1/ 56

2023:6 TheoretiCS
Fully Dynamic Connectivity s

in 0(log n(loglog n)?) i
Amortized Expected Time =& ™

Shang-En Huanga X @® a Cc'>mpu.ter Scignce 'and
Engineering, University of

Dawei Huang® = ® Michigan

b Department of Computer

Tsvi KOpE'OWith = ® Science, Bar-llan University
Seth Pettie? < © ¢ Department of Computer

. Science, University of
Mikkel Thorup €= ® Copenhagen

ABSTRACT. Dynamic connectivity is one of the most fundamental problems in dynamic
graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure
with O(log n(loglog n)?) amortized expected update time and O(log n/logloglog n) worst case
query time, which comes very close to the cell probe lower bounds of Patrascu and Demaine
(2006) and Patragcu and Thorup (2011).

1. Introduction

The dynamic connectivity problem is one of the most fundamental problems in dynamic graph
algorithms. The goal is to support the following three operations on an undirected graph
G = (V,E) with n = |V| vertices and m = |E| edges, where E is initially empty.

— Insert(u,v): Set E «— E U {{u,v}}.

— Delete(u,v): Set E «— E — {{u, v}}.

— Conn?(u,v): Return true if and only if u and v are in the same connected component in G.

Dynamic connectivity has been studied in numerous models, under both worst case
and amortized notions of time, with deterministic, randomized Las Vegas, and randomized

Monte Carlo guarantees, and with both public and private witnesses of connectivity. Las Vegas

This paper is the successor of two extended abstracts published in STOC 2000 (Thorup [20]) and SODA 2017 (Huang, Huang,
Kopelowitz, and Pettie [13]). Supported by NSF grants CCF-1217338, CNS-1318294, CCF-1514383, CCF-1637546, and
CCF-1815316. Mikkel Thorup’s research is supported by his Investigator Grant 16582, Basic Algorithms Research Copenhagen
(BARC), from the VILLUM Foundation.

Cite as Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, Mikkel https://theoretics.episciences.org
Thorup. Fully Dynamic Connectivity in O(log n(loglog n)?) Amortized Expected Time. DOI
TheoretiCS, Volume 2 (2023), Article 6, 1-56.

mailto:sehuang@umich.edu
mailto:dwhuang9@gmail.com
mailto:kopelot@gmail.com
mailto:seth@pettie.net
mailto:mikkel2thorup@gmail.com

2 /56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

algorithms always answer Conn? queries correctly but their running time is a random variable.
In contrast, the running time of a Monte Carlo algorithm is guaranteed deterministically, but it
only answers Conn? queries correctly with high probability. All known dynamic connectivity
algorithms maintain a spanning forest F of G as a sparse certificate of connectivity. If F is public
then the sequence of Insert and Delete operations may depend on F, and may therefore depend
on random bits generated earlier by the data structure. When F is private the Insert/Delete
sequence is selected obliviously.

In this paper we prove near-optimal bounds on the amortized complexity of dynamic
connectivity in the Las Vegas randomzed model, with a public connectivity witness.

THEOREM 1.1. There exists a Las Vegas randomized dynamic connectivity data structure that
supports insertions and deletions of edges in amortized expected O(log n(loglog n)?) time, and
answers connectivity queries in worst case O(log n/logloglog n) time. The time bounds hold even
if the adversary is aware of the internal state of the data structure. In particular, the data structure
maintains a public spanning forest as a connectivity witness.

11 A Brief History of Dynamic Connectivity Data Structures

Worst Case Time. Frederickson [8] developed a dynamic connectivity structure in the strictest
model—deterministic worst case time—with O(4/m) update time and O(1) query time. Eppstein,
Galil, Italiano, and Nissenzweig [6] showed that the update times for many dynamic graph
algorithms could be made to depend on n rather than m, provided they maintain an O(n)-
edge witness of the property being maintained, e.g., a spanning forest in the case of dynamic
connectivity. Together with [8], Eppstein et al.’s reduction implied an O(+/n) update time for
dynamic connectivity, a bound which stood for many years. Kejlberg, Kopelowitz, Pettie, and
Thorup [15] simplified Frederickson’s data structure, and improved the update time of [8, 6] to

0] (‘/%;sroz)' Recently Chuzhoy, Gao, Li, Nanongkai, Peng, and Saranurak [5] improved the

worst case update time to n°,

Kapron, King, and Mountjoy [14] gave a Monte Carlo randomized structure with update
time O(clog’ n) and one-sided error? probability n~¢. Their data structure maintains a private
connectivity witness, 1.e., it keeps a spanning tree, but the adversary controlling Insert and
Delete operations does not have access to the spanning tree. The update time was later im-
proved to O(clog* n) independently by Gibb et al. [9] and Wang [21], and Wang further reduced
the time for Insert to O(clog3 n). Nanongkai, Saranurak, and Wulff-Nilsen [17] discovered a
Las Vegas randomized structure with n°" update time that maintains a public connectivity
witness. This data structure was recently derandomized [5], leading to a deterministic n®®
dynamic connectivity algorithm maintaining a public witness.

1 An error occurs from reporting that two vertices are disconnected when they are actually connected.

3 /56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

Amortized Time. By allowing amortization in the running time, dynamic connectivity can
be solved even faster. Henzinger and King [10] proved that with Las Vegas randomization,
dynamic connectivity could be solved with amortized expected O(log> n) update time. This
was subsequently improved to amortized expected O(log® n) update time by Henzinger and
Thorup [11] using a more sophisticated sampling routine. Holm, de Lichtenberg, and Thorup [12]
discovered a deterministic data structure with amortized O(log” n) update time. Thorup [20]
later improved the space of [12] from O(m + nlogn) to optimal O(m), and Wulff-Nilsen [22]
further improved [12, 20] to have amortized O(log? n/loglog n) update time using O(m) space.

AtSTOC 2000, Thorup [20] presented a Las Vegas randomized data structure with amortized
expected O(log n(loglog n)®) update time and worst case O(log n/logloglogn) query time. At
SODA 2017, Huang, Huang, Kopelowitz, and Pettie [13] improved the update time of [20] to
O(log n(loglog n)?), and substantiated several claims that were only sketched in [20]. The
data structures presented in [20, 13] are especially notable in light of the lower bounds of
Patrascu and Demaine [1] and Patrascu and Thorup [2]. The first shows that any (amortized
or randomized) dynamic connectivity structure with O(t(n)logn) update time, t(n) = Q(1),
requires Q(logn/logt(n)) query time. In particular, the maximum of update and query time is
Q(log n). The second shows that any dynamic connectivity structure with o(log n) update time
requires n!~°) query time. Thus, any data structure with O(log n(loglog n)?) update time must
have Q(log n/logloglog n) query time, and for any reasonable query time, we cannot improve
our update time by more than a (loglog n)? factor. On certain restricted classes of inputs, e.g.,
trees [19] and planar graphs [7], both updates and queries can be supported in O(log n) worst
case time.

Contribution. This paper should be considered the successor and full version of both the STOC
2000 and the SODA 2017 extended abstracts [20, 13], improving the complexity of dynamic
connectivity from amortized O(log? n/loglog n) update time [22] to the near-optimal amortized
expected O(log n(loglog n)?) update time.

Organization of the Paper. In Section 2 we review several fundamental concepts of dynamic
connectivity algorithms. Section 3 gives a detailed overview of the algorithm, and lists the
primitive operations from the data structure that implements the algorithm. In Section 4 we
describe the main modules of the data structure. The main modules include: maintaining a
binary hierarchical representation of the graph, maintaining shortcuts for efficient navigation
around the hierarchy, and maintaining a system of approximate counters to support nearly-
uniform random sampling. Each of these modules is explained in detail in Sections 5-9. Finally,
we piece up all the modules from the data structures and describe how primitive operations
listed in Section 3 (Lemma 3.1) are implemented and analyzed in Section 10. We make some

concluding remarks in Section 11.

4 /56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

2. Preliminaries

In this section we review some basic concepts and invariants used in prior dynamic connectivity
algorithms [10, 12, 20, 22].

Witness Edges, Witnhess Forests, and Replacement Edges. A common method for sup-
porting connectivity queries is to maintain a spanning forest ¥ of G called the witness forest,
together with a dynamic connectivity data structure on ¥ (see Theorem 2.1 below). Each edge
in the witness forest is called a witness edge, and all other edges are called non-witness edges.
Deleting a non-witness edge does not change the connectivity.

Update Time and Query Time. When describing the dynamic connectivity data structure
we only focus on the (amortized) running time of the update operations. Once this time bound
is fixed, Theorem 2.1 provides a fast query time, which, according to Patrascu and Demaine [1],
cannot be unilaterally improved.

THEOREM 2.1 (Henzinger and King [10]). For any function t(n) = Q(1), there exists a dynamic
connectivity data structure for forests with O(t(n) log n) update time and O(log n/logt(n)) query
time.

PROOF SKETCH. Maintain an Euler tour of each tree in the witness forest and a balanced
t(n)-ary rooted tree over the Euler tour elements. The height of each rooted tree is O(log;,, n).
A witness edge insertion/deletion imposes O(1) changes to the Euler tour, which necessitates
O(t(n) log,, n) time to update the rooted trees. A query Conn?(u, v) finds the representative
copies of u and v in the Euler tours, walks up to their respective roots, and checks if they are
equal. u

The difficulty in maintaining a dynamic connectivity data structure is to find a replacement
edge e’ when a witness edge e € ¥ is deleted, or determine that no replacement edge exists. To
speed up the search for replacement edges we maintain Invariant 2.2 (below) governing edge
depths.

Edge Depths. Each edge e has a depth d. € [1, dmax], Where dpmax = |logn]. Let E; be the
set of edges with depth i. All edges are inserted at depth 1 and depths are non-decreasing
over time. Incrementing the depth of an edge is called a promotion. Since we are aiming for
O(log n(loglog n)?) amortized time per update, if the actual time to promote an edge set S is
0(|S] - (loglogn)?), the amortized time per promotion is zero. Promotions are performed in

order to maintain Invariant 2.2.

INVARIANT 2.2 (The Depth Invariant). Define G; = (V,;5; Ej).

5 /56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

(1) (Spanning Forest Property) ¥ is a maximum spanning forest of G with respect to the depths.
(2) (Weight Property) For each i € [1, dmax], each connected component in the subgraph G;
contains at most n/2:"1 vertices.

Hierarchy of Connected Components. Define V; to be in one-to-one correspondence with
the connected components of G;.1, which are called (i + 1)-components. If u € V, let u' € V; be
the unique (i + 1)-component containing u. Define G; = (V;, E;) to be the multigraph (including
parallel edges and loops) obtained by contracting edges with depth larger than i and discarding
edges with depth less than i, so E; = {{u}, v'} | {u,v} € E;}. The hierarchy is composed of the
undirected multi-graphs G4, ,Gqa, . -1, --,Go. An edge e = {u, v} € E; is said to be touching all
nodes x’ € V; where either w = x/ or v/ = x/.

Let F; = E;NF be the set of i-witness edges; all other edges in E; — F; are i-non-witness edges.
It follows from Invariant 2.2 that F; corresponds to a spanning forest of G;, if one maps the
endpoints of F;-edges to the contracted vertices of G;. The weight w(u') of a node u' € V; is the
number of vertices in its component: w(u!) = |{v € V | v! = u'}|. The data structure explicitly
maintains the exact weight of all hierarchy nodes. The weight property in Invariant 2.2 can be
restated as w(u'"!) < n/2"! since u'~! corresponds to the connected component containing u
in G;.

Endpoints. The endpoints of an edge e = {u, v} are the pairs (u, e) and (v, e). At some stage in
our algorithm we sample a random endpoint from a set S of endpoints incident to some V' c V.
An edge {u, v} with u, v € V’ could contribute zero, one, or two endpoints to S, i.e., the endpoints
of an edge are often treated independently. An endpoint (u, e) is said to be touching the nodes
u' e Vi foralli € [1, dmax]-

2.1 Computational Model and Lookup Tables

We assume a standard O(log n)-bit word RAM with the usual repertoire of AC® instructions.
The data structure uses some non-standard operations on packed sequences of O(loglog n)-bit
floating point numbers, which we can simulate by building small lookup tables with size O(n®),
for some € € (0, 1). Since the initial graph is empty, the O(n®) sized lookup tables can be built
on-the-fly, with their cost amortized through the operations.?

2 As long as the number of graph updates is m < n, all edge depths are at most |logm]. Hence, for each 0 < r < loglogn,
after the m = 2%’ -th graph update, the data structure rebuilds the lookup tables of size 0(m¢). The time cost for

building the lookup tables during the first m operations is bounded by Zii%glogmW m#€ = 0(m¢), which is amortized o(1)
per update.

6 /56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

2.2 Miscellaneous

Almost Uniform Sampling. We say that an algorithm samples from a set X (1+0(1))-uniformly
at random, if, for any element x € X, the probability of x being returned is (1 + o(1))/|X|. In
our algorithm, the o(1) term is roughly 1/log n, and |X| is at most polynomial in n.)

Mergeable Balanced Binary Trees. Some parts of our data structure (see Section 7) use off-
the-shelf mergeable balanced binary trees. They should support leaf-insertion and leaf-deletion
on T in O(log |T|) time, and the merger of two trees Ty, T> in O(log |T;| +1o0g |T>|) time. The merge
operation may create and delete internal nodes as necessary to ensure balance. These trees do
not store elements from a totally ordered set, and do not need to support a search function.

3. Overview of the Algorithm

Asin [12, 22], our goal is to restore Invariant 2.2 after each update operation.
In the rest of this section, we provide an overview of the algorithm. The underlined parts

of the text refer to primitive data structure operations supported by Lemma 3.1, presented in
Section 3.3.

The Data Structure. The hierarchy H naturally defines a rooted forest (not to be confused
with the maximum spanning forest), which is called the hierarchy forest, and contains several
hierarchy trees. We abuse notation and say that H refers to this hierarchy forest, together with
several auxiliary data structures supporting operations on the hierarchy forest. The nodes in
H are the i-components for all i € [1, dmax]. The roots of the hierarchy trees are nodes in Vj,
representing 1-components. The set of nodes at depth i in # is exactly V;. The set of children
of anode v' € V; is {u'*! € Vi;1 | u! = v'}. The leaves are nodes in V; = V. See Figure 1 for an

example. The nodes in H are called H-nodes, and the roots are called H-roots.

3.1 Insertion

To execute an Insert(u, v) operation, where e = {u, v}, the data structure first sets d, = 1. If e
connects two distinct components in G (which is verified by a connectivity query on), then
the data structure accesses two H-roots u® and v°, merges u® and v° and e is inserted into H

(and ¥) as a 1-witness edge. Otherwise, e is inserted into / as a 1-non-witness edge.

3.2 Deletion

To execute a Delete(u, v) operation, where e = {u, v}, the data structure first removes e from

‘H. Leti = d.. If e is an i-non-witness edge, then the deletion process is done. If e is an i-witness
edge, the deletion of e could split an i-component. In this case, the deletion algorithm first

7 | 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

SO O 0O O 00V VO W

Figure 1. An illustration of a graph and the corresponding hierarchy forest H, where n = 15 and dpqe = 3.
All thick edges are witness edges and the thin edges are non-witness edges. Components in V; have
size at most | 2] = 7; those in > have size at most | 2] = 3.

focuses on finding a replacement edge that has depth i = d,. In Section 3.2.3 we extend our
algorithm to find a replacement edge of any depth, while preserving the Maximum Spanning
Forest Property of Invariant 2.2.

Prior to the deletion, the edge {u', v'} connected two (i + 1)-components, u’ and v!, which,
possibly together with some additional i-witness edges and (i + 1)-components, formed a single
i-component u'~! = vi~1in G;. If no i-non-witness replacement edge exists, then deleting {u, v}
splits u'~! into two i-components. In order to establish if this is the case, the data structure

first accesses u!, v' and u'~! in H and implicitly splits the i-component u'~! into two connected

components ¢, and ¢, in F; = (V;, {{u}, v} | {u, v} € F;}) whereu! € c,and V' € c,; see Figure 2(a).
The rest of the deletion process focuses on finding a replacement edge to reconnect ¢, and c,
into one i-component. This process has two parts, explained in detail below: (1) establishing
the two components ¢, and c¢,, and (2) finding a replacement edge. Notice that ¢, and ¢, do not
necessarily correspond to #{-nodes.

3.2.1 Establishing Two Components

To establish the two components ¢, and ¢, created by the deletion of e, the data structure
executes in parallel two graph searches on F; — {{u', v}} starting from u' and v'. To implement a
search, we mark u' unexplored and insert it into a queue. We repeatedly remove any unexplored

(i + 1)-component x from the queue, mark it explored, and enumerate all i-witness edges with

one endpoint in x. All new (i + 1)-components touching these edges are marked unexplored

and inserted into the queue. The two searches are carried out in parallel until one of the
connected components is fully scanned. By fully scanning one component, the weights of both
components are determined, since w(u'™') = w(cy) + w(c,). Without loss of generality, assume
that w(c,) < w(cy), and so by Invariant 2.2, w(c,) < w(u"1)/2 < n/2..

8 /56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Witnhess Edge Promotions. The data structure promotes all i-witness edges touching nodes

in ¢, and merges all (i + 1)-components contained in ¢, into one (i + 1)-component with weight

w(cy). This is permitted by Invariant 2.2, since w(c,) < n/2!. The merged (i + 1)-component
has the node u'~! as its parent in . See Figure 2.b.

Figure 2. lllustration of the hierarchy of components at depth i — 1 and i: (a) After identifying two
components ¢, and c,, it turns out that ¢, has smaller weight although it has more (i + 1)-components.
(b) After merging all (i + 1)-components in the smaller weight component. (c) If no replacement edge is
found, then ¢, and ¢, are two actual connected components in G; and hence v'~' is split.

To differentiate between versions of components before and after the merges, we use bold
fonts to refer to components after the merges take place. Thus, the (i+1)-component contracted
from all (i + 1)-components inside c, is denoted u'. Similarly, the graph G; after merging some
of its nodes is denoted by G;.

Having contracted the (i + 1)-components inside c, into u!, we now turn our attention to

identifying whether the deletion of e disconnects u! from ¢, in G;.

3.2.2 Finding a Replacement Edge

Notice that by definition of Gj and u'~?, a depth-i edge is a replacement edge in E if and only
if it is an i-non-witness edge with exactly one endpoint x € V such that x' = ul. To find a
replacement edge, the data structure executes one or both of two auxiliary procedures: the
sampling procedure and the enumeration procedure.

Intuition. Consider the following two situations. In Situation A at least a constant fraction of the
i-non-witness edges touching u! have exactly one endpoint touching u!, and are therefore eligible
replacement edges. In Situation B a small € fraction (maybe zero) of these edges have exactly
one endpoint in ul. If the algorithm magically knew which situation the algorithm is in and
could sample i-non-witness endpoints uniformly at random then the problem is straightforward
to solve: In Situation A the algorithm iteratively samples an i-non-witness endpoint and tests
whether the other endpoint is in u'. As we will see, each test costs O(log n(loglog n)) time. The

9 /56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

expected number of samples used to find a replacement edge in this situation is O(1) and so
the time cost is charged (in an amortized sense) to the deletion operation. In Situation B the
algorithm enumerates and marks every i-non-witness endpoint touching u'. Any edge with one
mark is a replacement edge and any with two marks may be promoted to depth i + 1 without
violating Invariant 2.2. Since a constant fraction of the edges will end up being promoted, the
amortized cost of the enumeration procedure is zero, so long as the enumeration and promotion
cost is O((loglog n)?) per endpoint.

There are two technical difficulties with implementing this idea. First, the set of i-non-
witness edges incident to u! is a dynamically changing set, and supporting fast (almost-)uniformly
random sampling on this set is a very tricky problem. Second, the algorithm does not know in
advance whether the current situation is Situation A or Situation B. Notice that it is insufficient
to draw O(1) random samples and, if no replacement edge is found, to deduce that the algo-
rithm is in Situation B. Since the cost of enumeration is so high, the algorithm cannot afford to
mistakenly think that it is in Situation B.

Primary and Secondary Endpoints. The difficulty with supporting random sampling is
dynamic updates: when i-non-witness edges are inserted and deleted from the pool due to
promotions, the algorithm responds to each such insertion/deletion with updating Q(log n)
parts of the data structure that enables fast random sampling. Thus, the cost of updating each
part needs to be relatively low in order to obtain the desired time bounds.

Our solution is to maintain two endpoint types for i-non-witness edges: primary and
secondary. A newly promoted i-non-witness edge has two i-secondary endpoints and when
an i-secondary endpoint (u, e) is enumerated (see the enumeration procedure below), the
data structure upgrades (u, e) to an i-primary endpoint. The motivation for using two types of
endpoints is that the algorithm never samples from the set of i-secondary endpoints, which are
only subject to individual insertions, but only the set of i-primary endpoints, which are subject
to bulk inserts/deletes. The bulk updates to i-primary endpoints are sufficiently large (in an
amortized sense) to pay for the changes made to the part of the data structure that supports
random sampling.

Notice that each edge undergoes up to d;ax promotions and up to 2dqx endpoint upgrades.
Since our goal is to obtain an O(log n(loglog n)?) amortized insertion cost, we are able to charge

each promotion or upgrade O((loglogn)?) units of time.

The Sampling Procedure. This is the only procedure in our algorithm that uses randomness.
The sampling procedure can be viewed as a two-stage version of Henzinger and Thorup [11],
with some complications due to primary and secondary types. We give a simple sampling
procedure that either provides a replacement edge or states that, with high enough probability,
the fraction of i-primary endpoints touching u' that belong to replacement edges is small.

10 / 56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Let p be the number of i-primary endpoints touching u'. The data structure first estimates
p up to a constant factor and then invokes the batch sampling test, which (1 + o(1))-uniformly

samples O(loglog p) i-primary endpoints touching ul. If an endpoint of a replacement edge
is sampled, then the sampling procedure is terminated, returning one of the replacement
edges. Otherwise, the data structure invokes the second batch sampling test, which (1 + o(1))-

uniformly samples O(log p) i-primary endpoints touching ul. The purpose of this step is not to
find a replacement edge, but to increase our confidence that there are actually few replacement
edges. (Since otherwise it is hard to obtain good amortized cost.) If more than half of these
endpoints belong to replacement edges, then the sampling procedure is terminated and one
of the replacement edges is returned. Otherwise, the algorithm concludes that the fraction
of the non-replacement edges touching u' is at least a constant, and invokes the enumeration
procedure.

The Enumeration Procedure. The data structure first upgrades all i-secondary endpoints

touching u' to i-primary endpoints, then enumerates all i-primary endpoints touching u! and

establishes for each such edge the number of its endpoints touching u! (either one or both).
An edge is a replacement edge if and only if exactly one of its endpoints is enumerated. Each
non-replacement edge encountered by the enumeration procedure has both endpoints in an
(i+1)-component, namely u!, and can therefore be promoted to a depth (i + 1)-non-witness edge

(making both endpoints secondary), without violating Invariant 2.2. As part of the promote and
upgrade operations, the algorithm completely rebuilds the part of the data structure supporting
random sampling on the i-primary endpoints touching ul.

Since the enumeration procedure is only invoked when the algorithm concludes that
(before the enumeration process) the fraction of the non-replacement edges touching u! is
at least a constant, the cost of rebuilding the data structure component supporting random
sampling is charged to promoting the (sufficiently large number of) non-replacement edges.

3.2.3 Iteration and Conclusion

By the Maximum Spanning Forest Property of Invariant 2.2, the deletion of an edge e can only
be replaced by edges of depth d, or less. The algorithm always first looks for a replacement edge
at the same depth as the deleted edge. If the algorithm does not find a replacement edge at depth
d. then the algorithm conceptually demotes e by setting d, < d. — 1 in order to preserve the
Maximum Spanning Forest Property of Invariant 2.2, and continues looking for a replacement
edge at the new depth d.. The demotion is merely conceptual; the deletion algorithm does not
actually update d, in the course of deleting e.

Implementation. If a depth-i replacement edge e’ exists, then u'~! is still an i-component and

the algorithm converts e’ from an i-non-witness edge to an i-witness edge. Otherwise, ¢, and c,

1 /56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

form two distinct i-components in G;. In this case, the data structure splits u'~! into two sibling

nodes (or two H-roots, if i = 1): a new node u'~! representing c, whose only child is u!, and

vi~1 representing ¢, whose children are the rest of the (i + 1)-components in c,. If i = 1 then
the algorithm is done. Otherwise, the algorithm sets i «— i — 1, conceptually demoting e, and
repeats the procedure as if e were deleted at depth i — 1.

Vo
g Q QO Vi
® O 0O OO0V OVLOVL W

Figure 3. After deletion of {v3,vs} (See Figure 1.) By identifying {v4, v,,v3} to be the smaller weight
component, the witness edge {v,, v3} is promoted to depth 3 and the corresponding nodes in V, are
merged. The edge {v3,v4} is the replacement edge.

Vo
3 O Q O Vi
5 O O O 0O 0V W

Figure 4. After deletion of {v4,vs} we do the following steps. (1) Split the node in V, associated with v,4
and vs. (2) Identify that {vs, ve, v/} is the smaller weight component. (3) Promote the edge {vs,vg} tO
depth 3, merging nodes vZ and v¢ = v2. (4) Fail to find a replacement edge at depth 2, and split the node

va. (5) Find a replacement edge {vy,vs} at depth 1 and designate it a witness edge.

12 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

3.3 The Backbone of the Data Structure

Lemma 3.1 summarizes the primitive operations required to execute Insert or Delete. Recall
that the possible depths are integers in [1, dnax], and the possible endpoint types are witness
(for endpoints of an i-witness edge for some i), primary, and secondary.

LEMMA 3.1. There exists a data structure that supports the following operations on H with the
following amortized time complexities (given in parentheses).

(1) Add or remove an edge with a given edge depth and endpoint type (O(log n(loglog n)z)).

(2) Given a set S of sibling H-nodes or H-roots, merge them into a single node ul, and then
promote all i-witness edges touching u! to (i + 1)-witness edges (—((IS| — 1)(loglog n)z)).

(3) Given an H-node v\ € V;, upgrade all i-secondary endpoints touching V' to i-primary
endpoints (—Q((s—p)(loglog n)?), where p and s denote the number of i-primary endpoints
and i-secondary endpoints touching v' prior to the upgrade).

(4) Given an H-node v' € V; and a subset S of i-primary endpoints touching v', promote the
endpoints in S to (i + 1)-secondary endpoints (-Q((12|S| — p) (loglog n)?), where p is the
total number of i-primary endpoints touching v').

(5) Convert a given i-non-witness edge into an i-witness edge (O(log n(loglogn)?)).

(6) Given two H-nodes u'~! and u' where u' is an H-child of u'~', split u'~! into two sibling
H-nodes: one takes u' as a single H-child and the other takes the rest of u'™!
‘H-children as its H-children (O((loglogn)?%)).

(7) Given an H-node v' € V; and a given endpoint type, enumerate all endpoints (u, e) of this

’s former

type such that d. = i and u' = v' (O(kloglogn + 1), where k is the number of enumerated
endpoints).
(8) Given V', return its H-parent v\~ (O (1og log n + log (%)))
(9) Given an H-node V' € V;, return a (1 + o(1))-approximation to the number of i-primary
endpoints touching v (0(1)).
(10) (Batch Sampling Test) Given an H-node v' € V; and an integer k, independently sample
k i-primary endpoints touching v* (1 + o(1))-uniformly at random, and establish for each

sampled endpoint whether the other endpoint also touches v' (see Remark 3.2).

REMARK 3.2. Itshould be noted that the time bounds of Lemma 3.1 only apply if the operations
are used to correctly maintain Invariant 2.2. For example, if we use Operation (5) to create a new
i-witness edge but the set ¥ (the set of witness edges) now contains a cycle, then all bets are off.
Moreover, the worst case cost of the Batch Sampling Test operation is O(min(klog nloglogn, k+
(p+ s)loglogn)) time, where p and s are the number of i-primary and i-secondary endpoints
touching V!, respectively. We analyze the amortized cost of this operation only when it is used
to find replacement edges and maintain Invariant 2.2; see Section 8.1.

13 / 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

REMARK 3.3. The amortized costs of these operations are with respect to a potential function
(Section 9). The most important part of the potential function is that every upgrade and promo-
tion releases O((loglog n)?) units of potential. Observe that Operations (2,3,4) can have negative
amortized cost. Negative amortized costs are not contradictory, and they are in fact helpful for
paying for the (positive) costs of operations that occur in conjunction with Operations (2,3,4);
see Section 10.1.

The proof of Theorem 1.1 uses Lemma 3.1 to restore Invariant 2.2. The proof itself is mostly
a technical recapitulation of the algorithm described in Section 3; for the sake of completeness
we provide a full proof in Section 10.1.

4. The Main Modules of the Data Structure

To support Lemma 3.1, the data structure utilizes five main modules, some of which depend on
each other: (1) the H-leaf data structure, (2) local trees, (3) the notion of an induced (i, t)-forest,
(4) shortcut infrastructure, and (5) approximate counters. The #-leaf data structure is fairly
straightforward and is described in detail in Section 4.1. We define induced (i, t)-forests in
Section 4.3. A brief overview of the other modules is described in Sections 4.2, 4.4, and 4.5.
Sections 5-9 provide a detailed explanation of each module. The general operations involving
multiple modules, as well as the proof of Lemma 3.1 are described and analyzed in detail in
Section 10.

41 The H-Leaf Data Structure

The H-leaf data structure supports several operations that act on an individual vertex. Let
v be a vertex (an H-leaf), i € [1, dnax] be a depth, and ¢ € {witness, primary, secondary} be
an endpoint type. The H-leaf data structure supports insertion or deletion of an endpoint (of
an edge incident to v) with depth i and type t. Moreover, the H-leaf data structure supports
enumeration of all endpoints incident to v with depth i and type t, and selecting one such
endpoint uniformly at random.

Supporting these operations in O(1) amortized time (plus time linear in the output) is
straightforward. Simply pack the endpoints with depth and type (i,t) in a dynamic array.
Dynamic arrays can be implemented deterministically to support incrementing/decrementing

the length of the array in O(1) amortized time.

4.2 The Local Trees

A local tree is a specially constructed binary tree, whose root is associated with an /-node v
and whose leaves are associated with the /-children of v. By composing the local trees with H,
we can view the result as a single binary tree of height at most O(log nloglog n). The purpose

14 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

of this binarization is to provide an efficient infrastructure for supporting navigation within .
The local tree operations are detailed in Section 7 and summarized in Lemma 7.8.

4.3 The Induced (i, t)-Forest

The purpose of the (i, t)-forests is to support efficient enumeration of all endpoints of a given
type that touch a given H-node. For a given edge depth i € [1,dna] and endpoint type
t € {witness, primary, secondary}, an H-leaf vis an (i, t)-leaf if v has an incident endpoint with
depth i and type t. An H-node v' € V; having an (i, t)-leaf in its subtree is an (i, t)-root. For
each (i, t) pair, consider the induced forest § on H by taking the union of the paths from each
(i, t)-leaf to the corresponding (i, t)-root. An H-node v in § is an (i, t)-node if either

— visan (i, t)-leaf,

— visan (i,t)-root,

— v has more than one child in & (so v is called an (i, t)-branching node), or

— vis an H-child of an (i, t)-branching node but v has only one /-child in §. In this case we

call v a single-child (i, t)-node.

Notice that an (i, t)-root may or may not be an (i, t)-branching node.

For each (i, t)-node other than an (i, t)-root, define its (i, t)-parent to be the nearest ancestor
in & that is also an (i, t)-node. An (i, t)-child is defined accordingly. The (i, t)-parent/child
relation implicitly defines an (i, t)-forest, which consists of (i, t)-trees rooted at V; nodes. An
H-node v has (i, t)-status if v is an (i, t)-node.

Storing (i, t)-status. Each node in v € H stores two bitmaps of size 3d,,.x = O(log n) each.
The first indicates for each (i, t) pair whether v is an (i, t)-node, and if so, the second indicates
whether v is an (i, t)-branching node or not.

Operations on (i, t)-forests. A conceptual edge between an (i, t)-node and its (i, t)-parent
or (i,t)-child need not be maintained explicitly. The two components of our data structure
that simulate these edges are the shortcut infrastructure and the local trees. In particular, the
shortcut infrastructure supports efficient traversal from a single-child (i, t)-node to its unique
(i, t)-child, while the local trees support efficient enumeration of all the (i, t)-children of an
(i, t)-branching node. Since the implementation of traversal and navigation operations on
(i, t)-forests utilizes local trees which are introduced and defined in Section 7, we defer the
discussion of (i, t)-forests and their detailed implementation to Section 8.2 (see Lemma 8.1).

15 / 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

4.4 The Shortcut Infrastructure

The purpose of shortcuts is to facilitate a faster traversal from a single-child (i, t)-node to its
only H-child. This traversal costs amortized O(loglogn) time. The details and construction of
shortcuts are described in Section 5.

4.5 Approximate Counters

Implementing the sampling operation in Lemma 3.1 reduces to being able to traverse from
an (i, primary)-branching node to one of its (i, primary)-children v, where the choice of an
(i, primary)-child is random with probability that is approximately proportional to the number
of i-primary endpoints touching v. The implementation of the random choice is supported
by maintaining an approximate i-counter at each (i, primary)-node. Notice that an H-node
could be an (i, primary)-node for several i, so there could be several approximate i-counters
maintained in an H-node. The advantages of using approximate i-counters, as opposed to
precise counters, are two-fold. First, each approximate i-counter uses only O(loglog n) bits,
and so O(log n/loglog n) approximate i-counters can be packed into a single machine word
and be collectively manipulated in O(1) time. Second, approximate counters can only take
on (log n)°Y values, and hence a decrement-only counter can only generate (logn)°™ total
work throughout its lifetime. The maintenance of approximate i-counters and the sampling
algorithm are explained in Section 6 and Section 7.4.

5. Shortcut Infrastructure

As described in Section 4.4, the purpose of shortcuts is to allow for efficient navigation between a
single-child (i, t)-node u and its only (i, t)-child v. If the graph is static, a direct pointer between
u and v could be stored in the data structure so that v can be directly accessed from u. The
challenge is to maintain useful shortcuts in the midst of structural updates to H.

H-shortcuts. An H-shortcut u = v is a data structure connecting an ancestor u to a de-
scendant v in H. H-shortcuts are only stored between a subset of eligible pairs of ancestor-
descendant pairs. The eligible pairs are determined as follows. For a positive integer ¢, define
its least significant bit index, denoted by LSBIndex(£), to be the minimum integer b such that 2?
divides ¢ but 22! does not. For an H-node u, let depth4, (u) be the distance from u to the root
of the tree in H that contains u. The power of a pair of nodes u and v is defined as

P (u,v) = min(LSBIndex(depthy, (u) + 1), LSBIndex(depthy, (v) + 1)).3

3 The “+1” is included because LSBIndex is not well defined at zero.

16 / 56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

In order for an H-shortcut to exist between u and v, any intermediate node x on the path from
u to v must have LSBIndex(depthg,(x) + 1) < £ (u,v). If v is the H-child of u, then P(u,v) =0
and u = v is an eligible H-shortcut, which is called a fundamental H-shortcut.

The following lemma states that the set of H-shortcuts on an ancestor-descendant path do
not cross each other.

LEMMA 5.1. For any four distinct H-nodes X1, X2, X3, X4 along a root-to-leaf path in ‘H, it is
impossible to have two H-shortcuts x; = x3 and X, = X.

PROOF. For j € {1,2,3,4} let hj = depthy (x;) + 1,50 hy < hy < hg < hy. Assume the claim
is false, and so there exist two H-shortcuts x; < x3 and x; < x4. By definition this implies
LSBIndex(h;) < LSBIndex(hs3) and LSBIndex(h3) < LSBIndex(h;), a contradiction. u

The covering relationships of #H-shortcuts and the poset. We say that a < b covers
¢ = dif c and d are on the path Py, from a to b in H. Notice that a shortcut covers itself. Define
> to be the covering partial order:

(as=b) > (cs d)iffa = b covers ¢ = d.

For any uv-path Py, on H, the maximal covering set of P,,, denoted by COVERW(u, V), is the set
of maximal H-shortcuts (with respect to >) among all H-shortcuts having both endpoints on
P.,. Figure 5 illustrates COoverR” (vs, v14) in bold.

Figure 5. The figure above shows COVGI’W(V5, v14) @s an example, where v; has depthy(vi) =i. The
dotted edges are the set of all possible shortcuts.

The following lemma bounds the size of Cover™ (u, v).

LEMMA 5.2. For any two nodes u, v € H with u an ancestor of v, all H-shortcuts in Cover™ (u, v)
form a path connecting u and v, and | Cover™ (u, v)| = O(loglog n).

PROOF. All H-shortcuts on Py, form a poset, and all fundamental H-shortcuts on P, form
the path between u and v. By Lemma 5.1, CovEr” (u, v) forms a path connecting u and v.

17 | 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

The H-shortcuts in CovErR™ (1, v) can be partitioned into two sequences: one with strictly
increasing powers and one with strictly decreasing powers. To see this, notice that for any
sequence of consecutive integers, there is a unique largest LSBIndex value among the sequence.
For any H-node let g(x) = LSBIndex(depth4,(x) + 1). Let v* be the unique #-node on Py, such
that q(v*) > q(x) for all x € P,,\{v*}. It is straightforward to see that no H-shortcut on Py,
crosses v* and hence Cover™ (u, v) = Cover™ (u, v*) U Cover” (v*, v).

Now we claim the following: let P, be an ancestor-descendant path such that g(v') > q(x)
for all x € Py, \{V'}. Then Cover* (v, v) consists of H-shortcuts with strictly decreasing powers.
We prove this claim by induction. In the base cases the claim is trivially true, when v = vor v’ is
the H-parent of v. In general, let v’ be the unique node on the path P,, such that g(v”’) > q(x)
for all x € P,,\{V,v’}. The shortcut vV = Vv” must be in Cover™ (v, v) since the power of
V' = V" is strictly greater than the power of any shortcut on P,,. By the induction hypothesis
on P,, the claim holds. Thus, all -shortcuts in Cover* (v¥, v) have distinct and decreasing
powers. By symmetry, all H{-shortcuts in COver” (u, v*) also have distinct and increasing powers.
Since the maximum depth is dmqx = [log n], the largest possible power of an #-shortcut is
[loglogn] — 1. As a consequence, we have | COvER™ (1, v)| = O(loglog n). u

(i, t)-shortcuts. Let u be a single-child (i, t)-node and let v be the (i, t)-child of u, which by
definition must be either an (i, t)-branching node or an (i, t)-leaf. The purpose of maintain-
ing H-shortcuts is to allow one to quickly move from u to v. Ideally, the data structure will
traverse the O(loglog n) H-shortcuts in Cover” (u, v). However, forcing all of the #-shortcuts
in Cover™ (u, v) to be maintained by the data structure seems to complicate the process of
updating H-shortcuts as H changes. In particular, when an i-witness edge {u, v} is deleted, H
goes through several structural changes by merging an ancestor u' (or v') with a subset of the
JH-siblings of u'.# All H-shortcuts that were connected to u’ (or v') and those 7-siblings need to
be updated at the same time. Since we are fine with O(loglog n) amortized time for the traver-
sal, the process of updating shortcuts (due to changes in the hierarchy or the corresponding
(i, t)-forests) becomes simpler by allowing a weaker invariant governing which shortcuts are
actually present.

INVARIANT 5.3 ((i, t)-Shortcuts). Let u be a single-child (i, t)-node and let v be the (i, t)-child
of u. The (i, t)-shortcuts on Py, that are stored by the data structure form a path connecting u and
V.

When structural changes take place in H, all of the shortcuts that touch the nodes par-
ticipating in these changes are removed. The cost for removing those shortcuts is amortized
over the cost of creating them. However, once the structural changes are complete, we do not

4 H-siblings are H-nodes sharing the same H-parent.

18 / 56

TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

immediately return all the shortcuts back. Instead, the data structure partially recovers enough®
shortcuts to maintain Invariant 5.3, and then employs a lazy approach in which shortcuts are
only added (via a covering process) when they are needed.

{'\

Figure 6. An example of an (i, t)-tree and its corresponding (i, t)-shortcuts: filled circles are
(i,t)-nodes, and the curved line segments are (i, t)-shortcuts.

Covering and uncovering. Assume Invariant 5.3 holds. Suppose that the algorithm traverses
downward from a single-child (i, t)-node u to its (i, t)-child v. If the set of shortcuts used is
precisely Cover” (u, v) then this traversal costs O(loglogn) time. If not, then the algorithm
repeatedly covers consecutive (i, t)-shortcuts (see Section 5.1 for implementation details) until
the set of (i, t)-shortcuts between u and v is exactly Cover” (i, v). We use a potential argument
to prove that the amortized cost of traversing from u to v is O(loglog n) time; see Section 9.2.
There are also certain cases where the structure of H does not change, but some (i, t)-
forests do change (for example, whenever an #-leaf gains or loses an (i, t)-status). To support
structural changes in H or in (i, t)-forests, the data structure will at times uncover an (i, t)-
shortcut s of power p by removing s and adding the two consecutive (i, t)-shortcuts of power
p— 1 that were covered by s. In order to accommodate an efficient uncovering operation, during
a covering operation the data structure continues to store the covered #{-shortcuts so that they
are readily available when a subsequent uncover operation occurs. The #-shortcuts stored
by the data structure that are strictly covered by some (i, t)-shortcuts are called supporting H-
shortcuts; these supporting shortcuts do not have (i, t)-status. The H-shortcut u <= v is always

5 Notice that Invariant 5.3 implies that the shortcut data structure is not required to store all of Cover” (u,v) in order for
the invariant to hold.

19 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

directly accessible from v (the deeper node), but not necessarily from u (the shallower node).
From the perspective of v, u < v is called an upward H-shortcut, while from the perspective of
u, u = vis called a downward H-shortcut.

An upper bound on the number of H-shortcuts that need to be stored at each H-node is
captured by the following straightforward corollary. (Recall that the algorithm does not store
shortcuts between an (i, t)-branching node and its (i, t)-children.)

COROLLARY 5.4. Assume Invariant 5.3 holds for all pairs of nodes in H. Then for each node
v € ‘H, and each (i, t) pair, there is at most one downward (i, t)-shortcut and at most one upward
(i, t)-shortcut at v.

Sharing shortcuts. An #H-shortcut u = v that is an (i, t)-shortcut could also be an (i/, t’)-
shortcut when (i, t) # (i’, t’). Similarly, a supporting shortcut for some (i, t)-shortcut could also
be an (i’, t’)-shortcut when (i, t) # (i’,t’). The data structure stores at most one copy of any
H-shortcut even if there are many (i, t) pairs that use it. The maximum number of distinct
‘H-shortcuts touching a given ancestor-descendant path is bounded by the following lemma.
(Recall that a stored shortcut is either an (i, t)-shortcut for some (i, t), or a supporting shortcut,
which may have no (i, t)-status.)

LEMMA 5.5. Consider any node v in H. The total number of stored shortcuts joining an ancestor
of v to another node is O(log nloglog n). In particular, the number of distinct fundamental (i, t)-
shortcuts having one endpoint at an ancestor of v is O(log n). Moreover, the number of H-shortcuts
having both endpoints at ancestors of v is O(log n).

PROOF. For a given path P, an H-shortcut u = v is said to be deviating if exactly one of its
endpoints is on P.

Let P be the path from v € H to its H-root. For each edge depth i and type t, at most one
(i, t)-shortcut is deviating from P, and each such shortcut has at most O(loglog n) supporting
shortcuts with exactly one endpoint on P. (Recall that (i, t)-shortcuts form paths from single-
child (i,t)-nodes to their (i, t)-child. Branching (i, t)-nodes have no (i, t)-shortcuts leading
to descendants.) Thus, for each (i, t) pair, at most one fundamental (i, t)-shortcut deviates
from P. All H-shortcuts connecting 4-nodes on P form a laminar set, and so there are at
most 2dnqax = O(log n) such H-shortcuts. Thus, the total number of stored shortcuts with one
endpoint in P is O(log nloglog n), and the total number of distinct fundamental (i, t)-shortcuts
with one endpoint on P is O(log n). u

In the rest of this section, we describe how J{-shortcuts are stored.

20 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

51 The H-shortcut data structure

Information stored at #{-nodes. Due to Corollary 5.4, every node in H has at most 3d,ax+1 =
O(log n) downward (i, t)-shortcuts at any given time. Each node u stores an array DowN,, of size
at most 3dnax + 1 storing all downward (i, t)-shortcuts, together with a bitmap Occ, indicating
which array slots of DowN, are in use.® The size of DowN, is chosen to be exactly enough
for storing pointers to (i, t)-shortcuts for all possible (i, t) pairs as well as one additional slot
for temporary use during promotions/upgrades. However, a single shortcut may be shared
by many (i, t) pairs. In order to support fast access from u to its downward (i, t)-shortcut,
each node stores a local dictionary which is an array DOwNIDX,, storing, for each (i, t) pair, a
(loglog n + 2)-bit index to the location in DOwN,, of the appropriate downward #{-shortcut, i.e.,

DownN, [DowNIDX,[i, t]] points to an (i, t)-shortcut leaving u, if such a shortcut exists.

Notice that for an #{-node and a power p, there is at most one upward /-shortcut from v
with power p. Thus, each node v maintains an array Up, of O(loglog n) pointers to shortcuts,
sorted by power, to the upward supporting H-shortcuts of v. Moreover, at each node v the data
structure stores a (3dmax + 1)-length array UrIDX,, of O(logloglog n)-bit integers for each (i, t)
pair. Thus, the upward (i, t)-shortcut x = v is accessed in O(1) time, i.e.,

Up, |UPIDX, [i, t]] points to an (i, t)-shortcut entering v, if such a shortcut exists.

Notice that each entry in the DowNIDX, and UPIDX, arrays is represented with O(loglogn)
bits, and there are O(log n) (i, t) pairs. These entries are packed into O(loglog n) memory words
so that the data structure is able to update the entire array efficiently via lookup tables in
O(loglogn) time.

The following lemma summarizes how shortcuts are used to support various operations
needed locally in one H-node.

LEMMA 5.6. The following operations are supported via shortcut information stored at nodes

(worst case time in parentheses).

— Given u = v and a bitmap b of length 3dnmax + 1, add u = v as an (i, t)-shortcut for all (i, t)
pairs indicated by b (O(min{|b| + 1,loglog n}) where |b| is the number of 1s in b).

— Givenu = v and a bitmap b of length 3dmqx + 1, remove the (i, t)-shortcut status fromu = v
for all (i, t) pairs indicated by b (O(min{|b| + 1,loglogn})).

— Givenu € ‘H and an (i, t) pair, return the (i, t)-downward H-shortcut at u or report that
such a shortcut does not exist (O(1)).

— Givenv € H and an (i, t) pair, return the (i, t)-upward HH-shortcut at v or report that such a
shortcut does not exist (O(1)).

6 Notice that when the data structure allocates the array Down,, it is assumed to contain arbitrary values. One can only
tell which values are meaningful and how to interpret them via the Occ, and Downldx, arrays.

21/ 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

— Given u € H, return the index of an empty slot in DOwN, (O(1)).
— Given u € ‘H, enumerate all indices of used locations in DOwN, (O(k + 1) where k is the
number of the enumerated indices).

PROOF SKETCH. The proof of the lemma is straightforward using bitwise operations or O(n°)-
size lookup tables for operations on Down,, DowNIDX,, Occ,, UrPIDX,, and Up,. For example,
Occy is a (31og n+ 1)-bit vector. We partition it into 3e~! segments of e log n bits, and can search

for a zero in each segment in O(1) time with a table lookup. u

Information stored at shortcuts. An #-shortcut u = v is an O(1)-word data structure
storing the following information:
— P(u,v): the power of the shortcut,
— Pointers to u and v,
— The index j in DOWN, where u = v is stored, or L if u = v is not stored in DOWN,,
— A 3dpax + 1 length bitmap b, containing one bit for each (i, t) pair (called the (i, t)-bit)
indicating whether u = v is an (i, t)-shortcut, and
— If P(u,v) > 0 then u = v stores pointers to the two supporting shortcuts with power
P(u,v) — 1 that u = v covers.

LEMMA 5.7. The H-shortcut data structure supports the following operations (worst case time
in parenthesis):

1. (Uncovering) Given an (i,t) pair and an (i, t)-shortcut u = v that is not a fundamental
H-shortcut, uncover u = v and convert the two supporting shortcuts of u = v into (i, t)-
shortcuts (0(1)).

2. (Traversal and Covering) Assume Invariant 5.3 holds for all H-nodes with depth > i. Given
a single-child (i, t)-node u whose (i, t)-child is v, traverse from u to v via (i, t)-shortcuts
while guaranteeing that after the traversal is completed, the set of (i, t)-shortcuts between
u and v is exactly Cover™ (u,v), preserving Invariant 5.3 for all H-nodes with depth > i
(O(k +loglog n), where k is the number of (i, t)-shortcuts covered during the traversal).

PROOF. Part 1. Suppose the algorithm uncovers a given (i, t)-shortcut u = v that is not
fundamental, meaning u = v has power p > 0. The algorithm sets b,-,[i, t] = 0, follows the
two pointers from u = v to its supporting power-(p — 1) H-shortcuts u <= x and x = v, and
sets by—x|[i,t] = bx=y[i, t] = 1. The algorithm also updates in a straightforward manner some
local information in all affected nodes {u, v, x} in O(1) time. To be specific, the algorithm (i)
checks whether u = x and x = v are already stored in DowN, and DOwWN, by inspecting u = x
and x = v. (i) If not, the algorithm finds empty slots in DowN, and/or DOowNy via the bitmaps
Occ, and Occy, which indicate which slots in DowN, and DowNy are available, and updates
DOWNIDX, |1, t] and/or DOWNIDXy [, t]. (iii) The algorithm sets DOWN, [DOWNIDX,[i, t]] = u = X;

22 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

DOWN, [DOWNIDX, [, t]] = x = v; UPIDX[1, t] = P (u, x); and UPIDX,[i, t] = P(x, V). (iv) If by,
is all 0, i.e., u = v is no longer an (i’, t’)-shortcut for any (i’, t’) pair, the algorithm frees the
slot storing u = v in DOowN, by unsetting the corresponding bit in Occ,, then updates u = v to
reflect that u = v is no longer stored in DOwN,,.

REMARK 5.8. After step (iv), it may be that b,—, = 0 and u = v is not a supporting shortcut for
any higher-power (i’, t’)-shortcut. If this is the case, it is fine to delete u = v (and update Up, and
UrIDX, appropriately). In our implementation the algorithm has no means to check whether
U = v is a necessary supporting shortcut, and so the algorithm keeps u = v allocated. Notice
that in the worst case there are O(nloglogn) stored shortcuts, so keeping spurious shortcuts
around does not affect the overall space usage of the data structure.

Continuing with the proof (Part 2), we can move from u to its (i, t)-child by starting at u
and following downward (i, t)-shortcuts until an (i, t)-node is reached. During this traversal, if
there are two consecutive (i, t)-shortcuts x = y’ and y’ = y with the same power p and

LSBIndex(depthy (y’) + 1) < min (LSBIndeX(depthﬂ(x) +1), LSBIndex(depthy,(y) + 1)),

then the data structure covers the two shortcuts with the H-shortcut x <= y having power p + 1.
This is done as follows.

First the algorithm checks whether x = y already exists, by testing if Up, [P (X, y)] stores
a pointer to x = y or not. If x = y already exists then x = Yy is accessed through Upy, and if
not then x < y is created and a pointer to x < y is added to Up,,.

Next, the algorithm sets the (i, t)-bit in by~ to 1 and sets the (i, t)-bits in by—,- and by/—,
to 0. If by~ = 0 (resp. by — = 0), the algorithm removes its index from DOWNy (resp. DOWN)
by unsetting the corresponding bits in Occy (resp. Occy-). The algorithm also updates DOWNy
and DowNIDX, so that DOowN, [DOWNIDX,[i,t]] = x = y is accessible from x.

Covering x = y may create the opportunity to cover another shortcut x’ = y of the next
higher power. The data structure uses Up, to access the upwards shortcut x’ = x with power
p+ 1. If X’ = x exists and is also an (i, t)-shortcut then the data structure covers x’ = x and
x = y with X’ = y, and recursively looks to see if there are more shortcuts to cover at power
p + 2, and so on.

It is straightforward to verify that at the end of the traversal the set of (i, t)-shortcuts con-
necting u and v is exactly Cover” (u, v). The time for traversing the path is O(k+| Cover™ (u, v)|),
which is O(k + loglog n) where k is the number of (i, t)-shortcuts being covered during the
traversal. u

In Section 9.2 we show that by defining the potential function to be the number of all
(i, t)-shortcuts that could be covered but are not yet covered, this operation has amortized cost
O(loglogn) time.

23 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

5.2 Maintaining Invariant 5.3 Through Structural Changes to H

Figure 7. After deleting an i-witness edge {u, v}, all affected H-nodes are on at most two paths. In the
course of looking for a replacement for {u, v}, we will merge a collection of siblings into one at each
depth between i and the depth where the replacement edge is found. The dashed lines illustrate the
effect of merging siblings.

The shortcut infrastructure is very sensitive to the merge operation (e.g., Operation (2)
in Lemma 3.1). In particular, when an i-witness edge {u, v} is deleted, H goes through several
structural changes by merging an ancestor of u! (or v!) with a subset of its -siblings. These
merges require updating the shortcut infrastructure, which seems to be a very complicated
task when supporting these types of changes. Specifically, we need to employ a special strategy
that ensures Invariant 5.3 holds after the entire Delete operation.

In order to provide an efficient implementation, observe that during such a single deletion,
all merged /-nodes (and their appropriate #-siblings) end up being on the paths between u'
and v' and their respective H-roots. See Figure 7. Thus, we are able to employ the following
strategy.

First, at the beginning of the delete operation, the algorithm completely uncovers and
removes all H-shortcuts that touch H-nodes on the two paths. In particular, by Lemma 5.5,
the algorithm removes (1) O(log n) fundamental shortcuts, (2) O(logn) shortcuts with both
endpoints on the path, and (3) O(loglog n) deviating shortcuts from each path for each (i, t)
pair. Recall that deviating shortcuts have one endpoint on the #-path in question.

After removing these H-shortcuts, Invariant 5.3 no longer holds for pairs of H-nodes
where at least one node is on the affected paths. However, these are shortcuts with (i/, t’)-status
for some i’ < i, and so during the deletion operation at depth i we never use such shortcuts.
Hence, removing them does not affect the other operations that take place during the edge
deletion process at depth i.

24 | 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Lemma 5.9 summarizes the operations that remove and restore shortcuts along paths
in H, which are used to guarantee that Invariant 5.3 holds after the deletion operation termi-
nates. Since the implementation requires interaction with the local trees, we defer its proof to

Section 9.1.

LEMMA 5.9. The data structure supports the following operations on H with amortized time
cost (in parenthesis). Given an H-node v:
— Uncover and remove every H-shortcut that is touching any node that is an ancestor of v
(O(log n(loglog n)?)).
— Givenv, its H-parent u, and a bitmap b, add a fundamental H-shortcut u = v for all (i, t)
pairs indicated by b (O(loglogn)).
— Add all fundamental H-shortcuts between consecutive ancestors of v that are (i, t)-shortcuts
for at least one (i, t) pair (O(log nloglogn)).
— Assume Invariant 5.3 holds. For all (i, t) pairs, cover all (i, t)-shortcuts having both endpoints
at ancestors of v (O(log nloglogn)).

6. Implementation of Approximate Counters

In this section, we describe how approximate i-counters are implemented. Without loss of
generality we assume that the input graph G is simple. Hence, all approximate i-counters are
only required to represent a (1 + o(1))-approximation of integers in the range [0, n?].

6.1 Approximate Counters

Each (i, primary)-leaf £ maintains the exact number of (i, primary)-endpoints touching ¢. The
precise number of (i, primary)-endpoints in a subtree of any (i, primary)-node v could be
computed exactly using a formula tree defined by the induced (i, primary)-tree rooted at v
where the value at each vertex is the sum of the values of its children. (Because the local trees
are binary, the induced tree is also binary, and has height O(log nloglogn).) If one were to use
such a strategy, then every H-node has the potential of storing O(log n) counters, where each
counter uses O(log n) bits, for a total of O(log n) words. Thus, splitting and merging vertices
may cost O(log n) time each, which is too expensive for our purposes.

Instead, the data structure efficiently maintains approximate i-counters for nodes in H
with a multiplicative approximation guarantee of (1 + o(1)) using only O(loglog n) bits per

approximate i-counter.

The structure of an approximate counter. Let 8 = 2 be a parameter that controls the quality
of the approximation. Each approximate counter C is defined by a pair (m, ¢) composed of a
mantissam € {0,1}#1°8198" and an exponent e € {0, 1}1°¢1°6™+1 The floating point representation

25 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

of € concatenates m and e into a length (B + 1) loglog n + 1 bit string. The integer representation
of C is m2¢, where we treat the mantissa part and the exponent part as unsigned integers. Notice
that an approximate counter represents up to 2(log n)#*! different integers. From the definition
above, an integer C € [0, n?] is approximated by € = (m, e) where m is the first 5 loglog n bits
of the binary representation of C and e is the number of truncated bits.

Special addition operation. When computing the addition of two values a and b represented
by two approximate counters, the result a + b is rounded down to the nearest possible approxi-
mate counter value. Notice that this kind of addition is not associative. We denote the operation
of adding two approximate counters by a 8 b. The precision guarantee of B is summarized in
the following lemma.

LEMMA 6.1. Let aand b be two approximate counter values represented by approximate counters.
Then a 8 b satisfies:
(1-logPn)(a+b) <amb<a+bh.

PROOF. Let C = a+b. Then by definition C = (m, e) keeps the first 8loglog n bits of the binary
representation of C. The difference between C and € is therefore strictly less than (log™ n)C.
Thus, ¢ > (1 -log? n)C. m

Approximation guarantee and the formula tree. Using approximate counters with the =
operation instead of exact counters creates a loss in precision which depends on the height
of the arithmetic formula tree. Recall that the height of a formula tree is always bounded by
O(lognloglog n) where the loglog n factor is due to the local trees. In order to bound the loss
of precision we use a function H(v) which expresses the maximum possible height of v in any
formula tree. See Section 7.4 for more on why H(-) is defined this way.

DEFINITION 6.2. Let v be an H-node. Let j be the depth of vin H. Then
H(v) = (dmax — j) - O(loglogn) + |log(w(v))].

Notice that H(v) = O(lognloglogn). The following invariant relates the precision of
approximate counters to the function H. The maintenance of Invariant 6.3 is addressed in
Lemma 6.5, which is proved in Section 8.3.

INVARIANT 6.3 (Precision of Approximate Counters). Let v be an H-node and let C;(v) be
the precise number of i-primary endpoints touching v. If v is an (i, primary)-node then v stores
an approximate i-counter C;(v), where

L \H))
(1 — (log™? n)) C.(v) < Ci(v) < Ci(v).

26 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Thus, if Invariant 6.3 holds with 8 = 2, then for any /-node v,
. 9 H(v) 9 O(lognloglogn)
Ci(v) 2 (1-(og?m) €i(v) = (1~ (log 2 m)) Ci(v) = (1= 0(1)Ci(v),

and so C;(v) gives the desired approximation.

Packing 0 (log n) Approximate Counters. Each node in H stores d. = log n approximate
counters. These counters are stored in O(loglog n) words by packing O(log n/loglog n) approx-
imate counters in the floating pointer representation into each word. With the aid of lookup
tables of size O(n®), the following lemma is straightforward.

LEMMA 6.4. The following operations are supported on approximate counters (worst case time
in parentheses):

— Given an H-node v and a depth i, update/return the approximate i-counter stored at v (O(1)).

— Given the floating point representation of an approximate counter, return its integer repre-
sentation (O(1)).

— Given the integer representation of an approximate counter, return its floating point repre-
sentation (O(1)).

— Given two approximate counters a and b, returnas b (0(1)).

— Given two arrays of O(log n) approximate counters packed into O(loglog n) words, return
their coordinate-wise sum, packed into O(loglog n) words (O(loglogn)).

PROOF SKETCH. The first four operations use bitwise operations in a straightforward man-
ner. The fifth operation uses O(n®)-size lookup tables to support a query in O(loglog n) time;
see Section 2.1. n

Summary of operations. The main lemma summarizing operations related to approximate

i-counters is given next.

LEMMA 6.5. There exists a data structure that maintains approximate i-counters on H while
maintaining Invariant 6.3 and supporting the following operations with the following amortized
time complexities (in parentheses):
— Update the approximate counters to reflect a change in the number of (i, primary)-endpoints
at a given H-leaf (0(log n(loglog n)?)).
— Given an (i, primary)-tree 7 rooted at V', rebuild approximate i-counters for all (i, primary)-
nodes in 7 to restore Invariant 6.3 for those nodes (O(|7 | (loglog n)?)).
— When merging two sibling H-nodes, compute the approximate i-counters for alli € [1, dmax]
at the merged node (O(loglogn)).
— When splitting an H-node into two sibling H-nodes, compute the approximate i-counters
foralli € [1, dmnax] at the two sibling nodes (O(loglogn)).

27 | 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

The proof of Lemma 6.5 depends on the implementation of local trees, which we provide
in Section 7. Thus, the proof of Lemma 6.5 is deferred to Section 8.3.

7. Local Trees

The purpose of the local tree £ (v) is to connect an H-node v with its H-children while supporting
various operations. A local tree is composed of a three-layer binary tree and a special binary
tree called the buffer tree. The three-layer binary tree is composed of a top layer, a middle layer
and a bottom layer. See Figure 8 for an illustration.

top tree

buffer tree

middle trees

bottom trees

Figure 8. An example to a local tree £L(v) associated with v.

— The bottom layer is composed of bottom trees, each having at most 21og® n leaves and
height O(loglogn), a = O(1) to be calculated later.

— The middle layer is composed of middle trees such that all bottom tree roots are middle
tree leaves. The weight of a node x in L(v), denoted by w(x), is defined to be the sum
of all weights of H-children of v in the subtree of x, and the rank of x is defined to be
rank(x) = |logw(x)]. The weights are explicitly maintained only for nodes in either
bottom or buffer trees. The middle trees are weight balanced binary trees with respect
to w(-). The algorithm maintains the invariant that there are never more than O(log n)
middle tree roots in a local tree.

28 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

— The top tree’ is a mergeable, O(log log n)-height tree whose leaves are middle tree roots.
Its purpose is merely to gather up all middle trees within a single tree, while increasing
the overall height of the local tree by only O(loglog n).

Local tree roots and local tree leaves. The root of £(v) has two children: the root of the
buffer tree and the root of the top tree. The root of £(v) also has a pointer pointing to v in H.
When a new H-node v € H is created, L(v) is initially empty.

H-node representatives. Each #-child x of vis not in £(v) as such, but is present through a
representative £y, which is a leaf in £ (v). We distinguish x from £, because they have different
characteristics and store different information.

The local tree leaf ¢, stores a pointer to x € H, the weight of x, a parent pointer, approxi-
mate counters, and a bitmap maintaining local (i, t)-status of the leaf ¢, where the (i, t)-bit in
the bitmap is set to 1 if and only if x and v are both (i, t)-nodes but the fundamental #{-shortcut
Vv = x is not an (i, t)-shortcut. In a quiescent state, this only occurs when v is an (i, t)-branching
node or (i, t)-root and x is an (i, t)-node.® However, in the middle of a Delete operation we
may temporarily uncover and remove a fundamental (i, t)-shortcut v = x, which can cause

Vv, X to temporarily become (i, t)-nodes and ¢ € £L(v) to temporarily become a local (i, t)-node.

Local (i, t)-trees. Consider a local tree £(v). The local (i, t)-nodes comprise all leaves of £ (V)
with local (i, t)-status, as well as those internal nodes z € £(v) satisfying at least one of the
following.

— z istheroot of £(v), having at least one leaf-descendant with local (i, t)-status.

— z € L(v) is a bottom tree node, a buffer tree node, or a top tree node having a descendant
with local (i, t)-status. (Because of their dual membership, middle tree roots and leaves
are also included in this category.)

— z € L(v) is a middle tree node whose children both have descendants with (i, t)-status. (It
is a local (i, t)-branching node.)

— z € L(v) is a child of a middle tree (i, t)-branching node.

A local (i, t)-tree is defined in a similar fashion as the (i, t)-forest on H; each z € L(v)
maintains a bitmap indicating for which (i, t)-pairs it is a local (i, t)-node. Whereas the (i, t)-
forest can have arbitrary branching factor, every local (i, t)-tree is binary since £L(v) is itself
binary. Navigating from a local (i, t)-node z to its child is straightforward when z is in a bottom,
buffer, or top tree, since the (i, t)-bits are stored explicitly at every node in these trees, and these
trees are binary. Local (i, t)-shortcuts are used for faster navigation in the middle layer; these

7 Not to be confused with the top tree dynamic tree data structure of Alstrup, Holm, Lichtenberg, and Thorup [4].

8 Notice that if x is an (i, t)-branching node but v is not, then x € H has (i, t)-status but &, € L(v) does not have local
(i, t)-status. This is the main reason for notationally distinguishing x from &,.

29 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

are defined in Section 7.2. Each local (i, primary)-tree node in .£(v) maintains an approximate
i-counter.

In Sections 7.1-7.3 we describe the operations of the bottom/buffer layer, the middle layer,
and the top layer in isolation. In particular, Lemmas 7.1, 7.5, and 7.6 state the worst case cost of
operations, without regard to side effects on other layers. The interaction between the layers
and the amortization of costs is addressed in Section 7.5, Lemma 7.8.

71 Bottom Trees and the Buffer Tree

The algorithm attaches new #-node representatives only to the buffer tree, while deletions of
H-node representatives can take place in both buffer and bottom trees. The buffer tree can be
regarded as a bottom tree under construction.

Each buffer tree and bottom tree has at most 21og®n local tree leaves, where « is a
constant to be determined in Section 7.8. Whenever the buffer tree size exceeds log® n, either
from merging two H-nodes or from inserting a new local tree leaf, the buffer tree becomes
mature and is converted to a bottom tree. The data structure adds this bottom tree into the
bottom layer and creates a new empty buffer.

The buffer and bottom trees are O(log log n) height mergeable binary trees. Each node
stores a weight, a vector of approximate counters, pointers to its parent and children, and a
bitmap indicating for each (i, t) pair, whether there is a local tree leaf in its subtree with local
(i, t)-status.

LEMMA 7.1. The buffer tree and bottom trees support the following operations, with the following
worst case time complexities (in parentheses):
— Detach a buffer/bottom tree leaf (O((loglogn)?)).
— Remove local (i, t)-status from a buffer/bottom tree leaf (O(loglogn)).
— Given an edge depth i € [1,dnmax], a buffer/bottom leaf x, and a value q, decrease the
approximate i-counter at x to q (O(loglogn)).

In addition, the buffer tree supports the following operations:
— Attach a buffer tree leaf (O((loglogn)?)).
— Merge two buffer trees of two sibling H-nodes (0((loglogn)?)).
— Add local (i, t)-status to a buffer tree leaf (O(loglogn)).
— Convert the buffer tree to a bottom tree (O(1)).
— Given an edge depth i € [1, dmax], a buffer leaf x, and a value q, set the approximate i-counter
atv to be q (O(loglogn)).

PROOF. A buffer tree is implemented by an off-the-shelf mergeable binary tree with
O(loglog n) worst case time for each attach, detach, and merge operation.® However, in order

30 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

to support updates to the vector of approximate counters, an O(loglogn) factor overhead is
applied to each of the operations. See Lemma 6.4. Hence the worst case time cost for each
operation is O((loglog n)?). From these three operations, bottom trees are only subject to detach.
Since we only require the height of a bottom tree to be O(loglog n), no rebalancing is necessary
after detaching a leaf. In order to obtain correct rank(x), each attach, detach, and merge also
updates the weight of the given buffer/bottom tree root.

To add (i, t)-status to a buffer tree leaf x, the data structure traverses up the buffer tree
and sets the (i, t)-bit to 1 in all ancestors of x in the buffer tree. To remove (i, t)-status from a
buffer/bottom leaf x, the data structure updates the (i, t)-bits at each ancestor of x. If a leaf x has
local (i, primary) status, it carries an approximate i-counter. Such counters can be increased or
decreased in O(loglog n) time by updating all ancestors of x in its buffer/bottom tree. u

REMARK 7.2. Observe that only the buffer tree can acquire new leaves, and only buffer tree
nodes can gain local (i, t)-status and increase their approximate i-counters. In particular, this
implies that when a bottom tree leaf has to acquire a local (i, t)-status, the algorithm removes
the leaf from the bottom tree, updates its status and re-inserts the leaf into the buffer tree.

7.2 Middle Trees

All bottom tree roots are middle tree leaves. Middle trees respond to three types of updates at
their leaves: a leaf losing (i, t)-status, decreasing its approximate i-counter, or decreasing its
weight. Middle trees are maintained as weight-balanced binary trees satisfying Invariant 7.3.

INVARIANT 7.3. If x is a middle tree leaf/bottom tree root it maintains w(x) and rank(x) =
|log w(x)|. If x is an internal middle tree node it maintains only rank(x), and if x has children
X1, Xg then rank(xy) = rank(xg) = rank(x) — 1.

The operations described in Lemma 7.5 specifically maintain Invariant 7.3. As a con-

sequence of Invariant 7.3, the path from any middle tree leaf xg (bottom tree root) to the

w(Xn)
w(xg)

the number of local tree nodes traversed when walking from any #{-node to its /-parent v via

corresponding middle tree root x; has length log() + O(1). This property is used to bound
the local tree £(v). In accordance with Invariant 7.3, two middle tree roots with the same rank
may join, and become children of a new middle node parent.

Local Shortcuts. Each of the middle trees maintains a local shortcut infrastructure in much
the same way that shortcuts are maintained in . Let u and v be two nodes in the same middle
tree such that u is a proper ancestor of v. Then u = v is an eligible local shortcut if and only if

9 Note that all such off-the-shelf data structures are, in fact, binary search trees, but we do not impose any total order
on the leaves, nor do we require any operation analogous to binary search.

31/ 56

TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

for every internal node x on the path Py,
LSBIndex(rank(x) + 1) < min (LSBIndeX(rank(u) + 1), LSBIndex(rank(v) + 1)).

Notice that the H-shortcuts are defined from the depths of H-nodes which increase along the
path from an H-root to an /H-leaf. In contrast, in middle trees the ranks of middle tree nodes
decrease on the path from a middle tree root to a middle tree leaf. The definition of power is
symmetric between u and v, so the increasing/decreasing direction here does not matter. Local
shortcuts have the same properties as #-shortcuts: they are non-crossing; all eligible local
shortcuts naturally form a poset >, and the maximal elements (w.r.t. >) among shortcuts on
a middle tree path P,, form a path Cover(u, v) with length O(loglog n). A local shortcut with
power 0 is called a trivial shortcut, which coincides with a middle tree edge from a parent to
one of its children.

Invariant 7.4 is a local tree analogue of Invariant 5.3.

INVARIANT 7.4. Let u be a single-child local (i, t)-node and let v be the local (i, t)-child of u.
Then the local (i, t)-shortcuts on Py, that are stored by the data structure form a path connecting

uandv.
Lemma 7.5 lists the middle tree operations.

LEMMA 7.5. The data structure supports the following operations on a collection of middle
trees, maintaining Invariants 7.3 and 7.4, with the following worst case time complexities (in
parentheses):

— Reduce the weight of a middle tree leaf (O(lognloglogn)).

— Remove (i, t)-status from a middle tree leaf (O(logn)).

— Given an edge depthi € [1, dmax] and a middle tree leaf xg, update the approximate i-counter

at xg (O(logn)).
— Given a newly created bottom tree root, create a new middle tree leaf (O(1)).
— Join two middle trees with the same rank (O(loglogn)).

PROOF. We address each operation in turn.

Reducing ranks. When the weight of a middle tree leaf xp is reduced (because its bottom tree
suffered enough leaf deletions) it may cause a discrete reduction in its rank, which violates
Invariant 7.3. If so, we destroy all middle tree nodes that are strict ancestors of xg. We first
uncover all local shortcuts touching the path from xp to its middle tree root x,;. This procedure
is the same as the uncovering procedure described in Section 9.1. In order to avoid redundancy,
we do not provide details here. This costs O(log nloglogn) time, and increases the number of
middle trees in the collection. (Each new middle tree root is inserted into the top tree.)

32 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Removing (i, t)-status. Similar to the (i, t)-forests, in the local (i, t)-tree the middle tree edges
between a local (i, t)-branching node x and its (i, t)-children are not considered to be trivial
(i, t)-shortcuts. To remove (i, t)-status from a bottom tree root/middle tree leaf x, we follow
local upward (i, t)-shortcuts to find the one-child (i, t)-node ancestor x’ of xp. If X" = xj; is the
middle tree root of xz then we remove (i, t)-status from xy, (triggering an update to the top
tree; see Lemma 7.6). Otherwise, the parent of x’, x” is an (i, t)-branching node. We remove
(i, t)-status from x’ and all shortcuts from xp to x’, then add a trivial (i, t)-shortcut from x” to the
sibling of x". This may cause x” and/or the sibling of x’ to lose (i, t)-status. Since the middle trees
are weight balanced, removing (i, t)-status from a middle tree leaf costs worst case O(logn)
time.

Update an approximate i-counter. If the approximate i-counter at xz changes it invalidates
the approximate i-counters at all ancestors on the path from xp to its middle tree root x;;. Each

can be updated in O(1) time (Lemma 6.4), for a total of O(log n) time.

Create a new middle tree leaf. The buffer tree root maintains its weight and approximate
i-counters. Thus, when the buffer is converted to a bottom tree, its root (the new middle tree
leaf) can be inserted into the middle tree collection in O(1) time. (As a new middle tree root, it
is also inserted as a leaf in the top tree; this is accounted for in Lemma 7.6.)

Joining middle trees. To join roots x;, xz, we create a new middle tree parent x and compute
its approximate i-counters in O(loglog n) time (Lemma 6.4) by adding the vectors at x;, xz. We
set the bitmap of x to be the bitwise OR of bitmaps stored in x; and xz. In order to maintain
Invariant 7.4, the data structure adds trivial (i, t)-shortcuts whenever x has an (i, t)-bit set to
1 and exactly one of x;, or xz has its (i, t)-bit set to 1. This is done in O(1) time using bitwise

operations. u

7.3 Top Trees

The top tree is an O(loglog n)-height mergeable binary tree. All middle tree roots are top tree
leaves. As a consequence of the middle tree reduction procedure described below, each top tree
has at most 4 1og n top tree leaves. Each top tree node x maintains pointers to its parent and
children, approximate counters, and a bitmap of (i, t) pairs indicating whether a local tree leaf
with (i, t)-status appears in the subtree of x.

Whenever we invoke the Middle Tree Reduction procedure, the entire top tree is rebuilt.

Middle Tree Reduction. There are at most log n possible ranks for a middle tree node. If
there are at least 21log n middle trees in a local tree, then the data structure invokes the middle
tree reduction procedure: (1) destroy the top tree, (2) repeatedly take two middle tree roots with

33 /56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

the same rank, and join the corresponding middle trees, then (3) rebuild the top tree on the
remaining middle tree roots. The size of the top tree can be as large as 4log n immediately after
merging the top trees of two sibling H-nodes.

LEMMA 7.6. The following operations are supported on the top trees, with the following worst
case time complexities (in parentheses):
— Insert a middle tree root into the top tree (O((loglogn)?)).
— Remove a middle tree root from the top tree (0((loglogn)?)).
— Merge the top trees of two local trees (O((loglog n)?)).
— Given the list of all middle tree roots that are leaves of the top tree, perform a middle tree
reduction and rebuild the top tree (O(log nloglogn)).
— Update approximate counters along the path from the given top tree leaf x,; to the top tree
root xr (0O((loglogn)?)).
— Remove (i, t)-status of a given middle tree root (O(loglogn)).

PROOF. The top tree implements leaf-insertion, leaf-deletion, and merging the two top trees
in O((loglog n)?) time. Rebuilding the top tree costs time proportional to the number of middle
trees (wWhich is O(log n)), multiplied by O(log log n) for updating approximate counters at each
node. u

7.4 Maintaining Precision when Sampling

Recall from Invariant 6.3 that H(x/) was defined as the maximum possible height of any
arithmetic formula tree (summing up approximate counters) with x/ € V]- at the root. We define
a similar function for nodes inside local trees. If v € £(x/), define H,(v) as:

Hy(v) = (dmax — j = 1) - O(loglogn) + [log(w(v)) | + hpot/top(V),

where hyo/t0p(v) = O(loglog n) is precisely the maximum number of top, bottom, and buffer
trees nodes on a path from v to a leaf of £ (x’). With this definition, it is straightforward to see
that when vy, vg are the children of v, that

He(v) = max(Hg(vr), He(vr)) + 1.

We first prove that all nodes in a local tree have the correct precision in terms of Hy(v).

Maintaining Invariant 6.3. Invariant 6.3 constrains the accuracy of approximate i-counters
in terms of H(-). We prove that Invariant 6.3 is maintained, by analyzing the accuracy of
approximate i-counters inside the local trees in terms of Hy(-).

Fix an edge depth i and a local (i, primary)-branching node x € H. Assume, inductively,
that every local (i, primary)-leaf £, in £(x) representing the (i, primary)-child y of x satisfies
Invariant 6.3 and C‘i(ﬂy) = C;i(y). We now prove that Invariant 6.3 is satisfied at x as well.

34 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Fix a local (i, primary)-branching node v € £(x), and let v, vg be its (i, primary)-children, so
Ci(v) = C;(vy) m Ci(vg). By induction on He(v),

Ci(v) > (1 —log™# n) (Ci(vr) + Ci(vg))

)max(Hg(\)L),He(VR))"'1

> (1 —log#n (Ci(vr) + Ci(vg))

H(v)
> (1 —log™P n)

Ci(V).

On the other hand, by the definition of @ and the inductive hypothesis, C;(v) < C;(vy) +Ci(vg) <
Ci(vy) + Ci(vg) = Ci(v). In addition, for any single-child local (i, primary)-node u, the approxi-
mate i-counter C;(u) is identical to the approximate i-counter value from its local (i, primary)-
child v. Since Hy(u) > Hy(v), the precision requirement still holds.

Let z be the root of £(x). Then Hy(z) < H(x) (provided the leading constants hidden by
the O(loglog n) factors in the definitions of Hy, and H are set correctly) and Invariant 6.3 holds

for x as well.

7.41 Sample an (i, primary)-child

This section shows that an (i, primary)-child can be efficiently sampled approximately propor-

tional to its approximate i-counter.

LEMMA 7.7. Given an (i, primary)-branching H-node w =, we can sample an (i, primary)-child
w with probability at most

Ci(w)
Ci(w1)

. (1 — log_ﬁ n)_(H(uj_l)_H(uj))

in time O(H (w™1) — H(w)). Recall that B = 2 is constant.

The data structure begins at the root of £ (w/~1), which is a local (i, primary) node, and
walks down to a descendant leafin £ (1/~1) as follows. If we are at alocal (i, primary)-branching
node x, let x; and xi be its local (i, primary)-children. We randomly choose a child with
probability proportional to €(x;) and C(xz), respectively, and navigate downward using local
(i, primary)-shortcuts to find the next local (i, primary)-branching child. The process terminates
when we reach a local leaf £,; (representing w/) with local (i, primary)-status.

Let xo be the root of £(w/™1), and the sequence Xxi, Xo, ..., Xy be all local (i, primary)-
branching nodes which are on the path between xo and xx,1 = €,;. For all t € [0, K], let x|
and x;’ be the two local (i, primary)-children of x;, with x{ being the ancestor of x,1.' Then we
have for all t € [0, k], C; (x{) = Ci(x¢+1), and the probability that a particular (i, primary)-child

10 In the case of t = 0, if the root is not a local (i, primary)-branching node then we take C}(t(’)’) to be zero.

35 /56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

w is sampled is at most

7.5

k

A , k
l_l _ Ci(Xtﬂ) <
=0 Gl +G(x7) g

Ci(x))
Ci(x)) m Ci(x))
CA‘i (Xt+1)

CA‘i (X¢)

(1-1log P n)?

(1-1log P n)!

t=0

= 20X (4 1ogh)~ ker)

(1 — log B py-(H@™)-H@W)),

< = -
Ci(w1)

Local Tree Operations

Lemmas 7.1, 7.5, and 7.6 established worst case bounds on the elementary operations inside

buffer, bottom, middle, and top trees. Lemma 7.8 lists the operations supported by the local

tree as a whole, and analyzes their amortized time costs.

LEMMA 7.8. There exists a data structure that supports the following operations between an

H-node v and its H-children, with the following amortized time complexities (in parentheses):

Attach a new H-child x to v (O((loglog n)?)).

Detach an H-child x of v (O((loglog n)?)).

Let S be a set of H-children of v. Merge S into a single node x’, which is a new H-child of v.
(0(IS|(loglog n)?)).

Given a non-root H-node x, return its H-parent v (O(H (v) — H(x))).

Given an H-node v, enumerate all H-children of v with (i, t)-status (O(loglogn) per child)
or decide if v has a unique (i, t)-child (O(loglogn)).

Given an H-node x and a bit vector b, add local (i, t)-status to the local tree leaf €y for all
(i, t) pairs indicated by b (0((loglog n)?)).

Given an H-node x and a bit vector b, delete local (i, t)-status to the local tree leaf €y for all
(i, t) pairs indicated by b (O(loglogn)).

Given an (i, primary)-branching node v, sample an (i, primary)-child x with probability at

most A
Ci(x)

Ci(v)

- (1 —=1og~2 n))"HOV-HX), (Time: O(H(v) — H(x)))

Increase the i-counter of an H-child x of v. (O((loglogn)?)).
Decrease the i-counter of an H-child x of v. (O(loglogn)).

PROOF. We will address these operations one by one. The sampling operation was already

established in Lemma 7.7, Section 7.4. We first describe the worst case cost of operations, and

at the end of the proof we analyze the amortized cost.

36 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Attach a new H-child x. The local tree leaf ¢, is created and inserted into the buffer tree of
L(v). By Lemma 7.1 the worst case cost of this operation is O((loglog n)?). If the buffer tree is
full, the algorithm converts the buffer tree into a bottom tree which costs O(1) by Lemma 7.1,
then creates a middle tree leaf which costs O(1) time by Lemma 7.5, and possibly rebuilds the
top tree which costs O((loglog n)?) time by Lemma 7.6.

Detach an H-child x. The local tree representitive £ is first removed from either the cor-
responding buffer tree or bottom tree, costing O((loglog n)?) time by Lemma 7.1. In the case
where the corresponding buffer/bottom tree root loses its local (i, t)-status, or in the case where
the approximate i-counters are reduced, the entire ancestor path is updated in O(log n) time by
Lemmas 7.5 and 7.6. In the case where the rank of the corresponding buffer/bottom tree root is
reduced (costing O(log nloglogn) time by Lemma 7.5), the middle tree reduction may be then
invoked, costing O(log nloglog n) time by Lemma 7.6. Notice that these log n worst case terms
are amortized away at the end of this proof.

Merge sibling #H-nodes. For each node x € S, we detach the representative £, in worst case
O((loglog n)?) time by Lemma 7.1, and then merge the local trees of S-nodes in pairs until there
is only one node left. To merge local trees we first merge their buffer trees (costing O((loglog n)?)
time by Lemma 7.1), then merge their top trees (costing O((loglog n)?) by Lemma 7.6). Then,
if the merged buffer tree is full, make it a bottom tree (costing O(1) by Lemma 7.5). Finally,
if the top tree is full, call the middle tree reduction procedure (costing O(log nloglogn) time
by Lemma 7.6). Let x” be the node resulting from merging S. Its representative #,- is created,
having weight that is the sum of the weights of the S-nodes, and reattached to the buffer tree of
L(v), in 0((loglog n)?) time.

Return the H-parent. Let x € H be a non-root /-node. We find the local representative
¢y € L(v), then walk up to the root of £(v) and return “v.” The number of buffer, bottom,
and top tree nodes traversed is O(loglog n) and the number of middle tree nodes traversed is
log("wvgg) +0(1). By the definition of H(-), this is bounded by H(v) — H(x).

Enumerate all local tree leaves with local (i, t)-status. We perform a depth-first search
from the local tree root. When the search encounters a top tree, a bottom tree, or a buffer
tree node, the bitmaps in its children indicate whether the child contains a local tree leaf
with an (i, t)-status or not. When the search encounters a middle tree node x, we examine
DowN|[DowNIDX[i, t]] to see whether there is a downward local (i, t)-shortcut leaving x or
not. If there is no downward local (i, t)-shortcut leaving x, then x is a local (i, t)-branching
node and the search proceeds recursively on both children. Otherwise, the search navigates
downward from a local (i, t)-non-branching node x to its highest descendant (i, t)-node x’. The
same navigation algorithm described in Section 5.1 is performed so that after the navigation all

37 /| 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

(i, t)-shortcuts on the path P, are exactly local shortcuts in COVER(X, x”). (The cost of adding
these shortcuts inside a local tree is amortized differently than how adding #-shortcuts are
amortized; see below.) All local tree leaves with (i, t)-status are enumerated in O(loglogn)
amortized time per leaf.

To test whether there is a unique leaf with (i, t)-status, we navigate downward from the
root z of L(v), following local (i, t)-shortcuts until reaching either alocal (i, t)-leaf x (necessarily
unique) or a local (i, t)-branching node x (indicating non-uniqueness). We then cover local
(i, t)-shortcuts on the path from z to x as long as it is possible. As shown below, the amortized
cost of this operation is O(loglogn).

Add local (i, t)-status to a local tree leaf. Recall that the only leaves that may gain local
(i, t)-status are buffer tree leaves (Remark 7.2). Let ¢, be the local tree leaf gaining (i, t)-status.
If ¢, resides in a bottom tree we detach it, reattach it to the buffer tree, and add (i, t)-status
there. From the description above (the first two operations listed on Lemma 7.8), the time cost
is amortized O((loglog n)?) due to the potential detach/attach operation.

Delete local (i, t)-status from a local tree leaf. The algorithm first removes the local
(i, t)-status from the local tree representative ¥, costing O(loglogn) time by Lemma 7.1. If
the corresponding bottom tree root loses some local (i, t)-status, the algorithm removes local
(i, t)-status from the corresponding middle tree leaf, costing O(log n) time by Lemma 7.5. The
log n worst case time cost will be amortized as described below.

Increase the approximate i-counter of an H-child x of v. Let £, be the local tree leaf that
represents x. The algorithm detaches ¢, changes the i-counter value and then attaches ¢ to
the buffer tree. The operations costs O((loglogn)?) time from the first two operations listed on
Lemma 7.8.

Decrease the approximate i-counter of an #{-child x of v. The algorithm sets the approxi-
mate i-counter at x to the new value, costing O(log log n) time by Lemma 7.1. If £, is in a bottom
tree and the corresponding bottom tree root has its approximate i-counter value changed, the
algorithm invokes Lemma 7.5 and updates the approximate i-counter at the corresponding
middle tree leaf, costing O(log n) worst case time and again can be amortized away by the
description below.

Amortized Cost Analysis. We use a credit system. Every buffer tree leaf carries ©(1) credits
and every middle tree root carries ©(loglogn) credits. Suppose the buffer tree matures and
becomes a bottom tree, say with root xp. At this moment the tree has ®(log® n) credits, which
will pay for all future costs associated with updating the middle and top tree ancestors of xg.
The following three types of events change the information stored at x.

38 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

1. xpchangesrank. Since the bottom tree is only subject to detach operations (see Remark 7.2),
its weight is non-increasing. Therefore, this happens at most log n times.

2. xploses (i, t)-status. It can never regain (i, t)-status (Remark 7.2), so this happens at most
3dmax = O(log n) times.

3. xp’s approximate i-counter changes. The approximate counters are non-increasing, and
each such counter can take on O(logﬁJr1 n) different values (Section 6). Since there are

B+2

log n possible values for i, the total number of counter changes is O(log"™“ n).

Each of the above events requires that we update or delete the entire path form xp to the
local tree root, which can have length ©(log n). Events of type (1) take O(log nloglogn) time
to destroy the path and reinsert new middle tree roots into the top tree, each with O(loglog n)
credits. Events of type (2) and (3) take O(log n) time to update the (i, t)-status or approximate
i-counters of all ancestors of xp. Since B = 2, the total cost for events of type (3) is the bottleneck.
They take O(logP*3 n) time over the life of the bottom tree. We set & > 8 + 3 = 5, so the credits
of a bottom tree suffice to pay for all costs incurred over the lifetime of the bottom tree.

A middle tree reduction procedure is invoked if the leaf set S of the top tree has size
|S| > 2logn. Thus, it begins with at least 2logn - O(loglogn) credits and ends with at most
logn - O(loglogn) credits, which pays for rebuilding the top tree in O(log nloglogn) time
(Lemma 7.6).

The number of shortcuts removed is bounded by the number created, so it suffices to
account for the cost of creating shortcuts. Local shortcuts are created in two ways: (i) in response
to the creation of a middle tree node (joining two middle trees), and (ii) lazy covering. The
cost of case (i) is ultimately paid for by the deletion of that middle tree node, which in turn is
paid for by the bottom tree that triggered the deletion. The cost of case (ii) is attributed to the
removal of (i, t)-status at some corresponding middle tree leaf with an (i, t)-status, which is
accounted for in the cost of type (2) events.]

8. LooseEnds

Some of the operations on the hierarchy H required the definition of (i, t)-forests (Section 5)
and local trees (Section 7) and could not be described until now. In Section 8.1 we analyze the
cost of searching for a replacement edge using the two-stage batch sampling test sketched in
Section 3.2.2. In Section 8.2 we explain how to maintain (i, t)-forests (Invariant 5.3), and in
particular, how to efficiently merge two such forests when doing batch promotions/upgrades. In
Section 8.3 we prove Lemma 6.5 concerning approximate counters, and show that Invariant 6.3

is maintained.

39 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

8.1 The Batch Sampling Test

Recall from the deletion algorithm of Section 3.2.1 that u! is the new H-node resulting from
merging a set of siblings. In this section we show how the data structure performs the batch
sampling test among i-primary endpoints touching u'. Let p and s be the number of i-primary
and i-secondary endpoints touching u!, and let p = ;(u!) be a (1 + o(1))-approximation of p.
(Retrieving p is Operation (9) from Lemma 3.1.)

Single Sample Test. To (1 + o(1))-uniformly sample one i-primary endpoint touching ul,
the data structure sets x = u! and iteratively performs the following step. Base case: If x is an
(i, primary)-leaf, then return an i-primary endpoint at x uniformly at random. General case: If

x is an (i, primary)-branching node, then use £(x) to sample an (i, primary)-child x” of x with
Gi(x')
Ci(x)
node or leaf, we set x = x” and repeat. Otherwise, we repeatedly follow the (i, primary)-shortcuts

probability at most (1-1og # n)~(HXO-HX)) (Lemma 7.7). If x’ is an (i, primary)-branching
leaving x’ to its (i, primary)-child x”, set x = x”, and repeat (Lemma 5.7).

Notice that with accurate counters this procedure picks a perfectly uniformly random
i-primary endpoint. Let (x, {x, y}) be the sampled endpoint and xo = u!, x4, ..., Xx = x be the
sequence of (i, primary)-branching nodes on the path in / from u' to x. Then the probability
that (x, {x, y}) is sampled is at most

k-1 [A
1 ﬂ Ci(Xjs1) B (HOO)H
p (1 -log Bn) (H (x))—H (Xj+1))
1]

Ci Ci(x;)
k-1 A

= 1 Cl,\(XH-l) (1].Og_ﬁ n)_H(XO)

Ci) |1y Cilx))

1 GO (1 1og—F p-Hx0)

G0 Gy 8T
=(1- 0(1))6-(ui) (1 — log=# n)~O(lognloglogn) (H(xo) = O(log nloglog n))
<(1+ 0(1))C-(ui)' (B=2)

The 1/C;(x) factor reflects the fact that once we reach the H-leaf x, an endpoint touching x
is selected (exactly) uniformly at random, without any approximation. To check whether {x, y}
is a replacement edge or not, it suffices to check whether y' = ul. This can be accomplished by
starting from y and repeatedly accessing the {-parent until y' is reached. Using local trees, the
cost of computing H-parents along a path telescopes to H(y') = O(log nloglog n).

The Preprocessing Method. Another way to sample i-primary endpoints is to first enumerate
all i-primary endpoints and all i-secondary endpoints touching u! in O((p + s) loglog n) time,
mark all enumerated endpoints and store all i-primary endpoints in an array. Then the data

40 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

structure samples an i-primary endpoint uniformly at random from all enumerated i-primary

endpoints and checks whether the other endpoint is marked in O(1) time.

Batch Sampling Test on kK Samples. The data structure runs the two sampling methods in
parallel and halts when the first finishes. Thus, the time to sample k (i, primary)-endpoints is

0] (min {(p + s)loglogn + k, klognloglog n}) :

8.11 Cost Analysis for Sampling Procedure

As described in Section 3.2.2, the sampling procedure either returns a replacement edge, or
invokes the enumeration procedure. Roughly speaking, if no replacement edge is found, the
cost is charged to either upgrades of (i, secondary) endpoints or promotions to (i, primary) end-
points. If any replacement edge is found, the data structure is willing to pay O(log n(loglog n)?)
cost because this happens at most once per Delete operation.

If the enumeration procedure is invoked, the data structure upgrades all enumerated
i-secondary endpoints touching u! to i-primary endpoints, and then all i-primary endpoints
touching u! associated with non-replacement edges are promoted to (i+1)-secondary endpoints.
The first batch sampling test, when k = O(loglog p) = O(loglog p), costs

T) = O(min((p + s) loglogn, loglog p - log nloglogn)).
The second batch sampling test (k = O(log p)), if invoked, costs

T, = O(min((p + s) loglogn, log p - lognloglogn)).
The enumeration procedure, if invoked, costs

Tr = O((p + s)(loglog n)?).

Let p be the fraction of i-primary endpoints touching u' associated with replacement edges
before the execution of the sampling procedure. The rest of the analysis is separated into two

cases:

Case 1. If p > 3/4, the probability that the first batch sampling test returns with a replacement
edge is atleast 1 — (1/4 + 0(1))°{°818P) > 1 — 1/log p." The second batch sampling test, if
invoked, returns a replacement edge if at least half the O(log p) endpoints sampled belong
to replacement edges. By a standard Chernoff bound, the probability that the second batch
fails to return a replacement edge and halt is exp(—Q(log p)) < 1/p.

11 Itis 1/4 + o(1) because the sampling procedure is only (1 + o(1))-approximate.

41 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

The expected time cost is therefore

Ty + (1/log p)To + (1/p)Te = O ((log n+ pTTS) (loglog n)z) = 0((logn + s)(loglog n)%)
We charge the Delete operation O(log n(loglog n)?), which covers the expected cost of the
two batch sampling steps and the expected cost of dealing with primary endpoints if the
enumeration step is reached. If the enumeration step is reached, endpoint upgrades pay
for the ®(s(loglogn)?) cost of dealing with secondary endpoints.

Case 2. Otherwise, p < 3/4. If the enumeration procedure is ultimately invoked,a 1 — p = Q(1)
fraction of the i-primary endpoints touching u! belong to non-replacement edges, which are
promoted to depth i + 1, and all s i-secondary endpoints are upgraded to either i-primary
or (i + 1)-secondary status. In this case the time cost is

Ty + Ty + T = O((p + s) (loglog n)?),

which is charged to the promoted edges/upgraded endpoints. We need to prove that the
probability of terminating after the second batch sampling test is sufficiently small. If
p > 1/4 then the probability of the first batch sampling test not returning a replacement
edge is at most (3/4 + 0(1))°1°81°8P) < 1/]og p. In this case the expected cost is

Ty + (1/log p)T, = 0(log n(loglog n)?).

If p < 1/4 then, by a Chernoff bound, the probability that at least half the sampled endpoints
belong to replacement edges is exp(—Q(log p)) < 1/p. Therefore the expected cost when
the enumeration procedure is not invoked with p < 1/4 is at most

(1/p)(Ty + T;) = O(lognloglogn),

which is charged to the Delete operation.

8.2 Maintaining (i, t)-Forests

Lemma 8.1 summarizes the operations on (i, t)-forests which are implemented via the shortcut

infrastructure and local trees, together with their corresponding time cost.

LEMMA 8.1. There exists a data structure on H supporting the following operations with amor-
tized time (in parenthesis):

— Given an H-leaf x and an (i, t) pair, designate x an (i, t)-leaf (O(log n(loglog n)z)).

— Given an (i, t)-leaf x, remove its (i, t)-status (O(log n(loglogn)?)).

— Given an (i, t)-node v, return the (i, t)-parent of v (O(loglogn)).

— Given an (i, t)-node v, enumerate the (i, t)-children of v (O(1 + kloglogn) where k is the
number of enumerated (i, t)-children).

42 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

— Given an (i, t)-tree 7 rooted at v, an integer i’ € [i,dnax], an endpoint type t’, and two
subsets of (i, t)-leaves S~ and S* (these subsets need not be disjoint), update H so that all of
the leaves in S~ lose their (i, t)-leaf status, and all leaves in S* gain (i’, t')-leaf status (if they
did not have it before) (O(|7 |(loglog n)* + 1)).

Each operation assumes that, prior to the execution of the operation, Invariant 5.3 holds for
all H-nodes of depth > i, where i is part of the input of the operation. Moreover, Invariant 5.3 is
guaranteed to hold for all H-node of depth > i after each operation is completed.

The remainder of this section constitutes a proof of Lemma 8.1.

Add (i, t)-status to an H-leaf. Let x be the H-leaf. In order to identify the (i, t)-branching
ancestor of x, the data structure climbs up A and finds the first 4-node x’ that is either an
(i, t)-node or has a downward (i, t)-shortcut x’ = x”. If x’ is an (i, t)-branching node, then
since the H-child of x” that is also an ancestor of x is not an (i, t)-node, x” is the (i, t)-branching
ancestor of x. Otherwise, the data structure performs a binary search on the path P,,~ to find
the (i, t)-branching ancestor as follows:

If X’ < x” is not a fundamental (i, t)-shortcut, the data structure uncovers x’ < x” into
x" = yand y = x” and recurses to one of the two subpaths depending on whether y is an
ancestor of x or not. Otherwise, X’ = x” is fundamental, and in this case x’ is the branching
node we are looking for. Let x”’ be the ancestor of x that is a child of x". We uncover x’ = x”,
give local (i, t)-status to ¢~ and €y~ in £(x’), and then cover all shortcuts on the path Py 4,
using Lemma 5.9 (See Section 9.1.) The cost for walking up these local trees telescopes to
O(lognloglogn) by Lemma 7.8. Now suppose that t = primary. For every (i, t)-branching
node y that is an ancestor of x, the data structure updates the approximate i-counter stored
in y, using Lemma 7.8. Now, Invariant 5.3 is restored on all {-nodes with depth > i since all
(i, t)-shortcuts between x”” and x form the path P, . Since there are at most dpyqx = O(logn)
such (i, t)-branching nodes affected, the amortized cost is at most O(log n(loglog n)?).

Remove (i, t)-status from an (i, t)-leaf. Let x be the #{-leaf. The data structure navigates up
from x by upward (i, t)-shortcuts until it reaches a single-child (i, t)-node q. The intermediate
(i, t)-shortcuts are removed by setting their (i, t)-bits to 0.

The data structure then removes the local (i, t)-status of the local tree leaf ¢; representing
q. If the (i, t)-parent p of q (which is also its H-parent) now has only one (i, t)-child ¢/, p is
no longer an (i, t)-branching node. The data structure removes the (i, t)-status of ¢/, removes
local (i, t)-status of £, in L(p) using Lemma 7.8, removes the (i, t)-branching status of p, and
covers the fundamental (i, t)-shortcut p = ¢’ using Lemma 5.9. This may also cause p to lose its
(i, t)-status.

43 /| 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

Notice that this operation is equivalent to first performing the lazy covering on the (i, t)-
shortcuts from x to its (i, t)-parent and then removing x. Hence, the time cost for removing
(i, t)-status from x is amortized O((loglogn)?). We can remove (i, t)-status from a group of
leaves S~ in O(|S™|(loglog n)?) amortized time by repeating this procedure for every leaf. Notice
that Invariant 5.3 holds for all {-nodes with depth > i because fundamental (i, t)-shortcuts are
covered when H-nodes lose their (i, t)-branching status.

Enumerating (i, t)-children. This is an operation of Lemma 7.8.

Given an (i, t)-tree 7 and a set of leaves $* in 7, add (i’, t’)-status to the leaves in S*.
First of all, the data structure creates a “dummy” tree induced from the set of leaves S* and the
root of 77, by first copying the entire (i, t)-tree 7, enumerating all its leaves and removing all
the leaves that do not belong to S*.72 Hence, without loss of generality, we now assume S* is the
entire leaf set of 7~ and that there are no potential shortcuts w.r.t. 7.

Notice that, after adding (i’, t’)-status to the leaves in 7, every (i, t)-branching node of
depth at least i’ in 7 is also an (i’, t’)-branching node. Moreover, for each such (i, t)-branching
node, adding (i’, t’)-status to the node converts at most one /{-node into a new (i’, t’)-branching
node.

Define 7 * to be the subtree of A induced by all ancestors of leaves in 7~ up to depth i. Our
first task is to enumerate all nodes of 7 * at depth i’; call them ry, ..., rx.

CLAIM 8.2. Thenodesry,...,ry can be enumerated in worst case O(kloglogn) time.

PROOF. We perform a depth first search of 7~ looking for nodes at depth i’. Let x be the locus
of the search; initially x is the root of 7. If x is at depth i’ we output x and backtrack. If x is a
7 -branching node we continue the search recursively on each 7 -child of x. If x has a single
downward 7 -shortcut x = x” and x” has depth strictly greater than i’ we iteratively uncover
the downward shortcut from x until it is x = x”, where x” has depth at most i/, and move
the locus of the search to x”. If k nodes are output by this procedure, the number of shortcuts
followed/uncovered is k - O(loglog n).]

Let71,..., 7 be the subtrees of 7 rooted atry, ..., rrx and let Wy, ..., Wk be the (i, t’)-trees
rooted at these nodes. It may be that some r; does not currently have (i’, t’)-status, in which
case W is empty. In this case we simply traverse 77, giving each node encountered (i’, t’)-status.
In Claim 8.3 we focus on the non-trivial problem of merging (7;, W;) when r; is an existing
(', t')-root. Here “W)-status” is synonymous with (i’, t’)-status.

12 This is the reason for having 3dn.+1 slots in the Down arrays; the +1 is for creating a temporary dummy tree of this
type.

44 | 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

CLAIM 8.3. Let 7;, W, be two trees rooted at r;, where all shortcuts are maximal. We can give ‘W)-
status to all leaves of 77 (and find all new ‘Wi-branching vertices) in amortized O(|77|(loglog n)?)
time, independent of the size of ‘W,.

(a) Casela
@T

OROROROROROROROROR B
(b) Case1b (c) Case 2a (d) Case 2b

Figure 9. The examples to the four cases in the proof of Lemma 8.3. The red circle nodes are 7-nodes
and the blue square nodes are W-nodes.

PROOF. We merge 7; and ‘W, in a depth-first manner. Let r be the locus of the search; initially
r = r;. We maintain the invariant that r is both a 7;-node and a “‘W;-node. There are two main
cases; Case 1 is when r is a branching 7;-node and Case 2 is when r is a single-child 7;-node. See
Figure 9 for illustration.

Case 1a: ris a branching 7;-node but not a branching ‘W;-node. After the merging process r
will become a branching ‘Wj-node, and therefore can have no downward ‘W;-shortcut. We
repeatedly uncover the ‘W)-shortcut leaving r. In the final step we uncover a fundamental
shortcut r = x, give €y local ‘W-status in £(r), and then designate r a branching ‘W;-node. This
reduces the situation to Case 1b.

Case 1b: ris both a branching 7;-node and branching ‘W;-node. Enumerate every 7;-child r’ of
r. If r’ does not have ‘W;-status, traverse the entire subtree of 7; rooted at r’, marking each node
encountered as a ‘Wj-node, and give ¢, local ‘W;-status in £(r). Otherwise, move the locus of
the search to r’ and recursively merge the subtrees of 7; and ‘W, rooted at r’.

Case 2a: r is a single-child 7;-node and the 7;-child of r is a ‘Wj-node or has a downward “W)-
shortcut. Let y be the 7;-child of r. If y is a ‘Wj-node then there are no new branching vertices on

45 /| 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

the path from r to y (exclusive). In this case we move the locus of the search to y and continue
recursively. If y is not a ‘W;-node but has a downward “‘W)-shortcut it becomes a branching
‘Wi-node. We repeatedly uncover its downward ‘W;-shortcut, culminating in uncovering a
fundamental shortcut y = x, then designate € a local ‘W;-node in £(y) and designate y a
branching Wj-node. Finally we move the locus of the search to y.

Case 2b: ris a single-child 7;-node, but its 7;-child y is neither a ‘W;-node nor has a ‘W)-shortcut.
In this case, y will become a branching ‘W;-node or W;-leaf. In addition, there may be a new
branching ‘W)-node on the path from r to y. We proceed to find the new branching node as
follows. Initialize x = r and let x = x’ refer to its current downward 7;-shortcut. Whenever x’ is
a Wi-node or has a ‘Wj-shortcut, we move the locus of the search to x’, setting x = x’. Whenever
x has a downward 7;-shortcut x < x” and a “W)-shortcut x = x” with x’ # x”, we uncover the
one with maximum power, or uncover both if they have the same power. If x = x” does not
exist because x is a branching W;-node then we repeatedly uncover x = x’. Eventually this
process terminates when we uncover a fundamental 7;-shortcut x = x’ (perhaps uncovering a
fundamental W;-shortcut x = x” at the same time). Then x is the new branching W;-node. We
designate it as such, and explore the 7; subtree rooted at x’, giving all 7/;-nodes and shortcuts

encountered ‘W)-status.

About Invariant 5.3. Notice that all new (i’, t’) branching nodes are correctly identified by
the procedure described above, and that i’ > i. Thus, Invariant 5.3 holds for all +{-nodes of
depth > i.

Time Complexity. The time required to traverse 7; and identify all new branching nodes is
O(|71] loglogn). The running time is dominated by the cost of introducing up to O(|7;]) new
branching vertices and adding Wj-status to O(|7;]) nodes. The cost of adding “W;-status is
0((loglog n)?) and the cost of uncovering a fundamental W;-shortcut, in Case 1a or Case 2b, is
also O((loglog n)?). In total the time is O(|7;](log log n)?). n

8.3 Approximate Counters Operations — Proof of Lemma 6.5

Update ancestor approximate i-counters. The data structure updates the approximate
i-counters from a given HH-leaf x to the corresponding /-root. Let v be the current (i, primary)-
node. If v is a single-child (i, primary)-node, then it adopts the approximate i-counter of its
(i, primary)-child. If v is the child of an (i, primary)-branching node u, the data structure
updates the approximate i-counters of v from £ (u) using Lemma 7.8. At this point u adopts
the approximate i-counter of the root of £(u). There are at most log n branching nodes on
the path and each costs O((loglog n)?) time to update an i-counter (Lemma 7.8), for a total of
O(log n(loglog n)?) time.

46 /| 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Update approximate i-counters in an (i, primary)-tree 7 rooted at u’. At the beginning
of this operation, the approximate i-counters at all (i, primary)-leaves are accurate but those at
internal nodes are presumed invalid. Beginning at the root u, the data structure traverses the
(i, primary) tree 7 in a postorder fashion, setting approximate i-counters in this order. As in
the analysis above, the cost is O((loglog n)?) per node in 77, for a total of O(|7"|(loglog n)?).

Update approximate counters at a merged/split {-node x. Suppose x = u! is the result
of merging several siblings. We inspect the root of £(x) and retrieve the bitmap I indicating for
which (i, primary)-pairs x is an (i, primary)-branching node. Using table lookups, in O(log log n)
time we make an O(log nloglog n)-bit mask and copy all the approximate i-counters from the
root of £(x) to x. The case when x is the result of a split is handled in the same way.

9. Amortized Analysis of Shortcut Maintenance

In this section, we describe how shortcuts are utilized and supported on . Moreover, we
provide a potential function for H-shortcuts that contributes to the amortized analysis for the
Delete operation.

9.1 Covering All Shortcuts Touching Specified Paths — Proof of Lemma 5.9

The remainder of this section constitutes a proof of Lemma 5.9. Let P be a path from the given
JH-node u' to the corresponding -root u°.

Uncover and remove all #{-shortcuts touching P. Removing a fundamental shortcut is a
local tree operation that costs O((loglog n)?) time. Uncovering a shortcut with both endpoints
on the path costs O(loglog n) time by Lemma 5.6. (Such a shortcut may be an (i’, t’)-shortcut
for multiple (i’, t’) pairs.) Uncovering a non-fundamental deviating (i, t)-shortcut costs O(1)
time, by setting the appropriate (i, t)-bits in the supporting shortcuts. Thus, the total cost of
uncovering and removing all of the #-shortcuts on the affected paths is O(log n(loglog n)?).

For each H-node x iterated from u® to u!, the data structure first enumerates all downward
H-shortcuts in DowNy. Then the data structure repeatedly uncovers the #-shortcut with the
largest power > 0 until every H-shortcut leaving x is fundamental.

The data structure then uncovers each fundamental #-shortcut leaving x by the following
procedure. To uncover (remove) a fundamental H-shortcut x = y, the data structure first
detaches the local leaf £y, in £(x) representing y and re-inserts £, into the buffer tree. Notice
that this operation does not alter the structure of #, so any H-shortcut leaving y is not affected.
Then the data structure adds local (i, t)-status to £, for all (i, t) pairs indicated in the bitmap
bx—y. This enables one to navigate from the root of L(x) to ¢, via local (i, t)-shortcuts in
L(x). To preserve Invariant 5.3 (and thereby keep the whole (i, t)-forest in / navigable) we

47 | 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

designate x, y (i, t)-nodes for each (i, t)-bit indicated in by y. By the local tree operations listed

in Lemma 7.1, the time cost for uncovering (removing) a fundamental /-shortcut is amortized
0((loglog n)?).

Adding a fundamental shortcut between an H-node v and its H-parent u for all (i, t)
pairs indicated by the bit vector b. This can be done by first invoking Lemma 7.8, removing
local (i, t)-status from ¢, and then adding a shortcut u = v via Lemma 5.6. The time cost is
O(loglogn).

Adding all fundamental H-shortcuts touching P shared by some (i, t) pairs. There
are two types of fundamental H-shortcuts touching P: (1) having both endpoints on P, and (2)
deviating from P.

To add all fundamental H-shortcuts touching P, the data structure checks for edge depth
j iterated from i to 1 whether to add the fundamental shortcut w/~! = w/ or not. It should
be added if, for some (i, t) pair, u; is an (i, t)-node but w~1is not an (i, t)-branching node. To
check this, the data structure first obtains a bitmap b stored in w/ indicating which (i, t) pairs
have an (i, t)-status at W, and then accesses the path in the local tree L(uf‘l) from ¢, to the
root of £(u!"1). During this traversal, if we encounter a local (i, t)-branching node we set the
corresponding (i, t)-bit in b to zero. When we reach the root of £(w/~1), if b is still non-zero, the
data structure creates the fundamental 4-shortcut w1 = w with b,j-1—,; = b. Furthermore,
for each (i, t)-bit set to 1 in b, the data structure removes local (i, t)-status from the local tree
leaf £,;. If u; is not an (i, t)-branching node, we also remove (i, t)-status from u;.

To handle the second case, notice that by Lemma 5.5, for each (i, t) pair there is at most
one fundamental (i, t)-shortcut deviating from P. In particular, for an (i, t) pair, at most one
deviating fundamental (i, t)-shortcut is added touching the unique -node w/~! such that u/~?
belongs to an (i, t)-forest but w/ does not. The data structure forms the bitmap diff in O(1) time
indicating all such pairs. For each (i, t) in diff we check in O(loglog n) time whether £(u/™)
contains a single leaf £, with local (i, t)-status (Lemma 7.8). If so, we create a fundamental
shortcut w/ ‘1:1, remove local (i, t)-status from £y, and remove (i, t)-status from y if it is not
an (i, t)-branching node.

We now analyze the time cost. For (1), at most O(log n) #{-shortcuts are covered, and each
covering involves multiple (i, t) pairs so each covering can be done in O(H (w/) — H(w/*')) time
(Lemma 7.8), which telescopes to O(log nloglog n). Moreover, removing (i, t)-status on local
tree leaves costs O(loglog n) time, by Lemma 7.8. For (2), there are O(log n) possible deviating
fundamental shortcuts to be created. Each requires O(loglog n) amortized time, for a total of
O(log nloglog n) amortized time.

48 | 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Cover all (i, t)-shortcuts having both endpoints on P. In addition to adding all of the
fundamental shortcuts, the data structure adds back all of the -shortcuts on the path P from w/
to u°. This is done by traversing P loglog n times. In the p-th traversal the data structure covers
all possible H-shortcuts of power p + 1 that have both endpoints on the path. Each shortcut is
covered in O(loglog n) time: to cover x = y from x = y’ and y’ < y, the data structure first
adds the shortcut x = y into Upy. Then the data structure computes the bitwise AND of two
bitmaps by setting by~ < by=y A by =y, and removes the bits in the covered shortcuts by
setting by < bx=y ® by=y and by —, < by, ® by—,. Finally, the data structure updates
UPIDXy, DOWN, and DOWNIDX, according to by~ y, and if by - and/or by, becomes 0, updates
DOWNy, DOWNIDXy, OcCy, DOWN ., DOWNIDX,/, OCC,- appropriately.

It is straightforward to see that, after log log n passes, if there is any (i, t)-shortcut with at
least one endpoint on the path that could be covered, the other endpoint must be outside of
the path and hence is a deviating (i, t)-shortcut. Since there are a total of O(dnqx) = O(logn)
non-fundamental H-shortcuts to consider, the total time cost is O(log nloglog n).

9.2 Shortcut Cost Analysis

At first glance it seems sensible to charge the cost of deleting a shortcut to the creation of the
shortcut, and therefore only account for their creation in the amortized analysis. This does not
quite work because shortcuts are shared between many (i, t) pairs and the cost of deleting a
shortcut depends on how broadly it is shared. The amortized analysis for H-shortcuts focusses
on supporting potential shortcuts defined as follows:

DEFINITION 9.1. Let u be a single-child (i, t)-node and v be the (i, t)-child of u. Then the
maximal potential (i, t)-shortcuts are the maximal shortcuts with respect to the covering relation
having both endpoints on the path P,,. The supporting potential (i, t)-shortcuts are the H-
shortcuts that support some maximal potential (i, t)-shortcut.

Consider a supporting potential shortcut u = v (which may or may not be stored) and
define k;~, to be the number of (i, t) pairs for which u = v is covered by a maximal potential
(i, t)-shortcut but is not covered by a stored (i, t)-shortcut.’® Define a function f as follows.

ky~y, ifu = visnot a fundamental shortcut,
flusv) = . .
0, if u = vis a fundamental shortcut.
Let C be the set of all shortcuts defined over H, C; be the set of all stored non-fundamental

shortcuts, and Cr be the set of all stored fundamental shortcuts. The potential @ is defined as

13 The count k-, also takes the dummy tree into account, as if it had a special (i, t)-status. Notice that the dummy tree
only exists in the middle of the Delete operation; see Section 8.2.

49 /| 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

follows.

d = Z f(usv)(loglogn+1)| + |Cs| -loglogn + |Ct| - (loglog n)*

usvecC

(o)) %!

@1
Uncovering a fundamental shortcut could possibly cause a detach-reattach operation in the
local tree, which costs O((loglog n)?) time; see the proof of Lemma 5.9 in Section 9.1. This is the
reason that we give more credit to a stored fundamental shortcut than to a non-fundamental
shortcut. Throughout the algorithm execution, there are many places where the (i, t)-forests
are modified. These structural changes affect the potential @ so we list them in the following
paragraphs.

Adding (i, t)-status to an #-leaf. (Lemma 8.1) Adding (i, t)-status to an /-leaf increases
® by O(log n(log log n)?) since all new shortcuts that need to be created lie on the path from the
leaf to its (i, t)-parent. In particular, each of the O(log n) new fundamental shortcuts increases
@3 by (loglog n)? each, and both ®; and @, increase by at most O(log nloglog n) each.

Removing (i, t)-status from an #-leaf. (Lemma 8.1) Removing (i, t)-status from a leaf
x increases @ by O((loglogn)?). Let y be the (i, t)-parent of x. If y loses its (i, t)-status and
its H-parent z is no longer an (i, t)-branching node, we will create one new fundamental
shortcut from z to a sibling of y, increasing ®; by (loglogn)2. All new supporting potential
(i, t)-shortcuts will cover z and have distinct powers. Thus, the net increase of ®; will be at
most (loglogn + 1) loglog n. ®, is unchanged.

Creating a dummy tree. (Lemma 8.1) Create a dummy tree 7~ by copying a maximally
covered (i, t)-tree. Recall that there are 3dnqx + 1 shortcut forests, one for every (i, t)-pair and 1
for the dummy forest; we will say its shortcuts have L-status. After creating the dummy tree 7°
and giving its maximal shortcuts L-status, there is no change to ®. Every potential L-shortcut is
a stored shortcut, and was formerly stored before 7 was created.

Removing (i, t)-status from a subset of #-leaves. (Lemma 8.1) The data structure
removes (i, t)-status (or L-status) from a subset of leaves in an (i, t)-tree 7 (or dummy tree 7).
There are O(|77|) leaves removed, and each removal increases ® by at most O((loglog n)?), for
a total of O(|77|(loglog n)?).

Merging and destroying dummy trees. (Lemma 8.1) The data structure merges a maxi-
mally covered dummy tree 7~ into an (i, t’)-tree, and destroys 7. Observe that in the process of
merging these trees, the (i, t’)-tree acquires new branching nodes and the set of supporting
potential (i’, t’)-shortcuts only loses elements. Thus @, does not increase. Every shortcut sup-

50 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

porting the merged tree was in at least one of the two original trees before the operation, so ®;

and @3 are also non-increasing.

Lazy Covering. (Lemma 5.7) The lazy covering method only covers non-fundamental short-
cuts, so each covering costs constant actual time. Suppose we have traversed (i, t)-shortcuts
X = yand y < z and covered them with x < z. (Notice that x < z may or may not have
been previously stored.) This causes f(x = z) to drop by at least 1 and hence &, to drop by
loglogn + 1. If x = z was not already stored, @, increases by loglogn. In any case, the net
potential drop in @ is at least 1, which pays for the covering.

The Delete Operation. (See also Section 10.1.2) At the beginning of a Delete(u, v) opera-
tion, the algorithm spends O(loglog n) time to uncover each H-shortcut touching an ancestor
of u' or v!, where i is the depth of {u, v}. Notice that these /-shortcuts may be shared by many
(', t')-pairs, so the uncovering operation may temporarily increase ®; by Q(log? nloglog n).
Fortunately, after the deletion operation most of these /H-shortcuts are covered back. As men-
tioned in Section 5.2, after a deletion the data structure covers every possible supporting
potential (i’, t’)-shortcut with both endpoints at ancestors of u' or v/, as well as all necessary
fundamental #{-shortcuts with at least one endpoint ancestral to u' or v'. We claim that after
covering back all necessary H-shortcuts on the two paths, the increase of ® is upper bounded
by O(log n(loglog n)?). Counting multiplicity, there are O(log nloglog n) non-fundamental devi-
ating shortcuts that the lazy covering method failed to restore after the Delete operation. Each
contributes loglog n+1 to @4, for a total of O(log n(log log n)?). The number of non-fundamental
shortcuts with both endpoints at ancestors of u’ or v! is O(log nn), and each contributes loglog n to
®,, for a total of O(log nloglog n). Similarly, the O(log n) fundamental shortcuts each contribute
(loglog n)? to ®s, for a total of O(log n(loglog n)?). The increase in ® due to these changes are
charged to the Delete operation.

10. Main Operations — Proof of Lemma 3.1

We review how each of the 10 operations of Lemma 3.1 can be implemented in the stated
amortized running time.

Operation (1) — Add or remove an edge with depth i and endpoint type t. The data
structure first adds (or removes) the given edge to the #-leaf data structures of its endpoints; see
Section 4.1. If the addition/removal changes the (i, t)-status of either endpoint, we update them
with Lemma 8.1 and if t = primary we update the approximate i-counters using Lemma 6.5.
The time cost is O(log n(loglog n)?).

51/ 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

Operation (2) — Merge a subset of #-siblings into u’ and promote all i-witness edges
touching u'. Given the subset S of H-siblings at depth i, the algorithm first uncovers all H-
shortcuts that touch any H-siblings in S (Lemma 5.7). We then invoke Lemma 7.8 to merge
JH-siblings in S, two at a time, into a single /-node u'. The amortized cost for uncovering and
deleting all H-shortcuts touching S is zero. (The cost for restoring necessary shortcuts is not
part of this operation. It is paid for by the Delete itself; see Section 9.2.) Thus, by Lemma 7.8,
the amortized cost so far is O(|S|(log log n)?).

The algorithm then traverses the (i, witness)-tree rooted at u!, obtains the set of leaf-
descendants with (i, witness)-status and enumerates the |S| — 1 (i, witness)-edges touching
these vertices. By Lemmas 5.7 and 7.8, the amortized cost of the traversal is O(|S|loglog n). Now
the data structure uses Lemma 8.1 (last bullet point) to promote all these (i, witness)-edges to
(i + 1, witness)-status, which costs O((|S| — 1)(loglog n)?) time.

Notice that every edge releases Q((loglog n)?) units of potential upon promotion. As every
unit of potential pays for some constant ©(1) running time, the amortized cost of this operation
can be made —Q((|S| — 1)(loglog n)?) by choosing a sufficiently large constant.

Operation (3) — Upgrade all i-secondary endpoints touching u'. The data structure first
traverses the (i, secondary)-tree rooted at ul, enumerating its leaf-set S. By Lemma 8.1, enumer-
ating S costs O(|S|loglogn) time. Let s > |S| be the number of (i, secondary)-endpoints stored
at these leaves. We then use Lemma 8.1 to add (i, primary)-status and remove (i, secondary)-
status from all leaves in S, in O(|S|(loglog n)?) amortized time. Using the #{-leaf data structure,
we can upgrade all s (i, secondary)-endpoints to (i, primary)-status in O(s) time. At this point
the approximate i-counters at S are accurate, but the approximate i-counters at ancestors of S
are out of date. Using Lemma 6.5, we rebuild all approximate i-counters at descendants of u! in
O(p(loglog n)?) time, where p > |S| is the number of (i, primary)-leaves descending from u'.

The s upgrades release Q(s(loglogn)?) units of potential whereas the cost for traversing
the (i, primary)-tree and updating its counters is O(p(loglog n)?). Thus, the amortized time of
this operation is —Q((s — p)(loglog n)?).

Operation (4) — Promote a subset of i-primary endpoints touching u'. Let R be the
set of (i, primary) endpoints being promoted. The data structure first scans through R, form-
ing two leaf sets: S~ are all H-leaves whose (i, primary)-endpoints are contained in R (these
will lose (i, primary)-status) and S* are all #-leaves touched by at least one element of R
(these will gain (i + 1, secondary)-status, if they do not have it already). Both S~ and S* are
leaves of the (i, primary)-tree 7~ rooted at u'. The data structure uses Lemma 8.1 to add
(i+1, secondary)-status to all H-leaves in S* and removes (i, primary)-status from all #{-leaves
in §~. By Lemma 8.1 the time cost is O(|7"|(loglog n)? + 1). Let p be the number of i-primary

52 / 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

endpoints touching ul!, including the ones that are not promoted. Since |77| < p we have that
this operation costs O(p(loglogn)? + 1) time.

Since the promotions release |R| - ((loglog n)?) units of potential, with the leading con-
stants set properly the amortized cost of this operation is at most —Q((12|R| — p) (loglog n)?).

Operation (5) — Convert an i-non-witness edge to an i-witnhess edge. The data struc-
ture changes the status of the endpoints of the converted edge to (i, witness) using the H-leaf
data structure. If either endpoint of the edge had (i, primary)-status prior to the conversion, the
approximate i-counters at all ancestors of the #-leaf containing the endpoing may be invalid
and the endpoints may lose (i, primary)-status. The data structure updates the approximate
i-counters at all (i, primary)-ancestors, and removes (i, primary)-status of the endpoints, if
necessary. This costs O(log n(loglog n)?) time, by Lemmas 6.5 and 8.1.

Operation (6) — Split an #-node u'~" with a single child u’. We are given pointers to
u=2 (if it exists), u'~1, and u'. The data structure first creates a new 9{-node x, detaches u' from
L(u'™1), and makes u' a child of x using Lemma 7.8. If i = 1, then x is an #{-root and we are
done. Otherwise, the data structure attaches x to £(u'~?). By Lemma 7.8, the amortized time
for all these operations is O((loglogn)?).

Operation (7) — Enumerate all (i, t)-endpoints in the (i, t)-tree rooted at u'. The data
structure traverses the (i, t)-tree. For each (i, t)-leaf, enumerate all the endpoints of depth i and
type t from the #-leaf data structure. By applying the operations of Lemma 8.1, the time cost is
O(lloglogn + k) = O(kloglog n), where [is the number of (i, t)-leaves and k is the number of

enumerated endpoints.

Operation (8) — Accessing H-parent vi~! from v'. Thisis alocal tree operation. According
to Lemma 7.8, the time cost is O(H (vi™1) — H(VY)).

Operation (9) — Accessing an approximate i-counter. The approximate i-counter is
stored at the node in floating-point representation. It can be retrieved and converted to an
integer (Lemma 6.4) in O(1) time.

Operation (10) — Batch Sampling Test. From Section 8.1, the batch sampling test on k
samples costs worst case time O(min((p+s) loglog n+k, klog nloglog n)) where p is the number
of i-primary edges touching u! and s is the number of i-secondary edges touching u'.

101 Proof of Theorem 1.1

The correctness of the data structure follows from Section 3.2’s maintenance of Invariant 2.2,
using Lemma 3.1 to maintain H and Theorem 2.1 to maintain the witness forest . In this section

53 / 56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

we prove that the amortized time complexity is O(log n(loglogn)?) per Insert or Delete and
O(log n/logloglog n) per Conn? query. Call D¢, the data structure for 4 described in Lemma 3.1
and Dy the data structure for # from Theorem 2.1, fixing t(n) = (loglog n)?.

10.11 |Insertion

To execute Insert(u,v), the algorithm makes a connectivity query to D in O(log n/logt(n)) =
O(logn/logloglogn) time. Then, there are two cases:

— Ifu and v are already connected, then the algorithm invokes Operation (1) of Lemma 3.1
on the data structure D¢y, adding the edge {u, v} with depth 1 and endpoint type secondary
in amortized O(log n(loglog n)?) time.

— Otherwise, u and v are not connected. The algorithm then invokes Operation (8) 2d;ax
times, obtaining pointers to u® and v°. Thus, the cost of Operation (8) telescopes to
O(log nloglog n) time. The algorithm then merges u® and v° using Operation (2) in amor-
tized O((loglog n)?) time. Finally, {u, v} is added to the data structure D¢ through Opera-
tion (1) as an edge with depth 1 and type witness, in amortized O(log n(loglog n)?) time.
The algorithm also inserts {u, v} into D¢, in O(logn - t(n)) = O(log n(loglog n)?) time.

Hence, an Insert(u, v) operation costs amortized O(log n(loglog n)?) time.

10.1.2 Deletion

To execute a Delete(u, v) operation, where e = {u, v}, the algorithm first removes e from H
through Operation (1), taking amortized O(log n(log log n)?) time. If e is a non-witness edge, then
the operation is done. Otherwise, the algorithm also removes e from D¢ in O(logn - t(n)) time.
Then, the algorithm attempts to find a replacement edge iteratively at depth i = d,,d. - 1,...,1.

Preparing Iterations. As mentioned in Section 5.2, before the iterations begin, all ancestors of
u'~! = vi-1 are found and stored in a list, using Operation (8). The cost of Operation (8) telescopes
to O(log nloglog n) time. In addition, all stored #-shortcuts touching the path from u'~! to u°
are uncovered, using Lemma 5.9. We note that Invariant 5.3 now holds only for all /-nodes at
depth > i, which validates all operations whose implementation depends on Lemma 8.1. Once

the shortcuts have been removed, the iterations begin.

Establishing Two Components. On the iteration concerning depth i, the algorithm runs
two parallel searches starting from u' and V!, obtaining the connected components ¢, and c,.
Throughout the search, H-siblings of u' and V' are found via i-witness edges enumerated by
Operation (7). Let S, be the set of #-siblings in the same component ¢, with u' and S, be the of
H-siblings for ¢, with vi. Notice that there are exactly |Sy| — 1 and |S,| — 1 i-witness edges in
¢y and c, respectively, and each i-witness edge contributes 2 endpoints throughout the search.

54 |/ 56 TheoretiCS S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

Thus, the searches in parallel take amortized O(min{|S,| -1, |Sy|—1}(loglog n)+1) time until the
first completes. At this point we can deduce which of ¢, or ¢, is the smaller weight component;
suppose it is ¢y,.

The algorithm uncovers and removes all remaining downward shortcuts on the siblings
of u! that form ¢, (Lemma 5.9), then performs Operation (2) to promote all (i, witness)-edges in
cy to (i + 1, witness) edges, with a negative amortized cost of —Q((|Sy| — 1) (loglog n)?), which
pays for the cost of the two searches.

In conclusion, establishing two components costs amortized constant time.

Finding a Replacement Edge. Recall from Section 8.1 that p is the fraction of i-primary
endpoints belonging to replacement edges and p and s are the number of primary and secondary
endpoints. When p > 3/4 the search for a replacement edge halts after the first or second batch
sampling test with probability 1 — 1/p, and costs O(log n(loglog n)?) in expectation, which is
charged to the Delete operation. Suppose that the enumeration procedure is invoked, which
upgrades all (i, secondary) endpoints to (i, primary) status (Operation (3)), and then some of
the (i, primary) endpoints to (i + 1, secondary) status (Operation (4)). This procedure costs
O((p + s) loglog n) time. The amortized time cost of Operation (3) is —Q((s — p)(loglog n)?). At
this point there are now p’ = p + s (i, primary) endpoints. Suppose that Operation (4) promotes
s’ of them to (i + 1, secondary) status, at an amortized time cost of —Q((12s’ — p’)(loglogn)?) =
—Q((12(1 - p)p — (p +s))(loglog n)?). If s’ < p’, then all the unpromoted endpoints belong to
replacement edges.) Let the leading constants of the amortized costs of Operations (3) and (4)
be ¢y and c¢; times that of the cost of the enumeration procedure. Then the amortized time cost
of the enumeration procedure is proportional to

(loglogn)z((p +5) —co(s—p)—c1(120-p)p—(p+ 3)))
= (10g10g n)z(p(l +eo—c1(12(1-p) = 1) +5(1 - co + c1)

When p < 3/4, the contribution of original primary endpoints (p) is at most p(1 + ¢p —
2¢1)(loglog n)?, which is at most 0 when ¢; > (1 + ¢g)/2. When p > 3/4 the enumeration
procedure is invoked with probability at most 1/p, and the expected time cost is O((loglog n)?).
Regardless of p, the contribution of original secondary endpoints is s(1 — ¢ + ¢1) (loglog n)?,
which is at most 0 when ¢y > ¢; + 1. Setting ¢y = 3 and ¢; = 2 satisfies both constraints.

In conclusion, successfully finding a replacement edge in the first or second batch sampling
test costs O(log n(loglog n)?) expected time, which is charged to the Delete operation. If the
enumeration procedure is invoked, then the search for a replacement edge may fail to find
a replacement edge at level i. The amortized expected cost of the enumeration procedure at

depth i is O((loglog n)?), which is charged to the Delete operation.

55 /56 TheoretiCS Fully Dynamic Connectivity, Amortized Expected Time

Preparation for Next Iteration. If no replacement edge is found at the current depth i, the
algorithm splits u'~! into to H-siblings u'~! and v'~1, through Operation (6). The split opera-
tion costs amortized O((loglog n)?) time. After the split, the algorithm restores all necessary
downward shortcuts touching u'~1, v\-1, v{, or u!, as described in Section 5.2 and Lemma 5.9.
The covering of fundamental shortcuts ensures Invariant 5.3 to hold for all H-nodes at depth
> [— 1. By the same argument from Lemma 5.9, the total cost of covering these shortcuts is

O(log n(loglog n)?), which is charged to the Delete operation.

The End of Iteration. Suppose we find a replacement edge at depth i. The algorithm ends by
restoring all necessary shortcuts with one endpoint at an ancestor of u’ or v. By Lemma 5.9,

this costs O(log n(loglog n)?) time. Furthermore, this restores Invariant 5.3 holds for all nodes
inH.

Combining the Costs. Summing all costs, the total amortized expected time for an edge
deletion is O(log n(loglog n)?).

11. Conclusion

We have shown that the Las Vegas randomized amortized update time of dynamic connectivity
is O(log n(loglog n)?), which leaves a small (log log n)? gap between the cell probe lower bounds
of Patrascu and Demaine [1] and Pdtrascu and Thorup [2]. The main bottleneck in our approach
is dealing with insertions in the buffer trees inside local trees. Each affects O(loglog n) local tree
nodes, and the cost of updating such nodes involves adding O(log n) (floating point) approximate
counters packed into O(loglog n) machine words. If this (loglog n)? barrier were overcome,
there would still be a log log n-factor bottleneck, which arises from the shortcut infrastructure
and the height of the bottom, buffer, and top trees.

It may be possible to achieve O(log n) amortized time in the Monte Carlo model with a
private connectivity witness, by using connectivity sketches [3, 14, 9, 21, 18].

References
[1] M. Patrascu and E. Demaine. Logarithmic lower [3] K. J. Ahn, S. Guha, and A. McGregor. Analyzing
bounds in the cell-probe model. SIAM J. Comput. graph structure via linear measurements.
35(4):932-963, 2006 (3, 4, 55). Proceedings 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 459-467
[2] M. Patrascu and M. Thorup. Don’t rush into a union: 2012’ =1 (55g) : (). pag '
take time to find your roots. Proceedings of the '
43rd ACM Symposium on Theory of Computing [4] S. Alstrup, J. Holm, K. de Lichtenberg, and
(STOC), pages 559-568, 2011 (3, 55). M. Thorup. Maintaining information in fully dynamic

trees with top trees. ACM Trans. Algorithms,
1(2):243-264, 2005 I (28).

https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/1103963.1103966

56 /| 56 TheoretiCS

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng,
and T. Saranurak. A deterministic algorithm for
balanced cut with applications to dynamic
connectivity, flows, and beyond. Proceedings 61st
IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 1158-1167, 2020

EEl (2).

D. Eppstein, Z. Galil, G. Italiano, and

A. Nissenzweig. Sparsification - a technique for
speeding up dynamic graph algorithms. J. ACM,
44(5):669-696, 1997 (2).

D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan,
J. Westbrook, and M. Yung. Maintenance of a

minimum spanning forest in a dynamic plane graph.

J. Algor. 13(1):33-54, 1992 (3).

G. Frederickson. Data structures for on-line
updating of minimum spanning trees, with
applications. SIAM J. Comput. 14(4):781-798, 1985
(2).

D. Gibb, B. M. Kapron, V. King, and N. Thorn.
Dynamic graph connectivity with improved worst
case update time and sublinear space. CoRR,
abs/1509.06464, 2015 (2, 55).

M. R. Henzinger and V. King. Randomized fully
dynamic graph algorithms with polylogarithmic
time per operation. J. ACM, 46(4):502-516, July
1999 BEY (3, 4).

M. R. Henzinger and M. Thorup. Sampling to
provide or to bound: with applications to fully
dynamic graph algorithms. Random Structures &
Algorithms, 11(4):369-379, 1997 (3, 9).

J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning
tree, 2-edge, and biconnectivity. J. ACM,
48(4):723-760, July 2001 [BEI} (3, 4, 6).

S.-E. Huang, D. Huang, T. Kopelowitz, and S. Pettie.
Fully dynamic connectivity in O(log n(loglog n)?)
amortized expected time. Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 510-520, 2017

= (1, 3).

2023:6

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S.-E. Huang, D. Huang, T. Kopelowitz, S. Pettie and M. Thorup

B. M. Kapron, V. King, and B. Mountjoy. Dynamic
graph connectivity in polylogarithmic worst case
time. Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pages 1131-1142, 2013 (2, 55).

C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie,
and M. Thorup. Faster worst case deterministic
dynamic connectivity. Proceedings 24th European
Symposium on Algorithms (ESA), 53:1-53:15, 2016
(2).

D. Nanongkai and T. Saranurak. Dynamic spanning
forest with worst-case update time: adaptive, las
vegas, and 0(n'/?-¢)-time. Proceedings of the 49th
Annual ACM Symposium on Theory of Computing
(STOC), pages 1122-1129, 2017 [BE] .

D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen.
Dynamic minimum spanning forest with
subpolynomial worst-case update time.
Proceedings 58th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 950-961, 2017
(2).

J. Nelson and H. Yu. Optimal lower bounds for
distributed and streaming spanning forest
computation. Proceedings 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),

pages 1844-1860, 2019 Bl (55).

D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci. 26(3):362-391,
1983 (3).

M. Thorup. Near-optimal fully-dynamic graph
connectivity. Proceedings of the Thirty-second
Annual ACM Symposium on Theory of Computing
(STOC), pages 343-350, 2000 [l (1, 3, 4).

Z. Wang. An improved randomized data structure
for dynamic graph connectivity. CoRR,
abs/1510.04590, 2015 (2, 55).

C. Wulff-Nilsen. Faster deterministic fully-dynamic
graph connectivity. Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1757-1769, 2013 (3, 4, 6).

C. Wulff-Nilsen. Fully-dynamic minimum spanning
forest with improved worst-case update time.
Proceedings 49th Annual ACM Symposium on
Theory of Computing (STOC), pages 1130-1143,

2017 1] .

TheoretiCS

This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/
© Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, Seth Pettie, Mikkel Thorup.

https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1137/1.9781611975482.111
https://doi.org/10.1145/335305.335345
https://doi.org/10.1145/3055399.3055415

	1 Introduction
	1.1 A Brief History of Dynamic Connectivity Data Structures

	2 Preliminaries
	2.1 Computational Model and Lookup Tables
	2.2 Miscellaneous

	3 Overview of the Algorithm
	3.1 Insertion
	3.2 Deletion
	3.2.1 Establishing Two Components
	3.2.2 Finding a Replacement Edge
	3.2.3 Iteration and Conclusion

	3.3 The Backbone of the Data Structure

	4 The Main Modules of the Data Structure
	4.1 The H-Leaf Data Structure
	4.2 The Local Trees
	4.3 The Induced (i,t)-Forest
	4.4 The Shortcut Infrastructure
	4.5 Approximate Counters

	5 Shortcut Infrastructure
	5.1 The H-shortcut data structure
	5.2 Maintaining Invariant 5.3 Through Structural Changes to H

	6 Implementation of Approximate Counters
	6.1 Approximate Counters

	7 Local Trees
	7.1 Bottom Trees and the Buffer Tree
	7.2 Middle Trees
	7.3 Top Trees
	7.4 Maintaining Precision when Sampling
	7.4.1 Sample an (i,primary)-child

	7.5 Local Tree Operations

	8 Loose Ends
	8.1 The Batch Sampling Test
	8.1.1 Cost Analysis for Sampling Procedure

	8.2 Maintaining (i,t)-Forests
	8.3 Approximate Counters Operations — Proof of Lemma 6.5

	9 Amortized Analysis of Shortcut Maintenance
	9.1 Covering All Shortcuts Touching Specified Paths — Proof of Lemma 5.9
	9.2 Shortcut Cost Analysis

	10 Main Operations — Proof of Lemma 3.1
	10.1 Proof of Theorem 1.1
	10.1.1 Insertion
	10.1.2 Deletion

	11 Conclusion

