex x , or whether
it branches to the left or to the right of it.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:6 P. Charalampopoulos et al.

problem is reducible toO (logn) distance-type queries. Section 4 describes a simple distance oracle
with space Ω(n4/3) and faster query times than those of Theorem 1.1.

Section 5 introduces the main distance oracle of Theorem 1.1 and the high-level query
algorithm. The high-level algorithm relies on specialized point location routines, which are
introduced in Section 6. Section 7 analyzes the space and query time of the distance oracle,
whereas its construction time is addressed in Section 8. Section 9 explains how to remove a
simplifying assumption made throughout the article, that each region is bounded by a single hole.
We conclude with some remarks and open problems in Section 10.

The new MSSP implementation is described in Appendix A.

2 PRELIMINARIES
2.1 The Graph and Its Embedding
A weighted directed planar graph G = (V ,E, !) is represented by a combinatorial embedding: for
each v ∈ V (G) we list the edges incident to v according to the clockwise order around v . Let
n = |V (G) |. We assume that the graph has a #xed embedding and has no negative weight cycles
and, without loss of generality, further assume the following:

• All the edge-weights are non-negative, i.e., ! : E → R≥0. This can be ensured in O (n log2 n
log log n)

time [39, 55]. Furthermore, in O (n) time, via randomized or deterministic perturbation [26],
we can assume that there are no zero weight edges, and that shortest paths are unique in any
subgraph of G. Each original distance can be recovered from the corresponding distance in
the transformed graph in constant time.3
• The graph is strongly connected and triangulated; i.e., each face is bounded by a 3-cycle. We

can ensure this by introducing arti#cial edges with weight n · maxe ∈E (G) {!(e)} so as not to
a"ect any #nite distances.
• If (u,v) ∈ E (G) then (v,u) ∈ E (G) as well. (In the circular ordering around v , they are

represented as a single element {u,v}.) We stress that the graph is directed. That is, !(u,v)
and !(v,u) need not be equal, and one of them may be∞.

Suppose P = (v0,v1, . . . ,vk) is a path oriented fromv0 tovk , and e = (vi ,u) (where i ∈ [1,k−1])
is an edge not on P . Then e is to the right of P if e appears between {vi ,vi+1} and {vi−1,vi } in the
clockwise order around vi , and left of P otherwise.

2.2 Separators and r -Divisions
Lipton and Tarjan [49] proved that every planar graph contains a separator ofO (

√
n) vertices that,

once removed, breaks the graph into components with at most 2n/3 vertices each. Miller [52]
showed that every triangulated planar graph has a O (

√
n)-size separator that consists of a

simple cycle. Simple cycle separators can be used to recursively separate a planar graph until its
components have constant size. Klein et al. [46] showed how to obtain, in O (n) time, a complete
recursive decomposition tree ofG that is a binary tree whose nodes correspond to subgraphs ofG,
called regions, with the root being all of G, and the leaves being regions of constant size. The set
of boundary vertices of a region R is denoted by ∂R: it consists of those vertices of R that belong
to some separator along the recursive decomposition used to obtain R.

3Lemma 3.3 in [26] asserts that for any two paths p1, p2 from s to t , there exists a path p that is strictly shorter (under the
perturbation) than at least one of p1, p2. The proof of the lemma shows that the edges of p are contained in the union of
the edges of p1 and p2. Hence, shortest paths are unique in any subgraph of G . (In fact, [26, Lemma 3.3] discusses costs of
$ows, of which shortest paths is a special case.)

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:7

An r -division, introduced by Frederickson [29], is a set of Θ(n/r) regions, no two of which are
ancestors of one another in the recursive decomposition tree, whose union is G (i.e., a maximal
anti-chain), and such that each region has O (r) vertices and O (

√
r) boundary vertices.

We use [46] for computing a hierarchical !r -division, where !r = (rm , . . . , r1) and n = rm > · · · >
r1 = Ω(1) in linear time. Each region in each ri -division is a region in the complete recursive
decomposition tree of G. Such an !r -division has the following properties:
• (Division & Hierarchy) For each i , Ri is the set of regions in an ri -division of G, where
Rm = {G} consists of the graph itself. For each i < i ′ ≤ m and Ri ∈ Ri , there is a unique
Ri′ ∈ Ri′ such that E (Ri) ⊆ E (Ri′). The !r -division can therefore be represented as a rooted
tree of regions.
• (Boundaries and Holes) The O (

√
ri) boundary vertices of any Ri ∈ Ri lie on a constant

number of faces of Ri called holes, each bounded by a cycle (not necessarily simple).
We modify the output of the Klein-Mozes-Sommer [46] !r -division in two ways. First, we sup-

plement it with a zeroth level. The layer-0 R0 = {{v} | v ∈ V (G)} consists of singleton sets, and
each {v} is attached as a (leaf) child of an arbitrary R ∈ R1 for whichv ∈ R. Second, we modify the
graph so that every hole of every region is bounded by a simple cycle in the graph. This involves
cutting along paths of repeated edges; see Section 9 for details of this transformation.

Suppose that f is one of the O (1) holes of region R and Cf is the cycle bounding f . The cycle
Cf partitions E (G) −Cf into two parts. Let Rf ,out be the graph induced by the part disjoint from R,
together withCf ; i.e.,Cf appears in both R and Rf ,out. The presentation of the algorithm is greatly
simpli#ed by assuming that in every region R, ∂R lies on a single hole fR . We use Rout as a short
form of RfR,out. In Section 9 we explain how to remove this assumption.

2.3 Multiple-source Shortest Paths
Consider a weighted planar graph H with a distinguished face f on vertices S . Klein’s MSSP algo-
rithm [45] takesO (|H | log |H |) time and produces anO (|H | log |H |)-size data structure that, given
s ∈ S andv ∈ V (H), returns distH (s,v) inO (log |H |) time. Klein’s algorithm can be viewed [11] as
continuously moving the source vertex around the boundary face f , recording all changes to the
single-source shortest path (SSSP) tree in a Link-cut tree data structure [59]. It is shown [45] that
each edge in H enters and leaves the SSSP tree exactly once, and hence the number of changes
is O (|H |). Each change to the tree can be handled in O (log |H |) time [59], and the generic persis-
tence method of [25] allows for querying any state of the SSSP tree. The important point is that
the total space is linear in the number of updates to the structure (O (|H |)) times the update time
(O (log |H |)). We show that this structure can be augmented to also answer other useful queries.
Further, we present alternative tradeo"s for the problem by implementing MSSP using Euler Tour
trees [38], as opposed to the data structure of [45] that uses Link-cut trees [59]. Since our data
structure (with Euler Tour trees) does not satisfy the criteria of Driscoll et al.’s [25] persistence
method for pointer-based data structures, we use the folklore implementation of persistent ar-
rays4 to make any RAM data structure persistent, with doubly logarithmic slowdown in the query
time. See Appendix A for a proof of Lemma 2.1.

4Dietz [21] credits this method to an oral presentation of Dietzfelbinger et al. [22], which highlighted it as an application of
dynamic perfect hashing. The idea is to maintain a van Emde Boas-type data structure [65, 66] for every array location A[i]
that contains every value written to A[i], keyed by the time it is written. Both the values and timestamps are O (log n)-bit
integers. Looking up A[i] at time t involves a single predecessor search, which takes O (log log n) time. Perfect hashing is
used to reduce the space of each van Emde Boas structure to linear. If randomness is undesirable, we can a"ord to construct
linear-space deterministic dictionaries with an O (log n)-factor overhead in construction time; see Hagerup et al. [36].

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:8 P. Charalampopoulos et al.

Fig. 2. The clockwise order of ex , eu , ev aroundv tells us whether the shortest s-to-u path branches from the
shortest s-to-v path to the right or le#.

Lemma 2.1 (Cf. Klein [45] and Cabello et al. [11]). Let H be a planar graph, S be the vertices
on some distinguished face f , and κ ≥ 1 be a parameter. Consider the following queries:

• Given s ∈ S,v ∈ V (H), return distH (s,v).
• Given s ∈ S,u,v ∈ V (H), return (x , eu , ev), where x is the lowest common ancestor (LCA) of
u and v in the SSSP tree rooted at s and ez is the edge on the path from x to z (if x ! z) for
z ∈ {u,v}.

We can achieve either of the following space-time tradeo!s:

(a) O (|H | log |H |) construction time, O (|H | log |H |)-space, and O (log |H |) query time, or
(b) O (κ |H |1+1/κ) construction time, O (κ |H |1+1/κ)-space, and O (κ log log |H |) query time.

The purpose of the second query is to tell whether u lies on the shortest s-to-v path (x = u) or
vice versa, or to tell whether the s-to-u path branches left or right from the s-to-v path. If they do
branch, we also say that u is to the left/right of the s-to-v path. Once we retrieve the LCA x and
edges eu , ev , we get the edge ex from x to its parent. The clockwise order of ex , eu , ev around x
tells us5 whether the shortest s-to-u path branches to the left or to the right of the shortest s-to-v
path. See Figure 2.

3 ADDITIVELY WEIGHTED VORONOI DIAGRAMS
Let H be a directed planar graph with real edge-lengths and no negative-length cycles. Assume
that all faces of H are triangles except, perhaps, a single face h, which we regard as the in"nite
face. Let S be the set of vertices that lie on h. The vertices of S are called sites. Each site s ∈ S has a
weight ω (s) ≥ 0 associated with it. The additively weighted distance from a site s ∈ S to a vertex
v ∈ V (H), denoted by dω (s,v), is de#ned as ω (s) plus the length of the shortest s-to-v path in H .
To avoid clutter in the presentation we assume that |S | > 2. This is without loss of generality since
when |S | ≤ 2 (in fact, whenever S = O (1)), point location (Theorem 3.2) becomes trivial.

De"nition 3.1. The Voronoi diagram of S withinH with additive weightsω, denoted VD[H , S,ω],
is a partition of V (H) into pairwise disjoint sets, one set Vor(s) for each site s ∈ S . The set Vor(s),
which is called the Voronoi cell of s , contains all vertices in V (H) that are closer (w.r.t. dω (·, ·))
to s than to any other site in S . Ties are always broken consistently, in favor of sites with larger
additive weights—formally, with respect to reverse lexicographic order on (ω (s), s).

5The order can be inferred in constant time by storing with each edge its rank in a clockwise traversal of the edges incident
to x , starting from an arbitrarily chosen vertex.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:9

Fig. 3. A planar graph (black edges) with four sites on the infinite face together with the dual Voronoi dia-
gram VD∗ (in blue). VD∗ is a tree with six vertices. The sites are shown together with their corresponding
shortest path trees (in turquoise, red, yellow, and green).

Since every subgraph of H is strongly connected, the Voronoi cells partition V (H). Due to the
tie-breaking rule, for any v ∈ Vor(s), the shortest s-to-v path is contained in Vor(s). In particular,
Vor(s) is connected.

We say that an edge e of H belongs to Vor(s) if both endpoints of e belong to Vor(s). We say that
e is a boundary edge of Vor(s) if exactly one endpoint of e belongs to Vor(s).

Next, we describe a space-e5cient dual representation VD∗[H , S,ω] (or simply VD∗) of a Voronoi
diagram VD[H , S,ω]. Let H ∗ be the planar dual of H . Let VD∗0 be the subgraph of H ∗ consisting
of the duals of edges {u,v} of H such that u and v are in di"erent Voronoi cells. Let VD∗1 be the
graph obtained from VD∗0 by dissolving degree-2 vertices into their incident edges (or equivalently,
eliminating each degree-2 vertex by contracting any one of its incident edges). The vertices of VD∗1
are called Voronoi vertices. A Voronoi vertex f ∗ ! h∗ is dual to a triangular face f whose three
vertices belong to three distinct Voronoi cells. We call such a face trichromatic. Each Voronoi vertex
f ∗ stores for each vertex u incident to f the site s such that u ∈ Vor(s). Note that h∗ is a Voronoi
vertex. Each face of VD∗1 corresponds to a cell Vor(s). Hence, there are at most |S | faces in VD∗1. Since
the minimum degree in VD∗1 is 3, the total number of edges, vertices, and faces of VD∗1 is O (|S |).
Finally, we de#ne VD∗ to be the graph obtained from VD∗1 by splitting the node h∗ into deg(h∗)
copies, each one incident to an edge formerly incident to h∗. See Figure 3 for an illustration.

We say that an edge e∗0 of VD∗0 is represented by an edge e∗ of VD∗ if e∗0 was contracted into e∗

in the process de#ning VD∗. We say that an edge e∗ of VD∗ is incident to Vor(s) if e∗ is an edge on
the face of VD∗1 that corresponds to Vor(s).

Lemma 3.1. If ω is such that every vertex of S lies in its own Voronoi cell, then VD∗[H , S,ω] is a
tree.

Proof. Suppose that VD∗ contains a cycle C∗. Since the degree of each copy of h∗ is one, the
cycle avoids all copies ofh∗. Since all the sites are on the boundary of the holeh, each of the vertices
of the graph enclosed by C∗ belongs in a Voronoi cell that contains no site, a contradiction.

To prove that VD∗ is connected, observe that in VD∗1, every Voronoi cell is a face bounded by a
cycle that goes throughh∗. LetC∗ denote one such cycle. IfC∗ is disconnected in VD∗, then, in VD∗1,

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:10 P. Charalampopoulos et al.

C∗ must visith∗ at least twice. But this implies that the cell corresponding toC∗ contains more than
a single site, a contradiction. Thus, the boundary of every Voronoi cell is a connected subgraph
of VD∗. Consider, for any i , the edge {si , si+1}. Since si and si+1 are in the distinct Voronoi cells
Vor(si) and Vor(si+1), the dual of {si , si+1} is represented by some edge of VD∗. Hence, for every i ,
the boundaries of the Voronoi cell of si and of si+1 share that edge, so they are in the same connected
component of VD∗. It follows that the entire VD∗ is connected. !

Throughout the article, we force the preconditions to Lemma 3.1 to hold. In particular, suppose
S0 are the vertices lying on the distinguished face h0 in H0, and S = {s ∈ S0 | s ∈ Vor(s)} are those
sites with non-empty Voronoi cells. Rather than construct VD∗[H0, S0,ω], we embed dummy edges
in h0, so that S are the vertices of a distinguished face h in a graph H such that distH0 = distH . It
follows from Lemma 3.1 that VD∗[H , S,ω] is a tree. See Figures 3 and 4 for an illustration of how
dummy edges are added to a graph.

Let us also mention an alternative workaround. Consider a site s that belongs to the Voronoi
cell of a di"erent site s ′. One can then substitute ω (s) by dω (s ′, s) and consider s as a proxy for s ′.
That is, due to our tie-breaking rules, with such updated weights, s will belong to its own Voronoi
cell, and whenever we #nd that some vertex v belongs to the Voronoi cell of s , we know that in
e"ect v belongs to the Voronoi cell of s ′.

3.1 Point Location in Voronoi Diagrams
The point location problem is, given v and some representation of a Voronoi diagram VD[H , S,ω],
to determine the site s ∈ S for which v ∈ Vor(s) and the distance dω (s,v). In this section we
describe a data structure that answers point location queries e5ciently, given access to an MSSP
structure on the relevant graph.

Theorem 3.2. Let H be a planar graph and S be the vertices on a distinguished face h. Suppose
we have access to an MSSP data structure for H with distinguished face h and query time tq . After
preprocessing VD∗[H , S,ω] inO (|S |) time, we can answer point location queries inO (tq · log |S |) time.

In the remainder of this section we prove Theorem 3.2. The main idea is as follows. In order to
#nd the Voronoi cell Vor(s) to which a query vertex v belongs, it su5ces to identify an edge e∗

of VD∗ that is adjacent to Vor(s). Given e∗, we can simply check which of its two adjacent cells
contains v by comparing the additive distances from the corresponding two sites to v using two
MSSP queries. The point location data structure is based on a centroid decomposition of the tree
VD∗ into connected subtrees and on the ability to go down this centroid decomposition, each time
choosing a subtree that contains an edge adjacent to Vor(s).

We assume that H is triangulated, except for the face h. In addition, for technical reasons we
assume that for every face f ! h incident to {y0,y1,y2}, three arti#cial vertices yf

j , j ∈ {0, 1, 2}
have been embedded in f , each with a single zero-length incident edge (yj ,y

f
j).6 This assumption

does not change distances in H or the asymptotic size of H . The preprocessing consists of just
computing a centroid decomposition of VD∗. A centroid of an n-node tree T is a node u ∈ T such
that removing u and replacing it with copies, one for each edge incident to u, results in a set of
trees, each with at most n+1

2 edges. A centroid always exists in a tree with at least one edge. The
centroid decomposition of VD∗ is de#ned recursively. In every step of the centroid decomposition
we work with a connected subtree T ∗ of VD∗. Initially, T ∗ is the entire tree VD∗. Recall that there

6The arti#cial vertices are leaves in any shortest path tree, while this is not true for the yi s. Then, for every vertex v ! y f
j

that is not on the shortest sj -to-yj path, the shortest sj -to-v path branches either left or right of the shortest sj -to-y f
j path,

whereas v may be a descendant of yj in the shortest path tree rooted at sj . This is used, for instance, in Lemma 3.3.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:11

are no nodes of degree 2 in VD∗. If there are no nodes of degree 3, then T ∗ consists of a single
edge of VD∗, and the decomposition terminates. Otherwise, we choose a centroid c∗ and partition
T ∗ into the three subtrees T ∗0 ,T

∗
1 ,T

∗
2 obtained by splitting c∗ into three copies, one for each

edge incident to c∗. Since the size of VD∗ is O (|S |), the depth of this recursive decomposition is
log |S |+O (1). Such a decomposition can be computed inO (|S |) time [8, 33] and can be represented
as a ternary tree, which we call the centroid decomposition tree, in O (|S |) space. Each non-leaf
node of the centroid decomposition tree corresponds to a centroid vertex c∗, which is stored
explicitly. We will refer to nodes of the centroid decomposition tree by their associated centroid.
Each node also implicitly corresponds to the subtree of VD∗ of which c∗ is the centroid. The leaves
of the centroid decomposition tree correspond to single edges of VD∗, which are stored explicitly.
See Figure 4.

The procedure SimpleCentroidSearch(VD∗,v) takes as input a dual Voronoi diagram VD∗
and a vertex v to be located. It returns a pair (s,d), where v ∈ Vor(s) and d = dω (s,v). The proce-
dure is recursive. It traverses a centroid decomposition for VD∗, and at intermediate invocations
the procedure takes a third argument T ∗, which is a subtree of the centroid decomposition. The
loop invariant is that T ∗ contains a leaf representing some edge on the boundary of Vor(s). The
algorithm bottoms out in one of two base cases (Line 8 or Line 13).

The #rst way the recursion can end is if we reach the bottom of the centroid decomposition. If
T ∗ is a singleton, its single node f ∗ corresponds to an edge in VD∗ separating the Voronoi cells
of two sites, say s1 and s2. At this point we know that either v ∈ Vor(s1) or v ∈ Vor(s2) and
determine which case is true by comparing the additive distances from each of s1 and s2, which
can be computed using the MSSP data structure (Lines 2–9).

We now explain how to treat the case whereT ∗ is not a singleton. The root f ∗ ofT ∗ is dual to a
trichromatic face f composed of three verticesy0,y1,y2 in clockwise order, which are, respectively,
in distinct Voronoi cells of sites s0, s1, s2. Let e0, e1, e2 be the edges {y2,y0}, {y0,y1}, {y1,y2}, respec-
tively. For j ∈ {0, 1, 2}, let pj denote the sj -to-yj shortest path. Further, let us denote byCj the path
obtained by concatenating path pj , edge ej , and the reverse of path pj−1. (In notation related to a
triangular face, all subscripts are naturally modulo 3; i.e., pj−1 is short for pj−1 (mod 3) .) A vertex of
H lies either on one of the pj s or strictly to the right of exactly one of theCj s. The second case can
be equivalently restated as follows: v is enclosed by the cycle composed of Cj and the sj−1-to-sj
walk along face h that does not contain sj+1. See Figure 5.

For each j, we can check whether v lies on some pj using the MSSP data structure. If this is the
case, then v ∈ Vor(sj), and we are done (Lines 12–13). We next show how to check whether v lies
to the right of some Cj .

Lemma 3.3. We can check whetherv lies strictly to the right ofCj with a constant number of queries
to an MSSP data structure for H with sources S .

Proof. We assume v does not lie on Cj since this was already checked. We check which of the
sites sj and sj−1 is closer to v with respect to the additive distances with two queries to the MSSP
data structure at hand. Without loss of generality, suppose that this site is sj . We then use a single
query to the MSSP data structure to determine whether the shortest sj -to-v path branches right
from the shortest sj -to-yf

j path. (Recall that yf
j is an auxiliary vertex embedded in the face f and

connected to yj with a zero-length edge.)
As we show next, v lies strictly to the right of Cj if and only if v lies strictly to the right of the

shortest sj -to-yf
j path. Toward a contradiction, suppose that v lies strictly to the right of exactly

one of Cj and the shortest sj -to-yf
j path. Then, the shortest sj -to-v path must cross pj−1. Due to

planarity, it can only do so at a vertex. This yields a contradiction, as all vertices on pj−1 are in

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:12 P. Charalampopoulos et al.

Fig. 4. (a) The originalH0 is a triangulated grid, with f0 being the exterior face. The boundary vertices S with
non-empty Voronoi cells are marked with colored halos. Edges are added so that S are on the exterior face
f . The vertices of VD∗ are the duals of trichromatic faces and those derived by spli$ing f ∗ into |S | vertices.
The edges of VD∗ correspond to paths of duals of bichromatic edges. (b) The dual representation VD∗. (c) A
centroid decomposition of VD∗.

Vor(sj−1), and due to the assumed uniqueness of shortest paths this would mean that sj is not closer
to v than sj−1. !

If it turns out thatv is right ofCj , the algorithm recurses on the subtree ofT ∗ rooted at the child
of f ∗ that contains the leaf edge of VD∗ representing e∗j (Line 16).

We are now ready to complete the proof of Theorem 3.2 on the correctness and time complex-
ity of SimpleCentroidSearch. De#ne f ,yj , sj , e∗j , f

∗,pj ,Cj , for j = {0, 1, 2} as above, and let s̃ be
such that v ∈ Vor(s̃). If Line 12 tells us that v is on pj , then s̃ is sj , as returned in Line 13. The loop

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:13

Fig. 5. Illustration of the se$ing and proof of Theorem 3.2. Le#: A decomposition of VD∗ (shown in blue)
by a centroid f ∗ into three subtrees, and a corresponding partition of P into three regions delimited by the
paths pj (shown in red, yellow, and turquoise). Right: A schematic illustration of the same scenario.

ALGORITHM 1: SimpleCentroidSearch(VD∗,v,T ∗)
Input: A Voronoi diagram VD∗, the vertex v to be located, and a centroid decomposition tree T ∗ of a

subtree of VD∗. If the last argument is omitted, T ∗ is the decomposition tree for the entire VD∗.
Require: Some edge of the boundary of the Voronoi cell containing v in VD∗ is a leaf in T ∗.

Output: The site s such that v ∈ Vor(s), and the additive distance to v .
1: f ∗ ← root of T ∗
2: if f ∗ is a single edge then
3: s1, s2 ← sites corresponding to f ∗

4: for j = 1, 2 do
5: dj ← ω (sj) + distH (sj ,v) #MSSP query
6: end for
7: k ← argminj (dj)
8: return (sk ,dk)
9: end if

10: s0, s1, s2 ← sites corresponding to f ∗ # f is a face on {y0,y1,y2}, yi ∈ Vor(si)
11: for j = 0, 1, 2 do
12: if v lies on pj then #MSSP query; pj is the shortest sj -to-yj path in H
13: return(sj ,ω (sj) + distH (sj ,v))
14: else if v is (strictly) to the right of Cj then # See Lemma 3.3; Cj is pj ∪ {ej } ∪ pj−1
15: T ∗j ← subtree ofT ∗ rooted at the child of f ∗ containing the leaf edge of VD∗ representing e∗j
16: return SimpleCentroidSearch(VD∗,v,T ∗j)
17: end if
18: end for

invariant is thatT ∗ contains some leaf edge that belongs to the boundary of the cell Vor(s̃). This is
clearly true in the initial call, when T ∗ is the entire centroid decomposition of VD∗. Suppose that
Line 14 tells us that v lies strictly to the right of Cj . Observe that since pj and pj−1 are monochro-
matic, all edges of VD∗ correspond to paths in H ∗ that are disjoint from the set of dual edges ofCj ,
with the exception of e∗j . We claim that T ∗j contains at least one edge bounding Vor(s̃). First, this
is clearly true if e∗j is such an edge, i.e., if s̃ ∈ {sj−1, sj }. In the complementary case, all vertices of

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:14 P. Charalampopoulos et al.

Vor(s̃) are strictly to the right of Cj . Hence, none of the edges bounding Vor(s̃) can be in T ∗j′ for
j ′ ! j. Thus, the maintained invariant implies that there is such an edge in T ∗j .

When f ∗ is a single edge on the boundary of Vor(s1) and Vor(s2) (Line 2), the loop invariant
guarantees that either s̃ = s1 or s̃ = s2. The additive distances d1 and d2 to s1 and s2 respectively are
computed in Line 5, and s̃ is the site with smaller additive distance among the two (Line 7). Hence,
Line 8 returns the correct answer.

The e5ciency of procedure SimpleCentroidSearch depends on the time required to compute
distances in H (Lines 5 and 13) and whether v lies on or to the left/right of a shortest path
pj (Lines 12 and 14). By Lemmas 2.1 and 3.3, each of these operations is supported by the
MSSP data structure for H , S , whose query time is tq . Hence, the cost of the top-level call to
SimpleCentroidSearch is O (tq · log |S |), O (tq) time for each of the log |S | + O (1) recursive
calls.

4 A SIMPLE PLANAR DISTANCE ORACLE
In this section we present a distance oracle that is simpler than the one developed in Sections 5–8.
Moreover, the time-space tradeo"s of the simpler distance oracle are actually incomparable
to those of the oracle described in Sections 5–8 and would be more attractive if query time is
prioritized over space. In particular, depending on the MSSP implementation (Lemma 2.1), we
can achieve either Õ (n4/3) space and O (log2 n) query time or n4/3+o (1) space and log1+o (1) n query
time.

4.1 The Data Structure
We begin by computing an !r = (r3, r2, r1) division, where r3 = n, r2 ≈ n2/3, and r1 ≈ n1/3. In other
words, R3 = {G} contains one region, namely G, which is partitioned into regions R2, each with
O (r2) vertices andO (

√
r2) boundary vertices, and so on. As usual, we temporarily assume that each

region is bounded by a single hole and remove this assumption in Section 4.4. The data structure
consists of the following three parts:

(1) For each R1 ∈ R1 and each pair of vertices u,v ∈ R1, we store distR1 (u,v). The space for this
part is O ((n/r1) · r 2

1) = O (n · r1).
(2) For each R2 ∈ R2, we store two MSSP structures, one for R2 and one for Rout

2 , both w.r.t. ∂R2.
For eachR1 ∈ R1 with parentR2 ∈ R2, we store MSSP structures forR1 andRout

1 ∩R2 w.r.t. ∂R1.
The space required for these structures is, depending on the MSSP implementation, either

O ((n/r2) · n logn + (n/r1) · r2 log r2) = Õ (n4/3)

or

O (ρ (n2/r2 + nr2/r1)),

where ρ = κn1/κ is the space overhead.
(3) Suppose vertex u is in R1 ∈ R1, R1’s parent is R2 ∈ R2, and R2’s parent is R3 = G ∈ R3. For

each vertexu we store the dual Voronoi diagrams VD∗in (u,R1), VD∗in (u,R2), VD∗out (u,R1), and
VD∗out (u,R2), which are de#ned as follows:
• For i ∈ {1, 2}, VD∗in (u,Ri) is VD∗[Ri , ∂Ri ,ω], the dual representation of the Voronoi dia-

gram for Ri with sites ∂Ri and additive weights given by ω (s) = distRi+1 (u, s).
• For i ∈ {1, 2}, VD∗out (u,Ri) is VD∗[Rout

i ∩ Ri+1, ∂Ri ,ω] with ω (s) = distRi+1 (u, s).
The space for each dual Voronoi diagram is linear in the number of sites; i.e., over all u the
total space is O (n · (√r2 +

√
r1)) = Õ (n4/3).

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:15

4.2 The !ery Algorithm
The query algorithm SimpleDist(u,v,Ri) is recursive. It takes vertices u,v ∈ Ri ∈ Ri and reports
distRi (u,v). At the top-level recursive call SimpleDist(u,v,G) we have i = 3 (G ∈ R3 is the only
region at level 3), and when i = 1, the distance can be reported immediately (Line 2) using part 1
of the data structure. Therefore, the recursion depth is constant.

When i ∈ {2, 3}, we let Ri−1 be a subregion of Ri containing u. There are two cases: v ∈ Ri−1 or
v " Ri−1. When v ∈ Ri−1, the shortest u-to-v path can be contained entirely in Ri−1 or it can cross
∂Ri−1. In the former case distRi (u,v) = distRi−1 (u,v), which is computed recursively (Line 6). In
the latter case, suppose s ∈ ∂Ri−1 is the last boundary vertex along the shortest u-to-v path. Then

distRi (u,v) = distRi (u, s) + distRi−1 (s,v) = ω (s) + distRi−1 (s,v),

where ω is the additive weight function in VD∗in (u,Ri−1). In other words, computing distRi (u,v)
reduces to a point location problem in VD∗in (u,Ri−1) (Line 7). Whenv " Ri−1, we know the shortest
u-to-v path crosses ∂Ri−1 at least once; suppose that the last time it crosses is at vertex s . Then, by
similar reasoning,

distRi (u,v) = distRi (u, s) + distRout
i−1∩Ri (s,v) = ω (s) + distRout

i−1∩Ri (s,v),

where ω is the additive weight function from VD∗out (u,Ri−1). This point location problem in
VD∗out (u,Ri−1) is handled in Line 10.

The query time is dominated byO (1) point location queries. By Theorem 3.2, SimpleDist takes
O (tq logn) time, where tq ∈ {O (logn),O (κ log logn)} depends on the MSSP implementation.

4.3 Analysis
If we use the #rst implementation of MSSP from Lemma 2.1, the overall space is linear in

nr1 + (n2/r2 + nr2/r1) logn + n√r2,

which is O (n4/3 log2/3 n) when r2 = n2/3 log1/3 n and r1 = n1/3 log2/3 n. The space can be reduced
to O (n4/3 log1/3 n) by using a four-level !r -division, say, !r = (n,n2/3 log2/3 n,n(2/3)2

,n(2/3)3
). This

increases the cost of distance queries by a small constant factor.
If we use the second implementation of MSSP from Lemma 2.1, with a space overhead of ρ =

κn1/κ , the overall space is linear in
nr1 + ρ (n2/r2 + nr2/r1) + n

√
r2,

which is O (n4/3ρ2/3) = O (κ2/3n4/3+2/(3κ)) when r2 = n2/3ρ1/3, r1 = n1/3ρ2/3. When query time is
prioritized, it is best to set κ = ω (1) and logo (1) n, leading to a distance oracle with n4/3+o (1) space
and query time O ((κ log logn) · logn) = log1+o (1) n.

4.4 Dealing with Multiple Holes
In general the boundary vertices ∂Ri of any region Ri lie on O (1) holes. We modify the data struc-
ture and query algorithm to deal with multiple holes as follows:

(1) For each region Ri in the decomposition and each hole h of Ri we build two MSSP data
structures, one for Ri and one for Rh,out

i . In both structures, the set of sources are the vertices
of ∂Ri that lie on h.

(2) Fix a vertex u that lies in R1 ∈ R1, which is contained in R2 ∈ R2 and G = R3 ∈ R3. For
i ∈ {1, 2}, for each hole h of Ri , let S be the vertices on h.
• We store VD∗in (u,h,Ri), which is the dual representation VD∗[Ri , S,ω] with additive

weights ω (s) = distRi+1 (u, s).

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:16 P. Charalampopoulos et al.

ALGORITHM 2: SimpleDist(u,v,Ri)
Input: Two vertices u,v in a region Ri ∈ Ri , i ∈ {1, 2, 3}.

Output: distRi (u,v).
1: if i = 1 then
2: Return distRi (u,v) # Stored explicitly in Part 1.
3: end if
4: Ri−1 ← a sub-region of Ri containing u
5: if v ∈ Ri−1 then
6: d1 ← SimpleDist(u,v,Ri−1)
7: d2 ← SimpleCentroidSearch(VD∗in (u,Ri−1),v)
8: return min(d1,d2)
9: else

10: return SimpleCentroidSearch(VD∗out (u,Ri−1),v)
11: end if

• We store VD∗out (u,h,Ri), which is the dual representation VD∗[Rh,out
i ∩ Ri+1, S,ω] with

additive weights ω (s) = distRi+1 (u, s).
The algorithm SimpleDist(u,v,Ri) is modi#ed as follows. In Line 7 we are considering u-

to-v paths that cross ∂Ri−1, but the last ∂Ri−1 vertex s could be on any hole of Ri−1. Thus, for
each of the O (1) holes h we execute SimpleCentroidSearch(VD∗in (u,h,Ri−1),v) and let d2 be
the minimum distance found. In Line 10, there is a unique hole h of Ri−1 for which v ∈ Rh,out

i−1
and we know that every u-to-v path must cross h. Therefore, we still only make one call to
SimpleCentroidSearch(VD∗out (u,h,Ri−1),v).

Theorem 4.1 summarizes the space-time tradeo"s achievable by our simplest distance oracle.
Theorem 4.1. Let G be a weighted, directed planar graph. Distance queries in G can be answered

in O (log2 n) time with an Õ (n4/3)-size oracle, or in log1+o (1) n time with an n4/3+o (1)-size oracle.

4.5 Digression: Extension to Graphs of Bounded Genus
Here, we brie$y describe how to generalize the oracle described in this section for graphs em-
beddable onto surfaces of bounded genus. As shown by Chambers et al. [12], we can “planarize”
an n-vertex graph G of genus д by repeating the following procedure д times: #nd a short non-
contractible cycle in O (дn logn) time using the algorithm of Erickson and Har-Peled [27] and cut
along it, duplicating its vertices and edges. This algorithm thus runs in O (д2n logn) time and pro-
duces an n-vertex planar graph P with exactly 2д holes that contain all the copies of the duplicated
vertices. Each such hole, called a boundary cycle, is incident to O (

√
n/д logд) vertices.

To avoid clutter, we describe our oracle for д = O (1). We build our n4/3+2/(3κ)-space oracle for
P with κ = O (1) ≥ 4 so the space is O (n3/2). Further, for each vertex u ∈ V (G), for each of the
O (1) boundary cycles, we build a Voronoi diagram for P with sites the vertices of the hole, and
an additive weight function de#ned by distances from u in G, i.e., ω (s) = distG (u, s). Further, for
each boundary cycleC , we build an MSSP data structure for P with sources the vertices lying onC .
Setting κ ′ = O (1) ≥ 2, the space for the MSSP structures is O (κ ′n1+1/κ′) = O (n3/2) since we have
O (1) boundary cycles, and the space for the Voronoi diagrams is O (n3/2) since there are O (

√
n)

vertices on boundary cycles.
Upon a query (u,v), we #rst compute distP (u,v) in O (logn log logn) time (κ = O (1)) using the

planar distance oracle. First, note that distP (u,v) ≥ distG (u,v). Further, observe that distP (u,v) !
distG (u,v) only if some vertex on the shortest u-to-v path in G has been duplicated, and thus the
path has been split. Suppose that this is the case. Let s be the last vertex on the shortestu-to-v path

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:17

inG that has been duplicated. Note that s is not known at query time. By choice of s , distG (u,v) =
distG (u, s) + distP (s,v). Thus, we can take care of this case by performing point location queries
in each of the O (1) extra Voronoi diagrams stored for u with target v and returning the minimum
distance computed by those queries. The query time is O (logn log logn) since k ′ = O (1).

Thus, for n-vertex graphs embeddable to surfaces of constant genus, we obtain an oracle that
occupies space O (n3/2) and answers queries in O (logn log logn) time.

5 THE DISTANCE ORACLE
In this section we introduce our main distance oracle referenced in Theorem 1.1. The oracle is
based on an !r -division, !r = (rm , . . . , r1), where ri = ni/m and m is a parameter. Suppose that we
want to compute distG (u,v). Let R0 = {u} be the arti#cial level-0 region containing u and Ri ∈ Ri
be the level-i ancestor of R0. (Throughout the article, we will use “Ri ” to refer speci#cally to the
level-i ancestor of R0 = {u}, as well as to a generic region at level-i . Surprisingly, this will cause
no confusion.) Let t be the unique index for which v " Rt but v ∈ Rt+1. For 0 ≤ i ≤ t , de#ne
ui to be the last vertex on ∂Ri encountered on the shortest path from u to v . The main task
of the distance query algorithm is to compute the sequence (u = u0, . . . ,ut). Suppose that we
know the identity of ui and t > i . Finding ui+1 now amounts to a point location problem for v in
VD∗[Rout

i+1, ∂Ri+1,ω], where ω (s) is the distance from ui to s ∈ ∂Ri+1. However, we cannot a"ord to
store an MSSP structure for every (Rout

i+1, ∂Ri+1), since |Rout
i+1 | = Ω(|G |). Our point location routine

narrows down the number of possibilities for ui+1 to at most two candidates in O (κ log2+o (1) n)
time and then decides between them using two recursive distance queries, but starting one level
higher in the hierarchy. There are about 2m recursive calls in total, leading to a O (2mκ log2+o (1) n)
query time.

The data structure is composed of several parts. Parts (A) and (B) are explained below, while
parts (C)–(E) will be unveiled in Section 6.

(A) (MSSP Structures) For each i ∈ [0,m − 1] and each region Ri ∈ Ri with parent Ri+1 ∈
Ri+1, we store an MSSP data structure (Lemma 2.1(b)) for the graph Rout

i and source set ∂Ri .
However, the structure only answers queries for s ∈ ∂Ri and u,v ∈ Rout

i ∩ Ri+1. Rather
than represent the full SSSP tree from each root on s ∈ ∂Ri , the MSSP data structure only
stores the tree induced by Rout

i ∩ Ri+1; i.e., the parent of any vertex v ∈ Rout
i ∩ Ri+1 is its

nearest ancestor v ′ in the SSSP tree such that v ′ ∈ Rout
i ∩ Ri+1. If (v ′,v) is a “shortcut” edge

corresponding to a path in Rout
i+1, it has weight distRout

i
(v ′,v).

We #x a κ and let the update time in the dynamic tree data structure beO (κn1/κ) time. Thus,
the space7 of this structure isO ([|Rout

i ∩Ri+1 |+ |∂Ri | · |∂Ri+1 |] ·κn1/κ) = O (ri+1 ·κn1/κ) since
each edge in Rout

i ∩Ri+1 is swapped into and out of the SSSP tree once [45], and the number
of shortcut edges on ∂Ri+1 swapped into and out of the SSSP is at most |∂Ri+1 | for each of
the |∂Ri | sources. Over all i and Θ(n/ri) choices of Ri , the space is O (mκn1+1/m+1/κ) since
ri+1/ri = n1/m .

(B) (Voronoi Diagrams) For each i ∈ [0,m − 2] and Ri ∈ Ri with parent Ri+1 ∈ Ri+1, and each
q ∈ ∂Ri , de#ne VD∗out (q,Ri+1) to be VD∗[Rout

i+1, ∂Ri+1,ω], with ω (s) = distG (q, s). The space
to store the dual diagram and its centroid decomposition is O (|∂Ri+1 |) = O (

√
ri+1). Over all

choices for i,Ri , and q, the space is O (mn1+1/(2m)) since
√
ri+1/ri = n1/(2m) .

Due to our tie-breaking rule in the de#nition of Vor(·), locating ui+1 (t ≥ i + 1) is tantamount to
performing a point location on a Voronoi diagram in part (B) of the data structure.

7This is also the construction time, which will be analyzed in Section 8.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:18 P. Charalampopoulos et al.

Lemma 5.1. Suppose that q ∈ ∂Ri and v " Ri+1. Consider the Voronoi diagram represented by
VD∗out (q,Ri+1) with sites ∂Ri+1 and additive weights de"ned by distances from q in G. Then v ∈
Vor(s) if and only if s is the last vertex of ∂Ri+1 that lies on the shortest path from q to v in G, and
dω (s,v) = distG (q,v).

Proof. By de#nition, dω (s,v) is the length of the shortest path from q tov that passes through s
and whose s-to-v su5x does not leave Rout

i+1. Thus, dω (s,v) ≥ distG (q,v) for every s , and dω (s,v) =
distG (q,v) for some s . Because of our assumption that all edge-weights are strictly positive and
our tie-breaking rule for preferring larger ω-values in the de#nition of Vor(·), if v ∈ Vor(s), then
s must be the last ∂Ri+1-vertex on the shortest q-to-v path. !

5.1 The !ery Algorithm
A distance query is given u,v ∈ V (G). We begin by identifying the level-0 region R0 = {u} ∈ R0
and call the function Dist(u,v,R0). In general, the function Dist(ui ,v,Ri) takes as arguments a
region Ri , a source vertex ui on the boundary ∂Ri , and a target vertex v " Ri . It returns a value d
such that

distG (ui ,v) ≤ d ≤ distRout
i

(ui ,v). (1)

Note that Rout
0 = G, so the initial call to this function correctly computes distG (u,v). When v is

“close” toui (v ∈ Rout
i ∩Ri+1), it computes distRout

i
(ui ,v) without recursion, using part (A) of the data

structure. When v ∈ Rout
i+1, it performs point location using the function CentroidSearch, which

culminates in up to two recursive calls to Dist on the level-(i+1) region Ri+1. Thus, the correctness
of Dist hinges on whether CentroidSearch correctly computes distances when v ∈ Rout

i+1.

ALGORITHM 3: Dist(ui ,v,Ri)

Input: A region Ri , source ui ∈ ∂Ri , and v " Ri .
Output: A value d such that distG (ui ,v) ≤ d ≤ distRout

i
(ui ,v).

1: if v ∈ Rout
i ∩ Ri+1 then # I.e., i = t

2: return d ← distRout
i

(ui ,v) # Part (A)
3: end if # v ∈ Rout

i+1
4: return d ← CentroidSearch(VD∗out (ui ,Ri+1),v)

The procedure CentroidSearch is an adaptation of SimpleCentroidSearch. CentroidSearch
is given as input ui ∈ ∂Ri , v ∈ Rout

i+1, VD∗out = VD∗out (ui ,Ri+1), and a subtree T ∗ of the centroid
decomposition of VD∗out. Once again, if omitted,T ∗ is the full centroid decomposition. It ultimately
#nds ui+1 ∈ ∂Ri+1 for which v ∈ Vor(ui+1) and returns

ω (ui+1) +Dist(ui+1,v,Ri+1) Line 5 or 13 of CentroidSearch
≤ distG (ui ,ui+1) + distRout

i+1
(ui+1,v) Defn. of ω; guarantee of Dist (Equation (1))

= distG (ui ,v). Lemma 5.1

The main di5culty in implementing CentroidSearch is that we cannot a"ord to store MSSP
structures for Rout

i+1. CentroidSearch can be seen as an implementation of SimpleCentroid
Search with the following modi#cations:
• Distances from sites of VD∗out (ui ,Ri+1) to vertices inRout

i+1 are now computed using Dist rather
than MSSP queries. In particular, CentroidSearch is aware of the recursive decomposition
of G.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:19

• Line 12 of SimpleCentroidSearch is replaced by a call to a procedure SitePathIndicator,
which returns a Boolean indicating whether v is on the shortest sj -to-yj path.
• Line 14 of SimpleCentroidSearch is replaced by a call to a procedure Chord

Indicator, which returns whether v lies strictly to the right of the oriented path
(sj , . . . ,yj ,yj−1, . . . , sj−1). We call such a path a chord; these are formally de#ned in
Section 6.2.

ALGORITHM 4: CentroidSearch(VD∗out (ui ,Ri+1),v,T ∗)

Input: The dual representation VD∗out = VD∗out (ui ,Ri+1) of a Voronoi diagram with additive
weights ω (s) = distG (ui , s), a vertex v ∈ Rout

i+1, and a centroid decomposition tree T ∗ of a subtree
of VD∗out. If the last argument is omitted, T ∗ is the decomposition tree for the entire VD∗out.

Require: Some edge of the boundary of the Voronoi cell containing v in VD∗out is a leaf in T ∗.
Output: The distance distG (ui ,v).

1: f ∗ ← root of T ∗
2: if T ∗ is a single edge then
3: s1, s2 ← sites corresponding to f ∗ # Candidates for ui+1
4: for j = 1, 2 do
5: dj ← ω (sj) +Dist(sj ,v,Ri+1)
6: end for
7: k ← argminj (dj)
8: return (sk ,dk)
9: end if

10: s0, s1, s2 ← sites corresponding to f ∗

11: for j = 0, 1, 2 do
12: if SitePathIndicator(VD∗out (ui ,Ri+1),v, f ∗, j) returns True then
13: return ω (sj) +Dist(sj ,v,Ri+1) # sj = ui+1
14: else if ChordIndicator(VD∗out (ui ,Ri+1),v, f ∗, j) returns True then
15: T ∗j ← subtree of T ∗ rooted at the child of f ∗ containing the leaf edge of VD∗out

representing e∗j
16: return CentroidSearch(VD∗out (ui ,Ri+1),v,T ∗j)
17: end if
18: end for

Lemma 5.2. CentroidSearch correctly computes distG (ui ,v).

Proof. Let s̃ be the site of VD∗out for which v ∈ Vor(s̃). Apart from Lines 5 and 13,
CentroidSearch is just a di"erent implementation of SimpleCentroidSearch. Thus, it follows
directly from the proof of Theorem 3.2 that CentroidSearch either correctly identi#es the site
s̃ in Line 12 or identi#es two candidates for s̃ in Line 3. First, we have to show that the additive
distance from s̃ , computed in Line 5 or in Line 13, is indeed distG (ui ,v). In either of the two cases,
we have

ω (s̃) +Dist(s̃,v,Ri+1) ≤ distG (ui , s̃) + distRout
i+1

(s̃,v) = distG (ui ,v).

Finally, if there is another candidate s ′ di"erent than s̃ identi#ed in Line 3, we clearly have ω (s ′) +
Dist(s ′,v,Ri+1) ≥ distG (ui ,v). This completes the proof. !

The main challenge is to e5ciently implement the SitePathIndicator and ChordIndicator
functions, i.e., to solve the restricted point location problem in Rout

i+1, depicted in Figure 6. We will
show how to solve these two point location problems in O (κ log1+o (1) n) time.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:20 P. Charalampopoulos et al.

Fig. 6. Here f ∗ is a degree-3 vertex in VD∗out (ui ,Ri+1), corresponding to a trichromatic face f on vertices
y0,y1,y2, which are in the Voronoi cells of s0, s1, s2 on the boundary ∂Rout

i+1. The shortest sj -to-yj paths par-
tition V (Rout

i+1) into six parts: the three shortest paths and the three regions bounded by them and by f . Let
e∗0 , e

∗
1 , e
∗
2 be the edges in VD∗out dual to {y0,y2}, {y1,y0}, {y2,y1}. In the centroid decomposition e∗0 , e

∗
1 , e
∗
2 are

in separate subtrees of f ∗. Let f ∗j be the child of f ∗ ancestral to e∗j , which is either e∗j itself or a trichromatic
face to the right of the “chord” (sj , . . . ,yj ,yj−1, . . . , sj−1). CentroidSearch locates the site whose Voronoi
cell containsv via recursion. It calls each of SitePathIndicator and ChordIndicator thrice, in order to find
which of the six parts contains v . If v lies on an sj -to-yj path, the CentroidSearch recursion terminates;
otherwise it recurses on the correct child f ∗j of f ∗.

6 CHORDS, PIECES, AND THE INDICATOR FUNCTIONS
Recall that the main problem faced by CentroidSearch is to determine whether v lies on, left of,
or right of the chord

C̃ = (sj , . . . ,yj ,yj−1, . . . , sj−1),

which is a simple path joining ∂Ri+1-vertices in Rout
i+1. The case when v ∈ C̃ (which is detected

by SitePathIndicator) is relatively simple, so for the purpose of this overview we shall assume
v " C̃ .

The index t is such that v ∈ Rout
t ∩ Rt+1, so it su5ces to restrict our attention to Rout

t . Note,
however, that C̃ can cross ∂Rt an unbounded number of times, meaning that the projection of C̃
onto Rout

t consists of an unbounded number of chords, i.e., subpaths of C̃ in Rout
t joining vertices of

∂Rt . These chords partition Rout
t into a set P of pieces.

The strategy of ChordIndicator is to #nd any chord C ∈ C that lies on the boundary of v’s
piece in P. It follows that the left/right relationship between v and C̃ is identical to the left/right
relationship between v and C . Thus, we have reduced our problem to several structured point lo-
cation problems, among them locatingv in a certain set of pieces and determining the relationship
between v and a single chordC . In reality things are slightly more complicated, as we decompose

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:21

C (and hence P) into three parts corresponding to (1) all chords in the sj -to-yj path that do not
include yj , (2) all chords in the sj−1-to-yj−1 path that do not include yj−1, and (3) the one chord (if
any) that includes yj and yj−1.

Roadmap for Section 6. The sketch above motivates several useful subroutines. We need to be
able to decide ifv lies on, left of, or right of a chordC , whereC is either a shortest path between ∂Rt
vertices or the subpath of C̃ between ∂Rt vertices that goes throughyj andyj−1. These two types of
queries are addressed in Lemmas 6.1 and 6.2 in Section 6.1. Section 6.1 also introduces parts (C) and
(D) of the data structure, and Lemma 6.3 shows that a special case of SimpleCentroidSearch can
be implemented e5ciently. In particular, if VD∗ is a Voronoi diagram for Rout

t and v ∈ Rout
t ∩ Rt+1,

SimpleCentroidSearch(VD∗,v) can be solved in the same time bound as in Theorem 3.2, using
parts (A,D) of the data structure in lieu of a full MSSP structure.

Section 6.2 analyzes the properties of chords and pieces and introduces part (E) of the data
structure, which represents numerous chord/piece sets space-e5ciently using persistent data
structures. The SitePathIndicator and ChordIndicator functions are explained in Sections 6.3
and 6.4, respectively. A key subroutine of ChordIndicator is PieceSearch, which solves a
certain point location problem with respect to an ensemble of chords and pieces; it is presented in
Section 6.4.1.

6.1 Auxiliary Lemmas and a Special Case of SimpleCentroidSearch
We begin with the following lemma, which is used in SitePathIndicator,PieceSearch, and
ChordIndicator.

Lemma 6.1. Consider a region Rt , two vertices a,b ∈ ∂Rt , and a vertex v ∈ Rout
t ∩ Rt+1. Let C be

the shortest a-to-b path in Rout
t . We can test whether v lies on C and whether v lies to the right of C

in O (κ log logn) time, using part (A) of the data structure.

Proof. Let a′,b ′ be pendant vertices attached to a,b, respectively, embedded inside the face of
Rout

t bounded by ∂Rt . We ask the MSSP structure (part (A)) for the lowest common ancestor,w , of
v and b ′ in the shortcutted SSSP tree rooted at a′. It follows thatv lies onC if and only ifv = w . We
henceforth suppose that this is not the case. Then, the shortest a′-to-v and a′-to-b ′ paths branch at
some point. The LCA query also returns the two tree edges ev , eb′ leading tov and b ′, respectively.
Let ew be the edge connecting w to its parent.8 If the clockwise order around w is ew , eb′, ev , then
v lies to the right of C; otherwise it lies to the left. Note that if the shortest a′-to-b ′ and a′-to-v
paths in G branch at a point in Rout

t+1, then w will be the nearest ancestor of the branchpoint on
∂Rt+1 and one or both of ev , eb′ may be “shortcut” edges in the MSSP structure. See Figure 7 for
an illustration. !

Lemma 6.2. Consider a vertex u ∈ Rt and an edge {y0,y1} of Rout
t . For j ∈ {0, 1}, let x j be the last

vertex of the shortest u-to-yj path that lies on ∂Rt , and suppose x0 ! x1. Let C be the concatenation
of the shortest x1-to-y1 path in Rout

t , the edge {y1,y0}, and the reverse of the shortest x0-to-y0 path in
Rout

t . Further, for j ∈ {0, 1}, let x̂ j be the last vertex of the shortest x j -to-yj path that lies on ∂Rout
t+1 (if

it exists).
Given Rt ,u, yj ,x j , distG (u,x j), and x̂ j for j ∈ {0, 1}, and a vertex v ∈ Rout

t ∩ Rt+1, we can test
whether v lies on C and whether v lies to the right of C in O (κ log logn) time, using part (A) of the
data structure.

8The purpose of adding a′, b′ is to make sure all three edges ew , ev , eb′ exist. The vertices a′, b′ are not represented in
the MSSP structure. The edges (a′, a) and (b, b′) can be simulated by inserting them between the two boundary edges on
∂Rt adjacent to a and b , respectively.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:22 P. Charalampopoulos et al.

Fig. 7. The a-to-b shortest path, which may pass through Rout
t+1, in which case it is represented in the MSSP

structure with shortcut edges (solid, angular edges).

Proof. Consider the following distance function d̂ for vertices z ∈ Rout
t :

d̂ (z) = min
{

distG (u,x0) + distRout
t

(x0, z), distG (u,x1) + distRout
t

(x1, z)
}
.

Observe that the terms involvingu are given and, if z ∈ Rout
t ∩Rt+1, the other terms can be queried

in O (κ log logn) time using part (A). It follows that the shortest path forest w.r.t. d̂ has two trees,
rooted at x0 and x1. Using part (A) of the data structure, we compute d̂ (v), which reveals the
j" ∈ {0, 1} such that v is in x j! ’s tree. Let f be a face on which y0, y1 lie, such that the third vertex
of f lies to the left of C . At this point we break into two cases, depending on whether f is in
Rout

t ∩ Rt+1 or in Rout
t+1. Without loss of generality, we assume that j" = 1 and depict only this case

in Figures 8(a) and 8(b).

Case a. Suppose that f is in Rout
t ∩ Rt+1. Let yf

1 be a pendant vertex attached to y1 embedded
inside f , and let x ′1 be a pendant vertex attached to x1 embedded inside the face of Rout

t bounded by
∂Rt . The shortest x ′1-to-yf

1 and x ′1-to-v paths share a common pre#x. We query the MSSP structure
(part (A)) to get the lowest common ancestorw of yf

1 and v and the three edges ey f
1
, ev , ew around

w . If v = w then v is on the shortest x1-to-yf
1 path and hence on C . If v ! w then all three edges

ey f
1
, ev , ew are distinct and we determine whether v is to the right of C by examining the circular

order of the three edges incident to w , as in the proof of Lemma 6.1. (If j" = 0 then we would
reverse the answer due to the reversed orientation of the x0-to-y0 subpath w.r.t.C .) See Figure 8(a)
for an illustration.

Case b. Now suppose f lies in Rout
t+1. We #rst ask the MSSP structure of part (A) for the lowest

common ancestor w of x̂1 and v in the shortcutted SSSP tree rooted at x ′1, and also get the three
incident edges ex̂1 , ev , ew . Ifw = v thenv ∈ C and we are done, so we proceed under the assumption
thatw ! v . Thus, the edges ev and ew exist and are di"erent. Ifw ! x̂1 then ex̂1 also exists, and once
again we determine whetherv is to the right ofC from the circular order of ev , ew , ex̂1 aroundw . If
w = x̂1, ex̂1 does not exist. In this case, let v̂ be the endpoint of ev that is not x̂1. If ev is a shortcut
edge, it implies v̂ ∈ ∂Rt+1 and we can determine whether v is to the right of C from the circular
order of x̂1, x̂0, and v̂ along ∂Rt+1. If ev is an original edge, we have ev ∈ Rout

t ∩ Rt+1. By viewing

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:23

Fig. 8. An illustration of the se$ing in Lemma 6.2. (a) The case where f lies in Rout
t ∩Rt+1. (b) The case where

f lies in Rout
t+1, and x̂0, x̂1 are the last ∂Rt+1 vertices on the x0-to-y0 and x1-to-y1 paths. If the shortest x ′1-to-x̂1

and x ′1-to-v paths branch, we can answer the query as in (a). If x ′1-to-x̂1 is a prefix of x ′1-to-v , ev = (x̂1, v̂),
and ev is a shortcut edge (which implies v̂ ∈ ∂Rt+1), then we can use the clockwise order of x̂1, v̂, x̂0 around
the hole on ∂Rt+1 to determine whetherv lies to the right ofC . (Not depicted: the case that ev is an original
edge, where v̂ may not be on ∂Rt+1).

(x̂1, x̂0) as a virtual shortcut edge, the left/right relationship between v andC now depends on the
circular order of ev , ew , (x̂1, x̂0) around x̂1.9 See Figure 8(b) for an illustration. !

Let us now introduce parts (C) and (D) of our data structure. The reason for storing part (C) will
become clear in subsequent sections. One of the main reasons for storing the Site Tables of part

9A possible implementation is to choose an original edge e′ on ∂Rt+1 incident to x̂1 as a proxy of the virtual shortcut edge
(x̂1, x̂0), and determine the relationship by the circular order of ev , ew , e′ around x̂1.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:24 P. Charalampopoulos et al.

(D) is so that we can invoke Lemma 6.2, which requires that we provide x̂0, x̂1. The Side Tables of
part (D) are stored so that we can handle a simple case in the ChordIndicator function where the
chord does not interact at all with some speci#c part of the graph that contains v ; they store the
answer for this whole part.

(C) (More Voronoi Diagrams) For each i ∈ [1,m−1], each Ri ∈ Ri , and each q ∈ ∂Ri , we store
VD∗out (q,Ri), which is VD∗[Rout

i , ∂Ri ,ω], where ω (s) = distG (q, s). The total space for these
diagrams is O (mn) and is dominated by part (B).

(D) (Site Tables; Side Tables) For each i and Voronoi diagram VD∗out = VD∗out (u
′,Ri) from part

(B) or (C), we store the following for each node f ∗ in the centroid decomposition of VD∗out,
with yj , sj , j ∈ {0, 1, 2} de#ned as usual. Let Ri′ ∈ Ri′ be the ancestor of Ri at level i ′ ≥ i . For
each i ′ and j ∈ {0, 1, 2},we store the pair (q,x) consisting of the "rst and last vertices on the
shortest sj -to-yj path that lie on ∂Ri′ . We also store distG (u ′,x).
It may be that the shortest sj -to-yj path does not intersect ∂Ri′ , in which case (q,x) do not
exist. In this case we store a single bit indicating whether Rout

i′ lies to the right or left of the
site-centroid-site chord (sj , . . . ,yj ,yj−1, . . . , sj−1) in Rout

i . The space cost for part (D) isO (m)
times the space cost of (B) and (C).

The following lemma is a direct consequence of Lemma 6.2, which lets us implement the non-
trivial parts of SimpleCentroidSearch in the same time bound guaranteed by Theorem 3.2.

Lemma 6.3. Suppose VD∗ = VD∗out (u
′,Rt) is one of the Voronoi diagrams stored in part (C), and

v ∈ Rout
t ∩Rt+1. Then SimpleCentroidSearch(VD∗,v) can be executed inO (κ logn log logn) time,

using parts (A) and (D) of the data structure (i.e., it does not require a full MSSP structure for Rout
t).

Proof. Becausev ∈ Rout
t ∩Rt+1, the distances in Lines 5 and 13 can be computed inO (κ log logn)

time using part (A). The other non-trivial steps are Lines 12 and 14, where we check whether v
lies on the sj -to-yj path or strictly to the right of the (sj , . . . ,yj ,yj−1, . . . , sj−1) chord. Lemma 6.2
says that these queries can also be answered in O (κ log logn) time if they are also given the
boundary vertices x̂0, x̂1, x̂2 ∈ ∂Rt+1, which are stored in part (D). Thus, the overall time for
SimpleCentroidSearch (including recursive calls) is O (κ logn log logn). !

6.2 Chords and Pieces
We begin by de#ning the key concepts of our point location method: chords, laminar chord sets,
pieces, and the occludes relation.

De"nition 6.1 (Chords). Fix an R in the !r -division and two vertices c0, c1 ∈ ∂R. An oriented
simple path −−→c0c1 is a chord of Rout if it is contained in Rout and is internally vertex-disjoint from ∂R.
When the orientation is irrelevant, we write it as c0c1.

De"nition 6.2 (Laminar Chord Sets). A set of chords C for Rout is laminar (non-crossing) if for
any two such chordsC = −−→c0c1,C ′ =

−−→c2c3, if there exists a v ∈ (C ∩C ′) \ ∂R then the subpaths from
c0 to v and from c2 to v are identical; in particular, c0 = c2 in this case.

The orientation of chords does not always coincide with a natural orientation of paths de#ned
by the algorithm. For example, in Figure 6, the oriented chord −−→s0s2 = (s0, . . . ,y0,y2, . . . , s2) is
composed of three parts: a shortest s0-to-y0 path (whose natural orientation coincides with that of
−−→s0s2), the edge {y0,y2} (which has no natural orientation in this context), and the shortest s2-to-y2
path (whose natural orientation is the reverse of its orientation in −−→s0s2). The orientation serves two
purposes. In De#nition 6.1 we can speak unambiguously about the parts of Rout to the right and
left of −−→s0s2. In De#nition 6.2 the role of the orientation is to ensure that the partition of Rout into
pieces induced by C can be represented by a tree, as we show in Lemma 6.4.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:25

Fig. 9. A laminar set of chords partition Rout into pieces. Observe that the chords separating pieces P5–P9
overlap in certain prefixes. The piece tree is indicated by diamond vertices and pink edges. Note that two
pieces (e.g., P5 and P9) may share a boundary but not be adjacent.

De"nition 6.3 (Pieces). A laminar chord set C for Rout partitions the faces of Rout into pieces,
excluding the face on ∂R. Two faces f ,д are in the same piece i" f ∗ and д∗ are connected by a path
in (Rout)∗ that avoids duals of edges in C and of edges along the boundary cycle on ∂R. A piece is
regarded as the subgraph induced by its faces; i.e., it includes their constituent vertices and edges.
Two pieces P1, P2 are adjacent if there is an edge e on the boundary of P1 and P2 and e is in a unique
chord of C. See Figure 9.

Lemma 6.4. Suppose that C is a laminar chord set for Rout, P = P (C) is the corresponding piece
set, and E are the pairs of adjacent pieces. Then T = (P,E) is a tree, called the piece tree induced
by C.

Proof. The claim is clearly true when C contains zero or one chords, so we will reduce the
general case to this case via a peeling argument. We will #nd a piece P with degree 1 in T , re-
move it and the chord bounding it, and conclude by induction that the truncated instance is a tree.
Reattaching P implies that T is a tree.

Let C = −−→c0c1 ∈ C be a chord such that no edge of any other chord appears strictly to one side
of C , say to the right of C . Let P be the piece to the right of C . (In Figure 9 the chords bounding
P1, P2, P11, P12 would be eligible to beC .) LetC = (c0 = v0,v1,v2, . . . ,vk = c1) and vj! be such that
the edges of the su5x (vj! , . . . ,vk) are on no other chord, meaning the vertices {vj!+1, . . . ,vk−1}
are on no other chord. Let дj be the face to the left of (vj ,vj+1). It follows that there is a path from
д∗j! to д∗k−1 in (Rout)∗ that avoids the duals of all edges in C and along ∂R. All pieces adjacent to P
contain some face among {дj! , . . . ,дk−1}, but these are in a single piece, and hence P corresponds
to a degree-1 vertex in T . Let P be bounded by C and an interval B of the boundary cycle on ∂R.
Obtain the “new” Rout by cutting alongC and removing P , the new ∂R by substitutingC for B, and

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:26 P. Charalampopoulos et al.

the new chord-set C by removingC and trimming any chords that shared a non-empty pre#x with
C . By induction, the resulting piece-adjacency graph is a tree; reattaching P as a degree-1 vertex
shows that T is a tree. !

De"nition 6.4 (Occluding Chords; Maximal Chords). Fix Rout, chordC , and two faces f ,д, neither
of which is the hole de#ned by ∂R. If f and д are on opposite sides ofC , we say that from vantage
f , C occludes д. Let C be a set of chords. We say C ∈ C is maximal in C with respect to a vantage
f if there is no C ′ ∈ C such that C ′ occludes a strict superset of the faces that C occludes. (Note
that the orientation of chords is irrelevant to the occludes relation.)

It follows from De#nition 6.4 that if C is laminar, the maximal chords with respect to f will
intersect the boundary of f ’s piece in P (C).

We can also speak unambiguously about a chord C occluding a vertex or edge not on C , from a
certain vantage, which itself may be a face, a vertex, or a piece. Speci#cally, we can say that from
some vantage, C occludes an interval of the boundary cycle on ∂R, say according to a clockwise
traversal around the hole on ∂R in Rout.10 This will be used in the ChordIndicator procedure of
Section 6.4.2.

We next present part (E) of our data structure, which will be used to implement the functions
SitePathIndicator and ChordIndicator.

(E) (Chord Trees; Piece Trees) For each i ∈ [1,m − 1], each Ri ∈ Ri , and each source q ∈
∂Ri , we store the SSSP tree from q with respect to G induced by ∂Ri as a chord tree T Ri

q . In
particular, the parent of x ∈ ∂Ri in T Ri

q is the nearest ancestor in the SSSP tree from q that
lies on ∂Ri . Every edge of T Ri

q is designated a chord if the corresponding path is entirely
contained in Rout

i , or a non-chord otherwise. De#ne CRi
q to be the set of all chords in T Ri

q ,
oriented away from q; this is clearly a laminar set since shortest paths are unique and all
pre#xes of shortest paths are shortest paths. De#ne PRi

q to be the corresponding partition of
Rout

i into pieces, and T Ri
q the corresponding piece tree. De#ne T Ri

q [x] for x ∈ ∂Ri to be the
path from q to x in T Ri

q , CRi
q [x] the corresponding chord-set, and PRi

q [x] the corresponding
piece-set.
The data structure answers the following queries:
MaximalChord(Ri ,q,x , P , P ′): We are given Ri , q,x ∈ ∂Ri , a piece P ∈ PRi

q , and possibly
another piece P ′ ∈ PRi

q (which may be Null). If P ′ is Null, return any maximal chord in
CRi

q [x] from vantage P . If P ′ is not Null, return the maximal chord in CRi
q [x] (which, if it

exists, is unique) that occludes P ′ from vantage P .
AdjacentPiece(Ri ,q, e): Here e is an edge on the boundary cycle on ∂Ri . Return the unique

piece in PRi
q with e on its boundary.11

We next describe how to compactly store part (E) of the data structure. Our strategy is as follows.
We #x Ri and q ∈ ∂Ri and build a dynamic data structure for these operations relative to a dynamic
subset Ĉ ⊆ CRi

q subject to the insertion and deletion of chords in O (log |∂Ri |/ log log |∂Ri |) time.
By inserting/deletingO (|∂Ri |) chords in the correct order, we can arrange that Ĉ = CRi

q [x] at some
point in time, for every x ∈ ∂Ri . Using the generic persistence technique for RAM data structures
(see [21]), we can answer MaximalChord queries relative to CRi

q [x] in O (log |∂Ri |) time.
We will make use of a data structure of Brodal et al. [7] speci#ed in the following lemma.

10This is one place where we rely on the fact that each hole is bounded by a simple cycle.
11This is another place where we rely on the fact that every hole is bounded by a simple cycle.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:27

Lemma 6.5 (Cf. Brodal et al. [7, Theorem 2]). For an edge-weighted tree with k nodes,
there exists a data structure that occupies O (k) space and supports the following operations in
O (logk/ log logk) time:
• Update(e,w): Change the weight of an edge e to w .
• Pathmin/Pathmax(u,v): Given two nodesu andv , return the edge with minimum/maximum

weight on the path between u and v .

Lemma 6.6. Part (E) of the data structure can be stored in O (mn logn/ log logn) total space and
answer MaximalChord queries in O (logn) time and AdjacentPiece queries in O (1) time.

Proof. We #rst address MaximalChord. Let T = T Ri
q be the piece tree. The edges of T are

in one-to-one correspondence with the chords of C = CRi
q , and if P , P ′ ∈ P = PRi

q are two pieces,
the path from P to P ′ in T crosses exactly those chords that occlude P ′ from vantage P (and vice
versa). We will argue that in order to implement MaximalChord, it su5ces to design an e5cient
dynamic data structure for the following problem; initially all edges are unmarked:
• Mark/Unmark(e): Mark/unmark an edge e ∈ E (T).
• LastMarked(P ′, P): Return the marked edge closest to P on the path from P ′ to P , or Null

if all are unmarked.
By doing a depth-#rst traversal of the chord treeT Ri

q , marking/unmarking chords as they are en-
countered, the set {e ∈ E (T) | e is marked}will be equal to CRi

q [x] precisely when x is #rst encoun-
tered in DFS. To answer a MaximalChord(Ri ,q,x , P , P ′) query we interact with the state of the
data structure when the marked set is Ĉ = CRi

q [x]. If P ′ is not Null, we return LastMarked(P ′, P).
Otherwise we pick an arbitrary (marked) chordC ∈ CRi

q [x], get the adjacent pieces P ′1, P ′2 on either
side ofC , then query LastMarked(P ′1, P) and LastMarked(P ′2, P). At least one of these queries will
return a chord and that chord is maximal from vantage P . (Note thatC must separate P from either
P ′1 or P ′2.)

The operations Mark, Unmark, and LastMarked are easily reducible to Update, Pathmin,
and Pathmax from Lemma 6.5 [7]. Root the tree at an arbitrary vertex and preprocess it for LCA
queries [4]. All unmarked edges carry a weight of+∞ (for Pathmin queries) and−∞ (for Pathmax
queries). Mark(e) sets the weight of e to be equal to the number of edges of the path from the
root to e’s farthest endpoint from the root. Consider a LastMarked(P ′, P) query and let P ′′ be
the lowest common ancestor of P and P ′. We #nd the edges e0 = Pathmin(P ′, P ′′) and e1 =
Pathmax(P , P ′′). If e1 exists (P ! P ′′) and is marked (weight not ±∞), then it is the correct answer.
Otherwise, if e0 is marked, then it is the correct answer. If neither case holds, then there are no
marked edges on the path from P ′ to P .

For #xed Ri and q ∈ ∂Ri there are O (|∂Ri |) Mark and Unmark operations, each of which
takes O (logn/ log logn) time. Over all choices of i,Ri , and q the total update time is O (mn logn/
log logn). After applying generic persistence transformation for RAM data structures (see [21]),
the space is O (mn logn/ log logn) and the time per LastMarked query is O (logn/ log logn·
log logn) = O (logn).

Turning to AdjacentPiece(Ri ,q, e), there are |∂Ri |2 choices of (q, e). Hence, all answers can be
precomputed in a lookup table occupying O (mn) space. !

6.3 The SitePathIndicator Function
The SitePathIndicator function is relatively simple. We are given VD∗out (ui ,Ri+1); v ∈ Rout

i+1; a
centroid f ∗ ∈ Rout

i+1, f being a trichromatic face ony0,y1,y2, which are, respectively, in the Voronoi
cells of s0, s1, s2 ∈ ∂Ri+1; and an index j ∈ {0, 1, 2}. We would like to know if v is on the shortest
sj -to-yj path. Recall that t is such that v " Rt but v ∈ Rt+1.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:28 P. Charalampopoulos et al.

Using the lookup tables in part (D) of the data structure, we #nd the #rst and last vertices (q and
x) of ∂Rt on the sj -to-yj path. If q,x do not exist, thenv is certainly not on the sj -to-yj path (Line 4).
Using parts (A,C,D) of the data structure, we invoke SimpleCentroidSearch to #nd the last point
z of ∂Rt on the shortest path (inG) from q tov . (See Lemma 6.3.) If z is not on the path from q to x
inG (which corresponds to it not being on the path from q to x inT Rt

q , stored in part (E)), then once
againv is certainly not on the sj -to-yj path (Line 8). So we may assume that z lies on theq-to-x path.
For the case where z = x , we let x ′ be the last vertex of the shortest sj -to-yj path that is contained
in the relevant subgraph Rout

t ∩ Rt+1. In particular, there are three cases to consider, depending on
whether the destination yj of the path is in Rout

t ∩ Rt+1, in Rout
t+1, or in Rt . If yj ∈ Rout

t ∩ Rt+1 we
let x ′ = yj ; if yj ∈ Rout

t+1 we let x ′ be the last vertex of ∂Rt+1 encountered on the shortest sj -to-yj
path (stored in part (D)); and if yj ∈ Rt we let x ′ = x . Figures 10(a) and 10(b) illustrate the #rst two
possibilities for x ′. Now,v is on the sj -to-yj path i" it is on the x-to-x ′ shortest path, which can be
answered using part (A) of the data structure (Lines 19, 21). (Figure 10(b) illustrates one way for
v to appear on the x-to-x ′ path.) In the remaining case, z is on the shortest q-to-x path but is not
x , meaning that the child z ′ of z on T Rt

q [x] is well de#ned. If the corresponding shortest z-to-z ′

path lies in Rout
t (i.e., it is a chord −→zz ′), then v is on the shortest sj -to-yj path i" it is on the shortest

z-to-z ′ path in Rout
t , which, once again, can be answered with part (A) of the data structure via

Lemma 6.1 (Lines 25, 27). See Figure 10(a) for an illustration of this case. Finally, if the shortest
z-to-z ′ path is internally disjoint from Rout

t , then v is clearly not on the shortest sj -to-yj path.

6.4 The ChordIndicator Function
The ChordIndicator function is given VD∗out (ui ,Ri+1); v ∈ Rout

i+1; a centroid f ∗, with yj , sj de#ned
as usual; and an index j ∈ {0, 1, 2}. The goal is to report whether v lies to right of the oriented
site-centroid-site chord:

C̃ = −−−−−−−−−−→sjyjyj−1sj−1,

which is composed of the shortest sj -to-yj and sj−1-to-yj−1 paths and the single edge {yj ,yj−1}.
Note that C̃ is a simple path since the shortest sj -to-yj and sj−1-to-yj−1 paths belong to di"erent
Voronoi cells. See Figure 6 for an illustration. It is guaranteed that v does not lie on C̃ , as this case
is already handled by the SitePathIndicator function.

Figure 11 illustrates why this point location problem is so di5cult. Since we know thatv ∈ Rt+1
andv " Rt , we can narrow our attention to Rout

t ∩Rt+1. However, the projection of C̃ onto Rout
t can

cross the boundary ∂Rt an arbitrary number of times. De#ne C to be the set of oriented chords of
Rout

t obtained by projecting C̃ onto Rout
t .

Luckily C has some structure. Let (qj ,x j) and (qj−1,x j−1) be the #rst and last ∂Rt vertices on
the shortest sj -to-yj and sj−1-to-yj−1 paths, respectively. (One or both of these pairs may not exist.)
The chords of C are in one-to-one correspondence with the chords of C1 ∪ C2 ∪ C3, de#ned below
but, as we will see, sometimes with their orientation reversed.
C1: De#ne C1 = CRt

qj [x j]. That is, C1 contains all the chords on the path from qj to x j , stored in
part (E) of the data structure. Moreover, the orientation of C1 agrees with the orientation of
C̃ . The blue chords of Figure 11(a) are isolated as C1 in Figure 11(b).

C2 : De#ne C2 = C
Rt
qj−1 [x j−1]. That is, C2 contains all the chords on the path from qj−1 to x j−1. The

red chords of C in Figure 11(a) are represented by chords C2, but with reversed orientation.
Figure 11(c) depicts C2.

C3 : This set contains the oriented chord−−−−−→x jx j−1 (if it exists) consisting of the shortestx j -to-yj path,
the edge {yj ,yj−1}, and the reverse of the shortest x j−1-to-yj−1 path. Figure 11(d) depicts C3.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:29

Fig. 10. (a) f is in Rout
t+1 and x ′ is the last vertex on ∂Rt+1 on the sj -to-yj path. Since z ! x and z ∈ TRt

q [x],
the subpath from z to z′ is a chord in Rout

t , and so we test whetherv is on the chord
−−→
zz′. (b) f is in Rout

t ∩Rt+1
and x ′ = yj . Since z = x , we test whether v is on the x-to-yj path.

The chord-set C partitions Rout
t into a piece-set P, with one such piece P ∈ P containing

v . (Remember that v is not on C̃ .) We can also consider the piece-sets P1,P2,P3 generated by
C1,C2,C3. Let P1 ∈ P1, P2 ∈ P2, P3 ∈ P3 be the pieces containing v . Since, ignoring orientation,
C = C1 ∪ C2 ∪ C3, it must be that P = P1 ∩ P2 ∩ P3. In order to determine whether v is to the right

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:30 P. Charalampopoulos et al.

ALGORITHM 5: SitePathIndicator(VD∗out (ui ,Ri+1),v, f ∗, j)

Input: The dual representation VD∗ = VD∗out (ui ,Ri+1) of a Voronoi diagram, a vertex v ∈ Rout
i+1, and

j ∈ {0, 1, 2}.
Output: True if v is on sj -to-yj shortest path, where sj ,yj are with respect to f ∗ in VD∗, and False

otherwise.
1: Rt ← the ancestor of Ri s.t. v " Rt ,v ∈ Rt+1.
2: (q,x) ← #rst and last ∂Rt vertices on the shortest sj -to-yj path. # Part (D)
3: if q,x are Null then
4: return False
5: end if
6: z ← SimpleCentroidSearch(VD∗out (q,Rt),v) # Uses parts (A,C,D); see Lemma 6.3
7: if z is not on T Rt

q [x] then
8: return False
9: end if

10: if z = x then
11: if yj is in Rout

t ∩ Rt+1 then
12: x ′ ← yj
13: else if yj " Rt+1 then
14: x ′ ← last ∂Rt+1 vertex on the shortest sj -to-yj path. # Part (D)
15: else
16: x ′ ← x # I.e., yj " Rout

t
17: end if
18: if v is on the shortest x-to-x ′ path then # Part (A)
19: return True
20: end if
21: return False
22: end if
23: z ′ ← the child of z on T Rt

q [x] # Part (E)
24: if

−→
zz ′ is a chord in CRt

q [x] and v is on the shortest z-to-z ′ path in Rout
t then # Part (A)

25: return True
26: end if
27: return False

of C̃ , it su5ces to #nd some chord C ∈ C bounding P and ask whether v is to the right of C . Note
that such a chord C must also be on the boundary of one of P1, P2, or P3.

The high-level strategy of ChordIndicator is as follows. First, we will #nd some piece P ′1 ∈
PRt

qj that is contained in P1 using the procedure PieceSearch described below. The chords of C1
bounding P1 are precisely the maximal chords in C1 from vantage P ′1. Using MaximalChord (part
(E)), we will #nd a candidate chordC1 ∈ C1 and one edge e on the boundary cycle of ∂Rt occluded
byC1 from vantage P ′1. Turning to C2, we use AdjacentPiece to #nd the piece Pe ∈ PRt

qj−1 adjacent
to e . Then, using PieceSearch and MaximalChord again, we #nd a P ′2 ∈ P

Rt
qj−1 contained in P2

and the maximal chord C2 occluding Pe from vantage P ′2. Let C3 be the singleton chord in C3, if
any. We determine an “eligible” chord C# ∈ {C1,C2,C3}, decide whether v lies to the right of C# ,
and return this answer if ! ∈ {1, 3} or reverse it if ! = 2. Recall that chords in C2 have the opposite
orientation as their counterparts in C.

PieceSearch is presented in Section 6.4.1 and ChordIndicator in Section 6.4.2.

6.4.1 PieceSearch. Given v and q,x ∈ ∂Rt , we would like to locate the piece P ∈ PRt
q [x] that

contains v . Note that since PRt
q is a re#nement of PRt

q [x], P is the union of some pieces in PRt
q .

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:31

Fig. 11. (a) The projection of a site-centroid-site chord C̃ = −−−−−−−−−−−→sjyjyj−1sj−1 of Rout
i+1 onto Rout

t yields a set C
of chords of Rout

t , partitioned into three classes. Let qj ,x j and qj−1,x j−1 be the first and last ∂Rt -vertices
on the sj -to-yj and sj−1-to-yj−1 paths. (b) C1: all chords in TRt

qj [x j]. (c) C2: all chords in TRt
qj−1 [x j−1]. Their

orientation is the reverse of their counterparts in C̃ . (d) C3: the single chord −−−−−−−−−−−→x jyjyj−1x j−1.

Thus, it su5ces to return any P ′ ∈ PRt
q such that P ′ ⊆ P . The procedure PieceSearch performs

this task.
The #rst thing it does is #nd the last ∂Rt vertex z on the shortest path from q to v , which can

be done with a call to SimpleCentroidSearch on VD∗out (q,Rt), using Lemma 6.3. (This uses parts
Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:32 P. Charalampopoulos et al.

(A,C,D) of the data structure.) The shortest path from z tov cannot cross any chord in CRt
q [x], since

they are part of a shortest path, but it can coincide with a pre#x of some chord in CRt
q [x]. Thus,

if no chord of CRt
q [x] is incident to z, then we are free to return any piece containing z. (There

may be multiple options if z is an endpoint of a chord in CRt
q . This case is depicted in Figure 12.

When z = z0, we know that v ∈ P5 ∪ · · · ∪ P9 and return any such piece containing z.) In general,
z may be incident to up to two chordsC1,C2 ∈ CRt

q [x]. (This occurs when the shortest q-to-x path
touches ∂Rt at z without leaving Rout

t .) In this case we determine which side of C1 and C2 v is on
(using Lemma 6.1) and return the appropriate piece adjacent to C1 or C2. This case is depicted in
Figure 12 with z = z1; the three possible answers coincide with v ∈ {v1,v2,v3}.

ALGORITHM 6: PieceSearch(Rt ,q,x ,v)

Input: A region Rt , two vertices q,x ∈ ∂Rt , and a vertex v not on the q-to-x shortest path in G.
Output: Any piece P ′ ∈ PRt

q that is a subpiece of the unique piece P ∈ PRt
q [x] containing v .

1: z ← SimpleCentroidSearch(VD∗out (q,Rt),v) # Uses parts (A,C,D) of the data structure
2: if z is not an endpoint of any chord in CRt

q [x] then
3: return any piece in PRt

q containing z.
4: end if
5: C1,C2 ← two chords in CRt

q [x] adjacent to z (C2 may be Null)
6: Determine whether v is to the left or right of C1 and C2. # Part (A); see Lemma 6.1
7: return a piece adjacent to C1 or C2 that respects the queries of Line 6.

We remark that we could have de#ned PieceSearch to not take x as an argument and just
return a piece P ′ ∈ PRt

q containing v , which is, by de#nition, a subpiece of the piece P ∈ PRt
q [x]

containing v . This would entail modifying Lines 5 and 6 to do a binary search on all the chords in
CRt

q incident to z.

6.4.2 ChordIndicator. Let us walk through the ChordIndicator function. If C̃ = −−−−−−−−−−→sjyjyj−1sj−1
does not touch the interior of Rout

t , then the left-right relationship between C̃ and v " Rt is known
and stored in part (D) of the data structure. If this is the case, the answer is returned immediately,
at Line 3. A relatively simple case is when C1 and C2 are empty and C = C3 consists of just one
chord C3 =

−−−−−−−−−−→x jyjyj−1x j−1. We apply Lemma 6.2 to determine whether v is to the right or left of C3
and return this answer (Line 8). Thus, without loss of generality we can assume that C1 ! ∅ and
C2 may or may not be empty.

Recall that P1 is v’s piece in PRt
qj [x j]. Using PieceSearch, we #nd a piece P ′1 ⊆ P1 in the more

re#ned partitionPRt
qj and #nd a MaximalChordC1 ∈ C1 from vantage P ′1, and hence from vantage

v as well. We regard ∂Rt as circularly ordered according to a clockwise walk around the hole on
∂Rt in Rout

t . The chord C1 occludes an interval I1 of ∂Rt from vantage v . If C1 is not one of the
chords bounding P , then C3 or some C2 ∈ C2 must occlude a superset I2 of I1, so we will attempt
to #nd such a C2 as follows.

Let e be the #rst edge on the boundary cycle occluded by C1; i.e., e joins the #rst two elements
of I1. Using AdjacentPiece, we #nd the unique piece Pe ∈ PRt

qj−1 with e on its boundary. Using
PieceSearch again, we #nd P ′2 ∈ P

Rt
qj−1 contained in P2, and using MaximalChord again, we #nd

the maximal chord C2 ∈ C2 that occludes Pe from vantage P ′2, and hence from vantage v as well.
Observe that since all chords in C2 are vertex-disjoint from C1, if C2 ! Null then C2 must occlude
a strictly larger interval I2 ⊃ I1 of ∂Rt . (IfC2 is Null then I2 = ∅.) It may be thatC1 andC2 are both
not on the boundary of P , but the only way that could occur is if C3 ∈ C3 exists and occludes a

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:33

Fig. 12. Solid chords are in CRt
q [x]. Dashed chords are in CRt

q but not CRt
q [x]. When z = z0,v = v0, the

piece in PRt
q [x] containing v is the union of P5–P9. PieceSearch reports any piece containing z0. When

z = z1,v ∈ {v1,v2,v3}, z is incident to two chords C1,C2. PieceSearch decides which side of C1,C2 v is on
(see Lemma 6.1) and returns the appropriate piece adjacent to C1 or C2.

superset of I1 and of I2 on the boundary ∂Rt . We check whetherv lies to the right or left ofC3 using
Lemma 6.2 and let I3 be the interval of ∂Rt occluded by C3 from vantage v . If I3 does not cover e ,
then we cannot conclude thatC3 is superior toC1 andC2. Thus, we #nd the chordC# ∈ {C1,C2,C3}
that covers e and maximizes |I# |. C# must be on the boundary of P , so the left-right relationship
between v and C̃ is exactly the same as the left-right relationship between v and C# if ! ∈ {1, 3},
and the reverse of this relationship if ! = 2 since chords in C2 have the opposite orientation as
their subpath counterparts in C̃ . Figure 13 illustrates how ! could take on all three values.

7 ANALYSIS
This section constitutes a proof of the claims of Theorem 1.1 concerning space complexity and
query time. See Section 8 for an e5cient construction and its analysis.

The cost of PieceSearch is dominated by the call to SimpleCentroidSearch in Line 1, which,
by Lemma 6.3, takes O (κ logn log logn) time. SitePathIndicator is also dominated by one call to
SimpleCentroidSearch. (Its other operations are handled by the MSSP structure (part (A)) and
variousO (1)-time tree operations onT Ri

q and the !r -division such as lowest common ancestors and
level ancestors [4, 5, 35, 37].) It also takesO (κ logn log logn) time. The calls to MaximalChord and
AdjacentPiece in ChordIndicator take O (logn) time by Lemma 6.6, and testing which side of a
chordv lies on takesO (κ log logn) time by Lemmas 6.1 and 6.2. The bottleneck in ChordIndicator
is still PieceSearch; overall it takes O (κ logn log logn) time.

An initial call to CentroidSearch (Line 4 of Dist) generates at most logn recursive calls to
CentroidSearch in total, culminating in the last recursive call making one or two calls to Dist
with the “i” parameter incremented. Excluding the cost of recursive calls to Dist, the cost of
CentroidSearch is dominated by calls to SitePathIndicator and ChordIndicator; i.e., an initial

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:34 P. Charalampopoulos et al.

Fig. 13. The intervals I1, I2, I3 are represented as pink circular arcs. The edge e is the first edge of I1 in a
clockwise walk around the hole bounded by ∂Rt in Rout

t . (Note that in this drawing the hole on ∂Rt is the
infinite face. Thus, a clockwise walk around ∂Rt looks like a counter-clockwise walk in the plane.) In (a) C2
exists andC3 is eligible since I3 ⊃ I2 ⊃ I1. In (b)C2 exists butC3 occludes an interval I3 that does not contain
e , soC2 is an eligible chord. In (c)C2 is Null andC3 does not occlude e fromv , soC1 is the only eligible chord.
(In the figure I3 ⊂ I1 but it could also be as in (b), with I3 disjoint from I1.)

ALGORITHM 7: ChordIndicator(VD∗out (ui ,Ri+1),v, f ∗, j)

Input: The dual representation VD∗out = VD∗out (ui ,Ri+1) of a Voronoi diagram, a centroid f ∗ in VD∗out
with face f on verticesy0,y1,y2, which are in the Voronoi cells of s0, s1, s2, an index j ∈ {0, 1, 2}, and
a vertex v ∈ Rout

i+1 that does not lie on the site-centroid-site chord C̃ = −−−−−−−−−−→sjyjyj−1sj−1.
Output: True if v lies to the right of C̃ , and False otherwise.

1: Rt ← the ancestor of Ri s.t. v " Rt ,v ∈ Rt+1. C is the projection of C̃ onto Rout
t .

2: if the left/right relationship between Rout
t and C̃ = −−−−−−−−−−→sjyjyj−1sj−1 is known then

3: return stored True/False answer. # Part (D)
4: end if # (It follows that C̃ crosses ∂Rt and that C ! ∅)
5: (qj ,x j) ← #rst and last ∂Rt -vertices on shortest sj -to-yj path. # Part (D)
6: (qj−1,x j−1) ← #rst and last ∂Rt -vertices on shortest sj−1-to-yj−1 path. # Part (D)
7: if C1 = C2 = ∅ then
8: return True if v is to the right of the C3-chord −−−−−−−−−−→x jyjyj−1x j−1, or False otherwise. # Parts (A,D)
9: end if #W.l.o.g., continue under the assumption that C1 ! ∅.

10: P ′1 ← PieceSearch(Rt ,qj ,x j ,v) # Parts (A,C,D)
11: C1 ← MaximalChord(Rt ,qj ,x j , P ′1,⊥) # Part (E)
12: I1 ← the clockwise interval of hole ∂Rt occluded by C1 from vantage v .
13: e ← edge joining #rst two elements of I1.
14: Pe ← AdjacentPiece(Rt ,qj−1, e) # Part (E)
15: P ′2 ← PieceSearch(Rt ,qj−1,x j−1,v) # Parts (A,C,D)
16: C2 ← MaximalChord(Rt ,qj−1,x j−1, P ′2, Pe) # Part (E); may return Null
17: I2 ← the clockwise interval of hole ∂Rt occluded by C2 from vantage v . # ∅ if C2 = Null
18: C3 ← single chord in C3, if any. # May be Null
19: I3 ← the clockwise interval of hole ∂Rt occluded by C3 from vantage v . # Parts (A,D)
20: ! ← index such that I# covers e , and |I# | is maximum.
21: if v is to the right of C# and ! ∈ {1, 3} or v is to the left of C# and ! = 2 then
22: return True
23: end if
24: return False

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:35

call to CentroidSearch takes logn · O (κ logn log logn) = O (κ log2 n log logn) time. Let T (i) be
the cost of a call to Dist(ui ,v,Ri). We have

T (m − 1) = O (κ log logn) Dist returns at Line 2 with one MSSP query
T (i) = 2T (i + 1) +O (κ log2 n log logn)

It follows that the time to answer a distance query is T (0) = O (2m · κ log2 n log logn).
The space complexity of each part of the data structure is as follows. (A) is O (κmn1+1/m+1/κ)

by Lemma 2.1 and the fact that ri+1/ri = n1/m . (B) is O (mn1+1/(2m)) since
√
ri+1/ri = n1/(2m) . (C)

is O (mn) since ∑i n/ri · (
√
ri)2 = O (mn). (D) is O (m) times the space cost of (B) and (C), namely

O (m2n1+1/(2m)), and (E) is O (mn logn/ log logn) by Lemma 6.6. For the choices ofm,κ considered
below, the bottleneck is (A).

We now explain howm,κ can be selected to achieve the extreme space and query complexities
claimed in Theorem 1.1. To optimize for query time, pick κ = m to be any function of n that is
ω (1) and o(log logn). Then the query time is

O (2mκ log2 n log logn) = log2+o (1) n,

and the space is
O (mκn1+1/m+1/κ) = n1+o (1) .

To optimize for space, choose κ = logn and m to be a function that is ω (logn/ log logn) and
o(logn). Then the space is

O
(
mκn1+1/m+1/κ

)
= o
(
n1+1/m log2 n

)
= n · 2o (log log n) · log2 n = n log2+o (1) n,

and the query time is
O (2mκ log2 n log logn) = 2o (log n) log3 n log logn = no (1) .

Note that once κ = Ω(logn) it is best to switch to the pointer-based MSSP implementation
(see Lemma 2.1 and [25]), which saves a log logn-factor in the query time.

7.1 Speeding Up the !ery Time
Considering functions that areω (1) and o(log logn) is of a purely theoretical nature, so in practice
m and κ will just be set as constants. In this section we illustrate how the query time’s dependence
onm can be improved from 2m to about 2m/4.

Observe that the space of (B) is asymptotically smaller than the space of (A). Replace (B) with
(B’).

(B’) (Voronoi Diagrams) Fix i , a region Ri ∈ Ri with ancestors Ri+1 ∈ Ri+1 and Ri+4 ∈ Ri+4.
For each q ∈ ∂Ri store

VD∗out (q,Ri+1) = VD∗[Rout
i+1, ∂Ri+1,ω]

VD∗farout (q,Ri+4) = VD∗[Rout
i+4, ∂Ri+4,ω] only if i < m − 4

with ω (s) = distG (q, s) in both cases. Over all regions Ri , the space for storing all VD∗outs
is Õ (n1+1/(2m)) since

√
ri+1/ri = n1/(2m) and the space for VD∗farouts is Õ (n1+2/m) since√

ri+4/ri = n2/m .
Now the space for (A) is Õ (n1+1/m+1/κ) = Õ (n1+2/m) and is balanced with (B’) when m = k .

In the Dist function we now consider three possibilities. If v ∈ Ri+1 we use part (A) to solve the
problem without recursion. If v " Ri+1 but v ∈ Ri+4 we proceed as usual, calling CentroidSearch
(VD∗out (ui ,Ri+1),v), and if v " Ri+4 we call CentroidSearch(VD∗farout (ui ,Ri+4),v). Observe that

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:36 P. Charalampopoulos et al.

the depth of the Dist-recursion is now at most t/4+O (1) < m/4+O (1), giving us a query time of
O (m2m/4 log2 n log logn) with space Õ (n1+2/m).

8 CONSTRUCTION
In this section, we show how to construct our oracle in n3/2+o (1) time. We use dense distance
graphs. The dense distance graph of a region R, denoted DDG[R], is a complete directed graph on
the vertices of ∂R, in which the length of edge (u,v) is distR (u,v). We say that this kind of DDG
is internal and, similarly, de#ne the external DDG of a region R, denoted by DDG[Rout], to be a
complete directed graph on ∂R, in which the length of edge (u,v) is distRout (u,v).

The FR-Dijkstra algorithm [28] is an e5cient implementation of Dijkstra’s algorithm [23] on
DDGs. In particular, it simulates the behavior of the heap in Dijkstra’s algorithm without explicitly
scanning every edge in the DDG. In fact, the FR-Dijkstra algorithm can run on a union of DDGs
[28]. Moreover, it is shown in [6] that it is also compatible with a traditional implementation of
Dijkstra’s algorithm in the following sense: Suppose we have a graphH that consists of a subgraph
ofG on n0 vertices, and k DDGs on n1,n2, . . . ,nk vertices, respectively. The FR-Dijkstra algorithm
can be implemented on H in Õ (N) time, where N =

∑k
i=0 ni [28, 40, 55].

Before the construction of DDGs and our oracle, we #rst prepare Klein’s MSSP structures (part
(F) below). Note that MSSP structures in part (F) are only used in the construction of DDGs and
part (D). They are not stored in our oracle and are unrelated to the MSSP structures from part (A).

(F) (More MSSP Structures) For each i ∈ [0,m − 1], each Ri ∈ Ri with parent Ri+1 ∈ Ri+1, we
build two MSSP structures for Rout

i ∩ Ri+1 with sources on ∂Ri and ∂Ri+1, respectively, and
an MSSP structure for Ri with sources on ∂Ri .
All these MSSP structures are constructed using Klein’s MSSP algorithm [45] or the one in
Appendix A.2 (with κ = logn) in Õ (

∑
i

n
ri
ri+1) = Õ (mn1+1/m) time.

We then compute, for each region Ri in the !r -division, the internal DDG, the external DDG, and
the DDG of Rout

i ∩ Ri+1, denoted DDG[Rout
i ∩ Ri+1], de#ned as the complete graph with vertices

∂Ri ∪∂Ri+1 and edge weights the distances in Rout
i ∩Ri+1. The internal DDG and DDG[Rout

i ∩Ri+1]
for each region Ri can be computed using the MSSP structures in part (F) in Õ (ri) and Õ (ri+1)
time, respectively, thus in Õ (

∑
i

n
ri

(ri + ri+1)) = Õ (mn1+1/m) time over all regions. To com-
pute the external DDGs, we consider a top-down process on the !r -division. The external DDG
for Ri can be computed by running the FR-Dijkstra algorithm on the union of DDG[Rout

i+1] and
DDG[Rout

i ∩Ri+1] sourced from each vertex in ∂Ri . The number of vertices in this union isO (
√
ri+1),

so computing DDG[Rout
i] takes Õ (

√
riri+1) time, and the construction time over all external DDGs

is Õ (
∑

i
n
ri

√
riri+1) = Õ (mn1+1/(2m)). The total construction time for all DDGs is Õ (mn1+1/m).

(See [41] for a recent e5cient algorithm for computing external DDGs.)
With dense distance graphs, all components in the oracle can be constructed as follows:
(A) MSSP Structures

Recall that our MSSP structure for Rout
i with sites ∂Ri is obtained by contracting subpaths

in Rout
i+1 of the SSSP trees into single (shortcut) edges. In order to build the MSSP structure

using dynamic trees, it su5ces to compute the contracted shortest path tree for every source
on ∂Ri and then compare the di"erences between the trees of two adjacent sources on ∂Ri .
For a single source on ∂Ri , the contracted shortest path tree can be computed with the FR-
Dijkstra algorithm on the union of subgraphRout

i ∩Ri+1 and DDG[Rout
i+1] in time Õ (ri+1). Thus,

the time for constructing and comparing the shortest path trees is Õ (ri+1
√
ri). After that, an

MSSP structure for Rout
i can be built in time Õ ((ri+1 +

√
riri+1)κn1/κ) (see item (A) in the

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:37

beginning of Section 5). The total time to construct all MSSP structures is Õ (
∑

i
n
ri

(ri+1
√
ri +

ri+1κn1/κ)) = Õ (n3/2+1/mm + n1+1/κ+1/mmκ).

Remark 1. Notice that in our MSSP structures for Rout
i , a contracted subpath should be inter-

nally disjoint from ∂Ri+1. However, the underlying shortest paths represented by edges in
DDG[Rout

i+1] may not satisfy this condition. To #x this problem, we subtract a small value from
all edge weights in DDGs, so that shortest paths are not a"ected. With this perturbation, the
path using the largest number of DDG edges will be preferred. In such a path, each edge of
the DDG corresponds to a path that is internally disjoint from ∂Ri+1. This mechanism will
also be used below.

E#cient construction of Voronoi diagrams. Explicitly computing the primal Voronoi diagram can
be too expensive. We next show an e5cient algorithm to compute the dual representation of a
Voronoi diagram that we believe is of independent interest (see [16] for an application of this
algorithm in a dynamic setting). Let us present the high-level idea of our algorithm. For conceptual
simplicity, let us think of constructing VD∗[R, ∂R,ω] for a region R in the complete recursive
binary decomposition tree of G, described in Section 2. Let P consist of the two children of R in
the recursive decomposition of G. Let u be a dummy vertex connected to ∂R with auxiliary edges
(u, s) of length ω (s) for each s ∈ ∂R. We will run FR-Dijkstra from the dummy vertex u on the
union of these auxiliary edges and DDG[P] for P ∈ P. We will show that we can then decide
whether each P ∈ P contains a trichromatic face in O (|∂P |) time by looking at the restriction of
the computed shortest paths tree to DDG[P]. We will isolate the trichromatic faces by iteratively
replacing any piece containing such a face with its two sub-pieces and re#ning the shortest path
tree accordingly.

Theorem 8.1. Suppose that we are given a complete recursive decomposition of a planar graph G
of size n. After an Õ (n)-time preprocessing, for any region R of the decomposition, we can construct
VD∗[H , ∂R,ω] forH ∈ {R,Rout} and arbitrary additive weightsω : ∂R → R≥0 in time Õ (

√
|H | · |∂R |).

Proof. Our preprocessing of each region P in the recursive decomposition consists of comput-
ing DDG[P] in O ((|P | + |∂P |2) log |P |) time via MSSP. This requires Õ (n) time in total.

For clarity, we assume that the additive weights are such that there are no empty Voronoi cells
and only waive this assumption at the end of the proof.

LetK be the star with centeru and leaves ∂R, such that the weight of edge (u, s) isω (s). Consider
a set P of regions of the recursive decomposition that cover H ; i.e., each edge in H belongs to at
least one region in P and no edge in G \ H belongs to any region of P. Let T be a shortest path
tree rooted at u in the union of K and the DDGs of all pieces in P. We shall next prove that, for
each piece P ∈ P, we can infer whether P contains a trichromatic face or not by inspecting the
restriction of T to DDG[P].

Our assumption on the additive weights guarantees that each vertex of ∂R is a child of u in T .
We label each vertex v of T by its unique ancestor in T that belongs to ∂R. Note that the label
of a vertex v corresponds to the Voronoi cell containing v in VD[H , ∂R,ω]. For a piece P ∈ P,
consider the restriction ofT to DDG[P]. We use a representation of size O (|∂P |) of the edges ofT
embedded as curves in P , such that each edge of T is homologous to its underlying shortest path
in P . See [47, 53] for details on such a representation. We make incisions in the embedding of P
along the edges of T (the endpoints of edges of T are duplicated in this process). Let Q be the set
of connected components of P after all incisions are made.

Claim 8.2. P contains a trichromatic face if and only if some connected componentC in Q contains
boundary vertices of P with at least three distinct labels.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:38 P. Charalampopoulos et al.

Fig. 14. Illustration for the proof of the claim in the case where H = Rout. Some pieces in a graph G are
shown. Region R is shown in bold. Region P (bold boundary, horizontal stripes) lies outside R. The shortest
path tree T is shown in blue, the connected component C in yellow, and the cycle D in gray. Vertices x and
y have the same label s . The vertices v, z between x and y (on the cyclic walk F along the infinite face of C)
must also be labeled s .

Intuitively, for each connected component C in Q, each label appears as the label of boundary
vertices along at most a single sequence of consecutive boundary vertices along the boundary of
C . Then, sinceC is triangulated, apart perhaps from its in#nite face, Sperner’s lemma [62] directly
implies that C contains a trichromatic face if and only if C has vertices with at least three distinct
labels in its in#nite face. Let us remark that the proof of Claim 8.2 does not rely on the single-hole
assumption.

Proof of Claim 8.2. LetC be a connected component in Q. First, note that each of the vertices
ofC belongs to the Voronoi cell of one of the sites that label the vertices inC ∩ ∂P . Hence, if each
C ∈ Q contains boundary vertices of P with at most two distinct labels, P cannot contain any
trichromatic faces.

It thus su5ces to show that, if some C ∈ Q contains boundary vertices of P with at least three
distinct labels, then C (and P) contains a trichromatic face. Let us consider such a component C .
Note that the vertices of ∂R either do not belong toC or are incident to a single face f ofC . In the
former case, let f be the face ofC such that ∂R is embedded in f . We think of f as the in#nite face
of C . Note that, because any path from ∂R to any vertex of C must intersect f , the set of labels of
the vertices of f is identical to the set of labels of all of C .

We #rst claim that the vertices of f that have the same label are consecutive in the cyclic order
of f . To see this, consider any two distinct vertices x ,y of f that have the same label s . If the unique
x-to-y path inT is a subpath of the boundary of f , then this is clearly the case. Otherwise, consider
the (not necessarily simple) cycle D (in H) formed by the unique x-to-y path in T , and the x-to-y
path F along the boundary of f , such that ∂R and C are on the same side of D. See Figure 14. By
choice of D, the only vertex of ∂R that can be enclosed by D is s . Suppose, toward a contradiction,
that some vertex v of F has label s ′ ! s . Since D does not enclose s ′, the s ′-to-v path in T starts
outside D. Further, it cannot cross the x-to-y path inT , all of whose vertices have the label s . Thus,
the s ′-to-v path in T must intersect C and use an edge whose underlying shortest path is disjoint
from f . But thenC should have been further dissected when the incisions alongT were performed,
a contradiction.

The argument above established that the vertices of f that have the same label are consecutive
in the cyclic order of f . Let us now recall Sperner’s lemma.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:39

Lemma 8.3 (Sperner’s Lemma). Consider a planar graph J , such that each face is a triangle, apart
perhaps from the in"nite face д. Further, consider a vertex-coloring of J with colors {1, 2, 3} that sat-
is"es the following condition: there exist three vertices v1,v2,v3 in д, colored 1, 2, 3, respectively, such
that, for all j ∈ {1, 2, 3}, the vertices on the vj -to-vj−1 path along д that does not contain vj−2 have a
color in {j, j − 1}—indices here are modulo 3. Then, J contains a trichromatic face.

Suppose that we have exactly three labels for the vertices of f . Since every face ofC other than
f is a triangle, and we can arbitrarily pick the vi s as the vertices of each label form a contiguous
interval, a direct application of Sperner’s lemma implies that there is a trichromatic face. If we
have k > 3 colors, we can group k − 2 of them that appear consecutively in f together and apply
Sperner’s lemma to the new instance. This concludes the proof of Claim 8.2. !

IfH = Rout, we setP to be the set of all siblings of pieces in the complete recursive decomposition
tree that contain R. Otherwise, H = R and we set P = {R}.

We repeat the following process (O (logn) times) until we locate all O (|∂R |) trichromatic faces.
Each iteration consists of two steps. In the #rst step we compute the shortest path treeT rooted

at u in the union of K and the DDGs of all pieces in P using FR-Dijkstra. In the second step we
re#ne the set P as follows. For each piece P , using Claim 8.2, we decide inO (|∂P |) time whether it
contains any trichromatic face. If P does not contain a trichromatic face, we do nothing. If it does,
we remove P from P and we insert to P the two children of P , unless P is a leaf in the recursive
decomposition, in which case we insert to P the individual edges of P .

The tree structure of VD[H , ∂R,ω] is captured by the structure of the shortest path tree in the
DDGs of all the pieces at the end of this process. The total time to locate all the trichromatic faces
is proportional, up to polylogarithmic factors, to the total number of vertices in all of the DDGs
involved in all these computations, which is bounded as follows.

Let RH be the smallest piece in the complete recursive decomposition of G that contains H (if
H = R then RH = R, and if H = Rout then RH = G). Note that |RH | = O (|H |). For the remainder
of this proof, we use the term decomposition tree to refer to the subtree of the complete recursive
decomposition tree rooted at RH . Each DDG involved in the computation is either the DDG of
a piece P in the decomposition tree that contains a trichromatic face or the DDG of the sibling
of such a piece P . There are O (|∂R |) trichromatic faces, and each contributes at most two DDGs
at each level of the decomposition tree. It is well known (cf. [32, Lemma 3.1]) that both the sizes
of pieces and the number of boundary vertices of pieces decrease geometrically as one descends
down the decomposition tree. Hence, a naïve bound on the total number of boundary vertices
(equivalently, DDG vertices) in all those pieces is Õ (

√|H | · |∂R |). However, this bound is not tight
since it double counts the contribution of pieces containing several trichromatic faces. We follow
the calculation in [17, Lemma 3.3] to avoid this double counting. Let r = |H |/|∂R |. Consider an
r -division of RH in the decomposition tree. We bound separately the contribution of (a) ancestors
of pieces in the r -division, and (b) descendants of pieces in the r -division.

For part (a), it is well known that the total number of vertices of all DDGs of all of the pieces
in an r -division is O (|H |/√r) = O (

√
|H | · |∂R |), and that this is also a bound on the total number

of vertices in all DDGs of all the ancestors of pieces of the r -division in the decomposition tree.
Hence, the contribution of part (a) is O (

√
|H | · |∂R |).

For part (b), each trichromatic face contributes at most two pieces at each level of the decompo-
sition tree above it until reaching a piece of the r -division. Since the number of boundary vertices
increases exponentially as we go up the decomposition tree, the contribution is asymptotically
dominated by the largest such ancestor, which is the piece of the r -division itself. Since each
piece of the r -division has O (

√
r) boundary vertices, the contribution of part (b) is bounded by

O (|∂R |√r) = O (
√
|H | · |∂R |).

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:40 P. Charalampopoulos et al.

Thus, the total time for #nding all trichromatic faces as well as the tree structure is
Õ (
√
|H | · |∂R |).

We now remove the assumption that there are no empty Voronoi cells. To this end, we #rst run
FR-Dijkstra as above on the union of starK and the DDGs of pieces in P. Then, for every site s that
is not a child of the root in the obtained shortest path tree T , we override its additive weight with
its distance from u and store a pointer from this site to its ancestor (site) s ′ in T that is a child of
the root. Intuitively, s becomes responsible for the verticesv of the Voronoi cell of s ′ for which the
shortest s ′-to-v path contains s . Our tie-breaking rule ensures that with the new additive weights,
s ∈ Vor(s). This concludes the proof of Theorem 8.1. !

(B/C) Voronoi Diagrams
The additive weights of all Voronoi diagrams can be computed by running FR-Dijkstra
on a union of appropriate DDGs. Speci#c to VD∗out (ui ,Ri+1) in (B), additive weights are
given by considering the union of DDG[Ri],DDG[Rout

i ∩ Ri+1],DDG[Rout
i+1] in Õ (

√
ri+1)

time. For VD∗out (ui ,Ri) in (C), we consider the union of DDG[Ri],DDG[Rout
i] and additive

weights can be computed in time Õ (
√
ri). The overall time to compute additive weights is

Õ (
∑

i
n
ri

√
ri
√
ri+1) = Õ (mn1+1/(2m)).

By Theorem 8.1, the total construction time for the dual representations is

Õ !
"
∑

i

n

ri

√
ri

√
n
√
ri+1 +

∑

i

n

ri

√
ri

√
n
√
ri#$ = Õ

!
"
∑

i

n3/2+1/(4m)

r 1/4
i

#
$ = Õ

(
n3/2+1/(4m)

)
,

which is also the construction time for parts (B) and (C).
(D) Site Tables and Side Tables

We focus on the site table and side table for a speci#c VD∗out (u,Ri) and do some preparations.
Observe that the union of

DDG[Rout
i ∩ Ri+1],DDG[Rout

i+1 ∩ Ri+2], . . . ,DDG[Rout
m−2 ∩ Rm−1],DDG[Rout

m−1]
contains exactly all boundary vertices in Rout

i of ancestors Ri ,Ri+1, . . . ,Rm−1. We use H to
denote this union with an arti#cial super-source u ′ connected to each site s ∈ ∂Ri with
weight ω (s) and construct the shortest path treeTH in H from the super-source u ′ using the
FR-Dijkstra algorithm in Õ (

√
n) time.

Remember that the site table stores the #rst and last vertices of each site-centroid s-to-y path
on the boundary of each ancestor Ri′ (i ′ ≥ i). We #rst #nd the last vertex x on the s-to-y path
belonging toH . Assume thaty ∈ Rk+1 buty " Rk , where Rk ,Rk+1 are ancestors of Ri . We can
observe that x is the vertex in ∂Rk ∪∂Rk+1 with the minimal distH (u ′,x)+distRout

k ∩Rk+1 (x ,y),
breaking ties in favor of larger distH (u ′,x). The former is given by TH and the latter can be
found by querying MSSP structures in (F) for Rout

k ∩ Rk+1. The calculation of x needs time
Õ (|∂Rk+1 |) = Õ (

√
n). Observe that the u ′-to-x path on TH includes all boundary vertices of

ancestor regions on the s-to-y path. By retrieving the u ′-to-x path on TH in O (
√
n) time, we

can get the required information for the site table. The construction time of a site table for
VD∗out (u,Ri) is Õ (

√
ri
√
n).

In the side table, we will store the relationship (left/right/Null) between each site-centroid-
site chord C̃ = −−−−−−−−−−→sjyjyj−1sj−1 (using the notations in Figure 6) and each ancestor Rout

i′ (i ′ ≥ i).
With the technique used in the construction of site tables, we can extract all vertices of C̃
on each ∂Ri′ from TH , and then determine the relationship between C̃ and each Rout

i′ with
boundary vertices on C̃ . For each Rout

i′ such that C̃ contains no vertices on ∂Ri′ , we pick an
arbitrary vertex z on ∂Ri′ . We can retrieve fromTH the u ′-to-z path and #nd the site sz such

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:41

that z ∈ Vor(sz). This can be done in O (
√
n) time. With TH and the MSSP structures from

part (F), we can determine the pairwise relationships among sj -to-yj , sj−1-to-yj−1, and sz -to-
z shortest paths and know whether z lies to the left or right of C̃ , which immediately shows
the relationship between C̃ and Rout

i′ . The construction time for a side table of VD∗out (u,Ri)
is Õ (m

√
ri
√
n).

The total time for building all site tables and side tables is

Õ !
"
∑

i
m
n

ri

√
ri
√
ri+1
√
n#$ = Õ

(
m2n3/2+1/(2m)

)
.

(E) Chord Trees and Piece Trees
Recall that the chord tree T Ri

q is obtained from the shortest path tree in G sourced from
q ∈ ∂Ri by contracting all paths between vertices in ∂Ri into single edges. Thus, it can be
computed by running FR-Dijkstra on the union of DDG[Ri] and DDG[Rout

i] in Õ (
√
ri) time.

Regarding the construction of the piece tree T Ri
q , we #rst extract all the chords on T Ri

q in
Rout

i , i.e., the chord set CRi
q . We treat each chord in CRi

q as an undirected edge and consider
the undirected planar graph Q, which is the union of CRi

q and the boundary cycle on ∂Ri .
Observe that each piece in PRi

q relates to a face of Q . The piece tree T Ri
q can be computed

in Õ (
√
ri) time, by taking the dual Q∗ and removing the vertex corresponding to the face on

∂R. With the graphQ and the piece tree T Ri
q , the data structure supporting MaximalChord

and AdjacentPiece in Lemma 6.6 can also be constructed in time Õ (
√
ri) for the given q,Ri .

The total time to compute part (E) is Õ (
∑

i
n
ri

√
ri
√
ri) = Õ (nm).

The overall construction time is Õ (n3/2+1/m + n1+1/m+1/κ) sincem and κ should be functions of
n that are O (logn).

A preprocessing-time vs. query-time tradeo!. No smooth tradeo" between the Õ (n)-time prepro-
cessing and Õ (

√
n)-query time oracle of Fakcharoenphol and Rao [28] and the oracle presented in

this article is known. Let us note, however, that the oracle of [14] can be adapted to give the fol-
lowing tradeo". For any r = nx with constant x ∈ (0, 1], there is an oracle that can be constructed
in n3/2+o (1)/r 1/4 time, occupies n1+o (1) space, and answers queries in r 1/2+o (1) time. We now sketch
how this tradeo" can be achieved. The n1+o (1)-space, no (1)-query time oracle presented in [14]
makes use of an !r -division and stores similar Voronoi diagrams as those presented in this article;
the main di"erence lies in how centroids are handled. The sole bottleneck in its construction is
the construction of Voronoi diagrams, with everything else requiring time n1+o (1) . Let k be the
successor of r in !r . We obtain the tradeo" by building the Voronoi diagrams (using Theorem 8.1)
only for pieces in ri -divisions with i ≥ k in total time

Õ !%
"
∑

i≥k

n

ri

√
ri

√
n
√
ri+1

#&
$
= n3/2+o (1)/r 1/4.

Now consider a query distG (u,v). The case wherev ∈ Rk is simple and can be handled using FR-
Dijkstra in Õ (

√
r) time. In the complementary case, we #rst perform FR-Dijkstra from the source

u in the union of

DDG[Rout
0 ∩ R1],DDG[Rout

1 ∩ R2], . . . ,DDG[Rout
k−1 ∩ Rk],DDG[Rout

k]

and then issue distance queries to v from each of the boundary vertices of Rk . Finally, we return
the minimum of distG (u, s) + distRout

k
(s,v) over all s ∈ ∂Rk .

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:42 P. Charalampopoulos et al.

9 MULTIPLE HOLES AND NONSIMPLE CYCLES
We have assumed for simplicity that all regions are bounded by a simple cycle and therefore have
a single hole. We now show how these assumptions can be removed.

Let us #rst illustrate how a region R may get a hole with a non-simple boundary cycle. The
hierarchical decomposition algorithm of Klein et al. [46] produces a binary decomposition tree, of
which our !r -division is a coarsening. It proceeds by #nding a separating cycle (as in Miller [52])
and recursively decomposes the graph inside the cycle and outside the cycle.12 At intermediate
stages the working graph contains several holes, but Miller’s theorem [52] only guarantees that a
small cycle separator exists if the graph is triangulated. To that end, the decomposition [46] puts
an arti#cial vertex inside each hole and triangulates the hole. See Figures 15(a) and 15(b). If the
cycle separatorC (blue cycle in Figure 15(b)) includes a hole-vertex v , we splice out v and replace
it with an interval of the boundary of the hole. IfC also includes edges on the boundary of the hole
(Figure 15(c)), the modi#ed cycle may not be simple. If this is the case, we “cut” along non-simple
parts of the cycle, replicating all such vertices and their incident cycle edges. We then join pairs
of identical vertices with zero-length edges (pink edges in Figure 15(c)) and triangulate with large-
length edges. This transformation clearly preserves planarity and does not change the underlying
metric.13

Turning to the issue of multiple holes, we #rst make some observations about their structural
organization. Fix any hole д of region Ri+1 and let Ri be a child of Ri+1. There is a unique hole
parRi

(д) in Ri such that д lies in R
parRi (д),out
i , which we refer to as the parent of д in Ri . Note that

all holes of Ri+1 have the same parent in Ri , and that the ancestry of holes goes in the opposite
direction of the ancestry of regions in the!r -division. In a distance query we only deal with a series
of regions R0 = {u},R1, . . . ,Rm = G. The holes of these regions form a hierarchy, rooted at {u},
which we view as a degenerate hole. For notational simplicity we use “д” to refer to the set of
vertices on hole д.

Lemma 9.1. There is an Õ (n)-space data structure that can be built in Õ (n) time, and givenu,v can
report in O (m) time the regions R0 = {u},R1, . . . ,Rt+1 and holes h0,h1, . . . ,ht such that v ∈ Rhi ,out

i ,
v " Rt , and v ∈ Rt+1.

Proof. Regions Ri can be reported by following parent pointers in our tree representation of
the !r -division, starting from R0, to which u stores a pointer.

For each region Ri , we can #nd the correct hole hi as follows. We store the tree representation
A of the recursive decomposition computed by the algorithm of Klein et al. [46]. We also store
some extra information for each hole of each region in A. Due to the structural organization of
holes discussed above, each separator of the O (logn) ancestors of a region P in A lies in Ph,out

for a unique hole h of P . For each region P , we store, for each separator of an ancestor of P in the
decomposition tree, the hole h of P such that Ph,out contains that separator. (This information can
be propagated bottom-up during the construction ofA in Õ (n) time.) In the query, by performing
an LCA query for the constant size region {v} and R0 inA, we #nd the separatorC that separated
v from u. Then, for each i , we can #nd the appropriate hole hi of Ri in O (1) time: it is the hole h
such that C is in Rh,out

i . Over all i this takes O (m) time. !

12The Klein et al. [46] algorithm rotates between #nding separators w.r.t. number of vertices, number of boundary vertices,
and number of holes, but this is not relevant to the present discussion.
13Given a distG (u, v) query, we can map it to Dist(u′, v ′, R0), where u′ and v ′ are any of the copies of u and v , respectively,
and R0 = {u′ }.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:43

Fig. 15. (a) A subgraph with two holes. (b) We put a vertex in each hole and triangulate the hole. (The
triangulation of the exterior hole is not drawn, for clarity.) A simple cycle separator (blue curve) is found
in this graph. (c) The cycle is mapped to a possibly non-simple cycle in the original graph that avoids hole-
vertices. We cut along non-simple parts of the cycle, duplicating the vertices and their adjacent edges on the
cycle. (d) The graph remaining a#er removing the subgraph enclosed by the cycle from (c).

9.1 Data Structures
The following modi#cations are made to parts (A)–(E) of the data structure. In all cases the space
usage is unchanged, asymptotically.

(A) (MSSP Structures) For each i ∈ [0,m − 1], each Ri ∈ Ri with parent Ri+1, and each hole hi

of Ri , we build an MSSP structure for Rhi ,out
i that answers distance queries and LCA queries

w.r.t. Rhi ,out
i for vertices in Rhi ,out

i ∩ Ri+1.
(B) (Voronoi Diagrams) For each i ∈ [0,m − 2], each Ri ∈ Ri with parent Ri+1 ∈ Ri+1, each

hole hi+1 of Ri+1 with parent hi = parRi
(hi+1), and each q ∈ hi , we store the dual repre-

sentation of Voronoi diagram VD∗out (q,Ri+1,hi+1) de#ned to be VD∗[Rhi+1,out
i+1 ,hi+1,ω] with

ω (s) = distG (q, s).
(C) (More Voronoi Diagrams) For each i ∈ [1,m − 1], each Ri ∈ Ri , each hole hi of Ri , and

each q ∈ hi , we store VD∗out (q,Ri ,hi), which is VD∗[Rhi ,out
i ,hi ,ω] with ω (s) = distG (q, s).

(D) (Site Tables; Side Tables) For each i and each Voronoi diagram VD∗out = VD∗out (u
′,Ri ,hi)

from part (B) or (C), for each node f ∗ in the centroid decomposition of VD∗out with yj , sj
de#ned as usual, j ∈ {0, 1, 2}, we store the following. Let Ri′ ∈ Ri′ be an ancestor of Ri , i ′ > i ,
and hi′ be a hole of Ri′ lying in Rhi ,out

i . We store the #rst and last vertices q,x on the shortest
sj -to-yj path that lie on hi′ as well as distG (u ′,x).

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:44 P. Charalampopoulos et al.

We also store whether Rhi′,out
i′ lies to the left or right of the site-centroid-site chord

−−−−−−−−−−→sjyjyj−1sj−1 in Rhi ,out, or Null if the relationship cannot be determined.
(E) (Chord Trees; Piece Trees) For each i ∈ [1,m − 1], each Ri ∈ Ri , each hole hi of Ri , and

source q ∈ hi , we store a chord treeT Ri ,hi
q obtained by restricting the SSSP tree with source

q to hi . An edge in T Ri ,hi
q is designated a chord if the corresponding path lies in Rhi ,out

i and
is internally vertex disjoint from hi . CRi ,hi

q ,PRi ,hi
q ,T Ri ,hi

q are de#ned analogously, and data
structures are built to answer MaximalChord and AdjacentPiece with respect to q,Ri ,hi .

9.2 !ery
At the #rst call to Dist(u,v,R0) we apply Lemma 9.1 to generate the regions R1, . . . ,Rt+1 and holes
h1, . . . ,ht that will be accessed in all recursive calls, in O (m) time.

The shortest u-to-v path in G must cross h1, . . . ,ht . The vertex ui is now de#ned to be the
last vertex in hi on the shortest u-to-v path. Given ui , we #nd ui+1 by solving a point location
problem in VD∗out (ui ,Ri+1,hi+1). The SitePathIndicator and ChordIndicator routines focus on
the subgraph Rht ,out

t rather than Rout
t . The general problem is no di"erent than the single hole

case, except that there may be O (1) holes of Rt+1 lying in Rht ,out
t , which does not cause further

complications.

9.3 Preprocessing
The existence of multiple holes does not create any serious complications in our construction
algorithm.

10 CONCLUSION
In this article we have proven that it is possible to simultaneously achieve optimal space or query
time, up to a log2+o (1) n factor, and near-optimality in the other complexity measure, up to an no (1)

factor. The main open question in this area is whether there exists an exact distance oracle with
Õ (n) space and Õ (1) query time.

In terms of the parameter m (the depth of the !r -division), our distance oracle uses space
Õ (n1+1/m) and has query time Õ (2m). The exponential dependence on m arises from the fact that
Dist solves one point location problem, but our point location routine narrows the number of
Voronoi cells to two candidates, which are resolved with two recursive calls to Dist at a higher
level of the !r -division. Avoiding this exponential dependence on m may require a completely dif-
ferent approach to the problem.

We highlight two more open problems. The construction time of our oracle is n3/2+o (1) . It is an
important open question to compute an oracle that is optimal in space, query time, and construc-
tion time, up to no (1) factors. See [15] for a recent specialized oracle with near-linear construction
time. A di"erent direction is to #nd e5cient distance oracles for graphs embeddable on surfaces
of bounded genus, as we believe that the distance oracle described in Section 4.5 can be improved.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:45

APPENDIX
A MSSP (PROOF OF LEMMA 2.1)
Let us recall the setup. We have a planar graph H with a distinguished face f , and wish to answer
distH (s,v) queries w.r.t. any s on f andv ∈ V (H), and LCA queries w.r.t. any s on f andu,v ∈ V (H).
Klein [45] proved that if we move the source vertex s around f and record all the changes to the
SSSP tree, every edge in E (H) can be swapped into and out of the SSSP at most once; i.e., there are
O (|H |) updates in total.

A.1 Adding Functionality to Link-cut Trees MSSP
In this subsection, we explain how to augment the MSSP data structure of Klein [11, 45] to support
the lowest common ancestor query of Lemma 2.1. The MSSP data structure represents the shortest
path trees rooted at the vertices S of the distinguished face f using a partially persistent [25] link-
cut tree [59]. The persistent representation allows us to access the desired version of the tree with
a constant-time overhead. LetTs denote the version of the shortest path tree rooted at s . The edges
of the link-cut treeTs are partitioned into solid and dashed edges. Each maximal path of solid edges
is called a solid path, which is represented by a binary search tree, where the left-right order in
the search tree corresponds to the top-bottom order in the solid path (the root is top).

To locate the LCA x of u and v , we list the solid paths that intersect the path from u to the root
ofTs , and those that intersect the path from v to the root ofTs . Let P be the #rst solid path in both
lists, and let u ′ and v ′ be the nearest ancestors of u and v that lie on P . The LCA x is the leftmost
of u ′ and v ′ in the search tree representing P . Once we have found x , we can retrieve the edge
ez outgoing from x and leading to the subtree containing z ∈ {u,v} (when x ! z) in additional
O (logn) time.

A.2 MSSP via Euler Tour Trees
Generally, if we maintain the SSSP tree as the source travels around f in a dynamic data structure
with update time tu and query time tq (for distance and LCA queries), the universal persistence
method for RAM data structures (see [21]) yields an MSSP data structure with spaceO (|H |tu) and
query time O (tq log log |H |). Thus, to establish Lemma 2.1, it su5ces to design a dynamic data
structure for the following:

InitTree(s",T): Initialize a directed spanning tree T from root s". Edges have real-valued
lengths.

Swap(v,p, l): Let p ′ be the parent of v ; p is not a descendant of v . Update T ← T \ {(p ′,v)} ∪
{(p,v)}, where (p,v) has length l .

Dist(v): Return distT (s",v).
LCA(u,v): Return the LCA y of u and v and the #rst edges eu , ev on the paths from y to u and

from y to v , respectively.
Here s" will be a #xed root vertex embedded in f with a single, weight-zero, out-edge to the

current root on f . Changes to the SSSP tree are e"ected with O (|H |) Swap operations. Klein [45]
used Sleator and Tarjan’s Link-cut trees [59], which support Swap, Dist, and LCA (among other
operations) inO (log |T |) time. We will use a souped-up version of Henzinger and King’s [38] Euler
Tour trees. Let ET(T) be a Euler tour of T starting and ending at s". The elements of ET(T) are
edges, and each edge ofT appears twice in ET(T), once in each direction. Each edge inT points to
its two occurrences in ET(T).

Suppose Tante is the tree before a Swap operation and Tpost the tree afterward. It is easy to see
that ET(Tpost) can be derived from ET(Tante) by O (1) splits and concatenations, and renaming the

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:46 P. Charalampopoulos et al.

Fig. 16. The e"ect of Swap(d, i, ·) on the Euler Tour. The interval ((b,d), (d, e), . . . , (e,d), (d,b)) is spliced
out and inserted between (h, i) and (i, j), and the elements (b,d), (d,b) are renamed (i,d), (d, i).

two elements corresponding to the swapped edge. See Figure 16. We will argue that the dynamic
tree operations Swap, Dist, LCA can be implemented using the following list operations:

InitList(L): Initialize a list L of weighted elements.
Split(e0): Element e0 appears in some list L. Split L immediately after element e0, resulting in

two lists.
Concatenate(L0,L1): Concatenate L0 and L1, resulting in one list.
Add(e0, e1,δ): Here e0, e1 are elements of the same list L. Add δ ∈ R to the weight of all ele-

ments in L between e0 and e1 inclusive.
Weight(e0): Return the weight of e0.
RangeMin(e0, e1): Return the minimum-weight element between e0 and e1 inclusive. If there

are multiple minima, return the "rst one.
To implement Dist and LCA we will actually use the list data structure with di"erent weight

functions. For Dist, the weight of an edge (x ,y) in ET(T) is distT (s",y). Thus, Dist is answered
with a call to Weight. Each Swap(v,p, l) is e"ected with O (1) Split and Concatenate opera-
tions, renaming the elements of the swapped edge, as well as one Add(e0, e1,δ) operation. Here
(e0, . . . , e1) is the sub-list corresponding to the subtree rooted at v , and δ = distTpost (s

",v) −
distTante (s",v) is the change in distance to v , and hence all descendants of v .

To handle LCA queries, we use the list data structure where the weight of (x ,y) is the depth
of y in T , i.e., the distance from s" to y under the unit length function. Once again, a Swap is
implemented with O (1) Split and Concatenate operations, and one Add operation. Consider an
LCA(u,v) query. Let e0 = (pu ,u), e1 = (pv ,v) be the edges into u and v from their respective
parents, and suppose that e0 appears before e1 in ET(T).14 A call to RangeMin(e0, e1) returns the
"rst edge ê = (x ,y) in the interval (e0, . . . , e1) minimizing the depth of y. It follows that y is the
LCA of u and v . Furthermore, by the tiebreaking rule, if ê ! e0 then ê = eu is the (reversal of the)
edge leading from y toward u. If ê = e0 then v is a descendant of u and eu does not exist. To #nd
ev , we retrieve the edge ẽ = (y,py) in ET(T) from y to its parent and let ẽ ′ be its predecessor in
ET(T). (Note that since s" has degree 1, ẽ, ẽ ′ always exist.) We call RangeMin(e1, ẽ ′). Once again,
by the tiebreaking rule, it returns the "rst edge ev = (x ′,y) incident to y in (e1, . . . , ẽ ′), which is
the (reversal of the) #rst edge on the path from y to v . See Figure 17.

14As we will see, it is easy to determine which comes #rst.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

Almost Optimal Exact Distance Oracles for Planar Graphs 12:47

Fig. 17. An illustration of an LCA(e, j) query. We do a RangeMin query on the interval e0 =

(d, e), . . . , (i, j) = e1 and retrieve the edge ê = ee = (b,a) with weight depthT (a). We then find ẽ = (a, s")
and its predecessor ẽ ′ = (h,a). Another RangeMin query on the interval (i, j), . . . , (h,a) returns ej = (h,a).

We have reduced our dynamic tree problem to a dynamic weighted list problem. We now explain
how the dynamic list problem can be solved with balanced trees.

Fix a parameter κ ≥ 1 and let n be the total number of elements in all lists. We now argue that
Split, Concatenate, and Add can be implemented inO (κn1/κ) time and Weight and RangeMin
take O (κ) time. We store the elements of each list L at the leaves of a rooted tree T (L). It satis#es
the following invariants:

I. Each node γ of T (L) stores a weight o"set w (γ), a min-weight value min(γ), and a pointer
ptr(γ). The weight of (leaf) e ∈ L is the sum of the w (·)-values of its ancestors, including e .
The sum of min(γ) and thew (·)-values of all strict ancestors of γ is exactly the weight of the
minimum weight descendant of γ , and ptr(γ) points to this element.

II. Non-root internal nodes have between n1/κ and 3n1/κ children. In particular, the tree has
height at most κ.

III. Each internal node γ maintains an O (1)-time range minimum structure [4] over the vector
of min(·)-values of its children.

It is easy to show that Split and Concatenate can be implemented to satisfy Invariant II
by destroying/rebuilding O (1) nodes at each level of T . Each costs O (n1/κ) time to update the
information covered by Invariants I and III. The total time is therefore O (κn1/κ). By Invariant
I, a Weight(e0) query takes O (κ) time to sum all of e0’s ancestors’ w (·)-values. Consider an
Add(e0, e1,δ) or RangeMin(e0, e1) operation. By Invariant II, the interval (e0, . . . , e1) is covered
byO (κn1/κ) T -nodes, and furthermore, those nodes can be arranged into less than 2κ contiguous
intervals of siblings. Thus, an Add(e0, e1) can be implemented in O (κn1/κ) time by adding δ to
the w (·)-values of these nodes and rebuilding the a"ected range-min structures from Invariant III.
A RangeMin is reduced to O (κ) range-minimum queries (from Invariant III) and adjusting the
answers by the w (·)-values of their ancestors (Invariant I). Each range-min query takes O (1) time
and there are O (κ) ancestors with relevant w (·)-values. Thus, RangeMin takes O (κ) time.

We have shown that the dynamic tree operations necessary for an MSSP structure can be imple-
mented with a $exible tradeo" between update time and query time. Moreover, this lower bound
meets the Pǎtraşcu-Demaine lower bound [57]. We leave it as an open problem to implement the
complete set of operations supported by Link-cut trees, with update timeO (κn1/κ) and query time
O (κ).

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

12:48 P. Charalampopoulos et al.

ACKNOWLEDGMENTS
We thank Danny Sleator and Bob Tarjan for discussing update/query time tradeo"s for dynamic
trees.

REFERENCES
[1] Ittai Abraham and Cyril Gavoille. 2011. On approximate distance labels and routing schemes with a5ne stretch.

In Proceedings of the 25th International Symposium on Distributed Computing (DISC’11) (Lecture Notes in Computer
Science), Vol. 6950. 404–415. https://doi.org/10.1007/978-3-642-24100-0_39

[2] Rachit Agarwal. 2014. The space-stretch-time tradeo" in distance oracles. In Proceedings of the 22nd European Sympo-
sium on Algorithms (ESA’14) (Lecture Notes in Computer Science), Vol. 8737. 49–60. https://doi.org/10.1007/978-3-662-
44777-2_5

[3] Srinivasa Rao Arikati, Danny Z. Chen, L. Paul Chew, Gautam Das, Michiel H. M. Smid, and Christos D. Zaroliagis.
1996. Planar spanners and approximate shortest path queries among obstacles in the plane. In Proceedings of the 4th
Annual European Symposium on Algorithms (ESA’96) (Lecture Notes in Computer Science), Vol. 1136. 514–528. https://
doi.org/10.1007/3-540-61680-2_79

[4] Michael A. Bender and Martin Farach-Colton. 2000. The LCA problem revisited. In Proceedings of the 4th Latin Amer-
ican Symposium on Theoretical Informatics (LATIN’00) (Lecture Notes in Computer Science), Vol. 1776. Springer, 88–94.
https://doi.org/10.1007/10719839_9

[5] Michael A. Bender and Martin Farach-Colton. 2004. The level ancestor problem simpli#ed. Theor. Comput. Sci. 321,
1 (2004), 5–12. https://doi.org/10.1016/j.tcs.2003.05.002

[6] Glencora Borradaile, Piotr Sankowski, and Christian Wul"-Nilsen. 2015. Min st -cut oracle for planar graphs with
near-linear preprocessing time. ACM Transactions on Algorithms 11, 3 (2015), 1–29.

[7] Gerth Stølting Brodal, Pooya Davoodi, and S Srinivasa Rao. 2011. Path minima queries in dynamic weighted trees. In
Proceedings of the 12th Int’l Symposium on Algorithms and Data Structures (WADS’11). 290–301.

[8] Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. 2001. The complexity of construct-
ing evolutionary trees using experiments. In Automata, Languages and Programming, 28th International Colloquium
(ICALP’01). 140–151. https://doi.org/10.1007/3-540-48224-5_12

[9] Sergio Cabello. 2012. Many distances in planar graphs. Algorithmica 62, 1–2 (2012), 361–381. https://doi.org/10.1007/
s00453-010-9459-0

[10] Sergio Cabello. 2019. Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs.
ACM Trans. Algorithms 15, 2 (2019), 21:1–21:38. https://doi.org/10.1145/3218821

[11] Sergio Cabello, Erin W. Chambers, and Je" Erickson. 2013. Multiple-source shortest paths in embedded graphs. SIAM
J. Comput. 42, 4 (2013), 1542–1571.

[12] Erin W. Chambers, Je" Erickson, and Amir Nayyeri. 2012. Homology $ows, cohomology cuts. SIAM J. Comput. 41,
6 (2012), 1605–1634.

[13] Timothy M. Chan and Dimitrios Skrepetos. 2019. Faster approximate diameter and distance oracles in planar graphs.
Algorithmica 81, 8 (2019), 3075–3098. https://doi.org/10.1007/s00453-019-00570-z

[14] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. 2019. Almost optimal dis-
tance oracles for planar graphs. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC’19).
138–151.

[15] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. 2021. An almost optimal edit
distance oracle. In Proceedings of the 48th Int’l Colloq. on Algorithms, Languages, and Programming (ICALP’21).

[16] Panagiotis Charalampopoulos and Adam Karczmarz. 2022. Single-source shortest paths and strong connectivity in
dynamic planar graphs. J. Comput. Syst. Sci. 124 (2022), 97–111. https://doi.org/10.1016/j.jcss.2021.09.008

[17] Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. 2022. Exact distance oracles for planar graphs with
failing vertices. ACM Trans. Algorithms 18, 2 (2022), 18:1–18:23. https://doi.org/10.1145/3511541

[18] Shiri Chechik. 2015. Approximate distance oracles with improved bounds. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing (STOC’15). 1–10. https://doi.org/10.1145/2746539.2746562

[19] Danny Z. Chen and Jinhui Xu. 2000. Shortest path queries in planar graphs. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC’00). 469–478. https://doi.org/10.1145/335305.335359

[20] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wul"-Nilsen. 2017. Fast and compact exact distance oracle for
planar graphs. In Proceedings 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS’17). 962–973.
https://doi.org/10.1109/FOCS.2017.93

[21] Paul F. Dietz. 1989. Fully persistent arrays. In Proceedings of the 1st Workshop on Algorithms and Data Structures
(WADS’89) (Lecture Notes in Computer Science), Vol. 382. 67–74. https://doi.org/10.1007/3-540-51542-9_8

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

https://doi.org/10.1007/978-3-642-24100-0_39
https://doi.org/10.1007/978-3-662-44777-2_5
https://doi.org/10.1007/3-540-61680-2_79
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1007/3-540-48224-5_12
https://doi.org/10.1007/s00453-010-9459-0
https://doi.org/10.1145/3218821
https://doi.org/10.1007/s00453-019-00570-z
https://doi.org/10.1016/j.jcss.2021.09.008
https://doi.org/10.1145/3511541
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1145/335305.335359
https://doi.org/10.1109/FOCS.2017.93
https://doi.org/10.1007/3-540-51542-9_8

Almost Optimal Exact Distance Oracles for Planar Graphs 12:49

[22] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert, and Robert
Endre Tarjan. 1994. Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput. 23, 4 (1994), 738–761. https://
doi.org/10.1137/S0097539791194094

[23] Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 1 (1959),
269–271.

[24] Hristo Djidjev. 1996. E5cient algorithms for shortest path queries in planar digraphs. In Proceedings of the 22nd
International Workshop on Graph-theoretic Concepts in Computer Science (WG’96) (Lecture Notes in Computer Science),
Vol. 1197. 151–165. https://doi.org/10.1007/3-540-62559-3_14

[25] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. 1989. Making data structures persis-
tent. J. Comput. Syst. Sci. 38, 1 (1989), 86–124. https://doi.org/10.1016/0022-0000(89)90034-2

[26] Je" Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. 2018. Holiest minimum-cost paths and $ows in surface
graphs. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC’18). 1319–1332. https://
doi.org/10.1145/3188745.3188904

[27] Je" Erickson and Sariel Har-Peled. 2004. Optimally cutting a surface into a disk. Discret. Comput. Geom. 31, 1 (2004),
37–59. https://doi.org/10.1007/s00454-003-2948-z

[28] Jittat Fakcharoenphol and Satish Rao. 2006. Planar graphs, negative weight edges, shortest paths, and near linear time.
J. Comput. Syst. Sci. 72, 5 (2006), 868–889. https://doi.org/10.1016/j.jcss.2005.05.007

[29] Greg N. Frederickson. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput.
16, 6 (1987), 1004–1022. https://doi.org/10.1137/0216064

[30] Viktor Fredslund-Hansen, Shay Mozes, and Christian Wul"-Nilsen. 2020. Truly subquadratic exact distance oracles
with constant query time for planar graphs. CoRR abs/2009.14716. (2020). arXiv:2009.14716 https://arxiv.org/abs/2009.
14716.

[31] Paweł Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. 2018. Voronoi diagrams on planar
graphs, and computing the diameter in deterministic Õ (n5/3) time. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’18). 495–514. https://doi.org/10.1137/1.9781611975031.33

[32] Paweł Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wul"-Nilsen. 2018. Better tradeo"s for exact
distance oracles in planar graphs. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’18). 515–529. https://doi.org/10.1137/1.9781611975031.34

[33] Davide Della Giustina, Nicola Prezza, and Rossano Venturini. 2019. A new linear-time algorithm for centroid de-
composition. In String Processing and Information Retrieval - 26th International Symposium (SPIRE’19). 274–282.
https://doi.org/10.1007/978-3-030-32686-9_20

[34] Qian-Ping Gu and Gengchun Xu. 2019. Constant query time (1 + ϵ)-approximate distance oracle for planar graphs.
Theor. Comput. Sci. 761 (2019), 78–88. https://doi.org/10.1016/j.tcs.2018.08.024

[35] Torben Hagerup. 2020. Still simpler static level ancestors. CoRR abs/2005.11188. (2020). arXiv:2005.11188 https://arxiv.
org/abs/2005.11188.

[36] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. 2001. Deterministic dictionaries. J. Algorithms 41, 1 (2001),
69–85. https://doi.org/10.1006/jagm.2001.1171

[37] Dov Harel and Robert Endre Tarjan. 1984. Fast algorithms for #nding nearest common ancestors. SIAM J. Comput. 13,
2 (1984), 338–355. https://doi.org/10.1137/0213024

[38] Monika Rauch Henzinger and Valerie King. 1999. Randomized fully dynamic graph algorithms with polylogarithmic
time per operation. J. ACM 46, 4 (1999), 502–516. https://doi.org/10.1145/320211.320215

[39] Donald B. Johnson. 1977. E5cient algorithms for shortest paths in sparse networks. J. ACM 24, 1 (1977), 1–13. https://
doi.org/10.1145/321992.321993

[40] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. 2017. Submatrix maximum queries in Monge matrices
and partial Monge matrices, and their applications. ACM Trans. Algorithms 13, 2 (2017), 26:1–26:42.

[41] Adam Karczmarz and Piotr Sankowski. 2021. A deterministic parallel APSP algorithm and its applications. In Pro-
ceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA’21). 255–272. https://doi.org/10.1137/1.
9781611976465.17

[42] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. 2011. Linear-space approximate distance oracles for
planar, bounded-genus and minor-free graphs. In Proceedings of the 38th Int’l Colloquium on Automata, Languages and
Programming (ICALP’11) (Lecture Notes in Computer Science), Vol. 6755. 135–146. https://doi.org/10.1007/978-3-642-
22006-7_12

[43] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. 2013. More compact oracles for approximate dis-
tances in undirected planar graphs. In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA’13).
550–563. https://doi.org/10.1137/1.9781611973105.40

[44] Philip N. Klein. 2002. Preprocessing an undirected planar network to enable fast approximate distance queries. In
Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA’02). 820–827.

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1007/3-540-62559-3_14
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1007/s00454-003-2948-z
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/0216064
http://arxiv.org/abs/2009.14716
https://arxiv.org/abs/2009.14716
https://doi.org/10.1137/1.9781611975031.33
https://doi.org/10.1137/1.9781611975031.34
https://doi.org/10.1007/978-3-030-32686-9_20
https://doi.org/10.1016/j.tcs.2018.08.024
http://arxiv.org/abs/2005.11188
https://arxiv.org/abs/2005.11188
https://doi.org/10.1006/jagm.2001.1171
https://doi.org/10.1137/0213024
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/321992.321993
https://doi.org/10.1137/1.9781611976465.17
https://doi.org/10.1007/978-3-642-22006-7_12
https://doi.org/10.1137/1.9781611973105.40

12:50 P. Charalampopoulos et al.

[45] Philip N. Klein. 2005. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th ACM-SIAM Symposium
on Discrete Algorithms (SODA’05). 146–155. http://dl.acm.org/citation.cfm?id=1070432.1070454.

[46] Philip N. Klein, Shay Mozes, and Christian Sommer. 2013. Structured recursive separator decompositions for planar
graphs in linear time. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC’13). 505–514.
https://doi.org/10.1145/2488608.2488672

[47] Jakub Lacki and Piotr Sankowski. 2011. Min-cuts and shortest cycles in planar graphs in O (n log log n) time. In Pro-
ceedings of the 19th Annual European Symposium on Algorithms (ESA’11). 155–166.

[48] Hung Le and Christian Wul"-Nilsen. 2021. Optimal approximate distance oracle for planar graphs. In Proceedings
of the 62nd Annual IEEE Symposium on Foundations of Computer Science (FOCS’21). 363–374. https://doi.org/10.1109/
FOCS52979.2021.00044

[49] Richard J. Lipton and Robert Endre Tarjan. 1980. Applications of a planar separator theorem. SIAM J. Comput. 9,
3 (1980), 615–627. https://doi.org/10.1137/0209046

[50] Yaowei Long and Seth Pettie. 2021. Planar distance oracles with better time-space tradeo"s. In Proceedings of the 32nd
ACM-SIAM Symposium on Discrete Algorithms (SODA’21). 2517–2536.

[51] Dániel Marx and Michal Pilipczuk. 2022. Optimal parameterized algorithms for planar facility location problems using
Voronoi diagrams. ACM Trans. Algorithms 18, 2 (2022), 13:1–13:64. https://doi.org/10.1145/3483425

[52] Gary L. Miller. 1986. Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32,
3 (1986), 265–279. https://doi.org/10.1016/0022-0000(86)90030-9

[53] Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. 2018. Minimum cut of directed planar graphs in
O (n log log n) time. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA’18). 477–494.

[54] Shay Mozes and Christian Sommer. 2012. Exact distance oracles for planar graphs. In Proceedings of the 23rd ACM-
SIAM Symposium on Discrete Algorithms (SODA’12). 209–222.

[55] Shay Mozes and Christian Wul"-Nilsen. 2010. Shortest paths in planar graphs with real lengths in O (n log2 n/
log log n) time. In Proceedings of the 18th Annual European Symposium on Algorithms (ESA’10). 206–217.

[56] Yahav Nussbaum. 2011. Improved distance queries in planar graphs. In Proceedings 12th Int’l Workshop on Algorithms
and Data Structures (WADS’11). 642–653.

[57] Mihai Pǎtraşcu and Erik D. Demaine. 2006. Logarithmic lower bounds in the cell-probe model. SIAM J. Comput. 35,
4 (2006), 932–963. https://doi.org/10.1137/S0097539705447256

[58] Mihai Pǎtraşcu and Liam Roditty. 2014. Distance oracles beyond the Thorup-Zwick bound. SIAM J. Comput. 43,
1 (2014), 300–311. https://doi.org/10.1137/11084128X

[59] Daniel Dominic Sleator and Robert Endre Tarjan. 1983. A data structure for dynamic trees. J. Comput. Syst. Sci. 26,
3 (1983), 362–391. https://doi.org/10.1016/0022-0000(83)90006-5

[60] Christian Sommer. 2014. Shortest-path queries in static networks. Comput. Surveys 46, 4 (2014), 1–31.
[61] Christian Sommer, Elad Verbin, and Wei Yu. 2009. Distance oracles for sparse graphs. In Proceedings of the 50th IEEE

Symposium on Foundations of Computer Science (FOCS’09). 703–712. https://doi.org/10.1109/FOCS.2009.27
[62] E. Sperner. 1928. Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Semin. Hamburg.

Univ. Bd. 6 (1928), 265–272.
[63] Mikkel Thorup. 2004. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51,

6 (2004), 993–1024. https://doi.org/10.1145/1039488.1039493
[64] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. J. ACM 52, 1 (2005), 1–24.
[65] P. van Emde Boas, R. Kaas, and E. Zijlstra. 1977. Design and implementation of an e5cient priority queue. Math. Syst.

Theory 10 (1977), 99–127.
[66] D. E. Willard. 1983. Log-logarithmic worst-case range queries are possible in space Θ(N). Information Processing

Letters 17, 2 (1983), 81–84.
[67] Christian Wul"-Nilsen. 2010. Algorithms for Planar Graphs and Graphs in Metric Spaces. Ph.D. Dissertation. University

of Copenhagen.
[68] Christian Wul"-Nilsen. 2016. Approximate distance oracles for planar graphs with improved query time-space trade-

o". In Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 351–362.

Received 24 May 2021; revised 11 July 2022; accepted 4 January 2023

Journal of the ACM, Vol. 70, No. 2, Article 12. Publication date: March 2023.

http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1109/FOCS52979.2021.00044
https://doi.org/10.1137/0209046
https://doi.org/10.1145/3483425
https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.1137/11084128X
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1109/FOCS.2009.27
https://doi.org/10.1145/1039488.1039493

