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ABSTRACT

With the recent demand of deploying neural network models on
mobile and edge devices, it is desired to improve the model’s gen-
eralizability on unseen testing data, as well as enhance the model’s
robustness under fixed-point quantization for efficient deployment.
Minimizing the training loss, however, provides few guarantees on
the generalization and quantization performance. In this work, we
fulfill the need of improving generalization and quantization per-
formance simultaneously by theoretically unifying them under the
framework of improving the model’s robustness against bounded
weight perturbation and minimizing the eigenvalues of the Hessian
matrix with respect to model weights. We therefore propose HERO,
a Hessian-enhanced robust optimization method, to minimize the
Hessian eigenvalues through a gradient-based training process,
simultaneously improving the generalization and quantization per-
formance. HERO enables up to a 3.8% gain on test accuracy, up to
30% higher accuracy under 80% training label perturbation, and the
best post-training quantization accuracy across a wide range of pre-
cision, including a > 10% accuracy improvement over SGD-trained
models for common model architectures on various datasets.
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1 INTRODUCTION

The rapid development of deep learning algorithms has seen the
emergence of high-performance deep neural network (DNN) mod-
els. Models like VGG [21], ResNet [9], MobileNet [20], etc., have
been deployed on mobile and edge applications to process data gath-
ered in the wild. Extensive model deployment requires the model to
generalize well to unseen data, and to maintain high performance
under fixed-precision quantization for memory and computational
efficiency on mobile and edge devices [10].
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In most cases, DNN models are trained following the empirical
risk minimization (ERM) setting, whose objective is to minimize the
model loss Lg (W) induced by weight W on the training set S. How-
ever, only minimizing the ERM objective may not lead to an ideal
model for practical applications: the model may be overfitted to the
training set and have low testing accuracy [7, 24], or be severely
degraded by the post-training quantization process when deploying
to the real world [1, 27]. Previous work has been contributing em-
pirical methods to improve DNN generalizability or quantization
performance individually. Methods like weight decay [14], batch
normalization [12], stochastic model architecture [11, 22], and in-
tensive data augmentation [4, 25] improve model generalizabil-
ity, yet they are not contributing to quantization performance [1].
Quantization-aware training [19, 23, 27] regains the quantization
performance via retraining on a specific quantization precision, yet
they fail to perform well when the precision is changed on the fly [1],
also hurting the generalization performance of the full-precision
model. A DNN training method achieving both high generalization
accuracy and high quantization robustness is still lacking.

Interestingly, we notice that previous theoretical analysis has
shed light on unifying the pursuit of generalization and quantization
performance. Foret et al. [7] show DNN’s generalization gap is
related to the model’s robustness against £, norm bounded weight
perturbation, whereas the robustness against quantization is shown
to be equivalent to the robustness against £oo norm bounded weight
perturbation [1]. However, the first-order approximation used to
improve weight perturbation robustness in both [7] and [1] leaves
a weak robustness guarantee and makes them only work against
one of the ¢, or fw perturbation bound, failing to work on both
generalization and quantization performance as we show later.

In this work, we aim to improve DNN generalization and quan-
tization performance simultaneously with a novel optimization
method. As discussed in Section 3.1, we form our objective as im-
proving the model’s robustness against a general £, norm bounded
weight perturbation. Further analysis with second-order Taylor
expansion in Section 3.2 unveils that the minimal perturbation
strength under both # and 4 bound leading to a loss increase
can be bounded by the maximum eigenvalue of the Hessian matrix
with respect to the weight. Therefore, in Section 4.1, we propose an
effective way to regularize Hessian eigenvalue. We further derive
Hessian-Enhanced Robust Optimization, HERO, which efficiently
performs the Hessian eigenvalue regularization through a gradient-
based optimization process. HERO leads to a better generalization
performance and a better robustness to quantization on all preci-
sion, as in Section 4.2. To the best of our knowledge, HERO is the
first to make the following theoretical contributions:
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o Unifying generalization and quantization performance under
the framework of improving the model’s robustness against
a general £, norm bounded weight perturbation;

e Showing the weight perturbation robustness can be im-
proved via regularizing Hessian eigenvalues with respect to
the model weights during DNN training;

e Deriving gradient update rule to optimize the Hessian eigen-
value regularization, leading to simultaneous improvement
on generalization and quantization performance.

Our theoretical analysis is well-supported by the empirical re-
sults. For generalization, HERO consistently achieves higher test
accuracy, including a significant 2.58% and 3.78% accuracy gain with
MobileNetV2 over SGD on CIFAR-10 and CIFAR-100 datasets, re-
spectively. We further show the generalizability achieved by HERO
is robust under the presence of label noise, where HERO outper-
forms SGD by 5 ~ 30% on ResNet20 and 2 ~ 10% on MobileNetV2
when training on CIFAR-10 with 20 ~ 80% label perturbation. For
quantization, HERO provides the best post-training accuracy under
a wide range of precision, including a > 10% accuracy improvement
over SGD-trained MobileNet and VGG model at ultra-low precision
of 4-5 bits. HERO also beats state-of-the-art Gradient ¢ [1] by a
large margin under all quantization schemes. Additional ablation
studies are also provided to verify our theoretical insights.

2 RELATED WORK

2.1 Improving Model Generalization

As recent research utilizes heavily over-parameterized DNN models,
it’s essential to prevent the model from overfitting to the training
set so that it can generalize well to unseen data. Overfitting can
be largely resolved via regularization and data augmentation. For
regularization, previous work has developed weight decay [14],
dropout [22], stochastic depth [11], etc. As for data augmentation,
recent methods explore mixup [25], auto-augmentation [4], etc.
However, theoretical understanding of why these methods help
model generalization is still lacking. Sharpness aware minimiza-
tion (SAM) [7] theoretically links the generalization ability of the
model with the model performance under £, norm bounded weight
perturbation, and therefore to the smoothness of the loss surface.
SAM provides an efficient optimization algorithm to improve gen-
eralization, yet the first-order approximations involved weakens
its ability to guarantee performance. HERO builds upon the obser-
vation of SAM and proposes an efficient way to regularize the loss
smoothness via Hessian eigenvalues, leading to a stronger theoret-
ical guarantee on the generalization performance. Moreover, the
effectiveness of previous methods on quantized models is not well
understood, while HERO unifies the pursuit of generalization and
quantization, solving both problems simultaneously.

2.2 Improving Quantization Robustness

Quantization is essential for deploying a DNN model onto mobile
and edge devices, as it saves on-device memory and achieves both
run-time speedup and less energy cost [10]. Moreover, the dynamic
change of power and memory availability on the device would
require changing the precision of a pretrained model on the fly [1].
However, directly quantizing a DNN model to a low precision (less
than 8-bit) will lead to a severe accuracy drop. Straight-through
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estimator [3] enables the finetuning of quantized models to regain
the lost accuracy [19, 23, 27]. However, the resulting model only
works on the exact quantization precision it is trained on; modify-
ing the precision requires a lengthy retraining process. Others aim
to design quantization schemes or rounding functions that can min-
imize the post-training quantization loss [2, 26], yet these methods
require extensive analysis of the model architecture and parameter
distribution, making it hard to apply on the fly. The only previous
work successfully achieving general robustness against all quantiza-
tion precision is Gradient ¢ [1], which applies #; regularization on
the gradient of the model. As this method is based on a first-order
approximation to the quantization loss, our later analysis shows it
is insufficient to guarantee robustness. HERO further introduces
Hessian regularization, which can lead to a stronger guarantee on
much higher quantization robustness.

2.3 Curvature Regularization

As we link the problem of generalization and quantization with the
model performance under weight perturbation, we take inspiration
from the related field of adversarial robustness, where extensive
studies have been done towards DNN’s robustness against adver-
sarial perturbation on the input [8, 17]. One noticeable work is the
curvature regularization (CURE), which shows that the robustness
against input perturbation can be improved by regularizing the Hes-
sian eigenvalues of the loss function with respect to the input [18].
HERO also applies the Hessian eigenvalue regularization, but is
different from CURE as we are working with respect to the model
weight, rather than the input. The regularization of HERO needs
to be computed on the weight tensors from multiple layers, each
having distinct value and gradient ranges. We tackle the challenge
of adapting perturbation strength across different layers based on
their weight distribution, as introduced in Section 4.1. Furthermore,
we apply additional first-order regularization to the optimization
process as introduced in Section 4.2, effectively leading to better
generalization and quantization performance.

3 THEORETICAL ANALYSIS

3.1 Unifying Generalization and Quantization

Here we start with investigating the properties needed for a deep
neural network model to have both good generalizability and high
quantization performance.

Bounding Generalization Gap. Recently, a theoretical analysis
was made by Foret et al. [7] on bounding the generalization gap of
a deep neural network, which can be stated as:

THEOREM 1. For any p > 0, with high probability over training
set S generated from distribution D,

Lp(W) ~Ls(W) < | max Ls(W +3) ~ Ls(W)| +h(IWI[3/")
)

where L is the loss function, W denotes the weight of the model and
h: Ry — Ry is a strictly increasing function [7].

Note that the second term relating to |[W]| |§ can be effectively
minimized during training with weight decay [14], so the general-
ization gap is largely bounded by the model’s performance under a
weight perturbation § bounded by its £, norm.



HERO: Hessian-Enhanced Robust Optimization for Unifying and Improving Generalization and Quantization Performance =~ DAC °22, July 10-14, 2022, San Francisco, CA, USA

Bounding Quantization Loss. The post-training quantization
process can also be considered as a process of perturbing the model
weights. Here we focus on the typical setting of a linear uniform
weight quantization [19], where the weight distribution is sepa-
rated into 2" uniform-sized bins, and each bin is rounded into a
n-bit quantized value. Suppose the quantization bin has a width of
A, the rounding function will change each element of the weight
by at most A/2. So the weight perturbation induced by quantiza-
tion is bounded by the £e norm, as ||| := [[Wg — W]l < A/2,
where W and Wy denote the original and quantized weight, re-
spectively. Therefore we can bound the loss increase introduced by
quantization as:

THEOREM 2. For a linear uniform quantization with a bin width
A = 2p, we have

max Lg (W + 5) - Lg (W) N (2)

Ls(Wy) — Ls(W) <
E 1181l <p

which is bounded by the model’s performance under a weight
perturbation § bounded by its foo norm.
Unifying the Bounds. With the analysis on Theorem 1 and 2,
we can unify the pursuit of generalization and quantization per-
formance as understanding how the model loss changes under a
general £, norm bounded weight perturbation. Specifically, we can
derive lower bounds for the minimal strength needed for perturba-
tion § to induce an increase ¢ in the model loss as:

§ = argm5in||5||p s.t. Lg(W +8) — Lg(W) > c. (3)

A larger lower bound on [|§*||, indicates larger perturbations can
be allowed given a tolerance of loss increase < ¢, which is desired.

3.2 Finding Perturbation Lower Bound

With a sufficiently small perturbation §, we can use Taylor expan-
sion to well approximate the loss increase under weight perturba-
tion with a quadratic function:

Ls(W +68) — Ls(W) ~ ViyLs (W) 76 + %5TH5, ()

where Vy Ls(W) and H denote the gradient and Hessian of the
loss with respect to the weight W, respectively. For simplicity, in
the rest of the section, we denote g := VyLg(W). We can thus
rewrite the objective in Equation (3) as:

1
5§ = argm§in [18]lp s.t. gl s+ §5TH5 >c, ©)

In the following discussion, we provide the lower bound on the
minimal ||6*||2 and ||6*||c needed to induce a loss increase of ¢
with respect to the properties of the loss function at weight W.
The bounds on the magnitude of other £, norm bounded weight
perturbations can be similarly derived from our result using the
equivalence of norms in finite-dimensional spaces.

THEOREM 3. Assume that v := Amax(H) > 0 as the largest eigen-

value of the Hessian, and n := |[W]||o as the number of nonzero
elements in W, we have
llgll2 20¢
Wz [ 1s 229 4] < 161 ©
v g1l

2
L O L < 116 loo- @)
no lgl?

Our theorem can be proved similarly to Theorem 1 in [18].

Note that the lower bounds in Equations (6) and (7) both mono-
tonically increase with the decrease of v, i.e., a smaller Hessian
eigenvalue. This implies that under second-order approximation,
having small Hessian eigenvalues is beneficial in limiting the loss
increase under £, bounded weight perturbation, therefore inducing
better generalization and quantization performance.

Interestingly, note that the bound in Equation (7) is also monoton-
ically increasing with decreasing |g|, showing the effectiveness of
the previously proposed gradient ¢; regularization [1]. Meanwhile,
even if we consider the case where gradient ¢ is fully optimized,
ie., |g| — 0, we have the lower bound

lim lgl |4 2 =,/E, 8)
lgl—0 | nv lg|? no

which may still be small if the Hessian eigenvalue o is large. This
analysis unveils that optimizing gradient ¢; is inadequate for the
model’s robustness against quantization, while further minimizing
Hessian eigenvalues provides a stronger guarantee.

4 HESSIAN-ENHANCED TRAINING

4.1 Regularizing Hessian Eigenvalues

Following the conclusion of Theorem 3, here we aim to propose
a regularization term that can minimize the squared sum of the
Hessian matrix H’s eigenvalues A; to encourage all eigenvalues to
be small, thus minimizing the maximum eigenvalue v. This leads
to our regularizer formulation:

Ly =ZA? = E.||Hz||% z ~ N(0,I). 9)
i

With a finite difference approximation of the Hessian, we have
Hz =~ w, where h is a small positive number. Note
that sampling multiple z from the Gaussian distribution to compute
the expectation may be costly; thus, we follow the observation made
in CURE [18], where the regularization loss can be estimated by only
focusing on selected directions leading to high curvature, which
often occurs along the gradient direction, i.e., z = VL(W) [6, 18].
Thus we can convert the regularization term in Equation (9) into

L.(W) = ||[VL(W + hz) - VL(W)||%, z=VL(W)  (10)

where h > 0 is a small parameter determining the step size of the
perturbation, and the # term can be omitted by absorbing into the
regularization strength parameter.

For a DNN model, L, needs to be computed on the weight tensors
from all the layers, each having distinct dimensions and gradient
value ranges. To accommodate the diversity among layers, we pro-
pose to compute L, in a layer-wise fashion, and scale the £, norm
of the perturbation z to match the weight value range in each layer.
Specifically, for layer i we have

LL(W') = ||[VL(W' + hz') - VL(W)|]%,
z = 4 e rea—
W[z [[VL(W)]]

i
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The overall Hessian regularization is therefore computed as
L,(W) = Z{il L;(W'), summing over all the N layers in the model.

4.2 Hessian-enhanced Robust Optimization

In order to minimize L, (W) during DNN training, we provide an
efficient and effective method to compute the gradient of L.(W?)
with respect to Wi, We start with defining G(U) := ||VL(U) —
VL(W')||?, which allow us to convert VLE(W?) to
VLIW?) =V (wispzi) GW' + hz') - Vi (W' + hz')
X V(Wi+hzi)G(Wi + hZi).

With this conversion, our regularization can be optimized with
only one additional back propagation on the gradient difference
G with respect to the perturbed weight W' + hz!, which is well
supported by common deep learning libraries such as TensorFlow
and PyTorch. Note that we discard the second-order term Vyy: (z)
in the final derivation step, which has been proven to be an effective
approximation by [7].

In the meantime, note that regularizing the Hessian eigenvalue is
necessary yet insufficient for the robustness against generalization
and quantization. Since the Hessian regularization only regularizes
the second-order derivative but not the first-order one, the final
“optimum” may end up on a flat but steep slope in the loss surface.
Adding a first-order regularization on the gradient norm is needed
to mitigate the problem and complete the robust optimization. How-
ever, directly adding the £, norm of the gradient to the overall loss
function requires additional computation and an additional regular-
ization strength parameter. So instead, we take inspiration from the
previous sharpness-aware minimization (SAM) method [7], which
shows replacing the gradient of the original weight Vy: L(W?) with
the gradient of the perturbed weight V(Wi+hzi)L(Wi +hz') in the
SGD process effectively serves as a first-order regularization on the
gradient norm and loss sharpness. This replacement can be made
without additional cost as we already have V +hzi)L(Wi +hz')

(12)

computed in the computation of LL(W?).

With the approximation in Equation (12) and the addition of the
first-order regularization in the SGD process, we can derive the
gradient of our Hessian-enhanced robust optimization as

N
VWi = V(Wi+hzi)L(Wi +hzi) +0{W+)/ Z V(Wi+hzi)G(Wi +hZi),

i=1
(13)
where a > 0 denotes the weight decay and y > 0 denotes the
regularization strength of the Hessian regularization. Performing
SGD optimization with the derived gradient Vyy in Equation (13)
leads to the HERO algorithm.

5 EVALUATION

5.1 Experiment Setup

We evaluate HERO with three representative DNNs: ResNet20 [9],
MobileNetV2 [20], and VGG19 with batch normalization (VGG19BN)
[21] on the CIFAR-10 and CIFAR-100 datasets [13]. The parame-
ter numbers of these networks are 0.27M (ResNet20), 2.30M (Mo-
bileNetV2), and 20.04M (VGG19BN). We further evaluate HERO
with ResNet18 [9] using the ImageNet dataset [5] to validate the
scalability of our method. The parameter number of ResNet18 is
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Table 1: Test accuracy on various models and datasets.

Dataset Model HERO GRADL1 SGD
ResNet20 93.44% 92.82% 92.82%

CIFAR-10 MobileNetV2  95.03% 92.52% 92.45%
VGG19BN 94.79% 93.41% 93.89%
ResNet20 70.72% 69.30% 69.52%

CIFAR-100 MobileNetV2  76.90% 74.13% 73.12%
VGG19BN 76.09% 74.05% 74.61%
ResNet18 71.05% 70.82% 70.74%

ImageNet

11.17M. We compare our approach with the stochastic gradient
descent (SGD) and Gradient £1 (GRAD L1) [1] training methods.
We include GRAD L1 as a baseline because it is by far the state-of-
the-art regularization method towards quantization robustness, yet
only uses the first-order information of the quantization loss, in
contrast to the second-order information used by HERO.

All methods utilize a cosine learning rate scheduler with an initial
learning rate 1 of 0.1. We set the momentum as 0.9 and the weight
decay o as 107, For the CIFAR-10 and CIFAR-100 experiments,
we apply basic data augmentations, such as random crop, padding,
and random horizontal flip on the training set, and train the model
for 200 epochs with batch size 128. For the ImageNet experiments,
random resized crop and normalization are applied to the training
set. We train the model for 100 epochs with batch size 256. Note
that we train the model from scratch in all the experiments. All
experiments are conducted using NVIDIA TITAN RTX GPUs.

For HERO, to select the Hessian regularization strength y, we con-
duct a grid search over {0.01,0.05, 0.1, 0.5, 1.0, 5.0}. For the weight
perturbation step size h, we follow the previous experiment set-
tings in [7] to utilize 0.5 for CIFAR-10 experiments and 1.0 for other
experiments. For the GRAD L1 regularization strength, we follow
the steps in [1] to run a grid search to find the best hyperparameter
with the minimal sacrifice of the test accuracy.

5.2 Improving Model Generalization

As discussed in Theorem 1 and Equation (6), HERO is beneficial on
limiting the loss increase under ¢, bounded weight perturbation,
thus realizing better generalization performance. In this subsection,
we showcase HERO’s effectiveness in improving model generaliz-
ability with experiments on the test accuracy comparison and the
noisy-label training performance.

Test Accuracy. We evaluate the test accuracy of HERO and base-
line methods in Table 1. For ResNet20, MobileNetV2 and VGG19BN
models, HERO achieves 0.62%, 2.58% and 0.90% accuracy gain com-
pared with SGD on CIFAR-10 dataset respectively. The performance
also increases on CIFAR-100 by 1.20%, 3.78%, and 1.48% with re-
spect to SGD. Notice that HERO enables a better test accuracy on
compact models without enlarging the network size. For instance,
on the CIFAR-10 and CIFAR-100 dataset, the MobileNetV2 test
accuracy achieved by HERO can outperform the VGG19 test accu-
racy achieved by SGD, with ~ 8.7 fewer parameters. This further
benefits the deployment of efficient models in the real world.

On the contrary, we find GRAD L1 method, which is designed
against £, bounded weight perturbation, doesn’t guarantee a con-
sistent improvement of the test accuracy against SGD. This implies
that generalizing the robustness against fo bounded to #2 bounded
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Table 2: Test accuracy under noisy-label training.
(a) ResNet20

Noise ratio 20% 40% 60% 80%

HERO 90.63% 88.71% 84.61% 72.11%
GRAD L1 8591%  78.66%  65.86%  48.28%

SGD 85.64%  78.73% = 66.42%  42.17%
(b) MobileNetV2
Noise ratio 20% 40% 60% 80%

HERO 91.70% 88.57% 81.73% 72.03%
GRAD L1 89.00%  85.56%  79.73%  30.34%
SGD 89.28%  85.84%  80.49%  62.91%

weight perturbation isn’t trivial. On the other hand, HERO pro-
vides both consistent promising generalization performance and
robustness against quantization, as further discussed in Section 5.3.

To further validate the scalability of HERO, we test with the
ResNet18 model on ImageNet. The result confirms that HERO can
improve the generalization compared to GRAD L1 and SGD.
Noisy-Label Training. For models trained on real-world data,
inevitable label noise will exist in the training dataset. Robust-
ness against noisy labels in the training process is essential for the
model’s generalizability to the test data. Here we show that HERO
is still robust under the presence of noisy labels.

We utilize ResNet20 and MobileNetV2 networks on the CIFAR-10
dataset for this experiment. First, we follow the symmetric noisy
label generation in [16], where we uniformly sample a certain
proportion (from 20% to 80%, namely noise ratio) of the training
data and replace their labels with a uniform random sample from
all the possible classes. We then train the model with the same
training procedure on the perturbed training set, and evaluate
the accuracy on the original clean test set. As shown in Table 2,
HERO has the best test accuracy across all noise ratios among all
three methods. Besides, the test accuracy of GRAD L1 and SGD
drops dramatically at the high noise ratio of 80%; while the HERO
approach still provides acceptable results. Therefore, HERO shows
its robustness against the training label perturbation and achieve
the best performance under noisy training label among all methods.

5.3 Improving Quantization Robustness

In Theorem 2 and Equation (2), we show that the loss change of
uniform weight quantization is bounded by the model performance
under a weight perturbation § bounded by its £, norm, where
lower quantization precision indicates a higher weight perturba-
tion. Here we demonstrate the quantization robustness achieved by
HERO with the post-training quantization to various precision. No
quantization-aware finetuning is performed in these experiments.

The experiments on the CIFAR-10 dataset are shown in Fig-
ure 1 (a)-(c). The test accuracy for HERO across different quantiza-
tion precision is consistently higher than that of GRAD L1 and SGD.
Our observation matches with [1] that GRAD L1 can achieve better
test accuracy to some extent under low weight precision compared
with SGD. Yet, the second-order regularization introduced by HERO
provides a better guarantee of quantization robustness.

More significantly, the HERO performance under low quantiza-
tion precision shows a large improvement compared with baselines
across all the precision. For instance, for the MobilenetV2 network,

g 94 g 70
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29 2
2 90 1 2 50
By 5 6 7 s T 5 6 8
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Figure 1: Post-training quantization accuracies with HERO,
GRAD L1, and SGD: (a)-(c) ResNet20, MobileNetV2, VGG19BN
experiments on CIFAR-10 dataset; (d)-(f) ResNet20, Mo-
bileNetV2, VGG19BN experiments on CIFAR-100 dataset; (g)
ResNet18 experiments on ImageNet dataset.

test accuracy for HERO under 4-bit weight is 93.45%, significantly
higher than the 87.34% and 85.88% achieved by GRAD L1 and SGD,
respectively. DNN quantization with ultra-low precision is a chal-
lenging problem due to large perturbations on the weights, while
HERO effectively provides robustness against such perturbation.

We also notice that a model with more parameters is more sen-
sitive to quantization perturbation. In our case of the VGG19BN
network, SGD with 5-bit quantization already leads to noticeable
accuracy degradation compared to full precision results. In the
meantime, HERO still retains a 93.57% test accuracy compared to
the 89.03% and 80.22% accuracy of GRAD L1 and SGD, showing its
effectiveness on larger models.

A similar trend can also be observed on other datasets. On the
CIFAR-100 dataset, as shown in Figure 1 (d)-(f), the consistent trend
that HERO outperforms GRAD L1 and SGD still holds across dif-
ferent quantization precision. Besides, in the low precision setting,
HERO has an outstanding performance gain compared with base-
line methods. For instance, on the MobileNetV2 network, HERO
improves the test accuracy under 4-bit quantization by 10.05% and
16.10% compared with GRAD L1 and SGD, respectively. Our quan-
tization result with ResNet18 on ImageNet dataset also shows that
HERO can provide better quantization robustness across different
quantization precision, as shown in Figure 1 (g).

-
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o

0
i

SGD

i | l/

0 25 50 75 100 125 150 175 200" 150 175 200
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Figure 2: Hessian norm and generalization gap evolution

through the training with HERO, GRAD L1, and SGD.

Generalization gap (%)
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(a) HERO, test accuracy: 93.44% (b) SGD, test accuracy: 92.82%
Figure 3: Loss surface contour along 2 random directions
around converged weights. Estimated on ResNet20 model on
CIFAR-10 dataset trained with HERO and SGD.

5.4 Theoretical Insight Verification

Hessian Norm across Training Process. To show the effective-
ness of HERO on regularizing Hessian eigenvalues, we visualize
the evolution of the Hessian norm ||Hz||, throughout the training
process in Figure 2 (a) following the setting in [18], with z being the
perturbation defined in Equation (11). All curves are averaged over
the entire CIFAR-10 training set. The generalization gap between
training and test accuracy in the final 50 training epochs is shown
in Figure 2 (b). Throughout the training process, the Hessian norm
gets larger as the model overfits to the training set. Meanwhile,
HERO helps keep the Hessian norm values at the lowest level to-
wards the end of the training process, and thus leads to the lowest
generalization gap as expected.

Loss Contour Visualization. We further showcase the weight
perturbation robustness achieved by HERO with the loss contour
in the neighborhood of the converged weights, with HERO in Fig-
ure 3 (a) and SGD in Figure 3 (b) plotted under the same scale. The
contour is generated with the visualization tool provided by [15],
which monitors the loss change while applying normalized adjust-
ments to the weight along two random directions. Compared to
that of SGD, the loss surface of HERO appears to be smoother, with
a larger region within the inner contour circle indicating a 0.1 loss
increase. This shows HERO is robust to larger perturbation within
a tolerance of loss increase, which is well in line with Theorem 3.

The Necessity of Hessian-enhanced Method. In the derivation
of HERO’s gradient in Equation (13), we borrow the first-order
regularization (Vy = V(Wi+hzi)L(Wi + hz')) from SAM [7] along-
side our Hessian regularization. SAM itself already leads to the
state-of-the-art result on generalization performance [7], beating
dropout [22] and Mixup [25]. Here we show the Hessian regu-
larization introduced by HERO is still necessary, as it further in-
creases the generalization and quantization performance over SAM.
We compare HERO with the first-order only method (i.e., Vyy: =
V (Wishzi) LW +hz')+aW) and SGD (i.e., Vyyi = Vyyi L(W')+aW)
in Table 3. For test accuracy on the full precision model, HERO
provides an additional 1% gain over the first-order only method.
Furthermore, HERO provides better robustness against quantiza-
tion. For example, 4-bit weight quantization with the HERO model
Table 3: Ablation study on HERO, first-order only, and SGD
gradient update rule. Results reported with MobileNetV2
network on CIFAR-10 dataset.

Quantization (bit) 4 6 8 Full

HERO 93.45% 94.90% 95.03% 95.03%
First-order only 91.61%  93.92%  94.00%  94.06%
SGD 85.88%  91.81%  92.33%  92.45%
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leads to a 1.6% accuracy drop, much smaller than the 2.5% drop
achieved with the first-order regularization. The result confirms
the necessity of including the Hessian regularization in the pursuit
of both generalization and quantization performance.

6 CONCLUSION

This work proposes HERO, a Hessian-enhanced robust optimiza-
tion method to improve the generalization and quantization perfor-
mance of DNN models simultaneously. We provide novel insights on
unifying generalization and quantization under improving weight
perturbation robustness, theoretical analysis on enhancing the ro-
bustness with Hessian regularization, and empirical results showing
the effectiveness of HERO. We hope this work helps on deploying
DNN models onto real-world mobile and edge devices, and inspires
further attention to the robustness against weight perturbation.
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