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Abstract 
This paper introduces a purely heuristic topology optimization framework to improve specific energy absorption for thin-
walled, extruded lattice structures. The framework optimizes the lattice cross section design by iteratively updating the lattice 
wall thicknesses. The main novelty of the work is the two novel thickness update schemes we proposed. The first update 
scheme is a direct statement of homogenization of wall-wise specific energy absorption, while the other scheme is based on 
the homogenization of a wall-wise sensitivity parameter inspired by the bi-directional evolutionary structural optimization 
method. Both schemes are based on the central idea of homogenization of certain field variables, which has been widely 
employed in previous optimization frameworks for thin-walled structures. The proposed framework has high potential because 
it can work directly with commercial finite element packages, and only requires information on the energy absorption of 
each element. Without the need for the finite element stiffness matrix, this framework can be used with explicit dynamics 
simulations to treat highly nonlinear problems. Three numerical examples are presented: (1) optimization of a column under 
axial compression, (2) optimization of a lattice-reinforced beam under dynamic three-point bending, and (3) optimization 
of a lattice-filled sandwich panel under blast loading. The results show that the framework can effectively increase specific 
energy absorption with as few as 25 nonlinear finite element simulations.
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1  Introduction

Thin-walled lattices are often employed to strengthen struc-
tures for energy absorbing purposes (Sun et al. 2010; Yin 
et al. 2014; San Ha and Lu 2020). Typically, these structures 
absorb energy by undergoing highly nonlinear large defor-
mation that extends well beyond the linear elastic region 
(Duddeck et al. 2016). Irreversible processes such as plastic 
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deformation, damage, and fracture become the primary 
means of energy dissipation (Zhu et al. 2020; Baroutaji 
et al. 2017). It is of significant practical interest to lever-
age topology optimization (TO) algorithms to identify the 
optimum cross-sectional design and location of reinforce-
ments (Duddeck et al. 2016). The objectives are typically 
to maximize specific energy absorption (SEA) (Yin et al. 
2014; Fu et al. 2019; Sun et al. 2014), maximize crashing 
force efficiency (Zarei and Kröger 2007; Sun et al. 2014), 
and minimize peak crushing force (Wu et al. 2016; Abramo-
wicz 2003). However, TO frameworks that are based on 
quasi-static loading, linear elastic, and small-strain finite 
element (FE) formulations are unsuitable in this case due 
to the large deformation and dynamic nature of the loading. 
For those that do account for geometric nonlinearity (Jung 
and Gea 2004; Clausen et al. 2015; Wallin et al. 2016), 
material plasticity (Abueidda et al. 2021; Wallin et al. 2016; 
Maute et al. 1998), and damage (Verbart et al. 2016; Li 
et al. 2017; James and Waisman 2015), an in-house imple-
mentation of the FE procedure is required, as information 
on the material tangent stiffness matrix and values of the 
internal state variables are needed in the adjoint method to 
compute the gradient of the objective function (Tsay and 
Arora 1990; Alberdi et al. 2018; Abueidda et al. 2021). 
However, many general-purpose FE codes, either open 
source or proprietary, already exist that can robustly solve 
large deformation nonlinear problems, and they should be 
leveraged whenever possible. In addition, information on 
the tangent stiffness matrix may not be provided by those 
programs, or in the case of explicit dynamic simulations, 
it is simply not formed. In particular, it is also noted that 
adjoint analysis for transient problems is complex and dif-
ficult to implement (Farrell et al. 2013) and can be as expen-
sive as the FE analysis that is used to find the objective 
function value (Sigmund 2011).

Given that existing crashworthiness research widely 
employs commercial explicit dynamics FE codes such as 
Abaqus/Explicit (SIMULIA 2020) and LS-DYNA (Murray 
et al. 2007), it is highly relevant and of great importance 
to study how these codes can be coupled to TO frame-
works that do not require information beyond what the 
commercial codes provide. In the case of TO for thin-
walled structures, several frameworks have been proposed 
and demonstrated. Notable ones are: (1) the equivalent 
static load approach, which seeks a static load that gen-
erates equivalent deformation to the true dynamic load, 
and thus converts the problem to a quasi-static TO prob-
lem (Lee and Park 2015; Jang et al. 2012); (2) cellular 

automata-based approaches, which use a series of update 
rules to iteratively update the thickness of the shell ele-
ments defining the lattice walls (Hunkeler et al. 2013; 
Duddeck et al. 2016; Hunkeler 2014; Zeng and Duddeck 
2017); (3) the response surface method, which seeks to 
approximate the true response surface of the objective 
function through simple functions and repeated FE simu-
lations (Kurtaran et al. 2002; Avalle et al. 2002); and (4) 
various probabilistic and evolutionary methods like Bayes-
ian optimization (Liu et al. 2019a), ant colony method 
(Liu et al. 2019b, 2021), and particle swarm method (Gao 
et al. 2019). Most of these methods, although capable of 
improving the design, take many FE simulations and opti-
mization iterations to do so (Hunkeler et al. 2013), and can 
be computationally expensive for large-scale problems. 
Therefore, the current work proposes a novel heuristic 
framework named LatticeOPT that can work with com-
mercial FE code to generate lattice cross-section designs 
to improve SEA. We emphasize that the proposed algo-
rithm is purely heuristic; therefore it is not mathematically 
guaranteed that the algorithm will improve the SEA of the 
structure monotonically, nor does it guarantee convergence 
to a local optimum. However, as we shall show later, the 
proposed framework does improve the SEA of the struc-
ture nonetheless.

This paper is organized as follows: Sect. 2 presents an 
overview of the definition of the lattice design space, thick-
ness update schemes, and the workflow of the LatticeOPT 
algorithm. Section 3 presents and discusses the results from 
three numerical examples. Section 4 summarizes the out-
comes and highlights possible future works.

2 � Methods

2.1 � Defining the lattice design space and design 
variables

Currently, the LatticeOPT framework supports the defi-
nition of a cubic lattice design space, defined by the in-
plane cross-section length (L) and width (W), as well 
as the out-of-plane height (H). Inspired by the ground 
structure approach (Soto and Diaz 1999), which is typi-
cally applied to TO of truss structures, we partition the 
in-plane cross section into smaller rectangular cells (see 
Fig. 1a), where each cell wall is represented by shell ele-
ments in FE simulations. The user provides the number 
of cells in the X- and Y-directions, denoted by Nx and 
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Ny , respectively, see Fig. 1b. A larger N means smaller 
partitions and larger design space with more degrees of 
freedom, while in the Z-direction, the user can specify 
the number of finite elements used to discretize the lattice 
height, denoted by Nz.

A given ground lattice structure layout sets the length 
of each lattice cell wall in the design domain, leaving its 
thickness to be determined through optimization. Therefore, 
contrary to TO applied to solid structures, where the design 
variables are material densities of the finite elements, the 
design variables in LatticeOPT are the thicknesses of lat-
tice cell walls. A single cell wall in a lattice is highlighted 
in blue in Fig. 1b and is discretized by multiple finite ele-
ments. In addition, typical TO frameworks penalize mate-
rial densities using either the SIMP or RAMP schemes to 
avoid the presence of intermediate density values (Rozvany 
2009), while in the present framework, no penalty scheme 
is needed. Wall thickness can be regarded as a continuous 
variable, and any intermediate thickness values within a 
reasonable range [tmin, tmax] are physically meaningful and 
manufacturable via additive manufacturing techniques such 
as selective laser melting (Frazier 2014). We would like to 
emphasize that, although the process of varying the shell 
element thickness is similar to a sizing optimization and/
or topometry optimization (Leiva 2004) since LatticeOPT 
usually involves many more design variables and it alters 
the cross-section topology directly by removing walls below 
a minimum thickness, this is still considered to be a topol-
ogy optimization framework. The use of the term topology 

optimization is also consistent with many previous studies 
on the optimization of thin-walled shell structure cross sec-
tions that focus on updating shell thickness and removing 
cell walls below a thickness threshold (Hunkeler et al. 2013; 
Hunkeler 2014; Duddeck et al. 2016).

2.2 � Thickness update schemes

Many previous heuristic TO frameworks for thin-walled 
structures evolve the design by iteratively updating the lat-
tice wall thicknesses through some predetermined, intuition-
based update rules. The central idea embedded in these rules 
is the homogenization of certain field variables such as stress 
(Gurdal and Tatting 2000), internal energy density (Hunkeler 
2014; Hunkeler et al. 2013; Forsberg and Nilsson 2007; Guo 
et al. 2011), and strain energy density (Tovar et al. 2006). In 
the context of increasing the SEA of the lattice, it is intuitive 
to homogenize the specific energy absorption of each lattice 
wall (Hunkeler et al. 2013). Inspired by the idea of homogeni-
zation of specific energy absorption, we propose two different 
thickness update schemes; the following sections discuss each 
in detail.

2.2.1 � Scheme 1

Let ti and Ei be the array of current lattice wall thicknesses and 
the wall-wise energy absorption, where the superscript i 
denotes the design iteration index. The jth entry in ti and Ei 

Fig. 1   Design space defini-
tion: a The cross section is 
partitioned into a user-defined 
number of rectangular cells. 
Cells do not need to be squares. 
b An extruded lattice is con-
structed from the cross section 
and a user-defined height; the 
inset shows the finite element 
mesh. The length (L), width 
(W), and height (H) as well as 
the number of cells in the X- 
and Y-directions are also shown 
for clarity. The blue dashed line 
highlights a single cell wall, 
which is discretized by multiple 
finite elements

(a)

L, cells

W,
cells

H
A single 

la�ce wall

(b)
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denote the wall thickness and current energy absorption of the 
jth lattice cell wall, respectively. In the most general case, the 
energy absorption array Ei includes the contribution from the 
stored elastic strain energy and energy dissipated due to plas-
ticity and damage. We define the area-based specific energy 
absorption Qi

j
 (the subscript j denotes the jth lattice wall) as:

where Lj denotes the length of the jth lattice wall (which 
does not change with design iterations). Note that we used 
an area-based definition for SEA instead of a volume-based 
one since all walls share a constant height. Using the above 
definition, homogenization of wall-wise SEA is mathemati-
cally equivalent to the following optimization problem:

where the elements of Qi+1 are given by Eq.  (1). In the 
case of a uniform energy density distribution, the standard 
deviation attains its global minimum of 0. However, Eq. (2) 
offers little value in practice: Ei+1 (which is needed to cal-
culate Qi+1 ) is not known a priori, nor can it be estimated to 
first order using a truncated Taylor series given a thickness 
change array Δt:

where the components of the Jacobian matrix are given by 
Ji
pq

=
�Ei

p

�ti
q

 . In general, it is difficult to obtain the Jacobian 

matrix through the adjoint method since the FE tangent stiff-
ness matrix (which is needed in the calculation of the adjoint 
vector) is not always available from commercial FE pack-
ages, and for explicit dynamic simulations, the tangent stiff-
ness matrix is simply not formed. The sheer size of the Jaco-
bian matrix ( N2

w
 entries for a model with Nw lattice walls) 

also makes it prohibitively expensive to estimate using the 
finite difference method. Therefore, we modify the optimiza-
tion problem using a zeroth order estimate for Qi+1 , denoted 
as Q̃i+1:

Q̃
i+1 is used in Eq. (2) in place of Qi+1 . Note that now the 

only unknowns are the updated thickness array ti+1 , and the 
gradient of the scalar objective function is straightforward 

(1)Qi
j
=

Ei
j

ti
j
Lj
,

(2)min
∀ti+1

j
>0

std(Qi+1),

(3)Ei+1 ≈ Ei + JiΔt ,

(4)Q̃i+1
j

=
Ei
j

ti+1
j

Lj
.

( Ei is independent of ti+1 ). This is beneficial, as gradient-
based optimizers can be employed to efficiently reduce the 
objective function, which is highly urged in the famous 
forum paper (Sigmund 2011). For practical purposes, we 
further require the following variable bounds, volume, and 
thickness change constraints:

where Nw , V∗ , and H denote the number of lattice walls, tar-
get volume, and lattice height, respectively. In practice, the 
maximum thickness change constraint (Eq. 7) is converted 
to bounds on the design variables t during the optimization. 
Eqs. (4)–(7) define a nonlinear constrained optimization 
problem, the solution to which provides the updated thick-
ness distribution ti+1 in the next design iteration.

2.2.2 � Scheme 2

The second update scheme is inspired by the bi-directional 
evolutionary structural optimization (BESO) method, pio-
neered by Huang and Xie (2007). It is a heuristic TO method 
typically applied to solid structures, where each element in 
the mesh is ranked by a so-called sensitivity number, and 
elements are added or removed based on their relative sen-
sitivity ranking. When optimizing for SEA, the sensitivity 
�i
j
 at iteration i for element j is defined as (Huang et al. 

2007):

where Vj and Ei
j
 denote the undeformed volume (remains 

constant through design iterations) and absorbed energy of 
the jth finite element, respectively. Vtot and Ei

tot
 denote the 

total volume and energy absorption summed over all finite 
elements in the mesh. Following this definition, we can 
analogously define the sensitivity for lattice wall j at design 
iteration i + 1 as:

(5)ti+1
j

∈ [tmin, tmax], ∀j = 1, 2, ...,Nw

(6)
Nw∑

j=1

ti+1
j

Lj −
V∗

H
= 0,

(7)||ti+1 − ti||∞ ≤ Δtmax,

(8)�i
j
=

Vj

Vtot

−
Ei
j

Ei
tot

,
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Homogenization of energy density can again be expressed 
as minimizing the standard deviation of the lattice wall sen-
sitivity number. We define a zeroth-order estimate for �i+1 , 
denoted as �̃i+1 , by replacing Ei+1

j
 in Eq. (9) by Ei

j
 , identical 

to the approximation made in Eq. (4). Then, the second 
update scheme can be stated in terms of �̃i+1 as:

subject to the same bounds and constraints as defined in 
Eqs. (5)–(7).

2.3 � Implementation

The workflow of the LatticeOPT framework is summa-
rized in Alg. (1). To begin the analysis, the user supplies 
the design space dimensions and the number of lattice 
cell walls. The user also needs to provide information 
about the material properties, loading, and boundary con-
ditions (BCs) in the form of a FE input file compatible 
with the analysis package of choice. For this work, we 
have selected Abaqus (SIMULIA 2020) to be the analysis 
tool, but we emphasize that the LatticeOPT framework 
can work with any other FE packages so long as the user 
provides a compatible FE input file. A linear thickness 
scaling is applied to the initial thickness distribution to 
satisfy the volume constraint directly (lines 1-2). A uni-
form mesh of the ground lattice structure containing all 
lattice walls in the system is generated and added to the 
FE input file (line 3).

With all the preparation work done, we begin the optimi-
zation. The current thickness array ti is added to the input 
file, from which a FE simulation is conducted, and the wall 
energy array Ei is calculated (lines 6-7). To measure the 
performance of the current design, we compute the mass-
based SEA, defined as:

where � is the material density. The structure SEA is evalu-
ated using the last output step from the FE simulation. Fol-
lowing the recommendation in Huang and Xie (2008), we 
average the wall energy array in the current iteration with 

(9)�i+1
j

=
ti+1
j

Lj
∑Nw

j=1
ti+1
j

Lj

−
Ei+1
j

∑Nw

j=1
Ei+1
j

.

(10)min
∀ti+1

j
>0

std(�̃i+1) ,

(11)SEA =

∑Nw

j=1
Ei
j

�Vi
,

that from the previous iteration to stabilize the evolution 
(line 10). However, we do not apply filtering to the energy 
array to counter checker-boarding as it is commonly done in 
density-based TO. This is because the absorbed energy of a 
lattice wall is the sum of all finite elements contained in the 
wall, which already includes contributions from neighboring 
elements. Thus, Ei is expected to be less prone to checker-
boarding, and no additional filtering is applied. Before solv-
ing the optimization problem, we set the variables’ bounds 
based on their current values and the maximum allowable 
thickness change per iteration, as well as the range of allow-
able thicknesses (line 12). To solve the nonlinear optimiza-
tion problem resulted from the thickness update scheme (line 
13), we used the minimize function from Scipy (Virtanen 
et al. 2020), and in particular, the trust region constrained 
algorithm (trust-constr) (Conn et al. 2000; Byrd et al. 1987). 
It is worth noting that different nonlinear optimizers were 
tested, such as the sequential least-squares programming 
(SLSQP), the interior point method (IPOPT) (Biegler and 
Zavala 2009), and the method of moving asymptotes (MMA) 
(Svanberg 1987). It was found that IPOPT and trust-constr 
gave a similar computational performance and were more 
robust than other methods tested. The trust-constr method 
was selected for its performance and the advantage that it is 
a built-in package in Scipy, which is a widely used Python 
package.

To ensure that the generated designs are manufactur-
able, we remove walls whose thickness falls below the 
threshold tmin (lines 14–16). Similar to the soft-kill BESO 
method (Yang et al. 1999), we assign a small thickness 
( 10−6 mm) to those ’removed’ walls, instead of actually 
removing them from the FE model. After wall removal, 
a linear thickness scaling is again applied to ensure that 
the thresholded design also satisfies the volume constraint 
(lines 17–18). Finally, the algorithm checks for convergence 
by monitoring the maximum thickness change (line 20), and 
moves on to the next design iteration if convergence is not 
achieved (line 22). We emphasize that the convergence is 
based on the thickness array, not on the output SEA value 
of the structures. This is because being a purely heuristic 
algorithm, LatticeOPT provides no rigorous guarantee for 
convergence of structure SEA to a local maximum as is 
the case for other gradient-based TO methods, nor does it 
guarantee the monotonic increase in structure SEA as more 
design iterations are completed. Thus, it is difficult to judge 
convergence based on the output SEA, and we have chosen 
to judge convergence by the absolute change in wall thick-
ness distribution. 
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that studied in Zeng and Duddeck (2017). In the last example, 
we performed optimization of a square lattice sandwiched 
between two face sheets, subjected to a blast loading. In all 
examples, the objective of the optimization is to increase the 
SEA of the structure compared to its initial design. All simu-
lations presented in this section were conducted in Abaqus/
Explicit (SIMULIA 2020) on an Intel i7-11800H processor 
using 8 cores.

Table 1   Piece-wise linear 
hardening curve used in the 
work of Hunkeler (2014)

Flow stress (MPa) 180.0 190.0 197.0 211.5 225.8 233.6 238.5 248.5

Equivalent plastic strain 0.0 0.01 0.02 0.05 0.1 0.15 0.2 0.4

3 � Results and discussion

In this section, we present three numerical examples that 
showcase the capabilities of LatticeOPT. In the first example, 
we performed a benchmark test against the HCA framework 
developed by Hunkeler et al. (2013), as well as the commer-
cial TO package LS-OPT (Goel et al. 2009) studied therein. 
In the second example, we optimize a lattice-reinforced beam 
subjected to three-point bending with a rigid pole, similar to 
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3.1 � Benchmark test against HCA and LS‑OPT

Hunkeler (2014) studied the TO of a long, slender column 
under dynamic axial compression using an HCA-based algo-
rithm. The column has a cross-sectional dimension of 80-by-
100 mm2 , and a height of 400 mm. The out-most rectangular 
boundaries of the column are non-designable and have a fixed 
wall thickness of 1.5 mm. The cross section is partitioned into 
4 cells in the X-direction and 5 cells in the Y-direction, leading 
to a total of 31 designable lattice walls. However, symmetry 
boundary conditions were used in Hunkeler (2014), so only a 
quarter of the cross section with a total of 10 designable walls 
was included. The material was aluminum with elastoplastic 

constitutive behavior represented by a rate-independent Mises 
plasticity model with a piece-wise linear isotropic hardening 
curve. The hardening curve is provided in Table 1, which was 
taken from the data in Hunkeler (2014) (see Table 5.4 therein). 
The column was fixed at the bottom and was subjected to com-
pression by a rigid plate having an initial downward velocity of 
5 m/s and a mass of 500 kg. To ensure comparability of results, 
mesh sizes identical to those in Hunkeler (2014) were used to 
discretize the structure.

The original optimization problem studied in Hunkeler 
(2014) was to minimize the mass of the structure while main-
taining an end displacement of less than 75 mm after 25 ms. 
However, the author did report structure SEA at 10 ms for 

Fig. 2   Evolution history of 
specific energy absorption in the 
axial impact case. Both update 
schemes yield an optimized 
structure that has a higher 
specific energy absorption than 
the HCA and LS-OPT methods. 
Note that the energy absorption 
for the incomplete simula-
tion cases (marked with an × ) 
is lower, as the values of the 
objective function were com-
puted using the last converged 
time step and should not be 
considered as a fair measure of 
the design performance

(a) Sch. 1, iter 1 (b) Sch. 1, iter 7 (c) Sch. 1, iter 13 (d) Sch. 1, iter 19 (e) Sch. 1, iter 25 ∗

(f) Sch. 2, iter 1 (g) Sch. 2, iter 6 (h) Sch. 2, iter 10 ∗ (i) Sch. 2, iter 13 (j) Sch. 2, iter 16

Fig. 3   Designs generated by two update schemes (denoted by Sch in 
figure captions) at different design iterations; the optimized design 
that gives the highest specific energy absorption is marked with the 

superscript ∗ . The line thickness is assigned based on lattice wall 
thickness; non-designable boundary walls are marked as dashed lines
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the optimized designs generated by HCA and LS-OPT (see 
Table 5.5 therein). As LatticeOPT focuses on optimizing for 
specific energy absorption instead of controlling end displace-
ment, we reformulated the optimization problem to maximize 
SEA at 10 ms, subject to a structure mass constraint of 870 g. 
This target mass is comparable to that of the optimized designs 
from HCA and LS-OPT, which have masses of 878 and 863 
g, respectively (see Table 5.5 therein). Two different TO runs 
were completed, one with each update scheme presented in 
Sect. 2.2, and the maximum allowable iterations were set to 
25. The minimum and maximum allowable thicknesses were 
set to 0.4 mm and 2 mm, respectively.

To confirm the comparability of results, the trivial design 
with only the out-most boundary walls present was simu-
lated, and SEA at 10 ms was found to be 2.09 kJ/kg, very 
comparable to the 2.01 kJ/kg originally reported in Hunkeler 
(2014). The small difference can be attributed to the use of 
symmetry boundary conditions in Hunkeler (2014), which 
resulted in a slightly different deformation. When using a 
convergence tolerance of 0.01 mm (see line 20 of Alg. (1)), 
thickness update scheme 1 did not converge on a design 

and ran the full 25 design iterations, while update scheme 2 
converged after 16 iterations. The evolution histories of SEA 
for both update schemes are shown in Fig. 2. For reference, 
we also plot the optimized SEA values from HCA and LS-
OPT as reported by Hunkeler (2014) (see Table 5.5 therein). 
Selected intermediate designs generated by both schemes at 
different iterations are shown in Fig. 3.

From the evolution history in Fig. 2, we see that nei-
ther of the thickness update schemes guarantees the mono-
tonic increase in the objective function value, which is to 
be expected as the framework is purely heuristic with no 
rigorous guarantee for convergence to a local optimum. 
We also note that due to the large deformation nature, not 
all the simulations were completed successfully, which are 
marked by a black × in Fig. 2. In the case of a failed simula-
tion, E is simply extracted from the last output step, which 
corresponds to a smaller load magnitude compared to the 
full applied load and hence the lower SEA value. Since the 
SEA value depends not only on the structure design but also 
on the current load magnitude when its value is calculated, 
a lower SEA value for failed simulation is not necessarily 

Rigid pole

La�ce-reinforced 
beam

Fixed

X-symmetry face

Y-symmetry 
face

-60000 
mm/s

(a) (b)

Fig. 4   FE model setup and deformation: a The quarter beam model with applied boundary conditions. b The deformed initial beam at the end of 
the simulation, colored by the von Mises stress

(a) Sch. 2, iter 1 (b) Sch. 2, iter 4 (c) Sch. 2, iter 7

(d) Sch. 2, iter 10 (e) Sch. 2, iter 19 (f) Sch. 2, iter 23 ∗

Fig. 5   Designs generated by update scheme (denoted by Sch in figure 
captions) 2 at different design iterations for the beam example; the 
optimized design that gives the highest specific energy absorption is 
marked with the superscript ∗ . Only a quarter of the design cross sec-

tion is plotted due to symmetry. The line thickness is assigned based 
on lattice wall thickness; non-designable boundary walls are marked 
as dashed lines
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an indication of a design with poor performance. Despite 
the oscillatory evolution history, we see that both update 
schemes produced an optimized design that has higher SEA 
than the best designs from HCA and LS-OPT.

From Fig. 3, we see that both update schemes quickly 
removed lattice walls near the center of the column. As 
the optimization progressed, lattice walls on the four cor-
ners of the rectangular column were thickened, and this 
trend continued to the end of the optimization, where they 
became the only remaining lattice walls in the designa-
ble space. This design feature is consistent with the best 
designs generated from HCA (see Figure 5.35 therein) as 
well as LS-OPT (see Figure 5.41 therein) in the work of 
Hunkeler (2014). The trend where the corner walls get 
strengthened is also consistent with the findings described 
in the work of Kim (2002), which found this to be an effec-
tive strategy for increasing SEA. We also note that our 
generated designs are asymmetric due to the lack of sym-
metry boundary conditions, but this is considered more 
realistic as a long, slender column tends to buckle in com-
pression, thus breaking the plane of symmetry. The larger 
design space (31 walls in our case vs. 10 in Hunkeler 

(2014)) is likely the reason for the higher SEA of the opti-
mized designs generated from LatticeOPT.

Finally, it is worth highlighting the effectiveness of Lat-
ticeOPT: both update schemes were able to generate high 
SEA designs with 25 or fewer FE simulations. As a com-
parison, the best HCA design was found after 84 simula-
tions, and the best LS-OPT design after 187 simulations. 
The ability of LatticeOPT to generate optimized designs 
effectively is vital when the design space is large and results 
in an expensive FE simulation.

3.2 � Optimization of a lattice‑reinforced beam 
under dynamic three‑point bending

In the second example, we consider a rectangular beam with 
a length of 400 mm and a width and height of 60 mm. The 
beam is fixed at its left and right ends and is subjected to 
impact with a rigid pole whose radius is 20 mm. The pole 
travels downward along the height direction of the beam 
at a fixed velocity of 60000 mm/s for a displacement of 30 
mm. The applied boundary conditions are shown in Fig. 4a. 
We placed 40 and 6 lattice cells along the length and width 

(a) (b)

Fig. 6   Performance evaluation for the dynamic three-point bending 
case: a Relative change in specific energies, normalized by their ini-
tial values. b Bar chart showing the composition of the total energy 
absorption into elastic and plastic portions. Note that plastic dissipa-

tion is close to the total energy absorption, indicating that plasticity 
is the primary energy absorption mechanism. The optimized design 
shows an over 70% increase in SEA compared to the initial design

Table 2   Material parameters for Johnson-Cook plasticity and damage models, Wang and Shi (2013)

Johnson-Cook plasticity model

Name Yield stress 
(MPa)

Hardening coefficient 
(MPa)

Strain hardening expo-
nent

Strain rate con-
stant

Thermal softening exponent

Value 1098 1092 0.93 0.014 1.1

Johnson-Cook damage model

Name d
1

d
2

d
3

d
4

d
5

Value − 0.09 0.27 0.48 0.014 3.87
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directions, respectively. The out-most rectangular bounda-
ries of the beam cross section are non-designable and have 
a fixed wall thickness of 0.75 mm. Due to the symmetry of 
the problem, only a quarter of the domain was modeled with 
120 designable walls. The material was identical to that in 
Sect. 3.1. The initial, minimum, and maximum wall thick-
nesses were 0.75, 0.4, and 2 mm, respectively. 25 design iter-
ations were conducted using thickness update scheme 2 (see 
Eq. (10)) to improve the SEA of the beam. The deformed 
shape of the initial beam design is shown in Fig. 4(b).

The intermediate designs generated during optimization 
are shown in Fig. 5. In this case, the energy absorbed by 
the lattice walls has two portions, one from the stored elas-
tic strain energy, and the other from plastic dissipation. We 
show the relative percent increase in elastic, plastic, and total 
SEA of the structure in Fig. 6a and detailed composition of 
energies in Fig. 6b.

Figure  5 shows that the thickness update scheme 
quickly removed the vertical lattice walls except for 
those near the rigid pole. This is reasonable as the beam 
is undergoing transverse loading, whose loads are better 
carried by horizontal wall elements. The thickness update 
scheme also generates gradated wall thickness, which is 
thicker near the center and at the fixed ends, and thin-
ner in the intermediate regions. This design feature is 
similar to that observed in the work of Zeng et al.(2017), 
where the HCA-based framework generated lattice fill-
ings with decreasing wall thickness moving away from the 
beam center (see Figures 11, 12, 13 therein). The thick-
ness update scheme also approached an optimized design 
fairly quickly: the designs remain very similar after about 
15 iterations, which again shows the effectiveness of the 
LatticeOPT framework. From Fig. 6a, we see an almost 
monotonic increase in structure SEA with design itera-
tions, with iteration 23 giving the design with the highest 
SEA. This result shows that the update scheme is highly 
effective, but the almost monotonic increase in objective 
function value should not be taken for granted. This find-
ing is merely a coincidence and will not, in general, occur 
in every case, as the LatticeOPT framework is purely 
heuristic. But nonetheless, it is shown that the optimized 
design improved the total SEA by over 70%, and the spe-
cific elastic energy storage by over 50%, as compared to 
the initial design with uniform wall thickness. Figure 6b 
shows the composition of the total absorbed energy. It is 
obvious that plastic dissipation is the main mechanism for 
energy absorption in shell structures, while elastic strain 
energy only plays a minor role. The total SEA of the 
structure is improved primarily by increasing the energy 
absorbed due to plasticity.

3.3 � Optimization of a lattice‑filled sandwich panel 
under blast loading

In the last example, a square lattice with a side length of 100 
mm and a height of 8.5 mm was considered. Two square face 
sheets with a side length of 105 mm and a thickness of 2.5 
mm were placed on the top and bottom ends of the lattice, 
and perfect bonding was assumed between the lattice core 
and face sheets. The assembly was held fixed at the outer 
region defined by an offset width of 6.07 mm. Taking the 
center of the face sheet as the origin, 40 g of trinitrotoluene 
(TNT) was placed at a position (15,15) mm with a stand-
off distance of 19 mm from the top surface of the top face 
sheet. The blast loading generated by the TNT was modeled 
using the CONWEP model (Randers-Pehrson and Bannister 
1997), and the simulation duration was 0.1 ms. The material 
of all components was Ti-6Al-4V. Due to the complex and 
dynamic nature of the applied loading, we used the rate-
dependent Johnson-Cook plasticity and damage models to 
capture its material behavior. Key parameters for the model 
were adapted from the work of Wang and Shi (2013) (see 
Table 2 therein), and are presented in Table 2. Figure 7a 
depicts the applied BCs and loads.

The lattice cross section was partitioned into 14 cells in 
the X- and Y-directions and the out-most boundaries were 
non-designable with a constant thickness of 0.5 mm. The 
initial thickness distribution is a uniform wall thickness of 
0.25 mm. 25 design iterations were conducted using update 
scheme 1 (see Eq. (4)) with an objective to increase SEA 
of the lattice core. Figure 7b depicts the deformation and 
equivalent stress distribution on the initial lattice design at 
the end of the simulation.

The thickness update scheme 1 did not converge within 
the 0.01 mm design tolerance and ran the full 25 design 
iterations. The design at iteration 22 gave the highest core 
SEA. The intermediate designs are shown in Fig. 8. Since 
the material model in this example includes damage, the 
total absorbed energy has contributions from elastic strain 
energy, plastic dissipation, and damage dissipation. The per-
cent increase in each energy component compared to the 
initial design is shown in Fig. 9a. Figure 9b provides a bar 
chart that shows the detailed composition of the total energy 
absorbed by the lattice core.

From Fig. 8, it is obvious that the thickness update scheme 
removed the lattice walls connecting the center region and 
the fixed boundary walls, and instead concentrated mass near 
the blast center. As the design progressed, we noticed the 
formation of a gradated structure, where lattice walls closer 
to the blast center were assigned a larger wall thickness, 
and wall thickness decreased rapidly moving away from the 
blast center. Although the final design appears to have two 
disconnected parts (the fixed boundary walls and the center 
region), they remain connected through the upper and lower 
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face sheets and thus remain a physical and manufacturable 
design. The optimized design is intuitive, where we expect 
all the mass to be concentrated at the point of impact and 
radiate outward from it. Figure 9a confirms the effectiveness 
of the optimized design, as we see the total SEA of the opti-
mized design increased by over 60% compared to the initial 
design with uniform wall thickness. Besides the plastic dis-
sipation (which shows a similar trend as the total SEA), both 

the elastic strain energy and the plastic dissipation increased 
during optimization, with damage dissipation increasing by 
over 100% compared to the initial value. Inspecting Fig. 9b, 
we see that plastic dissipation remains the main mechanism 
for the lattice core energy absorption. Elastic strain energy 
storage is the second most prominent mechanism, with dam-
age dissipation being the least important mechanism. This 
example again highlights the effectiveness of LatticeOPT: in 

La�ce core

Face sheet 40g TNT

Fixed

(a) (b)

Fig. 7   FE model setup and deformation: a Sandwich panel assembly with applied boundary conditions and loads. b The deformed initial lattice 
design at the end of the simulation, colored by the equivalent stress

(a) Sch. 1, iter 1 (b) Sch. 1, iter 3 (c) Sch. 1, iter 5

(d) Sch. 1, iter 7 (e) Sch. 1, iter 15 (f) Sch. 1, iter 22 ∗

Fig. 8   Designs generated by update scheme (denoted by Sch in fig-
ure captions) 1 at different design iterations for the sandwich panel 
example; the optimized design that gives the highest specific energy 

absorption is marked with the superscript ∗ . The line thickness is 
assigned based on lattice wall thickness; non-designable boundary 
walls are marked as dashed lines
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a case with complex blast loading and a total of 364 design-
able lattice walls, our framework was able to increase the 
SEA of the lattice core by over 60% in merely 25 nonlinear 
FE simulations.

4 � Conclusions and future work

In this work, a purely heuristic topology optimization 
framework to improve the specific energy absorption of 
thin-walled lattice structures is proposed and tested. The 
framework relies on a heuristic thickness update scheme 
that is based on the idea of homogenization of energy den-
sity across all lattice walls. Due to its heuristic nature, there 
is no mathematical guarantee for the monotonic increase 
in objective function value and for convergence to a local 
optimum. The thickness update is achieved by solving a non-
linear optimization. Two novel thickness update schemes 
are presented, one being a direct minimization of the scatter 
in energy density, and the other is inspired by the BESO 
method. The framework allows the specification of mini-
mum and maximum allowable wall thicknesses for manufac-
turing considerations, and lattice walls with thickness below 
the minimum threshold are removed from the structure. The 
proposed framework terminates either when the thickness 
change is below a minimum threshold, or when the maxi-
mum number of design iterations is reached.

Three numerical examples are presented to demonstrate 
the capabilities of the proposed framework. In the first 
example, we performed a benchmark test with a previous 
HCA-based topology optimization framework by Hun-
keler (2014), where both thickness update schemes were 
capable of generating designs with higher specific energy 

absorption than the optimized designs in Hunkeler (2014). 
We also observed similar design trends in the optimized 
designs from the current framework and those generated 
by Hunkeler (2014). In the second example, we optimized 
a lattice-reinforced beam under dynamic three-point bend-
ing. The thickness update scheme was able to effectively 
increase the specific energy absorption of the beam by 
over 70%, and a gradated wall thickness distribution was 
observed. In the last example, we performed topology 
optimization for a sandwich panel under blast loading, 
considering material damage behavior. The thickness 
update scheme quickly concentrated material near the blast 
center and formed a gradated filling structure where the 
lattice wall thickness decreases with increasing distance 
from the blast center. The optimized structure showed an 
increase in total specific energy absorption by over 60%. 
In all three presented examples, the proposed framework 
was able to greatly improve the specific energy absorption 
of the structure in about 25 design iterations, and in the 
first example, it is more efficient than the HCA framework 
proposed in Hunkeler (2014) and the commercial software 
LS-OPT. Among the three presented examples, thickness 
update scheme 1 was used in examples 1 and 3, while 
scheme 2 was used in examples 1 and 2. The purpose of 
proposing two update schemes is that the user of Latti-
ceOPT has more options if a particular scheme does not 
yield satisfactory optimization results for the problem at 
hand. The choice of which scheme to use should be treated 
the same way as selecting framework parameters, such as 
the maximum allowable thickness change per iteration. 
It is an iterative process to determine a set of framework 
parameters that give the best performance for the given 
problem.

(a) (b)

Fig. 9   Performance evaluation for the sandwich panel case: a Rela-
tive change in specific energies, normalized by their initial values. b 
Bar chart showing the composition of the total energy absorption into 
elastic, plastic, and damage portions. Note that plastic dissipation is 

close to the total energy absorption, indicating that plasticity is the 
primary energy absorption mechanism. The optimized design shows 
an over 60% increase in SEA compared to the initial design
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We conclude that the proposed topology optimization 
framework can effectively generate thin-walled lattice 
structures with improved specific energy absorption under 
different loading conditions. The high effectiveness and the 
ability to handle complex loading and material behavior 
render our framework a suitable tool to generate optimized 
lattice structures for energy-absorbing applications and for 
improving the crashworthiness of components. One key 
advantage of this framework is that it does not require 
the FE stiffness matrix from the FE solver and only needs 
information on energy absorbed by each finite element. 
Therefore, with a simple interface, the proposed optimiza-
tion schemes can be integrated into commercial explicit 
FE codes to treat highly nonlinear problems. Although 
all simulations presented in this work were conducted in 
Abaqus (SIMULIA 2020), the proposed framework can be 
easily adapted to work with other finite element software.

In future work, we will focus on validating the generated 
designs through experiments. In addition, the current thick-
ness update schemes employ a zeroth-order estimate for the 
wall-wise energy during optimization. The work of He et al. 
(2022) shows the possibility of leveraging a recurrent neu-
ral network to predict the energy absorption of the lattice. 
Similar machine learning models can be applied to increase 
the prediction accuracy on the wall-wise energy absorption, 
which will likely accelerate the convergence of the Latti-
ceOPT algorithm and will be the subject of our future work. 
From the material model perspective, it is known in the lit-
erature that the material properties of additively manufac-
tured materials typically depend on the feature size (e.g., 
wall thickness and strut diameter) (Phutela et al. 2019; Barba 
et al. 2020; Alghamdi et al. 2021). Therefore, it is of interest 
to leverage the current framework to study how the size-
dependent material properties affect the optimized lattice 
designs at different length scales.
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