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Abstract

This paper introduces a purely heuristic topology optimization framework to improve specific energy absorption for thin-
walled, extruded lattice structures. The framework optimizes the lattice cross section design by iteratively updating the lattice
wall thicknesses. The main novelty of the work is the two novel thickness update schemes we proposed. The first update
scheme is a direct statement of homogenization of wall-wise specific energy absorption, while the other scheme is based on
the homogenization of a wall-wise sensitivity parameter inspired by the bi-directional evolutionary structural optimization
method. Both schemes are based on the central idea of homogenization of certain field variables, which has been widely
employed in previous optimization frameworks for thin-walled structures. The proposed framework has high potential because
it can work directly with commercial finite element packages, and only requires information on the energy absorption of
each element. Without the need for the finite element stiffness matrix, this framework can be used with explicit dynamics
simulations to treat highly nonlinear problems. Three numerical examples are presented: (1) optimization of a column under
axial compression, (2) optimization of a lattice-reinforced beam under dynamic three-point bending, and (3) optimization
of a lattice-filled sandwich panel under blast loading. The results show that the framework can effectively increase specific
energy absorption with as few as 25 nonlinear finite element simulations.
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deformation, damage, and fracture become the primary
means of energy dissipation (Zhu et al. 2020; Baroutaji
et al. 2017). It is of significant practical interest to lever-
age topology optimization (TO) algorithms to identify the
optimum cross-sectional design and location of reinforce-
ments (Duddeck et al. 2016). The objectives are typically
to maximize specific energy absorption (SEA) (Yin et al.
2014; Fu et al. 2019; Sun et al. 2014), maximize crashing
force efficiency (Zarei and Kroger 2007; Sun et al. 2014),
and minimize peak crushing force (Wu et al. 2016; Abramo-
wicz 2003). However, TO frameworks that are based on
quasi-static loading, linear elastic, and small-strain finite
element (FE) formulations are unsuitable in this case due
to the large deformation and dynamic nature of the loading.
For those that do account for geometric nonlinearity (Jung
and Gea 2004; Clausen et al. 2015; Wallin et al. 2016),
material plasticity (Abueidda et al. 2021; Wallin et al. 2016;
Maute et al. 1998), and damage (Verbart et al. 2016; Li
et al. 2017; James and Waisman 2015), an in-house imple-
mentation of the FE procedure is required, as information
on the material tangent stiffness matrix and values of the
internal state variables are needed in the adjoint method to
compute the gradient of the objective function (Tsay and
Arora 1990; Alberdi et al. 2018; Abueidda et al. 2021).
However, many general-purpose FE codes, either open
source or proprietary, already exist that can robustly solve
large deformation nonlinear problems, and they should be
leveraged whenever possible. In addition, information on
the tangent stiffness matrix may not be provided by those
programs, or in the case of explicit dynamic simulations,
it is simply not formed. In particular, it is also noted that
adjoint analysis for transient problems is complex and dif-
ficult to implement (Farrell et al. 2013) and can be as expen-
sive as the FE analysis that is used to find the objective
function value (Sigmund 2011).

Given that existing crashworthiness research widely
employs commercial explicit dynamics FE codes such as
Abaqus/Explicit (SIMULIA 2020) and LS-DYNA (Murray
et al. 2007), it is highly relevant and of great importance
to study how these codes can be coupled to TO frame-
works that do not require information beyond what the
commercial codes provide. In the case of TO for thin-
walled structures, several frameworks have been proposed
and demonstrated. Notable ones are: (1) the equivalent
static load approach, which seeks a static load that gen-
erates equivalent deformation to the true dynamic load,
and thus converts the problem to a quasi-static TO prob-
lem (Lee and Park 2015; Jang et al. 2012); (2) cellular
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automata-based approaches, which use a series of update
rules to iteratively update the thickness of the shell ele-
ments defining the lattice walls (Hunkeler et al. 2013;
Duddeck et al. 2016; Hunkeler 2014; Zeng and Duddeck
2017); (3) the response surface method, which seeks to
approximate the true response surface of the objective
function through simple functions and repeated FE simu-
lations (Kurtaran et al. 2002; Avalle et al. 2002); and (4)
various probabilistic and evolutionary methods like Bayes-
ian optimization (Liu et al. 2019a), ant colony method
(Liu et al. 2019b, 2021), and particle swarm method (Gao
et al. 2019). Most of these methods, although capable of
improving the design, take many FE simulations and opti-
mization iterations to do so (Hunkeler et al. 2013), and can
be computationally expensive for large-scale problems.
Therefore, the current work proposes a novel heuristic
framework named LatticeOPT that can work with com-
mercial FE code to generate lattice cross-section designs
to improve SEA. We emphasize that the proposed algo-
rithm is purely heuristic; therefore it is not mathematically
guaranteed that the algorithm will improve the SEA of the
structure monotonically, nor does it guarantee convergence
to a local optimum. However, as we shall show later, the
proposed framework does improve the SEA of the struc-
ture nonetheless.

This paper is organized as follows: Sect. 2 presents an
overview of the definition of the lattice design space, thick-
ness update schemes, and the workflow of the LatticeOPT
algorithm. Section 3 presents and discusses the results from
three numerical examples. Section 4 summarizes the out-
comes and highlights possible future works.

2 Methods

2.1 Defining the lattice design space and design
variables

Currently, the LatticeOPT framework supports the defi-
nition of a cubic lattice design space, defined by the in-
plane cross-section length (L) and width (W), as well
as the out-of-plane height (H). Inspired by the ground
structure approach (Soto and Diaz 1999), which is typi-
cally applied to TO of truss structures, we partition the
in-plane cross section into smaller rectangular cells (see
Fig. 1a), where each cell wall is represented by shell ele-
ments in FE simulations. The user provides the number
of cells in the X- and Y-directions, denoted by N, and
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Fig. 1 Design space defini-

L, N cell

tion: a The cross section is 1.01
partitioned into a user-defined
number of rectangular cells. 084

Cells do not need to be squares.

b An extruded lattice is con-

structed from the cross section 0.6 1

and a user-defined height; the

inset shows the finite element

mesh. The length (L), width 041

(W), and height (H) as well as

the number of cells in the X-

and Y-directions are also shown o2
for clarity. The blue dashed line
highlights a single cell wall, 0.0 1
which is discretized by multiple 0.0 02 04 06 08 10
finite elements
(@)

N,, respectively, see Fig. 1b. A larger N means smaller
partitions and larger design space with more degrees of
freedom, while in the Z-direction, the user can specify
the number of finite elements used to discretize the lattice
height, denoted by N.,.

A given ground lattice structure layout sets the length
of each lattice cell wall in the design domain, leaving its
thickness to be determined through optimization. Therefore,
contrary to TO applied to solid structures, where the design
variables are material densities of the finite elements, the
design variables in LatticeOPT are the thicknesses of lat-
tice cell walls. A single cell wall in a lattice is highlighted
in blue in Fig. 1b and is discretized by multiple finite ele-
ments. In addition, typical TO frameworks penalize mate-
rial densities using either the SIMP or RAMP schemes to
avoid the presence of intermediate density values (Rozvany
2009), while in the present framework, no penalty scheme
is needed. Wall thickness can be regarded as a continuous
variable, and any intermediate thickness values within a
reasonable range [7,,,, ¢,,..] are physically meaningful and
manufacturable via additive manufacturing techniques such
as selective laser melting (Frazier 2014). We would like to
emphasize that, although the process of varying the shell
element thickness is similar to a sizing optimization and/
or topometry optimization (Leiva 2004) since LatticeOPT
usually involves many more design variables and it alters
the cross-section topology directly by removing walls below
a minimum thickness, this is still considered to be a topol-
ogy optimization framework. The use of the term topology

A single
lattice wall

(b)

optimization is also consistent with many previous studies
on the optimization of thin-walled shell structure cross sec-
tions that focus on updating shell thickness and removing
cell walls below a thickness threshold (Hunkeler et al. 2013;
Hunkeler 2014; Duddeck et al. 2016).

2.2 Thickness update schemes

Many previous heuristic TO frameworks for thin-walled
structures evolve the design by iteratively updating the lat-
tice wall thicknesses through some predetermined, intuition-
based update rules. The central idea embedded in these rules
is the homogenization of certain field variables such as stress
(Gurdal and Tatting 2000), internal energy density (Hunkeler
2014; Hunkeler et al. 2013; Forsberg and Nilsson 2007; Guo
et al. 2011), and strain energy density (Tovar et al. 2006). In
the context of increasing the SEA of the lattice, it is intuitive
to homogenize the specific energy absorption of each lattice
wall (Hunkeler et al. 2013). Inspired by the idea of homogeni-
zation of specific energy absorption, we propose two different
thickness update schemes; the following sections discuss each
in detail.

2.2.1 Scheme 1
Let# and E' be the array of current lattice wall thicknesses and

the wall-wise energy absorption, where the superscript i
denotes the design iteration index. The jth entry in # and E'
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denote the wall thickness and current energy absorption of the
Jjthlattice cell wall, respectively. In the most general case, the
energy absorption array E' includes the contribution from the
stored elastic strain energy and energy dissipated due to plas-
ticity and damage. We define the area-based specific energy
absorption Q; (the subscript j denotes the jth lattice wall) as:

E
Q)= (1)
i)

ot

where L; denotes the length of the jth lattice wall (which
does not change with design iterations). Note that we used
an area-based definition for SEA instead of a volume-based
one since all walls share a constant height. Using the above
definition, homogenization of wall-wise SEA is mathemati-
cally equivalent to the following optimization problem:

. i+
VII?III:O std(Q™), )

where the elements of Q"' are given by Eq. (1). In the
case of a uniform energy density distribution, the standard
deviation attains its global minimum of 0. However, Eq. (2)
offers little value in practice: E'*! (which is needed to cal-
culate Q™) is not known a priori, nor can it be estimated to
first order using a truncated Taylor series given a thickness
change array At:

E*' ~ E' + JAt, ©)

where the components of the Jacobian matrix are given by

A OF o . .
J;q = ;” In general, it is difficult to obtain the Jacobian
q

matrix through the adjoint method since the FE tangent stift-
ness matrix (which is needed in the calculation of the adjoint
vector) is not always available from commercial FE pack-
ages, and for explicit dynamic simulations, the tangent stiff-
ness matrix is simply not formed. The sheer size of the Jaco-
bian matrix (Nyzv entries for a model with N, lattice walls)
also makes it prohibitively expensive to estimate using the
finite difference method. Therefore, we modify the optimiza-
tiorl Rroblem using a zeroth order estimate for Q’“, denoted

E!
i+l _ J
T @
i
Qi+1 is used in Eq. (2) in place of Q'"!. Note that now the
only unknowns are the updated thickness array #*!, and the
gradient of the scalar objective function is straightforward

@ Springer

(E' is independent of #*'). This is beneficial, as gradient-
based optimizers can be employed to efficiently reduce the
objective function, which is highly urged in the famous
forum paper (Sigmund 2011). For practical purposes, we
further require the following variable bounds, volume, and
thickness change constraints:

(6 € Uins by ¥ = 1,2, N, )
N, -

tjl'-HLj _ E =0, (6)
j=1
||ti+l _ti”oo < Al‘max’ (7)

where N,,, V*, and H denote the number of lattice walls, tar-
get volume, and lattice height, respectively. In practice, the
maximum thickness change constraint (Eq. 7) is converted
to bounds on the design variables ¢ during the optimization.
Eqgs. (4)—(7) define a nonlinear constrained optimization
problem, the solution to which provides the updated thick-
ness distribution #*! in the next design iteration.

2.2.2 Scheme 2

The second update scheme is inspired by the bi-directional
evolutionary structural optimization (BESO) method, pio-
neered by Huang and Xie (2007). It is a heuristic TO method
typically applied to solid structures, where each element in
the mesh is ranked by a so-called sensitivity number, and
elements are added or removed based on their relative sen-
sitivity ranking. When optimizing for SEA, the sensitivity
a]’: at iteration i for element j is defined as (Huang et al.
2007):

- L, )

where V; and Ej’ denote the undeformed volume (remains
constant through design iterations) and absorbed energy of
the jth finite element, respectively. V,, and Eﬁol denote the
total volume and energy absorption summed over all finite
elements in the mesh. Following this definition, we can
analogously define the sensitivity for lattice wall j at design
iteration i + 1 as:
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ti+lL-
atl =

7 N, i+l Ny il
Zj:] tj Lj 2j=1Ej

Homogenization of energy density can again be expressed
as minimizing the standard deviation of the lattice wall sen-
sitivity number. We define a zeroth-order estimate for a'*',
denoted as @', by replacing Ej‘:“ in Eq. (9) by E, identical

Ei+1
J

©))

to the approximation made in Eq. (4). Then, the second
update scheme can be stated in terms of &' as:

. ~ i+l
vrt?lugo std(a'™), (10)

subject to the same bounds and constraints as defined in
Eqgs. (5)—(7).

2.3 Implementation

The workflow of the LatticeOPT framework is summa-
rized in Alg. (1). To begin the analysis, the user supplies
the design space dimensions and the number of lattice
cell walls. The user also needs to provide information
about the material properties, loading, and boundary con-
ditions (BCs) in the form of a FE input file compatible
with the analysis package of choice. For this work, we
have selected Abaqus (SIMULIA 2020) to be the analysis
tool, but we emphasize that the LatticeOPT framework
can work with any other FE packages so long as the user
provides a compatible FE input file. A linear thickness
scaling is applied to the initial thickness distribution to
satisfy the volume constraint directly (lines 1-2). A uni-
form mesh of the ground lattice structure containing all
lattice walls in the system is generated and added to the
FE input file (line 3).

With all the preparation work done, we begin the optimi-
zation. The current thickness array # is added to the input
file, from which a FE simulation is conducted, and the wall
energy array E' is calculated (lines 6-7). To measure the
performance of the current design, we compute the mass-
based SEA, defined as:

Ny i
SEA = 2/’=1 Ej

—, (11
pV!

where p is the material density. The structure SEA is evalu-
ated using the last output step from the FE simulation. Fol-
lowing the recommendation in Huang and Xie (2008), we
average the wall energy array in the current iteration with

that from the previous iteration to stabilize the evolution
(line 10). However, we do not apply filtering to the energy
array to counter checker-boarding as it is commonly done in
density-based TO. This is because the absorbed energy of a
lattice wall is the sum of all finite elements contained in the
wall, which already includes contributions from neighboring
elements. Thus, E' is expected to be less prone to checker-
boarding, and no additional filtering is applied. Before solv-
ing the optimization problem, we set the variables’ bounds
based on their current values and the maximum allowable
thickness change per iteration, as well as the range of allow-
able thicknesses (line 12). To solve the nonlinear optimiza-
tion problem resulted from the thickness update scheme (line
13), we used the minimize function from Scipy (Virtanen
et al. 2020), and in particular, the trust region constrained
algorithm (trust-constr) (Conn et al. 2000; Byrd et al. 1987).
It is worth noting that different nonlinear optimizers were
tested, such as the sequential least-squares programming
(SLSQP), the interior point method (IPOPT) (Biegler and
Zavala 2009), and the method of moving asymptotes (MMA)
(Svanberg 1987). It was found that [POPT and trust-constr
gave a similar computational performance and were more
robust than other methods tested. The trust-constr method
was selected for its performance and the advantage that it is
a built-in package in Scipy, which is a widely used Python
package.

To ensure that the generated designs are manufactur-
able, we remove walls whose thickness falls below the
threshold 7,,;, (lines 14-16). Similar to the soft-kill BESO
method (Yang et al. 1999), we assign a small thickness
(10=® mm) to those 'removed’ walls, instead of actually
removing them from the FE model. After wall removal,
a linear thickness scaling is again applied to ensure that
the thresholded design also satisfies the volume constraint
(lines 17-18). Finally, the algorithm checks for convergence
by monitoring the maximum thickness change (line 20), and
moves on to the next design iteration if convergence is not
achieved (line 22). We emphasize that the convergence is
based on the thickness array, not on the output SEA value
of the structures. This is because being a purely heuristic
algorithm, LatticeOPT provides no rigorous guarantee for
convergence of structure SEA to a local maximum as is
the case for other gradient-based TO methods, nor does it
guarantee the monotonic increase in structure SEA as more
design iterations are completed. Thus, it is difficult to judge
convergence based on the output SEA, and we have chosen
to judge convergence by the absolute change in wall thick-
ness distribution.
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Algorithm 1: LatticeOPT

Input:

[Ny, Ny, N.], [L,W, H] , loading, BCs , material properties, max design iteration ,

Update scheme , [°, i, tmaz | » Vs Atias
Output: Optimized design defined by thickness distribution array t*

/+ Initialization
0 Ny 40
LV HY L,

t) Yot

AW N

1+ 0

/* Begin optimization

*/

// Initial volume

// Scaling to satisfy volume constraint
Write FE input file for ground lattice structure

*/

s while ¢ < max design iteration do
6 | Addt'information to FE input file
7 Run FE simulation, obtain E*
8 Compute mass-based SEA using Eq. (11)
9 if ©+>0 then
10 L El I’jZ L El) // Average energy with last iteration
11 for j=[1:N,|do
/+ Set variable bounds x/
12 L bnd; = [max(0, t; — Alaz) min(t§ + Aoz tmaz) ]
13 Solve optimization problem using optimizer to update thickness

4 | for j=[1:N,|do
15 L if t}“ < tmin then

i+1 —6
16 L t; =10
1 w 4141
17 | Vi <—sz VL
18 tz+1 V1+1 terl

19 Save E°, t'+! to file

/* Check convergence

20 | if ||t — || < 1072 then
21 L break

22 14—1+1

// Threshold lattice wall thickness

// Current volume

// Scaling to satisfy volume constraint

*/

// Move to next design iteration

3 Results and discussion

In this section, we present three numerical examples that
showcase the capabilities of LatticeOPT. In the first example,
we performed a benchmark test against the HCA framework
developed by Hunkeler et al. (2013), as well as the commer-
cial TO package LS-OPT (Goel et al. 2009) studied therein.
In the second example, we optimize a lattice-reinforced beam
subjected to three-point bending with a rigid pole, similar to

that studied in Zeng and Duddeck (2017). In the last example,
we performed optimization of a square lattice sandwiched
between two face sheets, subjected to a blast loading. In all
examples, the objective of the optimization is to increase the
SEA of the structure compared to its initial design. All simu-
lations presented in this section were conducted in Abaqus/
Explicit (SIMULIA 2020) on an Intel i7-11800H processor
using 8 cores.

Table 1 Piece-wise linear

Flow stress (MPa) 180.0

190.0 197.0 211.5 225.8 233.6 238.5 248.5

hardening curve used in the

work of Hunkeler (2014) Equivalent plastic strain 0.0

0.01 0.02 0.05 0.1 0.15 0.2 0.4

@ Springer
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Fig.2 Evolution history of
specific energy absorption in the
axial impact case. Both update
schemes yield an optimized
structure that has a higher
specific energy absorption than
the HCA and LS-OPT methods.
Note that the energy absorption
for the incomplete simula-

tion cases (marked with an X)
is lower, as the values of the
objective function were com-
puted using the last converged
time step and should not be
considered as a fair measure of
the design performance

“ w s

Specific energy absorption [kJ/kg]

LatticeOPT, scheme 1
®  Best design 1, SEA=4.60
—— LatticeOPT, scheme 2
¢ Bestdesign 2, SEA=4.43
HCA, Hunkeler (2014)
---- LS-OPT, Goel et al. (2009)
X  Incomplete simulations X X

X %

T
1110
T

oL L Ll

1
5 o 1 o o o -
(a) Sch. 1, iter 1 (b) Sch. 1, iter 7 (c) Sch. 1, iter 13 (d) Sch. 1,iter 19  (e) Sch 1,iter 25 *
- _F _I: - —_— —_—

TTTT]
111
1.

MR-

10 15

Design iterations

MR-
i

M-
i

5 I o o O o o
(f) Sch. 2, iter 1 (g) Sch. 2,iter 6  (h) Sch. 2,iter 10 * (i) Sch. 2, iter 13 (§) Sch. 2, iter 16

Fig.3 Designs generated by two update schemes (denoted by Sch in
figure captions) at different design iterations; the optimized design
that gives the highest specific energy absorption is marked with the

3.1 Benchmark test against HCA and LS-OPT

Hunkeler (2014) studied the TO of a long, slender column
under dynamic axial compression using an HCA-based algo-
rithm. The column has a cross-sectional dimension of 80-by-
100 mm?, and a height of 400 mm. The out-most rectangular
boundaries of the column are non-designable and have a fixed
wall thickness of 1.5 mm. The cross section is partitioned into
4 cells in the X-direction and 5 cells in the Y-direction, leading
to a total of 31 designable lattice walls. However, symmetry
boundary conditions were used in Hunkeler (2014), so only a
quarter of the cross section with a total of 10 designable walls
was included. The material was aluminum with elastoplastic

superscript *. The line thickness is assigned based on lattice wall
thickness; non-designable boundary walls are marked as dashed lines

constitutive behavior represented by a rate-independent Mises
plasticity model with a piece-wise linear isotropic hardening
curve. The hardening curve is provided in Table 1, which was
taken from the data in Hunkeler (2014) (see Table 5.4 therein).
The column was fixed at the bottom and was subjected to com-
pression by a rigid plate having an initial downward velocity of
5 m/s and a mass of 500 kg. To ensure comparability of results,
mesh sizes identical to those in Hunkeler (2014) were used to
discretize the structure.

The original optimization problem studied in Hunkeler
(2014) was to minimize the mass of the structure while main-
taining an end displacement of less than 75 mm after 25 ms.
However, the author did report structure SEA at 10 ms for
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the optimized designs generated by HCA and LS-OPT (see
Table 5.5 therein). As LatticeOPT focuses on optimizing for
specific energy absorption instead of controlling end displace-
ment, we reformulated the optimization problem to maximize
SEA at 10 ms, subject to a structure mass constraint of 870 g.
This target mass is comparable to that of the optimized designs
from HCA and LS-OPT, which have masses of 878 and 863
g, respectively (see Table 5.5 therein). Two different TO runs
were completed, one with each update scheme presented in
Sect. 2.2, and the maximum allowable iterations were set to
25. The minimum and maximum allowable thicknesses were
set to 0.4 mm and 2 mm, respectively.

To confirm the comparability of results, the trivial design
with only the out-most boundary walls present was simu-
lated, and SEA at 10 ms was found to be 2.09 kl/kg, very
comparable to the 2.01 kJ/kg originally reported in Hunkeler
(2014). The small difference can be attributed to the use of
symmetry boundary conditions in Hunkeler (2014), which
resulted in a slightly different deformation. When using a
convergence tolerance of 0.01 mm (see line 20 of Alg. (1)),
thickness update scheme 1 did not converge on a design

Lattice-reinforced
beam

Y z
Y-symmetry m' X
face

X-symmetry face

(a)

and ran the full 25 design iterations, while update scheme 2
converged after 16 iterations. The evolution histories of SEA
for both update schemes are shown in Fig. 2. For reference,
we also plot the optimized SEA values from HCA and LS-
OPT as reported by Hunkeler (2014) (see Table 5.5 therein).
Selected intermediate designs generated by both schemes at
different iterations are shown in Fig. 3.

From the evolution history in Fig. 2, we see that nei-
ther of the thickness update schemes guarantees the mono-
tonic increase in the objective function value, which is to
be expected as the framework is purely heuristic with no
rigorous guarantee for convergence to a local optimum.
We also note that due to the large deformation nature, not
all the simulations were completed successfully, which are
marked by a black X in Fig. 2. In the case of a failed simula-
tion, E is simply extracted from the last output step, which
corresponds to a smaller load magnitude compared to the
full applied load and hence the lower SEA value. Since the
SEA value depends not only on the structure design but also
on the current load magnitude when its value is calculated,
a lower SEA value for failed simulation is not necessarily

(b)

Fig.4 FE model setup and deformation: a The quarter beam model with applied boundary conditions. b The deformed initial beam at the end of

the simulation, colored by the von Mises stress

S R

1 IR T K- —""""" H II""""""""i:l
H — —
| [ 0| __ W | ]

(d) Sch. 2, iter 10

Fig.5 Designs generated by update scheme (denoted by Sch in figure
captions) 2 at different design iterations for the beam example; the
optimized design that gives the highest specific energy absorption is
marked with the superscript *. Only a quarter of the design cross sec-

@ Springer

(e) Sch. 2, iter 19

(f) Sch. 2, iter 23 *

tion is plotted due to symmetry. The line thickness is assigned based
on lattice wall thickness; non-designable boundary walls are marked
as dashed lines
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Relative SEA increase [%]

—— Elastic strain energy

—— Plastic dissipation
Elastic + Plastic

o4 7/ ‘ Optimized design

0 5 10 15 20 25
Design iteration

(a)

Fig.6 Performance evaluation for the dynamic three-point bending
case: a Relative change in specific energies, normalized by their ini-
tial values. b Bar chart showing the composition of the total energy
absorption into elastic and plastic portions. Note that plastic dissipa-

an indication of a design with poor performance. Despite
the oscillatory evolution history, we see that both update
schemes produced an optimized design that has higher SEA
than the best designs from HCA and LS-OPT.

From Fig. 3, we see that both update schemes quickly
removed lattice walls near the center of the column. As
the optimization progressed, lattice walls on the four cor-
ners of the rectangular column were thickened, and this
trend continued to the end of the optimization, where they
became the only remaining lattice walls in the designa-
ble space. This design feature is consistent with the best
designs generated from HCA (see Figure 5.35 therein) as
well as LS-OPT (see Figure 5.41 therein) in the work of
Hunkeler (2014). The trend where the corner walls get
strengthened is also consistent with the findings described
in the work of Kim (2002), which found this to be an effec-
tive strategy for increasing SEA. We also note that our
generated designs are asymmetric due to the lack of sym-
metry boundary conditions, but this is considered more
realistic as a long, slender column tends to buckle in com-
pression, thus breaking the plane of symmetry. The larger
design space (31 walls in our case vs. 10 in Hunkeler
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tion is close to the total energy absorption, indicating that plasticity
is the primary energy absorption mechanism. The optimized design
shows an over 70% increase in SEA compared to the initial design

(2014)) is likely the reason for the higher SEA of the opti-
mized designs generated from LatticeOPT.

Finally, it is worth highlighting the effectiveness of Lat-
ticeOPT: both update schemes were able to generate high
SEA designs with 25 or fewer FE simulations. As a com-
parison, the best HCA design was found after 84 simula-
tions, and the best LS-OPT design after 187 simulations.
The ability of LatticeOPT to generate optimized designs
effectively is vital when the design space is large and results
in an expensive FE simulation.

3.2 Optimization of a lattice-reinforced beam
under dynamic three-point bending

In the second example, we consider a rectangular beam with
a length of 400 mm and a width and height of 60 mm. The
beam is fixed at its left and right ends and is subjected to
impact with a rigid pole whose radius is 20 mm. The pole
travels downward along the height direction of the beam
at a fixed velocity of 60000 mm/s for a displacement of 30
mm. The applied boundary conditions are shown in Fig. 4a.
We placed 40 and 6 lattice cells along the length and width

Table 2 Material parameters for Johnson-Cook plasticity and damage models, Wang and Shi (2013)

Johnson-Cook plasticity model

Name Yield stress Hardening coefficient Strain hardening expo- Strain rate con- Thermal softening exponent
(MPa) (MPa) nent stant

Value 1098 1092 0.93 0.014 1.1

Johnson-Cook damage model

Name d, d, d, ds

Value —-0.09 0.27 0.48 0.014 3.87
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directions, respectively. The out-most rectangular bounda-
ries of the beam cross section are non-designable and have
a fixed wall thickness of 0.75 mm. Due to the symmetry of
the problem, only a quarter of the domain was modeled with
120 designable walls. The material was identical to that in
Sect. 3.1. The initial, minimum, and maximum wall thick-
nesses were (.75, 0.4, and 2 mm, respectively. 25 design iter-
ations were conducted using thickness update scheme 2 (see
Eq. (10)) to improve the SEA of the beam. The deformed
shape of the initial beam design is shown in Fig. 4(b).

The intermediate designs generated during optimization
are shown in Fig. 5. In this case, the energy absorbed by
the lattice walls has two portions, one from the stored elas-
tic strain energy, and the other from plastic dissipation. We
show the relative percent increase in elastic, plastic, and total
SEA of the structure in Fig. 6a and detailed composition of
energies in Fig. 6b.

Figure 5 shows that the thickness update scheme
quickly removed the vertical lattice walls except for
those near the rigid pole. This is reasonable as the beam
is undergoing transverse loading, whose loads are better
carried by horizontal wall elements. The thickness update
scheme also generates gradated wall thickness, which is
thicker near the center and at the fixed ends, and thin-
ner in the intermediate regions. This design feature is
similar to that observed in the work of Zeng et al.(2017),
where the HCA-based framework generated lattice fill-
ings with decreasing wall thickness moving away from the
beam center (see Figures 11, 12, 13 therein). The thick-
ness update scheme also approached an optimized design
fairly quickly: the designs remain very similar after about
15 iterations, which again shows the effectiveness of the
LatticeOPT framework. From Fig. 6a, we see an almost
monotonic increase in structure SEA with design itera-
tions, with iteration 23 giving the design with the highest
SEA. This result shows that the update scheme is highly
effective, but the almost monotonic increase in objective
function value should not be taken for granted. This find-
ing is merely a coincidence and will not, in general, occur
in every case, as the LatticeOPT framework is purely
heuristic. But nonetheless, it is shown that the optimized
design improved the total SEA by over 70%, and the spe-
cific elastic energy storage by over 50%, as compared to
the initial design with uniform wall thickness. Figure 6b
shows the composition of the total absorbed energy. It is
obvious that plastic dissipation is the main mechanism for
energy absorption in shell structures, while elastic strain
energy only plays a minor role. The total SEA of the
structure is improved primarily by increasing the energy
absorbed due to plasticity.

@ Springer

3.3 Optimization of a lattice-filled sandwich panel
under blast loading

In the last example, a square lattice with a side length of 100
mm and a height of 8.5 mm was considered. Two square face
sheets with a side length of 105 mm and a thickness of 2.5
mm were placed on the top and bottom ends of the lattice,
and perfect bonding was assumed between the lattice core
and face sheets. The assembly was held fixed at the outer
region defined by an offset width of 6.07 mm. Taking the
center of the face sheet as the origin, 40 g of trinitrotoluene
(TNT) was placed at a position (15,15) mm with a stand-
off distance of 19 mm from the top surface of the top face
sheet. The blast loading generated by the TNT was modeled
using the CONWEP model (Randers-Pehrson and Bannister
1997), and the simulation duration was 0.1 ms. The material
of all components was Ti-6Al-4V. Due to the complex and
dynamic nature of the applied loading, we used the rate-
dependent Johnson-Cook plasticity and damage models to
capture its material behavior. Key parameters for the model
were adapted from the work of Wang and Shi (2013) (see
Table 2 therein), and are presented in Table 2. Figure 7a
depicts the applied BCs and loads.

The lattice cross section was partitioned into 14 cells in
the X- and Y-directions and the out-most boundaries were
non-designable with a constant thickness of 0.5 mm. The
initial thickness distribution is a uniform wall thickness of
0.25 mm. 25 design iterations were conducted using update
scheme 1 (see Eq. (4)) with an objective to increase SEA
of the lattice core. Figure 7b depicts the deformation and
equivalent stress distribution on the initial lattice design at
the end of the simulation.

The thickness update scheme 1 did not converge within
the 0.01 mm design tolerance and ran the full 25 design
iterations. The design at iteration 22 gave the highest core
SEA. The intermediate designs are shown in Fig. 8. Since
the material model in this example includes damage, the
total absorbed energy has contributions from elastic strain
energy, plastic dissipation, and damage dissipation. The per-
cent increase in each energy component compared to the
initial design is shown in Fig. 9a. Figure 9b provides a bar
chart that shows the detailed composition of the total energy
absorbed by the lattice core.

From Fig. 8, it is obvious that the thickness update scheme
removed the lattice walls connecting the center region and
the fixed boundary walls, and instead concentrated mass near
the blast center. As the design progressed, we noticed the
formation of a gradated structure, where lattice walls closer
to the blast center were assigned a larger wall thickness,
and wall thickness decreased rapidly moving away from the
blast center. Although the final design appears to have two
disconnected parts (the fixed boundary walls and the center
region), they remain connected through the upper and lower
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Fig.7 FE model setup and deformation: a Sandwich panel assembly with applied boundary conditions and loads. b The deformed initial lattice

design at the end of the simulation, colored by the equivalent stress

face sheets and thus remain a physical and manufacturable
design. The optimized design is intuitive, where we expect
all the mass to be concentrated at the point of impact and
radiate outward from it. Figure 9a confirms the effectiveness
of the optimized design, as we see the total SEA of the opti-
mized design increased by over 60% compared to the initial
design with uniform wall thickness. Besides the plastic dis-
sipation (which shows a similar trend as the total SEA), both

the elastic strain energy and the plastic dissipation increased
during optimization, with damage dissipation increasing by
over 100% compared to the initial value. Inspecting Fig. 9b,
we see that plastic dissipation remains the main mechanism
for the lattice core energy absorption. Elastic strain energy
storage is the second most prominent mechanism, with dam-
age dissipation being the least important mechanism. This
example again highlights the effectiveness of LatticeOPT: in
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1
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Fig.8 Designs generated by update scheme (denoted by Sch in fig-
ure captions) 1 at different design iterations for the sandwich panel
example; the optimized design that gives the highest specific energy

. 1, iter 15

(f) Sch. 1, iter 22 *

absorption is marked with the superscript *. The line thickness is
assigned based on lattice wall thickness; non-designable boundary
walls are marked as dashed lines
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Fig.9 Performance evaluation for the sandwich panel case: a Rela-
tive change in specific energies, normalized by their initial values. b
Bar chart showing the composition of the total energy absorption into
elastic, plastic, and damage portions. Note that plastic dissipation is

a case with complex blast loading and a total of 364 design-
able lattice walls, our framework was able to increase the
SEA of the lattice core by over 60% in merely 25 nonlinear
FE simulations.

4 Conclusions and future work

In this work, a purely heuristic topology optimization
framework to improve the specific energy absorption of
thin-walled lattice structures is proposed and tested. The
framework relies on a heuristic thickness update scheme
that is based on the idea of homogenization of energy den-
sity across all lattice walls. Due to its heuristic nature, there
is no mathematical guarantee for the monotonic increase
in objective function value and for convergence to a local
optimum. The thickness update is achieved by solving a non-
linear optimization. Two novel thickness update schemes
are presented, one being a direct minimization of the scatter
in energy density, and the other is inspired by the BESO
method. The framework allows the specification of mini-
mum and maximum allowable wall thicknesses for manufac-
turing considerations, and lattice walls with thickness below
the minimum threshold are removed from the structure. The
proposed framework terminates either when the thickness
change is below a minimum threshold, or when the maxi-
mum number of design iterations is reached.

Three numerical examples are presented to demonstrate
the capabilities of the proposed framework. In the first
example, we performed a benchmark test with a previous
HCA-based topology optimization framework by Hun-
keler (2014), where both thickness update schemes were
capable of generating designs with higher specific energy

@ Springer
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close to the total energy absorption, indicating that plasticity is the
primary energy absorption mechanism. The optimized design shows
an over 60% increase in SEA compared to the initial design

absorption than the optimized designs in Hunkeler (2014).
We also observed similar design trends in the optimized
designs from the current framework and those generated
by Hunkeler (2014). In the second example, we optimized
a lattice-reinforced beam under dynamic three-point bend-
ing. The thickness update scheme was able to effectively
increase the specific energy absorption of the beam by
over 70%, and a gradated wall thickness distribution was
observed. In the last example, we performed topology
optimization for a sandwich panel under blast loading,
considering material damage behavior. The thickness
update scheme quickly concentrated material near the blast
center and formed a gradated filling structure where the
lattice wall thickness decreases with increasing distance
from the blast center. The optimized structure showed an
increase in total specific energy absorption by over 60%.
In all three presented examples, the proposed framework
was able to greatly improve the specific energy absorption
of the structure in about 25 design iterations, and in the
first example, it is more efficient than the HCA framework
proposed in Hunkeler (2014) and the commercial software
LS-OPT. Among the three presented examples, thickness
update scheme 1 was used in examples 1 and 3, while
scheme 2 was used in examples 1 and 2. The purpose of
proposing two update schemes is that the user of Latti-
ceOPT has more options if a particular scheme does not
yield satisfactory optimization results for the problem at
hand. The choice of which scheme to use should be treated
the same way as selecting framework parameters, such as
the maximum allowable thickness change per iteration.
It is an iterative process to determine a set of framework
parameters that give the best performance for the given
problem.
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We conclude that the proposed topology optimization
framework can effectively generate thin-walled lattice
structures with improved specific energy absorption under
different loading conditions. The high effectiveness and the
ability to handle complex loading and material behavior
render our framework a suitable tool to generate optimized
lattice structures for energy-absorbing applications and for
improving the crashworthiness of components. One key
advantage of this framework is that it does not require
the FE stiffness matrix from the FE solver and only needs
information on energy absorbed by each finite element.
Therefore, with a simple interface, the proposed optimiza-
tion schemes can be integrated into commercial explicit
FE codes to treat highly nonlinear problems. Although
all simulations presented in this work were conducted in
Abaqus (SIMULIA 2020), the proposed framework can be
easily adapted to work with other finite element software.

In future work, we will focus on validating the generated
designs through experiments. In addition, the current thick-
ness update schemes employ a zeroth-order estimate for the
wall-wise energy during optimization. The work of He et al.
(2022) shows the possibility of leveraging a recurrent neu-
ral network to predict the energy absorption of the lattice.
Similar machine learning models can be applied to increase
the prediction accuracy on the wall-wise energy absorption,
which will likely accelerate the convergence of the Latti-
ceOPT algorithm and will be the subject of our future work.
From the material model perspective, it is known in the lit-
erature that the material properties of additively manufac-
tured materials typically depend on the feature size (e.g.,
wall thickness and strut diameter) (Phutela et al. 2019; Barba
et al. 2020; Alghamdi et al. 2021). Therefore, it is of interest
to leverage the current framework to study how the size-
dependent material properties affect the optimized lattice
designs at different length scales.
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