
� � �� ���� ��

����� ������� ������������
�� $(log <(log log <)2)
��������� �������� ����

�������� ���� �� ����
������� ��� ��� ����
�������� ��� ��� ����
��������� ����� ��� ����

��� ����� ��� �������
������� ������ ���������
��������� ������������

�������� ������ �

����� ������ �

���� ����������� �

���� ������� �

������ ������� �

� �������� ������� ���
������������ ���������� ��
��������

� ���������� �� ��������
�������� �������� ����������

� ���������� �� ��������
�������� ���������� ��
����������

��������� Dynamic connectivity is one of the most fundamental problems in dynamic
graph algorithms. We present a randomized Las Vegas dynamic connectivity data structure
with $(log <(log log <)2) amortized expected update time and $(log </log log log <) worst case
query time, which comes very close to the cell probe lower bounds of Pǎtraşcu and Demaine
(2006) and Pǎtraşcu and Thorup (2011).

�� ������������

The dynamic connectivity problem is one of the most fundamental problems in dynamic graph
algorithms. The goal is to support the following three operations on an undirected graph
⌧ = (+ , ⇢) with < = |+ | vertices and ; = |⇢ | edges, where ⇢ is initially empty.

Insert(C, D): Set ⇢ ⇢ [{{C, D}}.
Delete(C, D): Set ⇢ ⇢ � {{C, D}}.
Conn?(C, D): Return true if and only if C and D are in the same connected component in ⌧.

Dynamic connectivity has been studied in numerous models, under both worst case
and amortized notions of time, with deterministic, randomized Las Vegas, and randomized
Monte Carlo guarantees, and with both public and private witnesses of connectivity. Las Vegas

���� ����� �� ��� ��������� �� ��� �������� ��������� ��������� �� ���� ���� ������� ����� ��� ���� ���� ������� ������
����������� ��� ������ ������ ��������� �� ��� ������ ������������ ������������ ������������ ������������ ���
������������ ������ �������� �������� �� ��������� �� ��� ������������ ����� ������ ����� ���������� �������� ����������
������� ���� ��� ������ �����������

���� �� �������� ������ ����� ������ ���� ����������� ���� ������� ������
������� ����� ������� ������������ �� $(log <(log log <)2) ��������� �������� �����
����������� ������ � ������� ������� �� �����

����������������������������������
���

mailto:sehuang@umich.edu
mailto:dwhuang9@gmail.com
mailto:kopelot@gmail.com
mailto:seth@pettie.net
mailto:mikkel2thorup@gmail.com

� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

algorithms always answer Conn? queries correctly but their running time is a random variable.
In contrast, the running time of a Monte Carlo algorithm is guaranteed deterministically, but it
only answers Conn? queries correctly with high probability. All known dynamic connectivity
algorithms maintain a spanning forest � of ⌧ as a sparse certi�cate of connectivity. If � is public
then the sequence of Insert and Delete operationsmaydepend on �, andmay therefore depend
on random bits generated earlier by the data structure. When � is private the Insert/Delete
sequence is selected obliviously.

In this paper we prove near-optimal bounds on the amortized complexity of dynamic
connectivity in the Las Vegas randomzed model, with a public connectivity witness.

������� ���� There exists a Las Vegas randomized dynamic connectivity data structure that
supports insertions and deletions of edges in amortized expected $(log <(log log <)2) time, and
answers connectivity queries in worst case $(log </log log log <) time. The time bounds hold even
if the adversary is aware of the internal state of the data structure. In particular, the data structure
maintains a public spanning forest as a connectivity witness.

��� � ����� ������� �� ������� ������������ ���� ����������

����� ���� ����� Frederickson [�] developed a dynamic connectivity structure in the strictest
model—deterministic worst case time—with$(

p
;) update time and$(1) query time. Eppstein,

Galil, Italiano, and Nissenzweig [�] showed that the update times for many dynamic graph
algorithms could be made to depend on < rather than ;, provided they maintain an $(<)-
edge witness of the property being maintained, e.g., a spanning forest in the case of dynamic
connectivity. Together with [�], Eppstein et al.’s reduction implied an $(

p
<) update time for

dynamic connectivity, a bound which stood for many years. Kejlberg, Kopelowitz, Pettie, and
Thorup [��] simpli�ed Frederickson’s data structure, and improved the update time of [�, �] to

$

✓q
<(log log <)2

log <

◆
. Recently Chuzhoy, Gao, Li, Nanongkai, Peng, and Saranurak [�] improved the

worst case update time to <
=(1) .

Kapron, King, and Mountjoy [��] gave a Monte Carlo randomized structure with update
time $(2 log5 <) and one-sided error� probability <�2. Their data structure maintains a private
connectivity witness, i.e., it keeps a spanning tree, but the adversary controlling Insert and
Delete operations does not have access to the spanning tree. The update time was later im-
proved to $(2 log4 <) independently by Gibb et al. [�] and Wang [��], and Wang further reduced
the time for Insert to $(2 log3 <). Nanongkai, Saranurak, and Wul�-Nilsen [��] discovered a
Las Vegas randomized structure with <

=(1) update time that maintains a public connectivity
witness. This data structure was recently derandomized [�], leading to a deterministic <=(1)

dynamic connectivity algorithm maintaining a public witness.

� �� ����� ������ ���� ��������� ���� ��� �������� ��� ������������ ���� ���� ��� �������� ����������

� � �� ����� ������� ������������� ��������� �������� ����

��������� ����� By allowing amortization in the running time, dynamic connectivity can
be solved even faster. Henzinger and King [��] proved that with Las Vegas randomization,
dynamic connectivity could be solved with amortized expected $(log3 <) update time. This
was subsequently improved to amortized expected $(log2 <) update time by Henzinger and
Thorup [��] using amore sophisticated sampling routine. Holm, de Lichtenberg, and Thorup [��]
discovered a deterministic data structure with amortized $(log2 <) update time. Thorup [��]
later improved the space of [��] from $(; + < log <) to optimal $(;), and Wul�-Nilsen [��]
further improved [��, ��] to have amortized $(log2 </log log <) update time using $(;) space.

At STOC 2000, Thorup [��] presented a Las Vegas randomized data structurewith amortized
expected $(log <(log log <)3) update time and worst case $(log </log log log <) query time. At
SODA 2017, Huang, Huang, Kopelowitz, and Pettie [��] improved the update time of [��] to
$(log <(log log <)2), and substantiated several claims that were only sketched in [��]. The
data structures presented in [��, ��] are especially notable in light of the lower bounds of
Pǎtraşcu and Demaine [�] and Pǎtraşcu and Thorup [�]. The �rst shows that any (amortized
or randomized) dynamic connectivity structure with $(B(<) log <) update time, B(<) = �(1),
requires �(log </log B(<)) query time. In particular, the maximum of update and query time is
�(log <). The second shows that any dynamic connectivity structure with =(log <) update time
requires <1�=(1) query time. Thus, any data structure with $(log <(log log <)2) update time must
have �(log </log log log <) query time, and for any reasonable query time, we cannot improve
our update time by more than a (log log <)2 factor. On certain restricted classes of inputs, e.g.,
trees [��] and planar graphs [�], both updates and queries can be supported in $(log <) worst
case time.

������������� This paper should be considered the successor and full version of both the STOC
2000 and the SODA 2017 extended abstracts [��, ��], improving the complexity of dynamic
connectivity from amortized $(log2 </log log <) update time [��] to the near-optimal amortized
expected $(log <(log log <)2) update time.

������������ �� ��� ������ In Section 2 we review several fundamental concepts of dynamic
connectivity algorithms. Section 3 gives a detailed overview of the algorithm, and lists the
primitive operations from the data structure that implements the algorithm. In Section 4 we
describe the main modules of the data structure. The main modules include: maintaining a
binary hierarchical representation of the graph, maintaining shortcuts for e�cient navigation
around the hierarchy, and maintaining a system of approximate counters to support nearly-
uniform random sampling. Each of these modules is explained in detail in Sections 5–9. Finally,
we piece up all the modules from the data structures and describe how primitive operations
listed in Section 3 (Lemma 3.1) are implemented and analyzed in Section 10. We make some
concluding remarks in Section 11.

� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

�� �������������

In this section we review some basic concepts and invariants used in prior dynamic connectivity
algorithms [��, ��, ��, ��].

������� ������ ������� �������� ��� ����������� ������ A common method for sup-
porting connectivity queries is to maintain a spanning forest F of ⌧ called the witness forest,
together with a dynamic connectivity data structure on F (see Theorem 2.1 below). Each edge
in the witness forest is called a witness edge, and all other edges are called non-witness edges.
Deleting a non-witness edge does not change the connectivity.

������ ���� ��� ����� ����� When describing the dynamic connectivity data structure
we only focus on the (amortized) running time of the update operations. Once this time bound
is �xed, Theorem 2.1 provides a fast query time, which, according to Pǎtraşcu and Demaine [�],
cannot be unilaterally improved.

������� ��� (Henzinger and King [��])� For any function B(<) = �(1), there exists a dynamic
connectivity data structure for forests with $(B(<) log <) update time and $(log </log B(<)) query
time.

����� ������� Maintain an Euler tour of each tree in the witness forest and a balanced
B(<)-ary rooted tree over the Euler tour elements. The height of each rooted tree is $(log

B(<) <).
A witness edge insertion/deletion imposes $(1) changes to the Euler tour, which necessitates
$(B(<) log

B(<) <) time to update the rooted trees. A query Conn?(C, D) �nds the representative
copies of C and D in the Euler tours, walks up to their respective roots, and checks if they are
equal. ⌅

The di�culty in maintaining a dynamic connectivity data structure is to �nd a replacement
edge 40 when a witness edge 4 2 F is deleted, or determine that no replacement edge exists. To
speed up the search for replacement edges we maintain Invariant 2.2 (below) governing edge
depths.

���� ������� Each edge 4 has a depth 34 2 [1, 3max], where 3max = blog <c. Let ⇢7 be the
set of edges with depth 7. All edges are inserted at depth 1 and depths are non-decreasing
over time. Incrementing the depth of an edge is called a promotion. Since we are aiming for
$(log <(log log <)2) amortized time per update, if the actual time to promote an edge set (is
$(|(| · (log log <)2), the amortized time per promotion is zero. Promotions are performed in
order to maintain Invariant 2.2.

����� ���� � �� (The Depth Invariant)� De�ne ⌧7 = (+ ,
–

8�7 ⇢ 8).

� � �� ����� ������� ������������� ��������� �������� ����

(1) (Spanning Forest Property) F is a maximum spanning forest of ⌧ with respect to the depths.
(2) (Weight Property) For each 7 2 [1, 3;0F], each connected component in the subgraph ⌧7

contains at most </27�1 vertices.

��������� �� ��������� ����������� De�ne +̂7 to be in one-to-one correspondence with
the connected components of ⌧7+1, which are called (7 + 1)-components. If C 2 + , let C7 2 +̂7 be
the unique (7 + 1)-component containing C. De�ne ⌧̂7 = (+̂7 , ⇢̂7) to be themultigraph (including
parallel edges and loops) obtained by contracting edges with depth larger than 7 and discarding
edges with depth less than 7, so ⇢̂7 = {{C

7
, D

7
} | {C, D} 2 ⇢7}. The hierarchyH is composed of the

undirected multi-graphs ⌧̂3max , ⌧̂3max�1, . . . , ⌧̂0. An edge 4 = {C, D} 2 ⇢7 is said to be touching all
nodes F 8

2 +̂8 where either C8 = F
8 or D8 = F

8 .
Let �7 = ⇢7\F be the set of 7-witness edges; all other edges in ⇢7��7 are 7-non-witness edges.

It follows from Invariant 2.2 that �7 corresponds to a spanning forest of ⌧̂7 , if one maps the
endpoints of �7-edges to the contracted vertices of ⌧̂7 . The weight E(C

7
) of a node C7 2 +̂7 is the

number of vertices in its component: E(C
7
) = |{D 2 + | D

7 = C
7
}|. The data structure explicitly

maintains the exact weight of all hierarchy nodes. The weight property in Invariant 2.2 can be
restated as E(C

7�1
)  </27�1 since C7�1 corresponds to the connected component containing C

in ⌧7 .

���������� The endpoints of an edge 4 = {C, D} are the pairs hC, 4i and hD, 4i. At some stage in
our algorithm we sample a random endpoint from a set (of endpoints incident to some + 0 ⇢ + .
An edge {C, D} with C, D 2 +

0 could contribute zero, one, or two endpoints to (, i.e., the endpoints
of an edge are often treated independently. An endpoint hC, 4i is said to be touching the nodes
C
7
2 +̂7 for all 7 2 [1, 3max].

��� ������������� ����� ��� ������ ������

We assume a standard $(log <)-bit word RAM with the usual repertoire of �⇠0 instructions.
The data structure uses some non-standard operations on packed sequences of $(log log <)-bit
�oating point numbers, which we can simulate by building small lookup tables with size $(<n),
for some n 2 (0, 1). Since the initial graph is empty, the $(<n) sized lookup tables can be built
on-the-�y, with their cost amortized through the operations.�

� �� ���� �� ��� ������ �� ����� ������� �� ;  <� ��� ���� ������ ��� �� ���� blog;c� ������ ��� ���� 0  @  log log <�
����� ��� ; = 22@��� ����� ������� ��� ���� ��������� �������� ��� ������ ������ �� ���� $(;

n
)� ��� ���� ���� ���

�������� ��� ������ ������ ������ ��� ����� ; ���������� �� ������� �� Õ dlog log;e
7=0 ;

1
27
n = $(;

n
)� ����� �� ��������� =(1)

��� �������

� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

��� �������������

������ ���������������� We say that an algorithm samples from a set - (1+=(1))-uniformly
at random, if, for any element F 2 - , the probability of F being returned is (1 + =(1))/|- |. (In
our algorithm, the =(1) term is roughly 1/log <, and |- | is at most polynomial in <.)

��������� �������� ������ ������ Some parts of our data structure (see Section 7) use o�-
the-shelf mergeable balanced binary trees. They should support leaf-insertion and leaf-deletion
on) in$(log |) |) time, and themerger of two trees)1,)2 in$(log |)1 | + log |)2 |) time. The merge
operation may create and delete internal nodes as necessary to ensure balance. These trees do
not store elements from a totally ordered set, and do not need to support a search function.

�� �������� �� ��� ���������

As in [��, ��], our goal is to restore Invariant 2.2 after each update operation.
In the rest of this section, we provide an overview of the algorithm. The underlined parts

of the text refer to primitive data structure operations supported by Lemma 3.1, presented in
Section 3.3.

��� ���� ���������� The hierarchyH naturally de�nes a rooted forest (not to be confused
with the maximum spanning forest), which is called the hierarchy forest, and contains several
hierarchy trees. We abuse notation and say thatH refers to this hierarchy forest, together with
several auxiliary data structures supporting operations on the hierarchy forest. The nodes in
H are the 7-components for all 7 2 [1, 3max]. The roots of the hierarchy trees are nodes in +̂0,
representing 1-components. The set of nodes at depth 7 inH is exactly +̂7 . The set of children
of a node D7 2 +̂7 is {C7+1 2 +̂7+1 | C7 = D

7
}. The leaves are nodes in +̂3max = + . See Figure 1 for an

example. The nodes inH are calledH -nodes, and the roots are calledH -roots.

��� ���������

To execute an Insert(C, D) operation, where 4 = {C, D}, the data structure �rst sets 34 = 1. If 4
connects two distinct components in ⌧ (which is veri�ed by a connectivity query on F), then
the data structure accesses twoH -roots C0 and D

0, merges C0 and D
0 and 4 is inserted intoH

(and F) as a 1-witness edge. Otherwise, 4 is inserted intoH as a 1-non-witness edge.

��� ��������

To execute a Delete(C, D) operation, where 4 = {C, D}, the data structure �rst removes 4 from
H . Let 7 = 34. If 4 is an 7-non-witness edge, then the deletion process is done. If 4 is an 7-witness
edge, the deletion of 4 could split an 7-component. In this case, the deletion algorithm �rst

� � �� ����� ������� ������������� ��������� �������� ����

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

3

2

2

3

2

3

1

3

2
3

2
2 3

1

1

2

1

1

12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

V̂2

V̂1

V̂0

1
������ �� �� ������������ �� � ����� ��� ��� ������������� ��������� ������ H � ����� < = 15 ��� 3max = 3�
��� ����� ����� ��� ������� ����� ��� ��� ���� ����� ��� ����������� ������ ���������� �� +̂1 ����
���� �� ���� b 152 c = 7� ����� �� +̂2 ���� ���� �� ���� b 154 c = 3�

focuses on �nding a replacement edge that has depth 7 = 34. In Section 3.2.3 we extend our
algorithm to �nd a replacement edge of any depth, while preserving the Maximum Spanning
Forest Property of Invariant 2.2.

Prior to the deletion, the edge {C7 , D7} connected two (7 + 1)-components, C7 and D
7 , which,

possibly together with some additional 7-witness edges and (7 + 1)-components, formed a single
7-component C7�1 = D

7�1 in ⌧̂7 . If no 7-non-witness replacement edge exists, then deleting {C, D}
splits C7�1 into two 7-components. In order to establish if this is the case, the data structure
�rst accesses C7 , D7 and C

7�1 inH and implicitly splits the 7-component C7�1 into two connected
components 2C and 2D in �̂7 = (+̂7 , {{C

7
, D

7
} | {C, D} 2 �7})where C7 2 2C and D7 2 2D; see Figure 2(a).

The rest of the deletion process focuses on �nding a replacement edge to reconnect 2C and 2D

into one 7-component. This process has two parts, explained in detail below: (1) establishing
the two components 2C and 2D, and (2) �nding a replacement edge. Notice that 2C and 2D do not
necessarily correspond toH -nodes.

����� ������������ ��� ����������

To establish the two components 2C and 2D created by the deletion of 4, the data structure
executes in parallel two graph searches on �̂7 � {{C

7
, D

7
}} starting from C

7 and D
7 . To implement a

search, wemark C7 unexplored and insert it into a queue. We repeatedly remove any unexplored
(7 + 1)-component F from the queue, mark it explored, and enumerate all 7-witness edges with
one endpoint in F. All new (7 + 1)-components touching these edges are marked unexplored
and inserted into the queue. The two searches are carried out in parallel until one of the
connected components is fully scanned. By fully scanning one component, the weights of both
components are determined, since E(C

7�1
) = E(2C) +E(2D). Without loss of generality, assume

that E(2C)  E(2D), and so by Invariant 2.2, E(2C)  E(C
7�1

)/2  </27 .

� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

������� ���� ����������� The data structure promotes all 7-witness edges touching nodes
in 2C and merges all (7 + 1)-components contained in 2C into one (7 + 1)-component with weight
E(2C). This is permitted by Invariant 2.2, since E(2C)  </27 . The merged (7 + 1)-component
has the node C7�1 as its parent inH . See Figure 2.1.

ui
vi

ui�1

cu cv

���

ui

vi

ui�1

cu cv

���

ui

vi

ui�1 vi�1

���

������ �� ������������ �� ��� ��������� �� ���������� �� ����� 7 � 1 ��� 7� ��� ����� ����������� ���
���������� 2C ��� 2D� �� ����� ��� ���� 2C ��� ������� ������ �������� �� ��� ���� (7 + 1)������������
��� ����� ������� ��� (7 + 1)����������� �� ��� ������� ������ ���������� ��� �� �� ����������� ���� ��
������ ���� 2C ��� 2D ��� ��� ������ ��������� ���������� �� ⌧̂7 ��� ����� C7�1 �� ������

To di�erentiate between versions of components before and after the merges, we use bold
fonts to refer to components after the merges take place. Thus, the (7 + 1)-component contracted
from all (7 + 1)-components inside 2C is denoted ui. Similarly, the graph ⌧̂7 after merging some
of its nodes is denoted by Ĝi.

Having contracted the (7 + 1)-components inside 2C into ui, we now turn our attention to
identifying whether the deletion of 4 disconnects ui from 2D in Ĝi.

����� ������� � ����������� ����

Notice that by de�nition of Ĝi and C
7�1, a depth-7 edge is a replacement edge in ⇢ if and only

if it is an 7-non-witness edge with exactly one endpoint F 2 + such that F7 = ui. To �nd a
replacement edge, the data structure executes one or both of two auxiliary procedures: the
sampling procedure and the enumeration procedure.

���������� Consider the following two situations. In Situation A at least a constant fraction of the
7-non-witness edges touchingui have exactly one endpoint touchingui, and are therefore eligible
replacement edges. In Situation B a small n fraction (maybe zero) of these edges have exactly
one endpoint in ui. If the algorithm magically knew which situation the algorithm is in and
could sample 7-non-witness endpoints uniformly at random then the problem is straightforward
to solve: In Situation A the algorithm iteratively samples an 7-non-witness endpoint and tests
whether the other endpoint is in ui. As we will see, each test costs $(log <(log log <)) time. The

� � �� ����� ������� ������������� ��������� �������� ����

expected number of samples used to �nd a replacement edge in this situation is $(1) and so
the time cost is charged (in an amortized sense) to the deletion operation. In Situation B the
algorithm enumerates and marks every 7-non-witness endpoint touching ui. Any edge with one
mark is a replacement edge and any with two marks may be promoted to depth 7 + 1 without
violating Invariant 2.2. Since a constant fraction of the edges will end up being promoted, the
amortized cost of the enumeration procedure is zero, so long as the enumeration and promotion
cost is $((log log <)2) per endpoint.

There are two technical di�culties with implementing this idea. First, the set of 7-non-
witness edges incident toui is a dynamically changing set, and supporting fast (almost-)uniformly
random sampling on this set is a very tricky problem. Second, the algorithm does not know in
advance whether the current situation is Situation A or Situation B. Notice that it is insu�cient
to draw $(1) random samples and, if no replacement edge is found, to deduce that the algo-
rithm is in Situation B. Since the cost of enumeration is so high, the algorithm cannot a�ord to
mistakenly think that it is in Situation B.

������� ��� ��������� ���������� The di�culty with supporting random sampling is
dynamic updates: when 7-non-witness edges are inserted and deleted from the pool due to
promotions, the algorithm responds to each such insertion/deletion with updating �(log <)
parts of the data structure that enables fast random sampling. Thus, the cost of updating each
part needs to be relatively low in order to obtain the desired time bounds.

Our solution is to maintain two endpoint types for 7-non-witness edges: primary and
secondary. A newly promoted 7-non-witness edge has two 7-secondary endpoints and when
an 7-secondary endpoint hC, 4i is enumerated (see the enumeration procedure below), the
data structure upgrades hC, 4i to an 7-primary endpoint. The motivation for using two types of
endpoints is that the algorithm never samples from the set of 7-secondary endpoints, which are
only subject to individual insertions, but only the set of 7-primary endpoints, which are subject
to bulk inserts/deletes. The bulk updates to 7-primary endpoints are su�ciently large (in an
amortized sense) to pay for the changes made to the part of the data structure that supports
random sampling.

Notice that each edge undergoes up to 3max promotions and up to 23max endpoint upgrades.
Since our goal is to obtain an$(log <(log log <)2) amortized insertion cost, we are able to charge
each promotion or upgrade $((log log <)2) units of time.

��� �������� ���������� This is the only procedure in our algorithm that uses randomness.
The sampling procedure can be viewed as a two-stage version of Henzinger and Thorup [��],
with some complications due to primary and secondary types. We give a simple sampling
procedure that either provides a replacement edge or states that, with high enough probability,
the fraction of 7-primary endpoints touching C7 that belong to replacement edges is small.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

Let > be the number of 7-primary endpoints touching ui. The data structure �rst estimates
> up to a constant factor and then invokes the batch sampling test, which (1 + =(1))-uniformly
samples $(log log >) 7-primary endpoints touching ui. If an endpoint of a replacement edge
is sampled, then the sampling procedure is terminated, returning one of the replacement
edges. Otherwise, the data structure invokes the second batch sampling test, which (1 + =(1))-
uniformly samples $(log >) 7-primary endpoints touching ui. The purpose of this step is not to
�nd a replacement edge, but to increase our con�dence that there are actually few replacement
edges. (Since otherwise it is hard to obtain good amortized cost.) If more than half of these
endpoints belong to replacement edges, then the sampling procedure is terminated and one
of the replacement edges is returned. Otherwise, the algorithm concludes that the fraction
of the non-replacement edges touching ui is at least a constant, and invokes the enumeration
procedure.

��� ����������� ���������� The data structure �rst upgrades all 7-secondary endpoints
touching ui to 7-primary endpoints, then enumerates all 7-primary endpoints touching ui and
establishes for each such edge the number of its endpoints touching ui (either one or both).
An edge is a replacement edge if and only if exactly one of its endpoints is enumerated. Each
non-replacement edge encountered by the enumeration procedure has both endpoints in an
(7+1)-component, namely ui, and can therefore be promoted to a depth (7 + 1)-non-witness edge
(making both endpoints secondary), without violating Invariant 2.2. As part of the promote and
upgrade operations, the algorithm completely rebuilds the part of the data structure supporting
random sampling on the 7-primary endpoints touching ui.

Since the enumeration procedure is only invoked when the algorithm concludes that
(before the enumeration process) the fraction of the non-replacement edges touching ui is
at least a constant, the cost of rebuilding the data structure component supporting random
sampling is charged to promoting the (su�ciently large number of) non-replacement edges.

����� ��������� ��� ����������

By the Maximum Spanning Forest Property of Invariant 2.2, the deletion of an edge 4 can only
be replaced by edges of depth 34 or less. The algorithm always �rst looks for a replacement edge
at the same depth as the deleted edge. If the algorithm does not �nd a replacement edge at depth
34 then the algorithm conceptually demotes 4 by setting 34 34 � 1 in order to preserve the
Maximum Spanning Forest Property of Invariant 2.2, and continues looking for a replacement
edge at the new depth 34. The demotion is merely conceptual; the deletion algorithm does not
actually update 34 in the course of deleting 4.

��������������� If a depth-7 replacement edge 40 exists, then C
7�1 is still an 7-component and

the algorithm converts 40 from an 7-non-witness edge to an 7-witness edge. Otherwise, 2C and 2D

�� � �� ����� ������� ������������� ��������� �������� ����

form two distinct 7-components in Ĝi. In this case, the data structure splits C7�1 into two sibling
nodes (or twoH -roots, if 7 = 1): a new node ui�1 representing 2C whose only child is ui, and
vi�1 representing 2D whose children are the rest of the (7 + 1)-components in 2D. If 7 = 1 then
the algorithm is done. Otherwise, the algorithm sets 7 7 � 1, conceptually demoting 4, and
repeats the procedure as if 4 were deleted at depth 7 � 1.

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

3

3

3

2

3

1

3

2
3

2
2 3

1

1

2

1

1

12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

V̂2

V̂1

V̂0

1
������ �� ����� �������� �� {D3, D5} ���� ������ ��� �� ����������� {D1, D2, D3} �� �� ��� ������� ������
���������� ��� ������� ���� {D2, D3} �� �������� �� ����� � ��� ��� ������������� ����� �� +̂2 ���
������� ��� ���� {D3, D4} �� ��� ����������� �����

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

v1

v2

v3

v4

v5

v6

v7

v8

v13

v10

v14

v15

v9

v11

v12

3

3

3

3

1

3

2
3

2
2 3

1

1

2

1

1

12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

V̂2

V̂1

V̂0

1
������ �� ����� �������� �� {D4, D5} �� �� ��� ��������� ������ ��� ����� ��� ���� �� +̂2 ���������� ���� D4
��� D5� ��� �������� ���� {D5, D6, D7} �� ��� ������� ������ ���������� ��� ������� ��� ���� {D5, D6} ��
����� �� ������� ����� D25 ��� D26 = D27 � ��� ���� �� ���� � ����������� ���� �� ����� �� ��� ����� ��� ����
D15� ��� ���� � ����������� ���� {D1, D6} �� ����� � ��� ��������� �� � ������� �����

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

��� ��� �������� �� ��� ���� ���������

Lemma 3.1 summarizes the primitive operations required to execute Insert or Delete. Recall
that the possible depths are integers in [1, 3max], and the possible endpoint types are witness
(for endpoints of an 7-witness edge for some 7), primary, and secondary.

����� ���� There exists a data structure that supports the following operations onH with the
following amortized time complexities (given in parentheses).

(1) Add or remove an edge with a given edge depth and endpoint type
�
$(log <(log log <)2)

�
.

(2) Given a set (of siblingH -nodes orH -roots, merge them into a single node ui, and then
promote all 7-witness edges touching ui to (7 + 1)-witness edges

�
��((|(| � 1) (log log <)2)

�
.

(3) Given an H -node D
7
2 +̂7 , upgrade all 7-secondary endpoints touching D

7 to 7-primary
endpoints (��((A�>) (log log <)2), where > and A denote the number of 7-primary endpoints
and 7-secondary endpoints touching D7 prior to the upgrade).

(4) Given anH -node D7 2 +̂7 and a subset (of 7-primary endpoints touching D
7 , promote the

endpoints in (to (7 + 1)-secondary endpoints (��((12|(| � >) (log log <)2), where > is the
total number of 7-primary endpoints touching D7).

(5) Convert a given 7-non-witness edge into an 7-witness edge
�
$(log <(log log <)2)

�
.

(6) Given two H -nodes C7�1 and C
7 where C7 is an H -child of C7�1, split C7�1 into two sibling

H -nodes: one takes C7 as a single H -child and the other takes the rest of C7�1’s former
H -children as itsH -children

�
$((log log <)2)

�
.

(7) Given anH -node D7 2 +̂7 and a given endpoint type, enumerate all endpoints hC, 4i of this
type such that 34 = 7 and C7 = D

7
($(9 log log < + 1), where 9 is the number of enumerated

endpoints).
(8) Given D

7 , return itsH -parent D7�1
⇣
$

⇣
log log < + log

⇣
E(D

7�1
)

E(D7)

⌘⌘⌘
.

(9) Given anH -node D7 2 +̂7 , return a (1 + =(1))-approximation to the number of 7-primary
endpoints touching D7 ($(1)).

(10) (Batch Sampling Test) Given anH -node D7 2 +̂7 and an integer 9, independently sample
9 7-primary endpoints touching D7 (1 + =(1))-uniformly at random, and establish for each
sampled endpoint whether the other endpoint also touches D7 (see Remark 3.2).

������ ���� It should be noted that the time bounds of Lemma 3.1 only apply if the operations
are used to correctly maintain Invariant 2.2. For example, if we use Operation (5) to create a new
7-witness edge but the set F (the set of witness edges) now contains a cycle, then all bets are o�.
Moreover, the worst case cost of the Batch Sampling Test operation is$(min(9 log < log log <, 9+
(> + A) log log <)) time, where > and A are the number of 7-primary and 7-secondary endpoints
touching D7 , respectively. We analyze the amortized cost of this operation only when it is used
to �nd replacement edges and maintain Invariant 2.2; see Section 8.1.

�� � �� ����� ������� ������������� ��������� �������� ����

������ ���� The amortized costs of these operations are with respect to a potential function
(Section 9). The most important part of the potential function is that every upgrade and promo-
tion releases$((log log <)2) units of potential. Observe that Operations (2,3,4) can have negative
amortized cost. Negative amortized costs are not contradictory, and they are in fact helpful for
paying for the (positive) costs of operations that occur in conjunction with Operations (2,3,4);
see Section 10.1.

The proof of Theorem 1.1 uses Lemma 3.1 to restore Invariant 2.2. The proof itself is mostly
a technical recapitulation of the algorithm described in Section 3; for the sake of completeness
we provide a full proof in Section 10.1.

�� �������������� �� ��� ���� ���������

To support Lemma 3.1, the data structure utilizes �ve main modules, some of which depend on
each other: (1) theH -leaf data structure, (2) local trees, (3) the notion of an induced (7, B)-forest,
(4) shortcut infrastructure, and (5) approximate counters. TheH -leaf data structure is fairly
straightforward and is described in detail in Section 4.1. We de�ne induced (7, B)-forests in
Section 4.3. A brief overview of the other modules is described in Sections 4.2, 4.4, and 4.5.
Sections 5–9 provide a detailed explanation of each module. The general operations involving
multiple modules, as well as the proof of Lemma 3.1 are described and analyzed in detail in
Section 10.

��� ���H����� ���� ���������

The H -leaf data structure supports several operations that act on an individual vertex. Let
D be a vertex (an H -leaf), 7 2 [1, 3max] be a depth, and B 2 {witness, primary, secondary} be
an endpoint type. TheH -leaf data structure supports insertion or deletion of an endpoint (of
an edge incident to D) with depth 7 and type B. Moreover, theH -leaf data structure supports
enumeration of all endpoints incident to D with depth 7 and type B, and selecting one such
endpoint uniformly at random.

Supporting these operations in $(1) amortized time (plus time linear in the output) is
straightforward. Simply pack the endpoints with depth and type (7, B) in a dynamic array.
Dynamic arrays can be implemented deterministically to support incrementing/decrementing
the length of the array in $(1) amortized time.

��� ��� ����� �����

A local tree is a specially constructed binary tree, whose root is associated with anH -node D
and whose leaves are associated with theH -children of D. By composing the local trees withH ,
we can view the result as a single binary tree of height at most $(log < log log <). The purpose

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

of this binarization is to provide an e�cient infrastructure for supporting navigation withinH .
The local tree operations are detailed in Section 7 and summarized in Lemma 7.8.

��� ��� ������� (i, t)�������

The purpose of the (7, B)-forests is to support e�cient enumeration of all endpoints of a given
type that touch a given H -node. For a given edge depth 7 2 [1, 3max] and endpoint type
B 2 {witness, primary, secondary}, anH -leaf D is an (7, B)-leaf if D has an incident endpoint with
depth 7 and type B. An H -node D

7
2 +̂7 having an (7, B)-leaf in its subtree is an (7, B)-root. For

each (7, B) pair, consider the induced forestF onH by taking the union of the paths from each
(7, B)-leaf to the corresponding (7, B)-root. AnH -node D inF is an (7, B)-node if either

D is an (7, B)-leaf,
D is an (7, B)-root,
D has more than one child inF (so D is called an (7, B)-branching node), or
D is anH -child of an (7, B)-branching node but D has only oneH -child inF. In this case we
call D a single-child (7, B)-node.

Notice that an (7, B)-root may or may not be an (7, B)-branching node.
For each (7, B)-node other than an (7, B)-root, de�ne its (7, B)-parent to be the nearest ancestor

in F that is also an (7, B)-node. An (7, B)-child is de�ned accordingly. The (7, B)-parent/child
relation implicitly de�nes an (7, B)-forest, which consists of (7, B)-trees rooted at +̂7 nodes. An
H -node D has (7, B)-status if D is an (7, B)-node.

������� (i, t)�������� Each node in D 2 H stores two bitmaps of size 33max = $(log <) each.
The �rst indicates for each (7, B) pair whether D is an (7, B)-node, and if so, the second indicates
whether D is an (7, B)-branching node or not.

���������� �� (i, t)��������� A conceptual edge between an (7, B)-node and its (7, B)-parent
or (7, B)-child need not be maintained explicitly. The two components of our data structure
that simulate these edges are the shortcut infrastructure and the local trees. In particular, the
shortcut infrastructure supports e�cient traversal from a single-child (7, B)-node to its unique
(7, B)-child, while the local trees support e�cient enumeration of all the (7, B)-children of an
(7, B)-branching node. Since the implementation of traversal and navigation operations on
(7, B)-forests utilizes local trees which are introduced and de�ned in Section 7, we defer the
discussion of (7, B)-forests and their detailed implementation to Section 8.2 (see Lemma 8.1).

�� � �� ����� ������� ������������� ��������� �������� ����

��� ��� �������� ��������������

The purpose of shortcuts is to facilitate a faster traversal from a single-child (7, B)-node to its
onlyH -child. This traversal costs amortized $(log log <) time. The details and construction of
shortcuts are described in Section 5.

��� ����������� ��������

Implementing the sampling operation in Lemma 3.1 reduces to being able to traverse from
an (7, primary)-branching node to one of its (7, primary)-children D, where the choice of an
(7, primary)-child is random with probability that is approximately proportional to the number
of 7-primary endpoints touching D. The implementation of the random choice is supported
by maintaining an approximate 7-counter at each (7, primary)-node. Notice that an H -node
could be an (7, primary)-node for several 7, so there could be several approximate 7-counters
maintained in an H -node. The advantages of using approximate 7-counters, as opposed to
precise counters, are two-fold. First, each approximate 7-counter uses only $(log log <) bits,
and so $(log </log log <) approximate 7-counters can be packed into a single machine word
and be collectively manipulated in $(1) time. Second, approximate counters can only take
on (log <)$(1) values, and hence a decrement-only counter can only generate (log <)$(1) total
work throughout its lifetime. The maintenance of approximate 7-counters and the sampling
algorithm are explained in Section 6 and Section 7.4.

�� �������� ��������������

As described in Section 4.4, the purpose of shortcuts is to allow for e�cient navigation between a
single-child (7, B)-node C and its only (7, B)-child D. If the graph is static, a direct pointer between
C and D could be stored in the data structure so that D can be directly accessed from C. The
challenge is to maintain useful shortcuts in the midst of structural updates toH .

H����������� An H -shortcut C ↵ D is a data structure connecting an ancestor C to a de-
scendant D inH . H -shortcuts are only stored between a subset of eligible pairs of ancestor-
descendant pairs. The eligible pairs are determined as follows. For a positive integer ✓, de�ne
its least signi�cant bit index, denoted by LSBIndex(✓), to be the minimum integer 1 such that 21

divides ✓ but 21+1 does not. For anH -node C, let depthH (C) be the distance from C to the root
of the tree inH that contains C. The power of a pair of nodes C and D is de�ned as

P(C, D) = min(LSBIndex(depthH (C) + 1), LSBIndex(depthH (D) + 1)).�

� ��� ���� �� �������� ������� LSBIndex �� ��� ���� ������� �� �����

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

In order for anH -shortcut to exist between C and D, any intermediate node F on the path from
C to Dmust have LSBIndex(depthH (F) + 1) < P(C, D). If D is theH -child of C, then P(C, D) = 0
and C↵ D is an eligibleH -shortcut, which is called a fundamentalH -shortcut.

The following lemma states that the set ofH -shortcuts on an ancestor-descendant path do
not cross each other.

����� ���� For any four distinct H -nodes F1, F2, F3, F4 along a root-to-leaf path in H , it is
impossible to have twoH -shortcuts F1 ↵ F3 and F2 ↵ F4.

����� � For 8 2 {1, 2, 3, 4} let ⌘8 = depthH (F8) + 1, so ⌘1 < ⌘2 < ⌘3 < ⌘4. Assume the claim
is false, and so there exist two H -shortcuts F1 ↵ F3 and F2 ↵ F4. By de�nition this implies
LSBIndex(⌘2) < LSBIndex(⌘3) and LSBIndex(⌘3) < LSBIndex(⌘2), a contradiction. ⌅

��� �������� ������������� ��H���������� ��� ��� ������ We say that 0 ↵ 1 covers
2 ↵ 3 if 2 and 3 are on the path %01 from 0 to 1 inH . Notice that a shortcut covers itself. De�ne
⌫ to be the covering partial order:

(0↵ 1) ⌫ (2 ↵ 3) i� 0↵ 1 covers 2 ↵ 3 .

For any CD-path %CD onH , themaximal covering set of %CD, denoted by C����H (C, D), is the set
of maximalH -shortcuts (with respect to ⌫) among allH -shortcuts having both endpoints on
%CD. Figure 5 illustrates C����H (D5, D14) in bold.

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17
(root)

1
������ �� ��� ������ ����� ����� �����H (D5, D14) �� �� �������� ����� D7 ��� depthH (D7) = 7� ���
������ ����� ��� ��� ��� �� ��� �������� ����������

The following lemma bounds the size of C����H (C, D).

����� ���� For any two nodes C, D 2 H with C an ancestor of D, allH -shortcuts in C����H (C, D)

form a path connecting C and D, and | C����H (C, D) | = $(log log <).

����� � AllH -shortcuts on %CD form a poset, and all fundamentalH -shortcuts on %CD form
the path between C and D. By Lemma 5.1, C����H (C, D) forms a path connecting C and D.

�� � �� ����� ������� ������������� ��������� �������� ����

TheH -shortcuts in C����H (C, D) can be partitioned into two sequences: one with strictly
increasing powers and one with strictly decreasing powers. To see this, notice that for any
sequence of consecutive integers, there is a unique largest LSBIndex value among the sequence.
For anyH -node let ?(F) = LSBIndex(depthH (F) + 1). Let D⇤ be the uniqueH -node on %CD such
that ?(D⇤) > ?(F) for all F 2 %CD\{D

⇤
}. It is straightforward to see that no H -shortcut on %CD

crosses D⇤ and hence C����H (C, D) = C����H (C, D
⇤
) [C����H (D

⇤
, D).

Nowwe claim the following: let %D0D be an ancestor-descendant path such that ?(D0) > ?(F)

for all F 2 %D0D\{D0}. Then C����H (D
0
, D) consists ofH -shortcuts with strictly decreasing powers.

We prove this claim by induction. In the base cases the claim is trivially true, when D
0 = D or D0 is

theH -parent of D. In general, let D00 be the unique node on the path %D0D such that ?(D00) > ?(F)

for all F 2 %D0D\{D
0
, D
00
}. The shortcut D0 ↵ D

00 must be in C����H (D
0
, D) since the power of

D
0 ↵ D

00 is strictly greater than the power of any shortcut on %D00D. By the induction hypothesis
on %D00D, the claim holds. Thus, allH -shortcuts in C����H (D

⇤
, D) have distinct and decreasing

powers. By symmetry, allH -shortcuts in C����H (C, D
⇤
) also have distinct and increasing powers.

Since the maximum depth is 3max = blog <c, the largest possible power of an H -shortcut is
dlog log <e � 1. As a consequence, we have | C����H (C, D) | = $(log log <). ⌅

(i, t)����������� Let C be a single-child (7, B)-node and let D be the (7, B)-child of C, which by
de�nition must be either an (7, B)-branching node or an (7, B)-leaf. The purpose of maintain-
ing H -shortcuts is to allow one to quickly move from C to D. Ideally, the data structure will
traverse the $(log log <) H -shortcuts in C����H (C, D). However, forcing all of theH -shortcuts
in C����H (C, D) to be maintained by the data structure seems to complicate the process of
updatingH -shortcuts asH changes. In particular, when an 7-witness edge {C, D} is deleted,H
goes through several structural changes by merging an ancestor C7 (or D7) with a subset of the
H -siblings of C7 .� AllH -shortcuts that were connected to C7 (or D7) and thoseH -siblings need to
be updated at the same time. Since we are �ne with $(log log <) amortized time for the traver-
sal, the process of updating shortcuts (due to changes in the hierarchy or the corresponding
(7, B)-forests) becomes simpler by allowing a weaker invariant governing which shortcuts are
actually present.

����� ���� ��� ((7, B)-Shortcuts)� Let C be a single-child (7, B)-node and let D be the (7, B)-child
of C. The (7, B)-shortcuts on %CD that are stored by the data structure form a path connecting C and
D.

When structural changes take place inH , all of the shortcuts that touch the nodes par-
ticipating in these changes are removed. The cost for removing those shortcuts is amortized
over the cost of creating them. However, once the structural changes are complete, we do not

� H��������� ��� H������ ������� ��� ���� H��������

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

immediately return all the shortcuts back. Instead, the data structure partially recovers enough�

shortcuts to maintain Invariant 5.3, and then employs a lazy approach in which shortcuts are
only added (via a covering process) when they are needed.

������ �� �� ������� �� �� (7, B)����� ��� ��� ������������� (7, B)����������� ������ ������� ���
(7, B)������� ��� ��� ������ ���� �������� ��� (7, B)�����������

�������� ��� ����������� Assume Invariant 5.3 holds. Suppose that the algorithm traverses
downward from a single-child (7, B)-node C to its (7, B)-child D. If the set of shortcuts used is
precisely C����H (C, D) then this traversal costs $(log log <) time. If not, then the algorithm
repeatedly covers consecutive (7, B)-shortcuts (see Section 5.1 for implementation details) until
the set of (7, B)-shortcuts between C and D is exactly C����H (C, D). We use a potential argument
to prove that the amortized cost of traversing from C to D is $(log log <) time; see Section 9.2.

There are also certain cases where the structure of H does not change, but some (7, B)-
forests do change (for example, whenever anH -leaf gains or loses an (7, B)-status). To support
structural changes in H or in (7, B)-forests, the data structure will at times uncover an (7, B)-
shortcut A of power > by removing A and adding the two consecutive (7, B)-shortcuts of power
>�1 that were covered by A. In order to accommodate an e�cient uncovering operation, during
a covering operation the data structure continues to store the coveredH -shortcuts so that they
are readily available when a subsequent uncover operation occurs. TheH -shortcuts stored
by the data structure that are strictly covered by some (7, B)-shortcuts are called supportingH -
shortcuts; these supporting shortcuts do not have (7, B)-status. TheH -shortcut C↵ D is always

� ������ ���� ��������� ��� ������� ���� ��� �������� ���� ��������� �� ��� �������� �� ����� ��� �� �����H(C, D) �� ����� ���
��� ��������� �� �����

�� � �� ����� ������� ������������� ��������� �������� ����

directly accessible from D (the deeper node), but not necessarily from C (the shallower node).
From the perspective of D, C↵ D is called an upwardH -shortcut, while from the perspective of
C, C↵ D is called a downwardH -shortcut.

An upper bound on the number ofH -shortcuts that need to be stored at eachH -node is
captured by the following straightforward corollary. (Recall that the algorithm does not store
shortcuts between an (7, B)-branching node and its (7, B)-children.)

��������� ���� Assume Invariant 5.3 holds for all pairs of nodes inH . Then for each node
D 2 H , and each (7, B) pair, there is at most one downward (7, B)-shortcut and at most one upward
(7, B)-shortcut at D.

������� ���������� An H -shortcut C ↵ D that is an (7, B)-shortcut could also be an (7
0
, B
0
)-

shortcut when (7, B) < (7
0
, B
0
). Similarly, a supporting shortcut for some (7, B)-shortcut could also

be an (7
0
, B
0
)-shortcut when (7, B) < (7

0
, B
0
). The data structure stores at most one copy of any

H -shortcut even if there are many (7, B) pairs that use it. The maximum number of distinct
H -shortcuts touching a given ancestor-descendant path is bounded by the following lemma.
(Recall that a stored shortcut is either an (7, B)-shortcut for some (7, B), or a supporting shortcut,
which may have no (7, B)-status.)

����� ���� Consider any node D inH . The total number of stored shortcuts joining an ancestor
of D to another node is $(log < log log <). In particular, the number of distinct fundamental (7, B)-
shortcuts having one endpoint at an ancestor of D is$(log <). Moreover, the number ofH -shortcuts
having both endpoints at ancestors of D is $(log <).

����� � For a given path %, anH -shortcut C ↵ D is said to be deviating if exactly one of its
endpoints is on %.

Let % be the path from D 2 H to itsH -root. For each edge depth 7 and type B, at most one
(7, B)-shortcut is deviating from %, and each such shortcut has at most $(log log <) supporting
shortcuts with exactly one endpoint on %. (Recall that (7, B)-shortcuts form paths from single-
child (7, B)-nodes to their (7, B)-child. Branching (7, B)-nodes have no (7, B)-shortcuts leading
to descendants.) Thus, for each (7, B) pair, at most one fundamental (7, B)-shortcut deviates
from %. All H -shortcuts connecting H -nodes on % form a laminar set, and so there are at
most 23max = $(log <) suchH -shortcuts. Thus, the total number of stored shortcuts with one
endpoint in % is $(log < log log <), and the total number of distinct fundamental (7, B)-shortcuts
with one endpoint on % is $(log <). ⌅

In the rest of this section, we describe howH -shortcuts are stored.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

��� ���H��������� ���� ���������

����������� ������ ��H������� Due to Corollary 5.4, every node inH has atmost 33max+1 =

$(log <) downward (7, B)-shortcuts at any given time. Each node C stores an array D���C of size
at most 33max + 1 storing all downward (7, B)-shortcuts, together with a bitmap O��C indicating
which array slots of D���C are in use.� The size of D���C is chosen to be exactly enough
for storing pointers to (7, B)-shortcuts for all possible (7, B) pairs as well as one additional slot
for temporary use during promotions/upgrades. However, a single shortcut may be shared
by many (7, B) pairs. In order to support fast access from C to its downward (7, B)-shortcut,
each node stores a local dictionary which is an array D���I��C storing, for each (7, B) pair, a
(log log < + 2)-bit index to the location in D���C of the appropriate downwardH -shortcut, i.e.,

D���C[D���I��C[7, B]] points to an (7, B)-shortcut leaving C, if such a shortcut exists.

Notice that for anH -node and a power >, there is at most one upwardH -shortcut from D

with power >. Thus, each node Dmaintains an array U�D of $(log log <) pointers to shortcuts,
sorted by power, to the upward supportingH -shortcuts of D. Moreover, at each node D the data
structure stores a (33max + 1)-length array U�I��D of $(log log log <)-bit integers for each (7, B)

pair. Thus, the upward (7, B)-shortcut F ↵ D is accessed in $(1) time, i.e.,

U�D[U�I��D[7, B]] points to an (7, B)-shortcut entering D, if such a shortcut exists.

Notice that each entry in the D���I��C and U�I��D arrays is represented with $(log log <)
bits, and there are$(log <) (7, B) pairs. These entries are packed into$(log log <)memory words
so that the data structure is able to update the entire array e�ciently via lookup tables in
$(log log <) time.

The following lemma summarizes how shortcuts are used to support various operations
needed locally in oneH -node.

����� ���� The following operations are supported via shortcut information stored at nodes
(worst case time in parentheses).

Given C↵ D and a bitmap 1 of length 33max + 1, add C↵ D as an (7, B)-shortcut for all (7, B)
pairs indicated by 1 ($(min{|1| + 1, log log <}) where |1| is the number of 1s in 1).
Given C↵ D and a bitmap 1 of length 33max + 1, remove the (7, B)-shortcut status from C↵ D

for all (7, B) pairs indicated by 1 ($(min{|1| + 1, log log <})).
Given C 2 H and an (7, B) pair, return the (7, B)-downwardH -shortcut at C or report that
such a shortcut does not exist ($(1)).
Given D 2 H and an (7, B) pair, return the (7, B)-upwardH -shortcut at D or report that such a
shortcut does not exist ($(1)).

� ������ ���� ���� ��� ���� ��������� ��������� ��� ����� ����C� �� �� ������� �� ������� ��������� ������� ��� ��� ����
���� ����� ������ ��� ���������� ��� ��� �� ��������� ���� ��� ��� ���C ��� �������C �������

�� � �� ����� ������� ������������� ��������� �������� ����

Given C 2 H , return the index of an empty slot in D���C ($(1)).
Given C 2 H , enumerate all indices of used locations in D���C ($(9 + 1) where 9 is the
number of the enumerated indices).

����� ������� The proof of the lemma is straightforward using bitwise operations or$(<n)-
size lookup tables for operations on D���C, D���I��C, O��C, U�I��D, and U�D. For example,
O��C is a (3 log < + 1)-bit vector. We partition it into 3n�1 segments of n log < bits, and can search
for a zero in each segment in $(1) time with a table lookup. ⌅

����������� ������ �� ���������� An H -shortcut C ↵ D is an $(1)-word data structure
storing the following information:

P(C, D): the power of the shortcut,
Pointers to C and D,
The index 8 in D���C where C↵ D is stored, or ? if C↵ D is not stored in D���C,
A 33max + 1 length bitmap 1C↵D containing one bit for each (7, B) pair (called the (7, B)-bit)
indicating whether C↵ D is an (7, B)-shortcut, and
If P(C, D) > 0 then C ↵ D stores pointers to the two supporting shortcuts with power
P(C, D) � 1 that C↵ D covers.

����� ���� TheH -shortcut data structure supports the following operations (worst case time
in parenthesis):

1. (Uncovering) Given an (7, B) pair and an (7, B)-shortcut C ↵ D that is not a fundamental
H -shortcut, uncover C↵ D and convert the two supporting shortcuts of C↵ D into (7, B)-
shortcuts ($(1)).

2. (Traversal and Covering) Assume Invariant 5.3 holds for allH -nodes with depth � 7. Given
a single-child (7, B)-node C whose (7, B)-child is D, traverse from C to D via (7, B)-shortcuts
while guaranteeing that after the traversal is completed, the set of (7, B)-shortcuts between
C and D is exactly C����H (C, D), preserving Invariant 5.3 for all H -nodes with depth � 7

($(9 + log log <), where 9 is the number of (7, B)-shortcuts covered during the traversal).

����� � Part 1. Suppose the algorithm uncovers a given (7, B)-shortcut C ↵ D that is not
fundamental, meaning C ↵ D has power > > 0. The algorithm sets 1C↵D[7, B] = 0, follows the
two pointers from C ↵ D to its supporting power-(> � 1) H -shortcuts C ↵ F and F ↵ D, and
sets 1C↵F [7, B] = 1F↵D[7, B] = 1. The algorithm also updates in a straightforward manner some
local information in all a�ected nodes {C, D, F} in $(1) time. To be speci�c, the algorithm (i)
checks whether C↵ F and F ↵ D are already stored in D���C and D���F by inspecting C↵ F

and F ↵ D. (ii) If not, the algorithm �nds empty slots in D���C and/or D���F via the bitmaps
O��C and O��F , which indicate which slots in D���C and D���F are available, and updates
D���I��C[7, B] and/or D���I��F [7, B]. (iii) The algorithm sets D���C[D���I��C[7, B]] = C↵ F;

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

D���F [D���I��F [7, B]] = F ↵ D; U�I��F [7, B] = P(C, F); and U�I��D[7, B] = P(F, D). (iv) If 1C↵D

is all 0, i.e., C ↵ D is no longer an (7
0
, B
0
)-shortcut for any (7

0
, B
0
) pair, the algorithm frees the

slot storing C↵ D in D���C by unsetting the corresponding bit in O��C, then updates C↵ D to
re�ect that C↵ D is no longer stored in D���C.

������ ���� After step (iv), it may be that 1C↵D = 0 and C↵ D is not a supporting shortcut for
any higher-power (70, B0)-shortcut. If this is the case, it is �ne to delete C↵ D (and updateU�D and
U�I��D appropriately). In our implementation the algorithm has no means to check whether
C↵ D is a necessary supporting shortcut, and so the algorithm keeps C↵ D allocated. Notice
that in the worst case there are �(< log log <) stored shortcuts, so keeping spurious shortcuts
around does not a�ect the overall space usage of the data structure.

Continuing with the proof (Part 2), we can move from C to its (7, B)-child by starting at C
and following downward (7, B)-shortcuts until an (7, B)-node is reached. During this traversal, if
there are two consecutive (7, B)-shortcuts F ↵ G

0 and G
0 ↵ G with the same power > and

LSBIndex(depthH (G
0
) + 1) < min

⇣
LSBIndex(depthH (F) + 1), LSBIndex(depthH (G) + 1)

⌘
,

then the data structure covers the two shortcuts with theH -shortcut F ↵ G having power > + 1.
This is done as follows.

First the algorithm checks whether F ↵ G already exists, by testing if U�G [P(F, G)] stores
a pointer to F ↵ G or not. If F ↵ G already exists then F ↵ G is accessed through U�G, and if
not then F ↵ G is created and a pointer to F ↵ G is added to U�G.

Next, the algorithm sets the (7, B)-bit in 1F↵G to 1 and sets the (7, B)-bits in 1F↵G
0 and 1G

0↵G

to 0. If 1F↵G
0 = 0 (resp. 1G

0↵G = 0), the algorithm removes its index from D���F (resp. D���G
0)

by unsetting the corresponding bits in O��F (resp. O��G0). The algorithm also updates D���F

and D���I��F so that D���F [D���I��F [7, B]] = F ↵ G is accessible from F.
Covering F ↵ G may create the opportunity to cover another shortcut F0 ↵ G of the next

higher power. The data structure uses U�F to access the upwards shortcut F0 ↵ F with power
> + 1. If F0 ↵ F exists and is also an (7, B)-shortcut then the data structure covers F0 ↵ F and
F ↵ G with F

0 ↵ G, and recursively looks to see if there are more shortcuts to cover at power
> + 2, and so on.

It is straightforward to verify that at the end of the traversal the set of (7, B)-shortcuts con-
necting C and D is exactly C����H (C, D). The time for traversing the path is$(9+ | C����H (C, D) |),
which is $(9 + log log <) where 9 is the number of (7, B)-shortcuts being covered during the
traversal. ⌅

In Section 9.2 we show that by de�ning the potential function to be the number of all
(7, B)-shortcuts that could be covered but are not yet covered, this operation has amortized cost
$(log log <) time.

�� � �� ����� ������� ������������� ��������� �������� ����

��� ����������� ��������� ��� ������� ���������� ������� ��H

viui

������ �� ����� �������� �� 7�������� ���� {C, D}� ��� �������� H������ ��� �� �� ���� ��� ������ �� ���
������ �� ������� ��� � ����������� ��� {C, D}� �� ���� ����� � ���������� �� �������� ���� ��� �� ����
����� ������� 7 ��� ��� ����� ����� ��� ����������� ���� �� ������ ��� ������ ����� ���������� ���
������ �� ������� ���������

The shortcut infrastructure is very sensitive to the merge operation (e.g., Operation (2)
in Lemma 3.1). In particular, when an 7-witness edge {C, D} is deleted,H goes through several
structural changes by merging an ancestor of C7 (or D7) with a subset of itsH -siblings. These
merges require updating the shortcut infrastructure, which seems to be a very complicated
task when supporting these types of changes. Speci�cally, we need to employ a special strategy
that ensures Invariant 5.3 holds after the entire Delete operation.

In order to provide an e�cient implementation, observe that during such a single deletion,
all mergedH -nodes (and their appropriateH -siblings) end up being on the paths between C

7

and D
7 and their respectiveH -roots. See Figure 7. Thus, we are able to employ the following

strategy.
First, at the beginning of the delete operation, the algorithm completely uncovers and

removes allH -shortcuts that touchH -nodes on the two paths. In particular, by Lemma 5.5,
the algorithm removes (1) $(log <) fundamental shortcuts, (2) $(log <) shortcuts with both
endpoints on the path, and (3) $(log log <) deviating shortcuts from each path for each (7, B)

pair. Recall that deviating shortcuts have one endpoint on theH -path in question.
After removing these H -shortcuts, Invariant 5.3 no longer holds for pairs of H -nodes

where at least one node is on the a�ected paths. However, these are shortcuts with (7
0
, B
0
)-status

for some 70 < 7, and so during the deletion operation at depth 7 we never use such shortcuts.
Hence, removing them does not a�ect the other operations that take place during the edge
deletion process at depth 7.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

Lemma 5.9 summarizes the operations that remove and restore shortcuts along paths
inH , which are used to guarantee that Invariant 5.3 holds after the deletion operation termi-
nates. Since the implementation requires interaction with the local trees, we defer its proof to
Section 9.1.

����� ���� The data structure supports the following operations onH with amortized time
cost (in parenthesis). Given anH -node D:

Uncover and remove everyH -shortcut that is touching any node that is an ancestor of D
($(log <(log log <)2)).
Given D, itsH -parent C, and a bitmap 1, add a fundamentalH -shortcut C↵ D for all (7, B)
pairs indicated by 1 ($(log log <)).
Add all fundamentalH -shortcuts between consecutive ancestors of D that are (7, B)-shortcuts
for at least one (7, B) pair ($(log < log log <)).
Assume Invariant 5.3 holds. For all (7, B) pairs, cover all (7, B)-shortcuts having both endpoints
at ancestors of D ($(log < log log <)).

�� �������������� �� ����������� ��������

In this section, we describe how approximate 7-counters are implemented. Without loss of
generality we assume that the input graph ⌧ is simple. Hence, all approximate 7-counters are
only required to represent a (1 + =(1))-approximation of integers in the range [0, <2].

��� ����������� ��������

Each (7, primary)-leaf ✓ maintains the exact number of (7, primary)-endpoints touching ✓. The
precise number of (7, primary)-endpoints in a subtree of any (7, primary)-node D could be
computed exactly using a formula tree de�ned by the induced (7, primary)-tree rooted at D
where the value at each vertex is the sum of the values of its children. (Because the local trees
are binary, the induced tree is also binary, and has height $(log < log log <).) If one were to use
such a strategy, then everyH -node has the potential of storing $(log <) counters, where each
counter uses $(log <) bits, for a total of $(log <) words. Thus, splitting and merging vertices
may cost �(log <) time each, which is too expensive for our purposes.

Instead, the data structure e�ciently maintains approximate 7-counters for nodes inH

with a multiplicative approximation guarantee of (1 + =(1)) using only $(log log <) bits per
approximate 7-counter.

��� ��������� �� �� ����������� �������� Let V = 2 be a parameter that controls the quality
of the approximation. Each approximate counter ⇠̂ is de�ned by a pair (;, 4) composed of a
mantissa; 2 {0, 1}V log log < and an exponent 4 2 {0, 1}log log <+1. The �oating point representation

�� � �� ����� ������� ������������� ��������� �������� ����

of ⇠̂ concatenates; and 4 into a length (V + 1) log log < + 1 bit string. The integer representation
of ⇠̂ is;24, where we treat the mantissa part and the exponent part as unsigned integers. Notice
that an approximate counter represents up to 2(log <)V+1 di�erent integers. From the de�nition
above, an integer ⇠ 2 [0, <2] is approximated by ⇠̂ = (;, 4) where ; is the �rst V log log < bits
of the binary representation of ⇠ and 4 is the number of truncated bits.

������� �������� ���������� When computing the addition of two values 0 and 1 represented
by two approximate counters, the result 0 + 1 is rounded down to the nearest possible approxi-
mate counter value. Notice that this kind of addition is not associative. We denote the operation
of adding two approximate counters by 0 � 1. The precision guarantee of � is summarized in
the following lemma.

����� ���� Let 0 and 1 be two approximate counter values represented by approximate counters.
Then 0 � 1 satis�es:

(1 � log�V <) (0 + 1)  0 � 1  0 + 1.

����� � Let ⇠ = 0+ 1. Then by de�nition ⇠̂ = (;, 4) keeps the �rst V log log < bits of the binary
representation of ⇠. The di�erence between ⇠ and ⇠̂ is therefore strictly less than (log�V <)⇠.
Thus, ⇠̂ � (1 � log�V <)⇠. ⌅

������������� ��������� ��� ��� ������� ����� Using approximate counters with the �
operation instead of exact counters creates a loss in precision which depends on the height
of the arithmetic formula tree. Recall that the height of a formula tree is always bounded by
$(log < log log <) where the log log < factor is due to the local trees. In order to bound the loss
of precision we use a function � (D) which expresses themaximum possible height of D in any
formula tree. See Section 7.4 for more on why � (·) is de�ned this way.

��� �� �� ��� ���� Let D be anH -node. Let 8 be the depth of D inH . Then

� (D) = (3max � 8) · $(log log <) + blog(E(D))c .

Notice that � (D) = $(log < log log <). The following invariant relates the precision of
approximate counters to the function � . The maintenance of Invariant 6.3 is addressed in
Lemma 6.5, which is proved in Section 8.3.

����� ���� ��� (Precision of Approximate Counters)� Let D be anH -node and let ⇠7 (D) be
the precise number of 7-primary endpoints touching D. If D is an (7, primary)-node then D stores
an approximate 7-counter ⇠̂7 (D), where⇣

1 � (log�V <)
⌘
� (D)

⇠7 (D)  ⇠̂7 (D)  ⇠7 (D).

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

Thus, if Invariant 6.3 holds with V = 2, then for anyH -node D,

⇠̂7 (D) �

⇣
1 � (log�2 <)

⌘
� (D)

⇠7 (D) =
⇣
1 � (log�2 <)

⌘
$(log < log log <)

⇠7 (D) = (1 � =(1))⇠7 (D),

and so ⇠̂7 (D) gives the desired approximation.

������� U(logn) ����������� ��������� Each node inH stores 3max = log < approximate
counters. These counters are stored in $(log log <) words by packing $(log </log log <) approx-
imate counters in the �oating pointer representation into each word. With the aid of lookup
tables of size $(<n), the following lemma is straightforward.

����� ���� The following operations are supported on approximate counters (worst case time
in parentheses):

Given anH -node D and a depth 7, update/return the approximate 7-counter stored at D ($(1)).
Given the �oating point representation of an approximate counter, return its integer repre-
sentation ($(1)).
Given the integer representation of an approximate counter, return its �oating point repre-
sentation ($(1)).
Given two approximate counters 0 and 1, return 0 � 1 ($(1)).
Given two arrays of $(log <) approximate counters packed into $(log log <) words, return
their coordinate-wise sum, packed into $(log log <) words ($(log log <)).

����� ������� The �rst four operations use bitwise operations in a straightforward man-
ner. The �fth operation uses $(<n)-size lookup tables to support a query in $(log log <) time;
see Section 2.1. ⌅

������� �� ����������� The main lemma summarizing operations related to approximate
7-counters is given next.

����� ���� There exists a data structure that maintains approximate 7-counters onH while
maintaining Invariant 6.3 and supporting the following operations with the following amortized
time complexities (in parentheses):

Update the approximate counters to re�ect a change in the number of (7, primary)-endpoints
at a givenH -leaf ($(log <(log log <)2)).
Given an (7, primary)-tree T rooted at D7 , rebuild approximate 7-counters for all (7, primary)-
nodes in T to restore Invariant 6.3 for those nodes ($(|T |(log log <)2)).
When merging two siblingH -nodes, compute the approximate 7-counters for all 7 2 [1, 3max]
at the merged node ($(log log <)).
When splitting anH -node into two siblingH -nodes, compute the approximate 7-counters
for all 7 2 [1, 3max] at the two sibling nodes ($(log log <)).

�� � �� ����� ������� ������������� ��������� �������� ����

The proof of Lemma 6.5 depends on the implementation of local trees, which we provide
in Section 7. Thus, the proof of Lemma 6.5 is deferred to Section 8.3.

�� ����� �����

The purpose of the local treeL(D) is to connect anH -node Dwith itsH -childrenwhile supporting
various operations. A local tree is composed of a three-layer binary tree and a special binary
tree called the bu�er tree. The three-layer binary tree is composed of a top layer, amiddle layer
and a bottom layer. See Figure 8 for an illustration.

v

bu↵er tree
top tree

middle trees

bottom trees

������ �� �� ������� �� � ����� ���� L(D) ���������� ���� D�

The bottom layer is composed of bottom trees, each having at most 2 logU < leaves and
height $(log log <), U = $(1) to be calculated later.
The middle layer is composed ofmiddle trees such that all bottom tree roots are middle
tree leaves. The weight of a node F in L(D), denoted by E(F), is de�ned to be the sum
of all weights of H -children of D in the subtree of F, and the rank of F is de�ned to be
rank(F) = blogE(F)c. The weights are explicitly maintained only for nodes in either
bottom or bu�er trees. The middle trees are weight balanced binary trees with respect
to E(·). The algorithm maintains the invariant that there are never more than $(log <)
middle tree roots in a local tree.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

The top tree� is a mergeable, $(log log <)-height tree whose leaves are middle tree roots.
Its purpose is merely to gather up all middle trees within a single tree, while increasing
the overall height of the local tree by only $(log log <).

����� ���� ����� ��� ����� ���� ������� The root of L(D) has two children: the root of the
bu�er tree and the root of the top tree. The root of L(D) also has a pointer pointing to D inH .
When a newH -node D 2 H is created, L(D) is initially empty.

H����� ���������������� EachH -child F of D is not in L(D) as such, but is present through a
representative ✓F , which is a leaf in L(D). We distinguish F from ✓F because they have di�erent
characteristics and store di�erent information.

The local tree leaf ✓F stores a pointer to F 2 H , the weight of F, a parent pointer, approxi-
mate counters, and a bitmap maintaining local (7, B)-status of the leaf ✓F , where the (7, B)-bit in
the bitmap is set to 1 if and only if F and D are both (7, B)-nodes but the fundamentalH -shortcut
D↵ F is not an (7, B)-shortcut. In a quiescent state, this only occurs when D is an (7, B)-branching
node or (7, B)-root and F is an (7, B)-node.� However, in the middle of a Delete operation we
may temporarily uncover and remove a fundamental (7, B)-shortcut D ↵ F, which can cause
D, F to temporarily become (7, B)-nodes and ✓F 2 L(D) to temporarily become a local (7, B)-node.

����� (i, t)������� Consider a local tree L(D). The local (7, B)-nodes comprise all leaves of L(D)

with local (7, B)-status, as well as those internal nodes H 2 L(D) satisfying at least one of the
following.

H is the root of L(D), having at least one leaf-descendant with local (7, B)-status.
H 2 L(D) is a bottom tree node, a bu�er tree node, or a top tree node having a descendant
with local (7, B)-status. (Because of their dual membership, middle tree roots and leaves
are also included in this category.)
H 2 L(D) is a middle tree node whose children both have descendants with (7, B)-status. (It
is a local (7, B)-branching node.)
H 2 L(D) is a child of a middle tree (7, B)-branching node.

A local (7, B)-tree is de�ned in a similar fashion as the (7, B)-forest on H ; each H 2 L(D)

maintains a bitmap indicating for which (7, B)-pairs it is a local (7, B)-node. Whereas the (7, B)-
forest can have arbitrary branching factor, every local (7, B)-tree is binary since L(D) is itself
binary. Navigating from a local (7, B)-node H to its child is straightforward when H is in a bottom,
bu�er, or top tree, since the (7, B)-bits are stored explicitly at every node in these trees, and these
trees are binary. Local (7, B)-shortcuts are used for faster navigation in the middle layer; these

� ��� �� �� �������� ���� ��� ��� ���� ������� ���� ���� ��������� �� �������� ����� ������������ ��� ������ ����

� ������ ���� �� F �� �� (7, B)���������� ���� ��� D �� ���� ���� F 2 H ��� (7, B)������� ��� ✓F 2 L(D) ���� ��� ���� �����
(7, B)�������� ���� �� ��� ���� ������ ��� ������������ �������������� F ���� ✓F �

�� � �� ����� ������� ������������� ��������� �������� ����

are de�ned in Section 7.2. Each local (7, primary)-tree node in L(D) maintains an approximate
7-counter.

In Sections 7.1–7.3 we describe the operations of the bottom/bu�er layer, the middle layer,
and the top layer in isolation. In particular, Lemmas 7.1, 7.5, and 7.6 state the worst case cost of
operations, without regard to side e�ects on other layers. The interaction between the layers
and the amortization of costs is addressed in Section 7.5, Lemma 7.8.

��� ������ ����� ��� ��� ������ ����

The algorithm attaches newH -node representatives only to the bu�er tree, while deletions of
H -node representatives can take place in both bu�er and bottom trees. The bu�er tree can be
regarded as a bottom tree under construction.

Each bu�er tree and bottom tree has at most 2 logU < local tree leaves, where U is a
constant to be determined in Section 7.8. Whenever the bu�er tree size exceeds logU <, either
from merging twoH -nodes or from inserting a new local tree leaf, the bu�er tree becomes
mature and is converted to a bottom tree. The data structure adds this bottom tree into the
bottom layer and creates a new empty bu�er.

The bu�er and bottom trees are $(log log <) height mergeable binary trees. Each node
stores a weight, a vector of approximate counters, pointers to its parent and children, and a
bitmap indicating for each (7, B) pair, whether there is a local tree leaf in its subtree with local
(7, B)-status.

����� ���� The bu�er tree and bottom trees support the following operations, with the following
worst case time complexities (in parentheses):

Detach a bu�er/bottom tree leaf ($((log log <)2)).
Remove local (7, B)-status from a bu�er/bottom tree leaf ($(log log <)).
Given an edge depth 7 2 [1, 3max], a bu�er/bottom leaf F, and a value ?, decrease the
approximate 7-counter at F to ? ($(log log <)).

In addition, the bu�er tree supports the following operations:
Attach a bu�er tree leaf ($((log log <)2)).
Merge two bu�er trees of two siblingH -nodes ($((log log <)2)).
Add local (7, B)-status to a bu�er tree leaf ($(log log <)).
Convert the bu�er tree to a bottom tree ($(1)).
Given an edge depth 7 2 [1, 3max], a bu�er leaf F, and a value ?, set the approximate 7-counter
at D to be ? ($(log log <)).

����� � A bu�er tree is implemented by an o�-the-shelf mergeable binary tree with
$(log log <) worst case time for each attach, detach, and merge operation.� However, in order

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

to support updates to the vector of approximate counters, an $(log log <) factor overhead is
applied to each of the operations. See Lemma 6.4. Hence the worst case time cost for each
operation is$((log log <)2). From these three operations, bottom trees are only subject to detach.
Since we only require the height of a bottom tree to be $(log log <), no rebalancing is necessary
after detaching a leaf. In order to obtain correct rank(F), each attach, detach, and merge also
updates the weight of the given bu�er/bottom tree root.

To add (7, B)-status to a bu�er tree leaf F, the data structure traverses up the bu�er tree
and sets the (7, B)-bit to 1 in all ancestors of F in the bu�er tree. To remove (7, B)-status from a
bu�er/bottom leaf F, the data structure updates the (7, B)-bits at each ancestor of F. If a leaf F has
local (7, primary) status, it carries an approximate 7-counter. Such counters can be increased or
decreased in $(log log <) time by updating all ancestors of F in its bu�er/bottom tree. ⌅

������ ���� Observe that only the bu�er tree can acquire new leaves, and only bu�er tree
nodes can gain local (7, B)-status and increase their approximate 7-counters. In particular, this
implies that when a bottom tree leaf has to acquire a local (7, B)-status, the algorithm removes
the leaf from the bottom tree, updates its status and re-inserts the leaf into the bu�er tree.

��� ������ �����

All bottom tree roots are middle tree leaves. Middle trees respond to three types of updates at
their leaves: a leaf losing (7, B)-status, decreasing its approximate 7-counter, or decreasing its
weight. Middle trees are maintained as weight-balanced binary trees satisfying Invariant 7.3.

����� ���� ���� If F is a middle tree leaf/bottom tree root it maintains E(F) and rank(F) =
blogE(F)c. If F is an internal middle tree node it maintains only rank(F), and if F has children
F!, F' then rank(F!) = rank(F') = rank(F) � 1.

The operations described in Lemma 7.5 speci�cally maintain Invariant 7.3. As a con-
sequence of Invariant 7.3, the path from any middle tree leaf F⌫ (bottom tree root) to the
corresponding middle tree root F" has length log(E(F")

E(F⌫)
) + $(1). This property is used to bound

the number of local tree nodes traversed when walking from anyH -node to itsH -parent D via
the local tree L(D). In accordance with Invariant 7.3, two middle tree roots with the same rank
may join, and become children of a new middle node parent.

����� ���������� Each of the middle trees maintains a local shortcut infrastructure in much
the same way that shortcuts are maintained inH . Let C and D be two nodes in the same middle
tree such that C is a proper ancestor of D. Then C↵ D is an eligible local shortcut if and only if

� ���� ���� ��� ���� ������������� ���� ���������� ���� �� ����� ������ ������ ������ ��� �� �� ��� ������ ��� ����� �����
�� ��� ������� ��� �� �� ������� ��� ��������� ��������� �� ������ �������

�� � �� ����� ������� ������������� ��������� �������� ����

for every internal node F on the path %CD,

LSBIndex(rank(F) + 1) < min
⇣
LSBIndex(rank(C) + 1), LSBIndex(rank(D) + 1)

⌘
.

Notice that theH -shortcuts are de�ned from the depths ofH -nodes which increase along the
path from anH -root to anH -leaf. In contrast, in middle trees the ranks of middle tree nodes
decrease on the path from a middle tree root to a middle tree leaf. The de�nition of power is
symmetric between C and D, so the increasing/decreasing direction here does not matter. Local
shortcuts have the same properties as H -shortcuts: they are non-crossing; all eligible local
shortcuts naturally form a poset ⌫, and the maximal elements (w.r.t. ⌫) among shortcuts on
a middle tree path %CD form a path C����(C, D) with length $(log log <). A local shortcut with
power 0 is called a trivial shortcut, which coincides with a middle tree edge from a parent to
one of its children.

Invariant 7.4 is a local tree analogue of Invariant 5.3.

����� ���� ���� Let C be a single-child local (7, B)-node and let D be the local (7, B)-child of C.
Then the local (7, B)-shortcuts on %CD that are stored by the data structure form a path connecting
C and D.

Lemma 7.5 lists the middle tree operations.

����� ���� The data structure supports the following operations on a collection of middle
trees, maintaining Invariants 7.3 and 7.4, with the following worst case time complexities (in
parentheses):

Reduce the weight of a middle tree leaf ($(log < log log <)).
Remove (7, B)-status from a middle tree leaf ($(log <)).
Given an edge depth 7 2 [1, 3max] and a middle tree leaf F⌫, update the approximate 7-counter
at F⌫ ($(log <)).
Given a newly created bottom tree root, create a new middle tree leaf ($(1)).
Join two middle trees with the same rank ($(log log <)).

����� � We address each operation in turn.

�������� ������ When the weight of a middle tree leaf F⌫ is reduced (because its bottom tree
su�ered enough leaf deletions) it may cause a discrete reduction in its rank, which violates
Invariant 7.3. If so, we destroy all middle tree nodes that are strict ancestors of F⌫. We �rst
uncover all local shortcuts touching the path from F⌫ to its middle tree root F" . This procedure
is the same as the uncovering procedure described in Section 9.1. In order to avoid redundancy,
we do not provide details here. This costs $(log < log log <) time, and increases the number of
middle trees in the collection. (Each new middle tree root is inserted into the top tree.)

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

�������� (i, t)�������� Similar to the (7, B)-forests, in the local (7, B)-tree themiddle tree edges
between a local (7, B)-branching node F and its (7, B)-children are not considered to be trivial
(7, B)-shortcuts. To remove (7, B)-status from a bottom tree root/middle tree leaf F⌫, we follow
local upward (7, B)-shortcuts to �nd the one-child (7, B)-node ancestor F0 of F⌫. If F0 = F" is the
middle tree root of F⌫ then we remove (7, B)-status from F" (triggering an update to the top
tree; see Lemma 7.6). Otherwise, the parent of F0, F00 is an (7, B)-branching node. We remove
(7, B)-status from F

0 and all shortcuts from F⌫ to F0, then add a trivial (7, B)-shortcut from F
00 to the

sibling of F0. This may cause F00 and/or the sibling of F0 to lose (7, B)-status. Since the middle trees
are weight balanced, removing (7, B)-status from a middle tree leaf costs worst case $(log <)
time.

������ �� ����������� i��������� If the approximate 7-counter at F⌫ changes it invalidates
the approximate 7-counters at all ancestors on the path from F⌫ to its middle tree root F" . Each
can be updated in $(1) time (Lemma 6.4), for a total of $(log <) time.

������ � ��� ������ ���� ����� The bu�er tree root maintains its weight and approximate
7-counters. Thus, when the bu�er is converted to a bottom tree, its root (the new middle tree
leaf) can be inserted into the middle tree collection in $(1) time. (As a new middle tree root, it
is also inserted as a leaf in the top tree; this is accounted for in Lemma 7.6.)

������� ������ ������ To join roots F!, F', we create a new middle tree parent F and compute
its approximate 7-counters in $(log log <) time (Lemma 6.4) by adding the vectors at F!, F'. We
set the bitmap of F to be the bitwise OR of bitmaps stored in F! and F'. In order to maintain
Invariant 7.4, the data structure adds trivial (7, B)-shortcuts whenever F has an (7, B)-bit set to
1 and exactly one of F! or F' has its (7, B)-bit set to 1. This is done in $(1) time using bitwise
operations. ⌅

��� ��� �����

The top tree is an $(log log <)-height mergeable binary tree. All middle tree roots are top tree
leaves. As a consequence of the middle tree reduction procedure described below, each top tree
has at most 4 log < top tree leaves. Each top tree node F maintains pointers to its parent and
children, approximate counters, and a bitmap of (7, B) pairs indicating whether a local tree leaf
with (7, B)-status appears in the subtree of F.

Whenever we invoke the Middle Tree Reduction procedure, the entire top tree is rebuilt.

������ ���� ���������� There are at most log < possible ranks for a middle tree node. If
there are at least 2 log <middle trees in a local tree, then the data structure invokes themiddle
tree reduction procedure: (1) destroy the top tree, (2) repeatedly take two middle tree roots with

�� � �� ����� ������� ������������� ��������� �������� ����

the same rank, and join the corresponding middle trees, then (3) rebuild the top tree on the
remaining middle tree roots. The size of the top tree can be as large as 4 log < immediately after
merging the top trees of two siblingH -nodes.

����� ���� The following operations are supported on the top trees, with the following worst
case time complexities (in parentheses):

Insert a middle tree root into the top tree ($((log log <)2)).
Remove a middle tree root from the top tree ($((log log <)2)).
Merge the top trees of two local trees ($((log log <)2)).
Given the list of all middle tree roots that are leaves of the top tree, perform a middle tree
reduction and rebuild the top tree ($(log < log log <)).
Update approximate counters along the path from the given top tree leaf F" to the top tree
root F) ($((log log <)2)).
Remove (7, B)-status of a given middle tree root ($(log log <)).

����� � The top tree implements leaf-insertion, leaf-deletion, and merging the two top trees
in $((log log <)2) time. Rebuilding the top tree costs time proportional to the number of middle
trees (which is $(log <)), multiplied by $(log log <) for updating approximate counters at each
node. ⌅

��� ����������� ��������� ���� ��������

Recall from Invariant 6.3 that � (F
8
) was de�ned as the maximum possible height of any

arithmetic formula tree (summing up approximate counters) with F
8
2 +̂8 at the root. We de�ne

a similar function for nodes inside local trees. If D 2 L(F
8
), de�ne �✓ (D) as:

�✓ (D) = (3max � 8 � 1) · $(log log <) + blog(E(D))c + ⌘bot/top(D),

where ⌘bot/top(D) = $(log log <) is precisely the maximum number of top, bottom, and bu�er
trees nodes on a path from D to a leaf of L(F

8
). With this de�nition, it is straightforward to see

that when D!, D' are the children of D, that

�✓ (D) = max(�✓ (D!),�✓ (D')) + 1.

We �rst prove that all nodes in a local tree have the correct precision in terms of �✓ (D).

����������� ��������� ���� Invariant 6.3 constrains the accuracy of approximate 7-counters
in terms of � (·). We prove that Invariant 6.3 is maintained, by analyzing the accuracy of
approximate 7-counters inside the local trees in terms of �✓ (·).

Fix an edge depth 7 and a local (7, primary)-branching node F 2 H . Assume, inductively,
that every local (7, primary)-leaf ✓G in L(F) representing the (7, primary)-child G of F satis�es
Invariant 6.3 and ⇠̂7 (✓G) = ⇠̂7 (G). We now prove that Invariant 6.3 is satis�ed at F as well.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

Fix a local (7, primary)-branching node D 2 L(F), and let D!, D' be its (7, primary)-children, so
⇠̂7 (D) = ⇠̂7 (D!) � ⇠̂7 (D'). By induction on �✓ (D),

⇠̂7 (D) �

⇣
1 � log�V <

⌘
(⇠̂7 (D!) + ⇠̂7 (D'))

�

⇣
1 � log�V <

⌘max(�✓ (D!),�✓ (D'))+1
(⇠7 (D!) + ⇠7 (D'))

�

⇣
1 � log�V <

⌘
�✓ (D)

⇠7 (D).

On the other hand, by the de�nition of � and the inductive hypothesis, ⇠̂7 (D)  ⇠̂7 (D!) + ⇠̂7 (D') 

⇠7 (D!) + ⇠7 (D') = ⇠7 (D). In addition, for any single-child local (7, primary)-node C, the approxi-
mate 7-counter ⇠̂7 (C) is identical to the approximate 7-counter value from its local (7, primary)-
child D. Since �✓ (C) � �✓ (D), the precision requirement still holds.

Let H be the root of L(F). Then �✓ (H)  � (F) (provided the leading constants hidden by
the $(log log <) factors in the de�nitions of �✓ and � are set correctly) and Invariant 6.3 holds
for F as well.

����� ������ �� (7, primary)������

This section shows that an (7, primary)-child can be e�ciently sampled approximately propor-
tional to its approximate 7-counter.

����� ���� Given an (7, primary)-branchingH -node C8�1, we can sample an (7, primary)-child
C
8 with probability at most

⇠̂7 (C
8
)

⇠̂7 (C
8�1)

· (1 � log�V <)�(� (C
8�1

)�� (C
8
))

in time $(� (C
8�1

) � � (C
8
)). Recall that V = 2 is constant.

The data structure begins at the root of L(C
8�1

), which is a local (7, primary) node, and
walks down to a descendant leaf inL(C

8�1
) as follows. If we are at a local (7, primary)-branching

node F, let F! and F' be its local (7, primary)-children. We randomly choose a child with
probability proportional to ⇠̂(F!) and ⇠̂(F'), respectively, and navigate downward using local
(7, primary)-shortcuts to�nd the next local (7, primary)-branching child. The process terminates
when we reach a local leaf ✓

C
8 (representing C8) with local (7, primary)-status.

Let F0 be the root of L(C
8�1

), and the sequence F1, F2, . . . , F9 be all local (7, primary)-
branching nodes which are on the path between F0 and F9+1 = ✓

C
8 . For all B 2 [0, 9], let F0

B

and F
00

B
be the two local (7, primary)-children of FB, with F

0

B
being the ancestor of FB+1.�� Then we

have for all B 2 [0, 9], ⇠̂7 (F
0

B
) = ⇠̂7 (FB+1), and the probability that a particular (7, primary)-child

�� �� ��� ���� �� B = 0� �� ��� ���� �� ��� � ����� (7, primary)���������� ���� ���� �� ���� ⇠̂7 (B
00

0) �� �� �����

�� � �� ����� ������� ������������� ��������� �������� ����

C
8 is sampled is at most

9÷
B=0

⇠̂7 (F
0

B
)

⇠̂7 (F
0

B
) + ⇠̂7 (F

00

B
)


9÷
B=0

"
⇠̂7 (F

0

B
)

⇠̂7 (F
0

B
) � ⇠̂7 (F

00

B
)
(1 � log�V <)�1

#

=
9÷
B=0


⇠̂7 (FB+1)

⇠̂7 (FB)
(1 � log�V <)�1

�

=
⇠̂7 (F9+1)

⇠̂7 (F0)
(1 � log�V <)�(9+1)


⇠̂7 (C

8
)

⇠̂7 (C
8�1)

(1 � log�V <)�(� (C
8�1

)�� (C
8
))
.

��� ����� ���� ����������

Lemmas 7.1, 7.5, and 7.6 established worst case bounds on the elementary operations inside
bu�er, bottom, middle, and top trees. Lemma 7.8 lists the operations supported by the local
tree as a whole, and analyzes their amortized time costs.

����� ���� There exists a data structure that supports the following operations between an
H -node D and itsH -children, with the following amortized time complexities (in parentheses):

Attach a newH -child F to D

�
$((log log <)2)

�
.

Detach anH -child F of D
�
$((log log <)2)

�
.

Let (be a set ofH -children of D. Merge (into a single node F0, which is a newH -child of D.�
$(|(| (log log <)2)

�
.

Given a non-rootH -node F, return itsH -parent D ($(� (D) � � (F))).
Given anH -node D, enumerate allH -children of D with (7, B)-status ($(log log <) per child)
or decide if D has a unique (7, B)-child ($(log log <)).
Given anH -node F and a bit vector 1, add local (7, B)-status to the local tree leaf ✓F for all
(7, B) pairs indicated by 1 ($((log log <)2)).
Given anH -node F and a bit vector 1, delete local (7, B)-status to the local tree leaf ✓F for all
(7, B) pairs indicated by 1 ($(log log <)).
Given an (7, primary)-branching node D, sample an (7, primary)-child F with probability at
most

⇠̂7 (F)

⇠̂7 (D)
· (1 � log�2 <))�(� (D)�� (F))

. (Time: $(� (D) � � (F)))

Increase the 7-counter of anH -child F of D.
�
$((log log <)2)

�
.

Decrease the 7-counter of anH -child F of D. ($(log log <)).

����� � We will address these operations one by one. The sampling operation was already
established in Lemma 7.7, Section 7.4. We �rst describe the worst case cost of operations, and
at the end of the proof we analyze the amortized cost.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

������ � ���H������ x� The local tree leaf ✓F is created and inserted into the bu�er tree of
L(D). By Lemma 7.1 the worst case cost of this operation is $((log log <)2). If the bu�er tree is
full, the algorithm converts the bu�er tree into a bottom tree which costs $(1) by Lemma 7.1,
then creates a middle tree leaf which costs $(1) time by Lemma 7.5, and possibly rebuilds the
top tree which costs $((log log <)2) time by Lemma 7.6.

������ ��H������ x� The local tree representitive ✓F is �rst removed from either the cor-
responding bu�er tree or bottom tree, costing $((log log <)2) time by Lemma 7.1. In the case
where the corresponding bu�er/bottom tree root loses its local (7, B)-status, or in the case where
the approximate 7-counters are reduced, the entire ancestor path is updated in $(log <) time by
Lemmas 7.5 and 7.6. In the case where the rank of the corresponding bu�er/bottom tree root is
reduced (costing $(log < log log <) time by Lemma 7.5), the middle tree reduction may be then
invoked, costing $(log < log log <) time by Lemma 7.6. Notice that these log < worst case terms
are amortized away at the end of this proof.

����� �������H������� For each node F 2 (, we detach the representative ✓F in worst case
$((log log <)2) time by Lemma 7.1, and then merge the local trees of (-nodes in pairs until there
is only one node left. Tomerge local treeswe�rstmerge their bu�er trees (costing$((log log <)2)
time by Lemma 7.1), then merge their top trees (costing $((log log <)2) by Lemma 7.6). Then,
if the merged bu�er tree is full, make it a bottom tree (costing $(1) by Lemma 7.5). Finally,
if the top tree is full, call the middle tree reduction procedure (costing $(log < log log <) time
by Lemma 7.6). Let F0 be the node resulting from merging (. Its representative ✓F 0 is created,
having weight that is the sum of the weights of the (-nodes, and reattached to the bu�er tree of
L(D), in $((log log <)2) time.

������ ���H�������� Let F 2 H be a non-root H -node. We �nd the local representative
✓F 2 L(D), then walk up to the root of L(D) and return “D.” The number of bu�er, bottom,
and top tree nodes traversed is $(log log <) and the number of middle tree nodes traversed is
log(E(D)

E(F)
) + $(1). By the de�nition of � (·), this is bounded by � (D) � � (F).

��������� ��� ����� ���� ������ ���� ����� (i, t)�������� We perform a depth-�rst search
from the local tree root. When the search encounters a top tree, a bottom tree, or a bu�er
tree node, the bitmaps in its children indicate whether the child contains a local tree leaf
with an (7, B)-status or not. When the search encounters a middle tree node F, we examine
D���[D���I��[7, B]] to see whether there is a downward local (7, B)-shortcut leaving F or
not. If there is no downward local (7, B)-shortcut leaving F, then F is a local (7, B)-branching
node and the search proceeds recursively on both children. Otherwise, the search navigates
downward from a local (7, B)-non-branching node F to its highest descendant (7, B)-node F0. The
same navigation algorithm described in Section 5.1 is performed so that after the navigation all

�� � �� ����� ������� ������������� ��������� �������� ����

(7, B)-shortcuts on the path %CD are exactly local shortcuts in C����(F, F0). (The cost of adding
these shortcuts inside a local tree is amortized di�erently than how addingH -shortcuts are
amortized; see below.) All local tree leaves with (7, B)-status are enumerated in $(log log <)
amortized time per leaf.

To test whether there is a unique leaf with (7, B)-status, we navigate downward from the
root H ofL(D), following local (7, B)-shortcuts until reaching either a local (7, B)-leaf F (necessarily
unique) or a local (7, B)-branching node F (indicating non-uniqueness). We then cover local
(7, B)-shortcuts on the path from H to F as long as it is possible. As shown below, the amortized
cost of this operation is $(log log <).

��� ����� (i, t)������� �� � ����� ���� ����� Recall that the only leaves that may gain local
(7, B)-status are bu�er tree leaves (Remark 7.2). Let ✓F be the local tree leaf gaining (7, B)-status.
If ✓F resides in a bottom tree we detach it, reattach it to the bu�er tree, and add (7, B)-status
there. From the description above (the �rst two operations listed on Lemma 7.8), the time cost
is amortized $((log log <)2) due to the potential detach/attach operation.

������ ����� (i, t)������� ���� � ����� ���� ����� The algorithm �rst removes the local
(7, B)-status from the local tree representative ✓F , costing $(log log <) time by Lemma 7.1. If
the corresponding bottom tree root loses some local (7, B)-status, the algorithm removes local
(7, B)-status from the corresponding middle tree leaf, costing $(log <) time by Lemma 7.5. The
log < worst case time cost will be amortized as described below.

�������� ��� ����������� i�������� �� ��H������ x �� v� Let ✓F be the local tree leaf that
represents F. The algorithm detaches ✓F , changes the 7-counter value and then attaches ✓F to
the bu�er tree. The operations costs $((log log <)2) time from the �rst two operations listed on
Lemma 7.8.

�������� ��� ����������� i�������� �� ��H������ x �� v� The algorithm sets the approxi-
mate 7-counter at F to the new value, costing $(log log <) time by Lemma 7.1. If ✓F is in a bottom
tree and the corresponding bottom tree root has its approximate 7-counter value changed, the
algorithm invokes Lemma 7.5 and updates the approximate 7-counter at the corresponding
middle tree leaf, costing $(log <) worst case time and again can be amortized away by the
description below.

��������� ���� ��������� We use a credit system. Every bu�er tree leaf carries �(1) credits
and every middle tree root carries �(log log <) credits. Suppose the bu�er tree matures and
becomes a bottom tree, say with root F⌫. At this moment the tree has �(logU <) credits, which
will pay for all future costs associated with updating the middle and top tree ancestors of F⌫.
The following three types of events change the information stored at F⌫.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

1. F⌫ changes rank. Since the bottom tree is only subject to detach operations (see Remark 7.2),
its weight is non-increasing. Therefore, this happens at most log < times.

2. F⌫ loses (7, B)-status. It can never regain (7, B)-status (Remark 7.2), so this happens at most
33max = $(log <) times.

3. F⌫’s approximate 7-counter changes. The approximate counters are non-increasing, and
each such counter can take on $(logV+1 <) di�erent values (Section 6). Since there are
log < possible values for 7, the total number of counter changes is $(logV+2 <).

Each of the above events requires that we update or delete the entire path form F⌫ to the
local tree root, which can have length �(log <). Events of type (1) take $(log < log log <) time
to destroy the path and reinsert new middle tree roots into the top tree, each with $(log log <)
credits. Events of type (2) and (3) take $(log <) time to update the (7, B)-status or approximate
7-counters of all ancestors of F⌫. Since V = 2, the total cost for events of type (3) is the bottleneck.
They take $(logV+3 <) time over the life of the bottom tree. We set U � V + 3 = 5, so the credits
of a bottom tree su�ce to pay for all costs incurred over the lifetime of the bottom tree.

A middle tree reduction procedure is invoked if the leaf set (of the top tree has size
|(| � 2 log <. Thus, it begins with at least 2 log < · $(log log <) credits and ends with at most
log < · $(log log <) credits, which pays for rebuilding the top tree in $(log < log log <) time
(Lemma 7.6).

The number of shortcuts removed is bounded by the number created, so it su�ces to
account for the cost of creating shortcuts. Local shortcuts are created in twoways: (i) in response
to the creation of a middle tree node (joining two middle trees), and (ii) lazy covering. The
cost of case (i) is ultimately paid for by the deletion of that middle tree node, which in turn is
paid for by the bottom tree that triggered the deletion. The cost of case (ii) is attributed to the
removal of (7, B)-status at some corresponding middle tree leaf with an (7, B)-status, which is
accounted for in the cost of type (2) events. ⌅

�� ����� ����

Some of the operations on the hierarchyH required the de�nition of (7, B)-forests (Section 5)
and local trees (Section 7) and could not be described until now. In Section 8.1 we analyze the
cost of searching for a replacement edge using the two-stage batch sampling test sketched in
Section 3.2.2. In Section 8.2 we explain how to maintain (7, B)-forests (Invariant 5.3), and in
particular, how to e�ciently merge two such forests when doing batch promotions/upgrades. In
Section 8.3 we prove Lemma 6.5 concerning approximate counters, and show that Invariant 6.3
is maintained.

�� � �� ����� ������� ������������� ��������� �������� ����

��� ��� ����� �������� ����

Recall from the deletion algorithm of Section 3.2.1 that ui is the newH -node resulting from
merging a set of siblings. In this section we show how the data structure performs the batch
sampling test among 7-primary endpoints touching ui. Let > and A be the number of 7-primary
and 7-secondary endpoints touching ui, and let >̂ = ⇠̂7 (ui) be a (1 + =(1))-approximation of >.
(Retrieving >̂ is Operation (9) from Lemma 3.1.)

������ ������ ����� To (1 + =(1))-uniformly sample one 7-primary endpoint touching ui,
the data structure sets F = ui and iteratively performs the following step. Base case: If F is an
(7, primary)-leaf, then return an 7-primary endpoint at F uniformly at random. General case: If
F is an (7, primary)-branching node, then use L(F) to sample an (7, primary)-child F

0 of F with
probability at most ⇠̂7 (F

0
)

⇠̂7 (F)
(1� log�V <)�(� (F)�� (F

0
)) (Lemma 7.7). If F0 is an (7, primary)-branching

node or leaf, we set F = F
0 and repeat. Otherwise, we repeatedly follow the (7, primary)-shortcuts

leaving F0 to its (7, primary)-child F
00, set F = F

00, and repeat (Lemma 5.7).
Notice that with accurate counters this procedure picks a perfectly uniformly random

7-primary endpoint. Let hF, {F, G}i be the sampled endpoint and F0 = ui, F1, . . . , F9 = F be the
sequence of (7, primary)-branching nodes on the path inH from ui to F. Then the probability
that hF, {F, G}i is sampled is at most

1
⇠7 (F)

9�1÷
8=0

"
⇠̂7 (F8+1)

⇠̂7 (F8)
(1 � log�V <)�(� (F8)�� (F8+1))

#

=
1

⇠7 (F)

266664
9�1÷
8=0

⇠̂7 (F8+1)

⇠̂7 (F8)

377775
(1 � log�V <)�� (F0)

=
1

⇠7 (F)

⇠̂7 (F)

⇠̂7 (ui)
(1 � log�V <)�� (F0)

= (1 � =(1))
1

⇠̂7 (ui)
(1 � log�V <)�$(log < log log <) (� (F0) = $(log < log log <))

 (1 + =(1))
1

⇠7 (ui)
. (V = 2)

The 1/⇠7 (F) factor re�ects the fact that once we reach theH -leaf F, an endpoint touching F
is selected (exactly) uniformly at random, without any approximation. To check whether {F, G}
is a replacement edge or not, it su�ces to check whether G

7 = ui. This can be accomplished by
starting from G and repeatedly accessing theH -parent until G7 is reached. Using local trees, the
cost of computingH -parents along a path telescopes to � (G

7
) = $(log < log log <).

����������������������� Anotherway to sample 7-primary endpoints is to�rst enumerate
all 7-primary endpoints and all 7-secondary endpoints touching ui in $((> + A) log log <) time,
mark all enumerated endpoints and store all 7-primary endpoints in an array. Then the data

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

structure samples an 7-primary endpoint uniformly at random from all enumerated 7-primary
endpoints and checks whether the other endpoint is marked in $(1) time.

����� �������� ���� �� k �������� The data structure runs the two sampling methods in
parallel and halts when the �rst �nishes. Thus, the time to sample 9 (7, primary)-endpoints is

$

⇣
min

n
(> + A) log log < + 9, 9 log < log log <

o⌘
.

����� ���� �������� ��� �������� ���������

As described in Section 3.2.2, the sampling procedure either returns a replacement edge, or
invokes the enumeration procedure. Roughly speaking, if no replacement edge is found, the
cost is charged to either upgrades of (7, secondary) endpoints or promotions to (7, primary) end-
points. If any replacement edge is found, the data structure is willing to pay $(log <(log log <)2)
cost because this happens at most once per Delete operation.

If the enumeration procedure is invoked, the data structure upgrades all enumerated
7-secondary endpoints touching ui to 7-primary endpoints, and then all 7-primary endpoints
touching ui associated with non-replacement edges are promoted to (7 +1)-secondary endpoints.
The �rst batch sampling test, when 9 = $(log log >̂) = $(log log >), costs

)1 = $(min((> + A) log log <, log log > · log < log log <)).

The second batch sampling test (9 = $(log >)), if invoked, costs

)2 = $(min((> + A) log log <, log > · log < log log <)).

The enumeration procedure, if invoked, costs

)⇢ = $((> + A) (log log <)2).

Let d be the fraction of 7-primary endpoints touching ui associated with replacement edges
before the execution of the sampling procedure. The rest of the analysis is separated into two
cases:

Case 1. If d � 3/4, the probability that the �rst batch sampling test returns with a replacement
edge is at least 1 � (1/4 + =(1))$(log log >) > 1 � 1/log >.�� The second batch sampling test, if
invoked, returns a replacement edge if at least half the $(log >) endpoints sampled belong
to replacement edges. By a standard Cherno� bound, the probability that the second batch
fails to return a replacement edge and halt is exp(��(log >)) < 1/>.

�� �� �� 1/4 + =(1) ������� ��� �������� ��������� �� ���� (1 + =(1))�������������

�� � �� ����� ������� ������������� ��������� �������� ����

The expected time cost is therefore

)1 + (1/log >))2 + (1/>))⇢ = $

✓✓
log < +

> + A

>

◆
(log log <)2

◆
= $((log < + A) (log log <)2)

We charge the Delete operation $(log <(log log <)2), which covers the expected cost of the
two batch sampling steps and the expected cost of dealing with primary endpoints if the
enumeration step is reached. If the enumeration step is reached, endpoint upgrades pay
for the �(A(log log <)2) cost of dealing with secondary endpoints.

Case 2. Otherwise, d < 3/4. If the enumeration procedure is ultimately invoked, a 1 � d = �(1)
fraction of the 7-primary endpoints touching ui belong to non-replacement edges, which are
promoted to depth 7 + 1, and all A 7-secondary endpoints are upgraded to either 7-primary
or (7 + 1)-secondary status. In this case the time cost is

)1 +)2 +)⇢ = $((> + A) (log log <)2),

which is charged to the promoted edges/upgraded endpoints. We need to prove that the
probability of terminating after the second batch sampling test is su�ciently small. If
d � 1/4 then the probability of the �rst batch sampling test not returning a replacement
edge is at most (3/4 + =(1))$(log log >) < 1/log >. In this case the expected cost is

)1 + (1/log >))2 = $(log <(log log <)2).

If d < 1/4 then, by a Cherno� bound, the probability that at least half the sampled endpoints
belong to replacement edges is exp(��(log >)) < 1/>. Therefore the expected cost when
the enumeration procedure is not invoked with d < 1/4 is at most

(1/>) ()1 +)2) = $(log < log log <),

which is charged to the Delete operation.

��� ����������� (i, t)��������

Lemma 8.1 summarizes the operations on (7, B)-forests which are implemented via the shortcut
infrastructure and local trees, together with their corresponding time cost.

����� ���� There exists a data structure onH supporting the following operations with amor-
tized time (in parenthesis):

Given anH -leaf F and an (7, B) pair, designate F an (7, B)-leaf
�
$(log <(log log <)2)

�
.

Given an (7, B)-leaf F, remove its (7, B)-status
�
$(log <(log log <)2)

�
.

Given an (7, B)-node D, return the (7, B)-parent of D ($(log log <)).
Given an (7, B)-node D, enumerate the (7, B)-children of D ($(1 + 9 log log <) where 9 is the
number of enumerated (7, B)-children).

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

Given an (7, B)-tree T rooted at D, an integer 70 2 [7, 3max], an endpoint type B0, and two
subsets of (7, B)-leaves (� and (+ (these subsets need not be disjoint), updateH so that all of
the leaves in (� lose their (7, B)-leaf status, and all leaves in (+ gain (7

0
, B
0
)-leaf status (if they

did not have it before)
�
$(|T |(log log <)2 + 1)

�
.

Each operation assumes that, prior to the execution of the operation, Invariant 5.3 holds for
allH -nodes of depth � 7, where 7 is part of the input of the operation. Moreover, Invariant 5.3 is
guaranteed to hold for allH -node of depth � 7 after each operation is completed.

The remainder of this section constitutes a proof of Lemma 8.1.

��� (i, t)������� �� ��H������ Let F be theH -leaf. In order to identify the (7, B)-branching
ancestor of F, the data structure climbs up H and �nds the �rst H -node F

0 that is either an
(7, B)-node or has a downward (7, B)-shortcut F0 ↵ F

00. If F0 is an (7, B)-branching node, then
since theH -child of F0 that is also an ancestor of F is not an (7, B)-node, F0 is the (7, B)-branching
ancestor of F. Otherwise, the data structure performs a binary search on the path %F 0F 00 to �nd
the (7, B)-branching ancestor as follows:

If F0 ↵ F
00 is not a fundamental (7, B)-shortcut, the data structure uncovers F0 ↵ F

00 into
F
0 ↵ G and G ↵ F

00 and recurses to one of the two subpaths depending on whether G is an
ancestor of F or not. Otherwise, F0 ↵ F

00 is fundamental, and in this case F0 is the branching
node we are looking for. Let F000 be the ancestor of F that is a child of F0. We uncover F0 ↵ F

00,
give local (7, B)-status to ✓F 000 and ✓F 00 in L(F

0
), and then cover all shortcuts on the path %F 000,F ,

using Lemma 5.9 (See Section 9.1.) The cost for walking up these local trees telescopes to
$(log < log log <) by Lemma 7.8. Now suppose that B = primary. For every (7, B)-branching
node G that is an ancestor of F, the data structure updates the approximate 7-counter stored
in G, using Lemma 7.8. Now, Invariant 5.3 is restored on allH -nodes with depth � 7 since all
(7, B)-shortcuts between F

000 and F form the path %F 000,F . Since there are at most 3max = $(log <)
such (7, B)-branching nodes a�ected, the amortized cost is at most $(log <(log log <)2).

������ (i, t)������� ���� �� (i, t)������ Let F be theH -leaf. The data structure navigates up
from F by upward (7, B)-shortcuts until it reaches a single-child (7, B)-node ?. The intermediate
(7, B)-shortcuts are removed by setting their (7, B)-bits to 0.

The data structure then removes the local (7, B)-status of the local tree leaf ✓? representing
?. If the (7, B)-parent > of ? (which is also its H -parent) now has only one (7, B)-child ?

0, > is
no longer an (7, B)-branching node. The data structure removes the (7, B)-status of ?0, removes
local (7, B)-status of ✓?0 in L(>) using Lemma 7.8, removes the (7, B)-branching status of >, and
covers the fundamental (7, B)-shortcut >↵ ?

0 using Lemma 5.9. This may also cause > to lose its
(7, B)-status.

�� � �� ����� ������� ������������� ��������� �������� ����

Notice that this operation is equivalent to �rst performing the lazy covering on the (7, B)-
shortcuts from F to its (7, B)-parent and then removing F. Hence, the time cost for removing
(7, B)-status from F is amortized $((log log <)2). We can remove (7, B)-status from a group of
leaves (� in$(|(� | (log log <)2) amortized time by repeating this procedure for every leaf. Notice
that Invariant 5.3 holds for allH -nodes with depth � 7 because fundamental (7, B)-shortcuts are
covered whenH -nodes lose their (7, B)-branching status.

����������� (i, t)���������� This is an operation of Lemma 7.8.

����� �� (i, t)����� T ��� � ��� �� ������ Y+ �� T� ��� (i0, t0)������� �� ��� ������ �� Y+�
First of all, the data structure creates a “dummy” tree induced from the set of leaves (+ and the
root of T , by �rst copying the entire (7, B)-tree T , enumerating all its leaves and removing all
the leaves that do not belong to (+.�� Hence, without loss of generality, we now assume (+ is the
entire leaf set of T and that there are no potential shortcuts w.r.t. T .

Notice that, after adding (7
0
, B
0
)-status to the leaves in T , every (7, B)-branching node of

depth at least 70 in T is also an (7
0
, B
0
)-branching node. Moreover, for each such (7, B)-branching

node, adding (70, B0)-status to the node converts at most oneH -node into a new (7
0
, B
0
)-branching

node.
De�ne T ⇤ to be the subtree ofH induced by all ancestors of leaves in T up to depth 7. Our

�rst task is to enumerate all nodes of T ⇤ at depth 7
0; call them @1, . . . , @9.

����� ���� The nodes @1, . . . , @9 can be enumerated in worst case $(9 log log <) time.

����� � We perform a depth �rst search of T looking for nodes at depth 7
0. Let F be the locus

of the search; initially F is the root of T . If F is at depth 7
0 we output F and backtrack. If F is a

T -branching node we continue the search recursively on each T -child of F. If F has a single
downward T -shortcut F ↵ F

0 and F
0 has depth strictly greater than 7

0 we iteratively uncover
the downward shortcut from F until it is F ↵ F

00, where F
00 has depth at most 70, and move

the locus of the search to F00. If 9 nodes are output by this procedure, the number of shortcuts
followed/uncovered is 9 · $(log log <). ⌅

Let T1, . . . ,T9 be the subtrees of T rooted at @1, . . . , @9 and letW1, . . . ,W9 be the (70, B0)-trees
rooted at these nodes. It may be that some @: does not currently have (7

0
, B
0
)-status, in which

caseW: is empty. In this case we simply traverse T:, giving each node encountered (7
0
, B
0
)-status.

In Claim 8.3 we focus on the non-trivial problem of merging (T:,W:) when @: is an existing
(7
0
, B
0
)-root. Here “W:-status” is synonymous with (7

0
, B
0
)-status.

�� ���� �� ��� ������ ��� ������ 33max+1 ����� �� ��� ���� ������� ��� �� �� ��� �������� � ��������� ����� ���� �� ����
�����

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

����� ���� LetT:,W: be two trees rooted at @:, where all shortcuts aremaximal. We can giveW:-
status to all leaves of T: (and �nd all newW:-branching vertices) in amortized $(|T: | (log log <)2)
time, independent of the size ofW:.

r

��� ���� ��
r

��� ���� ��

r

y

��� ���� ��

r

y

��� ���� ��

������ �� ��� �������� �� ��� ���� ����� �� ��� ����� �� ����� ���� ��� ��� ������ ����� ��� T ������
��� ��� ���� ������ ����� ���W�������

����� � We merge T: andW: in a depth-�rst manner. Let @ be the locus of the search; initially
@ = @:. We maintain the invariant that @ is both a T:-node and aW:-node. There are two main
cases; Case 1 is when @ is a branching T:-node and Case 2 is when @ is a single-child T:-node. See
Figure 9 for illustration.

���� ��� @ is a branching T:-node but not a branchingW:-node. After the merging process @
will become a branching W:-node, and therefore can have no downward W:-shortcut. We
repeatedly uncover the W:-shortcut leaving @. In the �nal step we uncover a fundamental
shortcut @ ↵ F, give ✓F localW:-status in L(@), and then designate @ a branchingW:-node. This
reduces the situation to Case 1b.

���� ��� @ is both a branching T:-node and branchingW:-node. Enumerate every T:-child @
0 of

@. If @0 does not haveW:-status, traverse the entire subtree of T: rooted at @0, marking each node
encountered as aW:-node, and give ✓@0 localW:-status in L(@). Otherwise, move the locus of
the search to @0 and recursively merge the subtrees of T: andW: rooted at @0.

���� ��� @ is a single-child T:-node and the T:-child of @ is aW:-node or has a downwardW:-
shortcut. Let G be the T:-child of @. If G is aW:-node then there are no new branching vertices on

�� � �� ����� ������� ������������� ��������� �������� ����

the path from @ to G (exclusive). In this case we move the locus of the search to G and continue
recursively. If G is not a W:-node but has a downward W:-shortcut it becomes a branching
W:-node. We repeatedly uncover its downward W:-shortcut, culminating in uncovering a
fundamental shortcut G ↵ F, then designate ✓F a local W:-node in L(G) and designate G a
branchingW:-node. Finally we move the locus of the search to G.

���� ��� @ is a single-child T:-node, but its T:-child G is neither aW:-node nor has aW:-shortcut.
In this case, G will become a branchingW:-node orW:-leaf. In addition, there may be a new
branchingW:-node on the path from @ to G. We proceed to �nd the new branching node as
follows. Initialize F = @ and let F ↵ F

0 refer to its current downward T:-shortcut. Whenever F0 is
aW:-node or has aW:-shortcut, we move the locus of the search to F0, setting F = F

0. Whenever
F has a downward T:-shortcut F ↵ F

0 and aW:-shortcut F ↵ F
00 with F

0 < F
00, we uncover the

one with maximum power, or uncover both if they have the same power. If F ↵ F
00 does not

exist because F is a branchingW:-node then we repeatedly uncover F ↵ F
0. Eventually this

process terminates when we uncover a fundamental T:-shortcut F ↵ F
0 (perhaps uncovering a

fundamentalW:-shortcut F ↵ F
00 at the same time). Then F is the new branchingW:-node. We

designate it as such, and explore the T: subtree rooted at F0, giving all T:-nodes and shortcuts
encounteredW:-status.

����� ��������� ���� Notice that all new (7
0
, B
0
) branching nodes are correctly identi�ed by

the procedure described above, and that 70 � 7. Thus, Invariant 5.3 holds for allH -nodes of
depth � 7.

���� ����������� The time required to traverse T: and identify all new branching nodes is
$(|T: | log log <). The running time is dominated by the cost of introducing up to $(|T: |) new
branching vertices and adding W:-status to $(|T: |) nodes. The cost of adding W:-status is
$((log log <)2) and the cost of uncovering a fundamentalW:-shortcut, in Case 1a or Case 2b, is
also $((log log <)2). In total the time is $(|T: | (log log <)2). ⌅

��� ����������� �������� ���������� � ����� �� ����� ���

������ �������� ����������� i���������� The data structure updates the approximate
7-counters from a givenH -leaf F to the correspondingH -root. Let D be the current (7, primary)-
node. If D is a single-child (7, primary)-node, then it adopts the approximate 7-counter of its
(7, primary)-child. If D is the child of an (7, primary)-branching node C, the data structure
updates the approximate 7-counters of D from L(C) using Lemma 7.8. At this point C adopts
the approximate 7-counter of the root of L(C). There are at most log < branching nodes on
the path and each costs $((log log <)2) time to update an 7-counter (Lemma 7.8), for a total of
$(log <(log log <)2) time.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

������ ����������� i��������� �� �� (i, primary)����� T ������ �� ui� At the beginning
of this operation, the approximate 7-counters at all (7, primary)-leaves are accurate but those at
internal nodes are presumed invalid. Beginning at the root C7 , the data structure traverses the
(7, primary) tree T in a postorder fashion, setting approximate 7-counters in this order. As in
the analysis above, the cost is $((log log <)2) per node in T , for a total of $(|T |(log log <)2).

������ ����������� �������� �� � ������������H����� x� Suppose F = ui is the result
of merging several siblings. We inspect the root of L(F) and retrieve the bitmap � indicating for
which (7, primary)-pairs F is an (7, primary)-branching node. Using table lookups, in$(log log <)
time we make an $(log < log log <)-bit mask and copy all the approximate 7-counters from the
root of L(F) to F. The case when F is the result of a split is handled in the same way.

�� ��������� �������� �� �������� �����������

In this section, we describe how shortcuts are utilized and supported on H . Moreover, we
provide a potential function forH -shortcuts that contributes to the amortized analysis for the
Delete operation.

��� �������� ��� ��������� �������� ��������� ����� � ����� �� ����� ���

The remainder of this section constitutes a proof of Lemma 5.9. Let % be a path from the given
H -node C7 to the correspondingH -root C0.

������� ��� ������ ���H���������� �������� V� Removing a fundamental shortcut is a
local tree operation that costs $((log log <)2) time. Uncovering a shortcut with both endpoints
on the path costs $(log log <) time by Lemma 5.6. (Such a shortcut may be an (7

0
, B
0
)-shortcut

for multiple (7
0
, B
0
) pairs.) Uncovering a non-fundamental deviating (7, B)-shortcut costs $(1)

time, by setting the appropriate (7, B)-bits in the supporting shortcuts. Thus, the total cost of
uncovering and removing all of theH -shortcuts on the a�ected paths is $(log <(log log <)2).

For eachH -node F iterated from C
0 to C7 , the data structure �rst enumerates all downward

H -shortcuts in D���F . Then the data structure repeatedly uncovers theH -shortcut with the
largest power > 0 until everyH -shortcut leaving F is fundamental.

The data structure then uncovers each fundamentalH -shortcut leaving F by the following
procedure. To uncover (remove) a fundamental H -shortcut F ↵ G, the data structure �rst
detaches the local leaf ✓G in L(F) representing G and re-inserts ✓G into the bu�er tree. Notice
that this operation does not alter the structure ofH , so anyH -shortcut leaving G is not a�ected.
Then the data structure adds local (7, B)-status to ✓G for all (7, B) pairs indicated in the bitmap
1F↵G. This enables one to navigate from the root of L(F) to ✓G via local (7, B)-shortcuts in
L(F). To preserve Invariant 5.3 (and thereby keep the whole (7, B)-forest inH navigable) we

�� � �� ����� ������� ������������� ��������� �������� ����

designate F, G (7, B)-nodes for each (7, B)-bit indicated in 1F↵G. By the local tree operations listed
in Lemma 7.1, the time cost for uncovering (removing) a fundamentalH -shortcut is amortized
$((log log <)2).

������ � ����������� �������� ������� ��H����� v ��� ���H������� u ��� ��� (i, t)
����� ��������� �� ��� ��� ������ b� This can be done by �rst invoking Lemma 7.8, removing
local (7, B)-status from ✓D, and then adding a shortcut C ↵ D via Lemma 5.6. The time cost is
$(log log <).

������ ��� �����������H���������� �������� V ������ �� ���� (i, t) ������ There
are two types of fundamentalH -shortcuts touching %: (1) having both endpoints on %, and (2)
deviating from %.

To add all fundamentalH -shortcuts touching %, the data structure checks for edge depth
8 iterated from 7 to 1 whether to add the fundamental shortcut C8�1 ↵ C

8 or not. It should
be added if, for some (7, B) pair, C8 is an (7, B)-node but C8�1 is not an (7, B)-branching node. To
check this, the data structure �rst obtains a bitmap 1 stored in C

8 indicating which (7, B) pairs
have an (7, B)-status at C8 , and then accesses the path in the local tree L(C

8�1
) from ✓

C
8 to the

root of L(C
7�1

). During this traversal, if we encounter a local (7, B)-branching node we set the
corresponding (7, B)-bit in 1 to zero. When we reach the root of L(C

8�1
), if 1 is still non-zero, the

data structure creates the fundamentalH -shortcut C8�1 ↵ C
8 with 1

C
8�1↵C

8 = 1. Furthermore,
for each (7, B)-bit set to 1 in 1, the data structure removes local (7, B)-status from the local tree
leaf ✓

C
8 . If C8 is not an (7, B)-branching node, we also remove (7, B)-status from C8 .
To handle the second case, notice that by Lemma 5.5, for each (7, B) pair there is at most

one fundamental (7, B)-shortcut deviating from %. In particular, for an (7, B) pair, at most one
deviating fundamental (7, B)-shortcut is added touching the uniqueH -node C8�1 such that C8�1

belongs to an (7, B)-forest but C8 does not. The data structure forms the bitmap di� in $(1) time
indicating all such pairs. For each (7, B) in di� we check in $(log log <) time whether L(C

8�1
)

contains a single leaf ✓G with local (7, B)-status (Lemma 7.8). If so, we create a fundamental
shortcut C8�1 ↵ G, remove local (7, B)-status from ✓G, and remove (7, B)-status from G if it is not
an (7, B)-branching node.

We now analyze the time cost. For (1), at most $(log <) H -shortcuts are covered, and each
covering involves multiple (7, B) pairs so each covering can be done in $(� (C

8
) � � (C

8+1
)) time

(Lemma 7.8), which telescopes to $(log < log log <). Moreover, removing (7, B)-status on local
tree leaves costs $(log log <) time, by Lemma 7.8. For (2), there are $(log <) possible deviating
fundamental shortcuts to be created. Each requires $(log log <) amortized time, for a total of
$(log < log log <) amortized time.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

����� ��� (i, t)���������� ������ ���� ��������� �� V� In addition to adding all of the
fundamental shortcuts, the data structure adds back all of theH -shortcuts on the path % from C

8

to C0. This is done by traversing % log log < times. In the >-th traversal the data structure covers
all possibleH -shortcuts of power > + 1 that have both endpoints on the path. Each shortcut is
covered in $(log log <) time: to cover F ↵ G from F ↵ G

0 and G
0 ↵ G, the data structure �rst

adds the shortcut F ↵ G into U�G. Then the data structure computes the bitwise AND of two
bitmaps by setting 1F↵G 1F↵G

0 ^ 1G
0↵G, and removes the bits in the covered shortcuts by

setting 1F↵G
0 1F↵G

0 � 1F↵G and 1G
0↵G 1G

0↵G � 1F↵G. Finally, the data structure updates
U�I��G, D���F and D���I��F according to 1F↵G, and if 1F↵G

0 and/or 1G
0↵G becomes 0, updates

D���F ,D���I��F ,O��F ,D���G
0,D���I��G

0,O��G0 appropriately.
It is straightforward to see that, after log log < passes, if there is any (7, B)-shortcut with at

least one endpoint on the path that could be covered, the other endpoint must be outside of
the path and hence is a deviating (7, B)-shortcut. Since there are a total of $(3max) = $(log <)
non-fundamentalH -shortcuts to consider, the total time cost is $(log < log log <).

��� �������� ���� ��������

At �rst glance it seems sensible to charge the cost of deleting a shortcut to the creation of the
shortcut, and therefore only account for their creation in the amortized analysis. This does not
quite work because shortcuts are shared between many (7, B) pairs and the cost of deleting a
shortcut depends on how broadly it is shared. The amortized analysis forH -shortcuts focusses
on supporting potential shortcuts de�ned as follows:

��� �� �� ��� ���� Let C be a single-child (7, B)-node and D be the (7, B)-child of C. Then the
maximal potential (7, B)-shortcuts are themaximal shortcuts with respect to the covering relation
having both endpoints on the path %CD. The supporting potential (7, B)-shortcuts are the H -
shortcuts that support some maximal potential (7, B)-shortcut.

Consider a supporting potential shortcut C ↵ D (which may or may not be stored) and
de�ne 9C↵D to be the number of (7, B) pairs for which C↵ D is covered by a maximal potential
(7, B)-shortcut but is not covered by a stored (7, B)-shortcut.�� De�ne a function 5 as follows.

5 (C↵ D) =

8>><
>>:
9C↵D, if C↵ D is not a fundamental shortcut,

0, if C↵ D is a fundamental shortcut.

Let ⇠ be the set of all shortcuts de�ned overH , ⇠st be the set of all stored non-fundamental
shortcuts, and ⇠f be the set of all stored fundamental shortcuts. The potential � is de�ned as

�� ��� ����� 9C↵D ���� ����� ��� ����� ���� ���� �������� �� �� �� ��� � ������� (7, B)�������� ������ ���� ��� ����� ����
���� ������ �� ��� ������ �� ��� Delete ���������� ��� ������� ����

�� � �� ����� ������� ������������� ��������� �������� ����

follows.

� =

 ’
C↵D 2 ⇠

5 (C↵ D) (log log < + 1)

!

| {z }
�1

+ |⇠st | · log log <| {z }
�2

+ |⇠f | · (log log <)2| {z }
�3

Uncovering a fundamental shortcut could possibly cause a detach-reattach operation in the
local tree, which costs $((log log <)2) time; see the proof of Lemma 5.9 in Section 9.1. This is the
reason that we give more credit to a stored fundamental shortcut than to a non-fundamental
shortcut. Throughout the algorithm execution, there are many places where the (7, B)-forests
are modi�ed. These structural changes a�ect the potential � so we list them in the following
paragraphs.

������ (i, t)������� �� ��H������ ������ ���� Adding (7, B)-status to anH -leaf increases
� by $(log <(log log <)2) since all new shortcuts that need to be created lie on the path from the
leaf to its (7, B)-parent. In particular, each of the $(log <) new fundamental shortcuts increases
�3 by (log log <)2 each, and both �1 and �2 increase by at most $(log < log log <) each.

�������� (i, t)������� ���� ��H������ ������ ���� Removing (7, B)-status from a leaf
F increases � by $((log log <)2). Let G be the (7, B)-parent of F. If G loses its (7, B)-status and
its H -parent H is no longer an (7, B)-branching node, we will create one new fundamental
shortcut from H to a sibling of G, increasing �3 by (log log <)2. All new supporting potential
(7, B)-shortcuts will cover H and have distinct powers. Thus, the net increase of �1 will be at
most (log log < + 1) log log <. �2 is unchanged.

�������� � ����� ����� ������ ���� Create a dummy tree T by copying a maximally
covered (7, B)-tree. Recall that there are 33max + 1 shortcut forests, one for every (7, B)-pair and 1
for the dummy forest; we will say its shortcuts have ?-status. After creating the dummy tree T
and giving its maximal shortcuts ?-status, there is no change to �. Every potential ?-shortcut is
a stored shortcut, and was formerly stored before T was created.

�������� (i, t)������� ���� � ������ �� H�������� ������ ���� The data structure
removes (7, B)-status (or ?-status) from a subset of leaves in an (7, B)-tree T (or dummy tree T).
There are $(|T |) leaves removed, and each removal increases � by at most $((log log <)2), for
a total of $(|T |(log log <)2).

������� ��� ���������� ����� ������ ������ ���� The data structure merges a maxi-
mally covered dummy tree T into an (7

0
, B
0
)-tree, and destroys T . Observe that in the process of

merging these trees, the (7
0
, B
0
)-tree acquires new branching nodes and the set of supporting

potential (70, B0)-shortcuts only loses elements. Thus �1 does not increase. Every shortcut sup-

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

porting the merged tree was in at least one of the two original trees before the operation, so �2

and �3 are also non-increasing.

���� ��������� ������ ���� The lazy covering method only covers non-fundamental short-
cuts, so each covering costs constant actual time. Suppose we have traversed (7, B)-shortcuts
F ↵ G and G ↵ H and covered them with F ↵ H. (Notice that F ↵ H may or may not have
been previously stored.) This causes 5 (F ↵ H) to drop by at least 1 and hence �1 to drop by
log log < + 1. If F ↵ H was not already stored, �2 increases by log log <. In any case, the net
potential drop in � is at least 1, which pays for the covering.

��� Delete ���������� ���� ���� ������� ������� At the beginning of a Delete(C, D) opera-
tion, the algorithm spends $(log log <) time to uncover eachH -shortcut touching an ancestor
of C7 or D7 , where 7 is the depth of {C, D}. Notice that theseH -shortcuts may be shared by many
(7
0
, B
0
)-pairs, so the uncovering operation may temporarily increase �1 by �(log2 < log log <).

Fortunately, after the deletion operation most of theseH -shortcuts are covered back. As men-
tioned in Section 5.2, after a deletion the data structure covers every possible supporting
potential (70, B0)-shortcut with both endpoints at ancestors of C7 or D7 , as well as all necessary
fundamentalH -shortcuts with at least one endpoint ancestral to C7 or D7 . We claim that after
covering back all necessaryH -shortcuts on the two paths, the increase of � is upper bounded
by $(log <(log log <)2). Counting multiplicity, there are $(log < log log <) non-fundamental devi-
ating shortcuts that the lazy covering method failed to restore after the Delete operation. Each
contributes log log <+1 to�1, for a total of$(log <(log log <)2). The number of non-fundamental
shortcuts with both endpoints at ancestors of C7 or D7 is$(log <), and each contributes log log < to
�2, for a total of$(log < log log <). Similarly, the$(log <) fundamental shortcuts each contribute
(log log <)2 to �3, for a total of $(log <(log log <)2). The increase in � due to these changes are
charged to the Delete operation.

��� ���� ���������������� �� ����� ���

We review how each of the 10 operations of Lemma 3.1 can be implemented in the stated
amortized running time.

��������� ��� � ��� �� ������ �� ���� ���� ����� i ��� �������� ���� t� The data
structure �rst adds (or removes) the given edge to theH -leaf data structures of its endpoints; see
Section 4.1. If the addition/removal changes the (7, B)-status of either endpoint, we update them
with Lemma 8.1 and if B = primary we update the approximate 7-counters using Lemma 6.5.
The time cost is $(log <(log log <)2).

�� � �� ����� ������� ������������� ��������� �������� ����

��������� ��� ������ � ������ ��H��������� ���� ui ��� ������� ��� i�������� �����
�������� ui� Given the subset (ofH -siblings at depth 7, the algorithm �rst uncovers allH -
shortcuts that touch any H -siblings in ((Lemma 5.7). We then invoke Lemma 7.8 to merge
H -siblings in (, two at a time, into a singleH -node ui. The amortized cost for uncovering and
deleting allH -shortcuts touching (is zero. (The cost for restoring necessary shortcuts is not
part of this operation. It is paid for by the Delete itself; see Section 9.2.) Thus, by Lemma 7.8,
the amortized cost so far is $(|(| (log log <)2).

The algorithm then traverses the (7,witness)-tree rooted at ui, obtains the set of leaf-
descendants with (7,witness)-status and enumerates the |(| � 1 (7,witness)-edges touching
these vertices. By Lemmas 5.7 and 7.8, the amortized cost of the traversal is$(|(| log log <). Now
the data structure uses Lemma 8.1 (last bullet point) to promote all these (7,witness)-edges to
(7 + 1,witness)-status, which costs $((|(| � 1) (log log <)2) time.

Notice that every edge releases �((log log <)2) units of potential upon promotion. As every
unit of potential pays for some constant �(1) running time, the amortized cost of this operation
can be made ��((|(| � 1) (log log <)2) by choosing a su�ciently large constant.

��������� ��� � ������� ��� i���������� ��������� �������� ui� The data structure �rst
traverses the (7, secondary)-tree rooted at ui, enumerating its leaf-set (. By Lemma 8.1, enumer-
ating (costs $(|(| log log <) time. Let A � |(| be the number of (7, secondary)-endpoints stored
at these leaves. We then use Lemma 8.1 to add (7, primary)-status and remove (7, secondary)-
status from all leaves in (, in $(|(| (log log <)2) amortized time. Using theH -leaf data structure,
we can upgrade all A (7, secondary)-endpoints to (7, primary)-status in $(A) time. At this point
the approximate 7-counters at (are accurate, but the approximate 7-counters at ancestors of (
are out of date. Using Lemma 6.5, we rebuild all approximate 7-counters at descendants of ui in
$(>(log log <)2) time, where > � |(| is the number of (7, primary)-leaves descending from ui.

The A upgrades release �(A(log log <)2) units of potential whereas the cost for traversing
the (7, primary)-tree and updating its counters is $(>(log log <)2). Thus, the amortized time of
this operation is ��((A � >) (log log <)2).

��������� ��� � ������� � ������ �� i�������� ��������� �������� ui� Let ' be the
set of (7, primary) endpoints being promoted. The data structure �rst scans through ', form-
ing two leaf sets: (� are allH -leaves whose (7, primary)-endpoints are contained in ' (these
will lose (7, primary)-status) and (

+ are all H -leaves touched by at least one element of '
(these will gain (7 + 1, secondary)-status, if they do not have it already). Both (

� and (
+ are

leaves of the (7, primary)-tree T rooted at ui. The data structure uses Lemma 8.1 to add
(7 + 1, secondary)-status to allH -leaves in (

+ and removes (7, primary)-status from allH -leaves
in (

�. By Lemma 8.1 the time cost is $(|T |(log log <)2 + 1). Let > be the number of 7-primary

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

endpoints touching ui, including the ones that are not promoted. Since |T |  >we have that
this operation costs $(>(log log <)2 + 1) time.

Since the promotions release |'| · �((log log <)2) units of potential, with the leading con-
stants set properly the amortized cost of this operation is at most ��((12|' | � >) (log log <)2).

��������� ��� � ������� �� i������������ ���� �� �� i�������� ����� The data struc-
ture changes the status of the endpoints of the converted edge to (7,witness) using theH -leaf
data structure. If either endpoint of the edge had (7, primary)-status prior to the conversion, the
approximate 7-counters at all ancestors of theH -leaf containing the endpoing may be invalid
and the endpoints may lose (7, primary)-status. The data structure updates the approximate
7-counters at all (7, primary)-ancestors, and removes (7, primary)-status of the endpoints, if
necessary. This costs $(log <(log log <)2) time, by Lemmas 6.5 and 8.1.

��������� ��� � ����� ��H����� ui�1 ���� � ������ ����� ui� We are given pointers to
C
7�2 (if it exists), C7�1, and C

7 . The data structure �rst creates a newH -node F, detaches C7 from
L(C

7�1
), and makes C7 a child of F using Lemma 7.8. If 7 = 1, then F is anH -root and we are

done. Otherwise, the data structure attaches F to L(C
7�2

). By Lemma 7.8, the amortized time
for all these operations is $((log log <)2).

��������� ��� � ��������� ��� (i, t)���������� �� ��� (i, t)����� ������ �� ui� The data
structure traverses the (7, B)-tree. For each (7, B)-leaf, enumerate all the endpoints of depth 7 and
type B from theH -leaf data structure. By applying the operations of Lemma 8.1, the time cost is
$(: log log < + 9) = $(9 log log <), where : is the number of (7, B)-leaves and 9 is the number of
enumerated endpoints.

��������� �������������H������� vi�1 ���� vi� This is a local tree operation. According
to Lemma 7.8, the time cost is $(� (D

7�1
) � � (D

7
)).

��������� ��� � ��������� �� ����������� i��������� The approximate 7-counter is
stored at the node in �oating-point representation. It can be retrieved and converted to an
integer (Lemma 6.4) in $(1) time.

��������� ���� � ����� �������� ����� From Section 8.1, the batch sampling test on 9

samples costs worst case time$(min((>+A) log log <+9, 9 log < log log <))where > is the number
of 7-primary edges touching ui and A is the number of 7-secondary edges touching ui.

���� ����� �� ������� ���

The correctness of the data structure follows from Section 3.2’s maintenance of Invariant 2.2,
using Lemma 3.1 tomaintainH and Theorem2.1 tomaintain thewitness forestF . In this section

�� � �� ����� ������� ������������� ��������� �������� ����

we prove that the amortized time complexity is $(log <(log log <)2) per Insert or Delete and
$(log </log log log <) per Conn? query. CallDH the data structure forH described in Lemma 3.1
andDF the data structure for F from Theorem 2.1, �xing B(<) = (log log <)2.

������ ���������

To execute Insert(C, D), the algorithm makes a connectivity query toDF in $(log </log B(<)) =
$(log </log log log <) time. Then, there are two cases:

If C and D are already connected, then the algorithm invokes Operation (1) of Lemma 3.1
on the data structureDH , adding the edge {C, D}with depth 1 and endpoint type secondary
in amortized $(log <(log log <)2) time.
Otherwise, C and D are not connected. The algorithm then invokes Operation (8) 23max
times, obtaining pointers to C

0 and D
0. Thus, the cost of Operation (8) telescopes to

$(log < log log <) time. The algorithm then merges C0 and D
0 using Operation (2) in amor-

tized $((log log <)2) time. Finally, {C, D} is added to the data structureDH through Opera-
tion (1) as an edge with depth 1 and type witness, in amortized $(log <(log log <)2) time.
The algorithm also inserts {C, D} intoDF , in $(log < · B(<)) = $(log <(log log <)2) time.

Hence, an Insert(C, D) operation costs amortized $(log <(log log <)2) time.

������ ��������

To execute a Delete(C, D) operation, where 4 = {C, D}, the algorithm �rst removes 4 fromH

throughOperation (1), taking amortized$(log <(log log <)2) time. If 4 is a non-witness edge, then
the operation is done. Otherwise, the algorithm also removes 4 fromDF in $(log < · B(<)) time.
Then, the algorithm attempts to �nd a replacement edge iteratively at depth 7 = 34, 34 � 1, . . . , 1.

��������� ����������� As mentioned in Section 5.2, before the iterations begin, all ancestors of
C
7�1 = D

7�1 are found and stored in a list, using Operation (8). The cost of Operation (8) telescopes
to $(log < log log <) time. In addition, all storedH -shortcuts touching the path from C

7�1 to C0

are uncovered, using Lemma 5.9. We note that Invariant 5.3 now holds only for allH -nodes at
depth � 7, which validates all operations whose implementation depends on Lemma 8.1. Once
the shortcuts have been removed, the iterations begin.

������������ ��� ����������� On the iteration concerning depth 7, the algorithm runs
two parallel searches starting from C

7 and D
7 , obtaining the connected components 2C and 2D.

Throughout the search,H -siblings of C7 and D
7 are found via 7-witness edges enumerated by

Operation (7). Let (C be the set ofH -siblings in the same component 2C with C
7 and (D be the of

H -siblings for 2D with D
7 . Notice that there are exactly |(C | � 1 and |(D | � 1 7-witness edges in

2C and 2D respectively, and each 7-witness edge contributes 2 endpoints throughout the search.

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

Thus, the searches in parallel take amortized$(min{|(C |�1, |(D |�1}(log log <) +1) time until the
�rst completes. At this point we can deduce which of 2C or 2D is the smaller weight component;
suppose it is 2C.

The algorithm uncovers and removes all remaining downward shortcuts on the siblings
of C7 that form 2C (Lemma 5.9), then performs Operation (2) to promote all (7,witness)-edges in
2C to (7 + 1,witness) edges, with a negative amortized cost of ��((|(C | � 1) (log log <)2), which
pays for the cost of the two searches.

In conclusion, establishing two components costs amortized constant time.

������� � ����������� ����� Recall from Section 8.1 that d is the fraction of 7-primary
endpoints belonging to replacement edges and > and A are the number of primary and secondary
endpoints. When d > 3/4 the search for a replacement edge halts after the �rst or second batch
sampling test with probability 1 � 1/>, and costs $(log <(log log <)2) in expectation, which is
charged to the Delete operation. Suppose that the enumeration procedure is invoked, which
upgrades all (7, secondary) endpoints to (7, primary) status (Operation (3)), and then some of
the (7, primary) endpoints to (7 + 1, secondary) status (Operation (4)). This procedure costs
$((> + A) log log <) time. The amortized time cost of Operation (3) is ��((A � >) (log log <)2). At
this point there are now >

0 = > + A (7, primary) endpoints. Suppose that Operation (4) promotes
A
0 of them to (7 + 1, secondary) status, at an amortized time cost of ��((12A0 � >

0
) (log log <)2) =

��((12(1 � d)> � (> + A)) (log log <)2). (If A0 < >
0, then all the unpromoted endpoints belong to

replacement edges.) Let the leading constants of the amortized costs of Operations (3) and (4)
be 20 and 21 times that of the cost of the enumeration procedure. Then the amortized time cost
of the enumeration procedure is proportional to

⇣
log log <

⌘2 ⇣ �
> + A

�
� 20

�
A � >

�
� 21

�
12(1 � d)> � (> + A)

� ⌘

=
⇣
log log <

⌘2 ⇣
>

�
1 + 20 � 21(12(1 � d) � 1)

�
+ A

�
1 � 20 + 21

� ⌘

When d < 3/4, the contribution of original primary endpoints (>) is at most >(1 + 20 �

221) (log log <)2, which is at most 0 when 21 � (1 + 20)/2. When d > 3/4 the enumeration
procedure is invoked with probability at most 1/>, and the expected time cost is $((log log <)2).
Regardless of d, the contribution of original secondary endpoints is A(1 � 20 + 21) (log log <)2,
which is at most 0 when 20 � 21 + 1. Setting 20 = 3 and 21 = 2 satis�es both constraints.

In conclusion, successfully �nding a replacement edge in the �rst or second batch sampling
test costs $(log <(log log <)2) expected time, which is charged to the Delete operation. If the
enumeration procedure is invoked, then the search for a replacement edge may fail to �nd
a replacement edge at level 7. The amortized expected cost of the enumeration procedure at
depth 7 is $((log log <)2), which is charged to the Delete operation.

�� � �� ����� ������� ������������� ��������� �������� ����

����������� ��� ���� ���������� If no replacement edge is found at the current depth 7, the
algorithm splits C7�1 into to H -siblings ui�1 and vi�1, through Operation (6). The split opera-
tion costs amortized $((log log <)2) time. After the split, the algorithm restores all necessary
downward shortcuts touching ui�1, vi�1, D7 , or ui, as described in Section 5.2 and Lemma 5.9.
The covering of fundamental shortcuts ensures Invariant 5.3 to hold for allH -nodes at depth
� 7 � 1. By the same argument from Lemma 5.9, the total cost of covering these shortcuts is
$(log <(log log <)2), which is charged to the Delete operation.

��� ��� �� ���������� Suppose we �nd a replacement edge at depth 7. The algorithm ends by
restoring all necessary shortcuts with one endpoint at an ancestor of C7 or D7 . By Lemma 5.9,
this costs $(log <(log log <)2) time. Furthermore, this restores Invariant 5.3 holds for all nodes
inH .

��������� ��� ������ Summing all costs, the total amortized expected time for an edge
deletion is $(log <(log log <)2).

��� ����������

We have shown that the Las Vegas randomized amortized update time of dynamic connectivity
is$(log <(log log <)2), which leaves a small (log log <)2 gap between the cell probe lower bounds
of Pǎtraşcu and Demaine [�] and Pǎtraşcu and Thorup [�]. The main bottleneck in our approach
is dealing with insertions in the bu�er trees inside local trees. Each a�ects$(log log <) local tree
nodes, and the cost of updating such nodes involves adding$(log <) (�oating point) approximate
counters packed into $(log log <) machine words. If this (log log <)2 barrier were overcome,
there would still be a log log <-factor bottleneck, which arises from the shortcut infrastructure
and the height of the bottom, bu�er, and top trees.

It may be possible to achieve $(log <) amortized time in the Monte Carlo model with a
private connectivity witness, by using connectivity sketches [�, ��, �, ��, ��].

����������
��� �� ���������� ��� �� �������� ����������� �����
������ �� ��� ���������� ������ ���� �� �������
�������������� ���� ��� �� ����

��� �� ���������� ��� �� ������� ����� ���� ���� � ������
���� ���� �� ���� ���� ������ ����������� �� ���
���� ��� ��������� �� ������ �� ���������
������� ����� �������� ���� ��� ����

��� �� �� ���� �� ����� ��� �� ��������� ���������
����� ��������� ��� ������ �������������
����������� ���� ������ �������� ���������
�� �������� ���������� ������� ����� ��������
���� ��� �����

��� �� �������� �� ����� �� �� ������������ ���
�� ������� ����������� ����������� �� ����� �������
����� ���� ��� ������ ��� ������ �����������
������������� ���� ��� �����

https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/1103963.1103966

�� � �� ����� ������ �� ������ �� ����������� �� ������ ��� �� ������

��� �� �������� �� ���� �� ��� �� ���������� �� �����
��� �� ���������� � ������������� ��������� ���
�������� ��� ���� ������������ �� �������
������������� ������ ��� ������� ����������� ����
���� ������ ��������� �� ����������� ��
�������� ������� ������� ����� ���������� ����
��� ����

��� �� ��������� �� ������ �� ��������� ���
�� ������������ �������������� � � ��������� ���
�������� �� ������� ����� ����������� �� ����
�������������� ���� ����

��� �� ��������� �� �� ��������� �� ��������� �� �� �������
�� ���������� ��� �� ����� ����������� �� �
������� �������� ������ �� � ������� ����� ������
�� ������ ������������ ���� ����

��� �� ������������� ���� ���������� ��� �������
�������� �� ������� �������� ������ ����
������������� ���� �� ������� �������������� ����
����

��� �� ����� �� �� ������� �� ����� ��� �� ������
������� ����� ������������ ���� �������� �����
���� ������ ���� ��� ��������� ������ �����
��������������� ���� ��� ����

���� �� �� ��������� ��� �� ����� ���������� �����
������� ����� ���������� ���� ���������������
���� ��� ���������� �� ���� �������������� ����
���� ��� ��� ���

���� �� �� ��������� ��� �� ������� �������� ��
������� �� �� ������ ���� ������������ �� �����
������� ����� ����������� ������ ���������� �
����������� �������������� ���� ��� ���

���� �� ����� �� �� ������������ ��� �� �������
���������������� ������������� �������������
���������� ��� ������������� ������� ��������
����� ������� ��� ��������������� �� ����
�������������� ���� ���� ��� ��� �� ���

���� ����� ������ �� ������ �� ����������� ��� �� �������
����� ������� ������������ �� $(log <(log log <)2)
��������� �������� ����� ����������� �� ���
������������� ������ �������� ��������� ��
�������� ���������� ������� ����� �������� ����
��� ��� ���

���� �� �� ������� �� ����� ��� �� ��������� �������
����� ������������ �� ��������������� ����� ����
����� ����������� �� ��� ���� ������ ��������
��������� �� �������� ���������� �������
����� ���������� ���� ��� ����

���� �� ������������������� �� ����������� �� �������
��� �� ������� ������ ����� ���� �������������
������� ������������� ����������� ���� ��������
��������� �� ���������� ������ ����������� ����
����

���� �� ��������� ��� �� ���������� ������� ��������
������ ���� ���������� ������ ����� ��������� ���
������ ��� $(<

1/2�n
)������ ����������� �� ��� ����

������ ��� ��������� �� ������ �� ���������
������� ����� ���������� ���� ��� �

���� �� ���������� �� ���������� ��� �� �������������
������� ������� �������� ������ ����
������������� ���������� ������ �����
����������� ���� ���� ��������� �� �����������
�� �������� ������� ������� ����� �������� ����
����

���� �� ������ ��� �� ��� ������� ����� ������ ���
����������� ��� ��������� �������� ������
������������ ����������� ���� ������ ��������
��������� �� �������� ���������� �������
����� ���������� ���� ��� �����

���� �� �� ������� ��� �� �� ������� � ���� ��������� ���
������� ������ �� ������� ����� ���� ��������������
���� ����

���� �� ������� ������������ ������������� �����
������������� ����������� �� ��� �������������
������ ��� ��������� �� ������ �� ���������
������� ����� �������� ���� ��� ��� �� ���

���� �� ����� �� �������� ���������� ���� ���������
��� ������� ����� ������������� �����
��������������� ���� ��� ����

���� �� ������������� ������ ������������� �������������
����� ������������� ����������� �� ��� ���� ������
�������� ��������� �� �������� ����������
������� ����� ���������� ���� ��� �� ���

���� �� ������������� ������������� ������� ��������
������ ���� �������� ���������� ������ �����
����������� ���� ������ ��� ��������� ��
������ �� ��������� ������� ����� ����������
���� ��� �

���� ��
���� ���� �� �������� ����� ��� �������� ������� ����������� ��� ������������� ��������
���
© �������� ������ ����� ������ ���� ����������� ���� ������� ������ �������

https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1137/1.9781611975482.111
https://doi.org/10.1145/335305.335345
https://doi.org/10.1145/3055399.3055415

	1 Introduction
	1.1 A Brief History of Dynamic Connectivity Data Structures

	2 Preliminaries
	2.1 Computational Model and Lookup Tables
	2.2 Miscellaneous

	3 Overview of the Algorithm
	3.1 Insertion
	3.2 Deletion
	3.2.1 Establishing Two Components
	3.2.2 Finding a Replacement Edge
	3.2.3 Iteration and Conclusion

	3.3 The Backbone of the Data Structure

	4 The Main Modules of the Data Structure
	4.1 The H-Leaf Data Structure
	4.2 The Local Trees
	4.3 The Induced (i,t)-Forest
	4.4 The Shortcut Infrastructure
	4.5 Approximate Counters

	5 Shortcut Infrastructure
	5.1 The H-shortcut data structure
	5.2 Maintaining Invariant 5.3 Through Structural Changes to H

	6 Implementation of Approximate Counters
	6.1 Approximate Counters

	7 Local Trees
	7.1 Bottom Trees and the Buffer Tree
	7.2 Middle Trees
	7.3 Top Trees
	7.4 Maintaining Precision when Sampling
	7.4.1 Sample an (i,primary)-child

	7.5 Local Tree Operations

	8 Loose Ends
	8.1 The Batch Sampling Test
	8.1.1 Cost Analysis for Sampling Procedure

	8.2 Maintaining (i,t)-Forests
	8.3 Approximate Counters Operations — Proof of Lemma 6.5

	9 Amortized Analysis of Shortcut Maintenance
	9.1 Covering All Shortcuts Touching Specified Paths — Proof of Lemma 5.9
	9.2 Shortcut Cost Analysis

	10 Main Operations — Proof of Lemma 3.1
	10.1 Proof of Theorem 1.1
	10.1.1 Insertion
	10.1.2 Deletion

	11 Conclusion

