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Abstract
In this paper, we study the nonlinear inverse problem of estimating the spectrum
of a system matrix, that drives a !nite-dimensional af!ne dynamical system,
from partial observations of a single trajectory data. In the noiseless case, we
prove an annihilating polynomial of the system matrix, whose roots are a subset
of the spectrum, can be uniquely determined from data. We then study which
eigenvalues of the system matrix can be recovered and derive various suf!cient
and necessary conditions to characterize the relationship between the recover-
ability of each eigenvalue and the observation locations. We propose various
reconstruction algorithms with theoretical guarantees, generalizing the classi-
cal Prony method, ESPRIT, and matrix pencil method. We test the algorithms
over a variety of examples with applications to graph signal processing, disease
modeling and a real-human motion dataset. The numerical results validate our
theoretical results and demonstrate the effectiveness of the proposed algorithms.

Keywords: sampling and reconstruction, Prony method, matrix pencil, ESPRIT
method, af!ne linear system, spectrum estimation, partial observation

(Some !gures may appear in colour only in the online journal)

1. Introduction

Many physical processes in science and engineering are modeled as linear dynamical systems
with a state-space formulation. For example, linear time-invariant systems are widely used to
characterize electrical systems and their properties [25]. Another common example is provided

∗Author to whom any correspondence should be addressed.

1361-6420/21/015004+42$33.00 © 2021 IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1361-6420/ac37fb
https://orcid.org/0000-0003-3284-5123
mailto:jcheng328@gatech.edu
mailto:suitang@ucsb.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ac37fb&domain=pdf&date_stamp=2021-12-1


Inverse Problems 38 (2022) 015004 J Cheng and S Tang

by the diffusion processes over the graphs, which have found wide applications including mod-
eling rumor propagation in social networks [51], traf!c movement in transportation network
[19], spatial temperature pro!les over sensor networks [49], and neural activities at different
regions of the brain [43]. In these applications, the states of the dynamical system at different
time instances refer to signals of interest. In practice, a network of sensors is often placed to
measure the values of evolving signals with varying locations, and the collected data are called
samples. A fundamental inverse problem is to recover the dynamical system from samples of
evolving signals.

In the case of known dynamics, the inverse problem reduces to the recovery of the initial
state and is also called the source localization problem. But in many cases, the dynamics are
also unknown and need to estimate from the data. Recently, this type of inverse problem has
attracted a lot of attention in the graph signal processing community [20, 29, 30, 32–34, 41,
49]: the system matrices of the underlying dynamical systems are related to the topology of
the underlying graph, such information is not available in many applications, and needs to be
estimated. This is not only for enhancing data processing tasks but also for data interpretability,
i.e., the graph topology provides an abstraction for the underlying data dependencies.

The previous methods typically assume the signals are fully observed. However, one may
only afford to measure the values of the signals at a subset of coordinates, due to the high
cost of building accurate sensors and application-speci!c restrictions. As a result, there is a
possible signi!cant loss of spatial information in each step of data acquisition. The inverse
problem becomes in general ill-posed. In particular, in certain situations, we are only able to
measure the dynamical system from a single trajectory, since the measurement process results
in the destruction or alteration of the system under study. In such scenarios, the exact recovery
of the dynamical systems is in general infeasible. However, one may still hope to recover the
key information of the dynamical system.

The spectrum of the system matrix provides valuable information about the underlying
dynamical system. For example, for linear autonomous systems, the spectrum plays a cru-
cial role in analyzing the stability of the dynamical system. For diffusion processes over the
graphs, the spectrum of the system matrix also implies the spectrum of the graph Laplacian
matrix, which reveals the structure information of the underlying graphs. In the case of nor-
malized graph Laplacian (see de!nition 6 and its remark), we can determine the number of
components and infer whether the graph is complete or bipartite, see section 1.3, lemma 1.7 in
[17]. The connection between the graph properties and the characteristic polynomial, eigen-
values, and eigenvectors of matrices associated with the graph, such as its adjacency matrix
or other types of Laplacian matrix, has been extensively studied in the !eld of spectral graph
theory, the reader can refer to [17, 42] for more details.

In this paper, we are interested in the recovery of the spectrum of the system matrix that gen-
erates the dynamical system from partial observations of a single trajectory. Af!ne dynamical
systems are a natural starting point because they have a simple structure yet broad applica-
tions, including random walks on graphs [31], diffusion processes [49], linear mechanical
and electronic systems [25], compartmental models in biological modeling such as pharma-
codynamics, gene regulation [12, 23, 26]. The inverse problem in this setting is nonetheless
nontrivial because the solution to such a system depends nonlinearly on the system matrix. We
shall begin with a discrete !nite-dimensional af!ne system:

xt+1 = Axt + c, t = 0, 1, 2, . . . , (1)

x0 = b. (2)
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In (1), xt ∈ Cd is the state of the system at time t, the vector b ∈ Cd is the unknown ini-
tial state and the vector c ∈ Cd can be viewed as an unknown control or external force term.
The system matrix A ∈ Cd×d is unknown. We shall also consider the continuous-times
analogue of (1):

ẋ(t) = Ax(t) + c, t ! 0, (3)

x(0) = b. (4)

We then formulate the inverse problem in the most general setting, which we call the
dynamical sampling problem, as follows:

Problem 1 (Dynamical sampling problem). Suppose that we observe the af!ne dyna-
mical system at time instances τ , for each t ∈ τ , only part of the state xt is observed, {xt(i) : i ∈
Ωt} where Ωt ⊂ {1, . . . , d}, under what conditions on observed locations {Ωt}t∈τ , the initial
condition b and the control term c such that the key parameters of A can be recovered from
the space–time samples? If so, what are algorithms that perform ef!cient reconstructions?

Problem 1 exhibits features that are similar to many fundamental problems in the interface of
signal processing, machine learning, and control theory of dynamical systems: observability
of the dynamical systems, network topology identi!cation, super-resolution, deconvolution,
completion of the low-rank matrices. However, even in the most basic cases, the dynamical
sampling problems are different and necessitate new theoretical and algorithmic techniques.

In this paper, we investigate the case where Ωt ≡ Ω ⊂ [d] := {1, 2, . . . , d} and restrict our
attention to the recovery of eigenvalues of A. We de!ne by SΩ the observation matrix that

SΩxt =
∑

i∈Ω

xt(i)ei, (5)

where {ei}d
i=1 is the standard orthonormal basis in Cd . Given the partial observation of a single

trajectory

{SΩxt, t = 0, 1, . . .}, (6)

we develop theory and algorithms for solving the inverse problem of recovering eigenvalues
of A.

1.1. Summary of contributions

We begin by showing that, an annihilating polynomial of A related to Ω and system parame-
ters can be uniquely determined from (5), whose roots are a subset of eigenvalues of A. We
then derive necessary and suf!cient conditions on the interplay between Ω and the system
parameters to characterize which eigenvalues of A are Ω-recoverable. In particular, we provide
characterizations on the universal construction of Ω that allows the recovery of all eigenvalues
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of A almost surely. Our theorems shed light on the minimal cardinality of Ω and guide con-
structions of Ω to recover the target eigenvalues. For numerical algorithms, our proofs provide
a Prony-type method to reconstruct eigenvalues. We also generalize the classical matrix pen-
cil method and estimation of signal parameters via rotational invariant techniques (ESPRIT)
to recover eigenvalues and provide theoretical guarantees. Finally, we perform a systematic
numerical study to examine the accuracy of the reconstruction and compare the performance
of the proposed algorithms for various observational parameters on a variety of examples. We
also test the effectiveness of our approach on a real human motion data set.

In summary, the main contributions of this paper are (i) characterizing the uniqueness of
annihilating polynomial and the relationship between Ω and recoverable eigenvalues for af!ne
systems; (ii) proposing various algorithms based on the Prony-method, matrix pencil, and
ESPRIT with superior numerical performance.

Our work is build upon recent progress in studying dynamical sampling problems where A
is known and the goal is to recover the initial state ([2, 7, 48], see [1, 3–5, 8, 14, 16] for recent
developments) and the work on system identi!cation aspect [6, 47]. In [6], Aldroubi et al
studied the homogeneous case when c = 0 and A is diagonalizable. They propose Prony-type
methods but no numerical examples were presented. In this work, we extend their analysis
to af!ne systems with general system matrices and propose various algorithms. This exten-
sion allows broad applications, such as random walks and diffusion processes on directed
graphs, and compartmental models in disease modeling. We further derive results for universal
selections of observation locations and the continuous-time systems.

During the !nalization of our work, we noticed the recent work [10] where they propose
approximate Prony method to recover the eigenvalue of A in the homogeneous linear dynamical
system when the data samples lose the sign information. They prove results on uniqueness for
the cases where A is diagonalizable and the eigenvalues of A are collision-free. Our results hold
for arbitrary matrix A and we allow the multiplicities of eigenvalues greater than 1. We would
expect that our method can be extended to the case of the phaseless samples.

1.2. Connection with other fields/related work

Connection to system identi!cation problem. Consider a time-invariant linear dynamical
system.

xt+1 = Axt + Bct, (7)

yt = Cxt, (8)

where ct ∈ Rd is the input vector and yt ∈ Rs is the output vector. The parameter estimation
problem considered in control theoryaims to recover the parameter matrices A, B ∈ Rd×d, C ∈
Rs×d from the output vectors {yt}, provided a set of input vectors {xt}. The classical results
show that C has to be full-rank (i.e, the states are all observed) to make identi!ability of param-
eter matrices possible, see the survey in [50] as well as the introduction section in [18]. In the
special case of B = 0, and C = I, i.e., Ωt ≡ {1, . . . , d} in our setting, the identi!ability of A
from a single trajectory with a !xed initial condition has been studied in [44] and later it has
been studied in af!ne dynamical system (B = I, C = I, ct ≡ c) in [21]. It has been shown that
suf!cient and necessary condition is that {x0, Ax0, . . . , ALx0} needs to span Cd , which means
that A has only one Jordan block for each of its eigenvalues and certain constraints are imposed
on x0, we refer to [21, 44] for more details. This tells us why in the case of partial observations
from single trajectory, one should not hope for the full reconstruction of matrix A in general. It
is also mentioned in [21] that one can predict the time-dependence for any observable compo-
nent of the state variable, as long as a Hankel matrix constructed from data is invertible. This
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claim now becomes a special case of proposition 2.1 developed in this paper. Our result further
characterizes when this Hankel matrix is invertible.

Connection to structured signal recovery problem. Parameter estimation problems of
structured signals have been extensively studied in signal processing. In [36], the authors
present an abstract formulation: let V be a normed vector space over C and A be a known
linear operator from V to V , one is interested in recovering a signal b ∈ V that is M-sparse
with respect to eigenfunctions of A

b =
∑

j∈J

c jv j, with |J| = M. (9)

The goal is to recover {c j} and {v j} from data samples F (Alb) for l = 0, 1, . . . , L where
F : V → C is a linear functional. The speci!c instances include the super-resolution, blind
deconvolution, recovery of signals with !nite rate innovations, and we refer to [36] for more
details. The keys behind successful recovery of the structured signal b are (1) the eigenvalues
{λ j} j∈J of A corresponding to {v j} j∈J can be recovered from data under suitable assumptions
on F (2) A is known and its eigenvalues are assumed to have geometric multiplicity 1, there-
fore !nding eigenvectors suf!ces to !nd their corresponding eigenvalues. In [36], the authors
proposed generalized Prony method to recover the eigenvalues for L = 2M − 1.

Back to our setting, assume that A is diagonalizable and c = 0 in (1), and we take Ωl ≡ {ei}
for some i ∈ [d] so that the observational functional F (xl) = 〈xl, ei〉 = xl(i). In this case, we
use eigenvectors of A as basis and represent the initial condition b as in (9). Then the structured
signal recovery problem becomes a special case of the dynamical sampling problem consid-
ered here. The theorem 1 developed in this paper generalizes the main results Theorems 2.1
and 2.3 in [36] in two aspects: (i) our result implies the suf!cient conditions on F is also neces-
sary (ii) our result provided various suf!cient and necessary characterizations to answer which
eigenvalues of A are Ω-recoverable for arbitrary Ω ⊂ {1, 2, . . . , d}.

1.3. Notation

In the following, we use standard notations. By N, we denote the set of all positive integers.
For a positive integer d, we use the notation [d] to represent the set {1, 2, . . . , d}. The linear
space of all column vectors with M complex components is denoted by CM . The linear space
of all complex M × N matrices is denoted by CM×N . For a matrix A = (ai j) ∈ CM×N , its trans-
pose is denoted by AT, its conjugate-transpose by A∗ and its Moore–Penrose pseudoinverse
by A+. For a vector z = (zi) ∈ CM , the M × M diagonal matrix built from z is denoted by
diag(z). Further, we use submatrix notation similar to that of MATLAB. For example, if
A ∈ CM,M+1, then A(1 : M, 2 : M + 1) is the submatrix of A obtained by extracting rows 1
through M and columns 2 through M + 1, and A(1 : M, M + 1) means the last column vector
of A.

1.4. Preliminaries

Throughout the paper, we assume that the system matrix A ∈ Cd×d and it has distinct eigenval-
ues λ1, . . . ,λn. Consider the Jordan decomposition A = UJU−1, where U ∈ Cd×d is invertible
and the Jordan matrix J ∈ Cd×d is block diagonal de!ned as follows:

J =





J1 O . . . O
O J2 . . . O
...

...
. . . ...

O O . . . Jn




. (10)
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In (10), for s = 1, . . . , n, the Jordan block Js corresponds to λs and Js = λsIs + Ns where Is is
the identity matrix of dimension hs, and Ns is a nilpotent block-matrix of dimension hs:

Ns =





Ns1 0 0 0
0 Ns2 0 0

0 0
. . . 0

0 0 0 Nsrs




, (11)

where each Nsi is a t(s)
i × t(s)

i cyclic nilpotent matrix of the form (12),

Nsi =

(
0 0

It(s)
i −1 0

)
=





0 0 . . . 0 0 0
1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . . ...

...
...

0 0 . . . 1 0 0
0 0 . . . 0 1 0





, (12)

with t(s)
1 ! t(s)

2 ! · · · ! t(s)
rs

and t(s)
1 + t(s)

2 + · · · + t(s)
rs

= hs. Also h1 + · · · + hn = d.
Each Jordan block Js corresponds to an invariant subspace Vs of A and the Jordan form J

gives a decomposition of Cd into invariant subspaces of A: Cd = ⊕n
s=1Vs. We de!ne the pro-

jection onto Vs by P(λs; A). Similarly, we denote by Es the invariant subspace of J correspond-
ing to the block Js; Es is spanned by the canonical basis {ei : i = h1 + · · · + hs−1 + 1, . . . ,
h1 + · · · + hs}(h0 = 0forthecases = 1); the projection onto Es is denoted by P(λs; J) and we
have P(λs; J) = UP(λs; A)U−1. Any vector f ∈ Cd admits the unique decomposition f =∑n

s=1 fs, where fs = P(λs; J) f ∈ Es.
Note that J|Es = λsIs + Ns, we will use J f s = (λsIs + Ns) fs by viewing the vector fs ∈ Chs

and interpreting the vector (λsIs + Ns) fs as its canonical embedding in Cd .
With the abuse of notation, if Ns ≡ 0 for s = 1, . . . , n, then J in (10) reduced to a diagonal

matrix of the form

D =





D1 O . . . O
O D2 . . . O
...

...
. . . ...

O O . . . Dn




. (13)

In this case, A is diagonalizable.

Definition 1. Let ks
i denote the row index corresponding to the entry 1 in the last nonzero

column of the block Nsi (12) from the matrix J (10), and let eks
i

be the corresponding elements
of the standard basis of Cn, so that each eks

i
is the cyclic vector associated to N∗

si
. We also de!ne

Ws = span{eks
i

: i = 1, . . . , rs}, for s = 1, . . . , n, and Ps will denote the orthogonal projection
onto Ws. The family PJ = {P j : j = 1 . . . n} comprised of these projections will be called the
penthouse family of the matrix J.

6
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Let us give an example to illustrate the de!nition above. Consider a Jordan matrix as

J =

(
J1

J2

)
=





3
1 3

1 3
3
1 3

2




. (14)

It has three nilpotent blocks given as N11, N12 and N21. The cyclic vectors associated to N∗
11,

N∗
12 and N∗

21 are e3, e5 and e6, respectively.

Definition 2. We introduce three kinds of minimal polynomials that are useful in the paper.

• For A ∈ Cd×d, the minimal polynomial q A is the monic polynomial of the smallest degree,
such that q A(A) ≡ 0, and we denote its degree as r A = deg(q A).

• For any matrix S ∈ Cm×d, the S-altered minimal polynomial of A, denoted by qA
S , is the

monic polynomial of smallest degree among all the polynomials p such that Sp(A) = 0
and rA

S := deg(qA
S )

• The A-minimal polynomial qA
b for a vector b in Cd is the monic polynomial of the smallest

degree, such that qA
b (A)b ≡ 0, and we denote its degree as r A

b = deg(qA
b ).

Definition 3. A Krylov space of order r generated by A ∈ Cd×d and b ∈ Cd , is de!ned by

Kr(A, b) := span{b, Ab, . . . , Ar−1b}. (15)

In particular, for any r ! r A
b − 1, we will denote Kr(A, b) = K∞(A, b).

Definition 4. Let S ∈ Cm×d, A ∈ Cd×d and f ∈ Cd. The (S, A, b)-annihilating polynomials
are all polynomials q such that Sq(A)KrA

S
(A, b) = {0}. We denoted by r A

S,b, the smallest degree
among all monic (S, A, b)-annihilating polynomials.

1.5. Solution formulas to affine systems

In this section, we present the explicit solution formulas in terms of A, b and c for system (1)
and its continuous-time counterpart, which will be useful in our analysis. Let xt be the solution
of discrete system (1). Then using the recursive relation, we obtain that

xt = Atb + (At−1 + · · · + I)c, t = 1, 2, . . . . (16)

For the continuous-time system (3), we let xcont
t be the solution of system (3). Then the solution

can be obtained by differentiating (3) and solving corresponding linear initial value problem
for ẋt:

xcont
t = etAb + g(t; A)c, t ! 0, (17)

where

g(t; A) =
∞∑

k=0

tk+1

(k + 1)!
Ak = tI +

t2

2
A +

t3

3!
A2 + · · · . (18)
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We also list several useful properties of g(t; A):

Lemma 1.

d
dt

g(t; A) = etA; Ag(1; A) = g(1; A)A = eA − I.

In particular, if A is invertible, then g(1; A) = (eA − I)A−1.

Proof. Note that the derivative of each term occurring in equation (18) is

d
dt

(
tk+1

(k + 1)!
Ak
)

=
tk

k!
Ak, k = 0, 1, 2, . . . .

Then from the sum rule for the derivative, we have

d
dt

g(t; A) =
d
dt

( ∞∑

k=0

tk+1

(k + 1)!
Ak

)

=
∞∑

k=0

[
d
dt

(
tk+1

(k + 1)!
Ak
)]

=
∞∑

k=0

tk

k!
Ak = etA.

Also, plugging t = 1 into equation (18) to get g(1; A), we obtain that

Ag(1; A) = A

( ∞∑

k=0

1
(k + 1)!

Ak

)

=
∞∑

k=0

1
(k + 1)!

Ak+1

= eA − I,

where the last equality also comes from the power series expansion of exponential
function eA. "

2. Main results

2.1. Discrete-time affine dynamical systems

2.1.1. Case c = 0. We will begin with the homogeneous linear dynamical system with c = 0.
In this case, the discrete dynamical system reduces to

xt = Atx0, x0 = b. (19)

Given the observation locations Ω ⊂ [d], we show that the minimal (SΩ, A, b)-annihilating
polynomial qA

SΩ,b can be uniquely recovered from {SΩ(xt) : t = 0, 1, . . . , } and the roots of
qA

SΩ,b are eigenvalues of A. Here by uniqueness, we mean that if SΩxt = SΩ x̃t for t = 0, 1, . . . ,

8



Inverse Problems 38 (2022) 015004 J Cheng and S Tang

where x̃t is the trajectory of the system (19) with a system matrix Ã and an initial state b̃, then
qA

SΩ,b = qÃ
SΩ ,̃b

.

Proposition 1. Given partial observations of trajectory data determined by Ω ⊂ [d]

SΩ(xt), t = 0, . . . , 2r − 1, r = rA
SΩ,b,

we construct a Hankel matrix

H :=




SΩb . . . SΩAr−1b

... . . .
...

SΩAr−1b . . . SΩA2r−2b



 . (20)

Then H is of full column rank and there exist a unique solution q = [q1, . . . , qr]T ∈ Cr to the
linear system

Hq = −hΩ,r, hΩ,r =




SΩArb

...
SΩA2r−1b



 . (21)

We have that, qA
SΩ,b(z) = zr +

∑r
i=1qizi−1. In addition, the roots of qA

SΩ,b are eigenvalues of A.

Proof. Suppose that Hq = −hr. Let the polynomial q(z) = zr +
∑r−1

k=0 qk+1zk. Then it fol-
lows that

SΩq(A)Atb = 0, t = 0, . . . , r − 1.

By lemma 5, the solution is unique and q = qA
SΩ,b. It follows from the equation (57) in lemma

4 (see appendix), that the roots of qA
SΩ,b are eigenvalues of A. "

Proposition 1 in fact provides us with a Prony-type algorithm to reconstruct the annihilating
polynomial qA

SΩ,b from data, by solving the Hankel-type equation (21). Then we !nd roots
of qA

SΩ,b which are a part of eigenvalues of A. However, a key question still not addressed is
which eigenvalues of A can be recovered. Our goal is to !nd the relationship between Ω and
recoverable eigenvalues. Such results are useful in the selection of Ω to recover the target
eigenvalues.

Theorem 1. Assume that the evolution matrix A ∈ Cd×d and its Jordan decomposition can
be written as A = UJU−1 where J is a Jordan matrix as in (10). Let b ∈ Cd be the initial state.
Then the polynomial qA

SΩ,b can be uniquely determined from {SΩxt : t = 0, 1, . . .}. In addition,
the following statements are equivalent: for s = 1, . . . , n,

(a) λs is not a root of qA
SΩ,b.

(b) (U−1b)s ⊥K∞(N∗
s , (U∗ei)s) for all i ∈ Ω, where (U−1b)s = P(λs; J)U−1b, (U∗ei)s =

P(λs; J)U∗ei.
(c) P∗(λs; A)ei ⊥ K∞(A, b) for all i ∈ Ω, where P∗(λs; A) denotes the adjoint operator of

P(λs; A).

9
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Proof. The proof is based on lemmas 3–5 in the appendix.

• Claim 1: the polynomial qA
SΩ,b has λs as one of its roots if and only if

deg(qJ
SΩU,(U−1b)s

) := rJ
SΩU,(U−1b)s

! 1.

On one hand, qA
SΩ,b = qJ

SΩU,U−1 b. On the other hand, by lemma 4, we have qJ
SΩU,U−1b =

∏n
s=1qJ

SΩU,(U−1 b)s
where (U−1b)s = P(λs; J)U−1b and qJ

SΩU,(U−1 b)s
(z) = (z − λs)

r J
SΩU,(U−1b)s .

Therefore claim 1 is proved.
• Claim 2: rJ

SΩU,(U−1b)s
= 0 if and only if

(U−1b)s ⊥ span{N∗
s

tûs,i, t = 0, 1, . . .} = span{N∗
s

tûs,i, t = 0, 1, . . . , ms,i − 1}, i ∈ Ω,

where ûs,i = (U∗ei)s, and ms,i = rN∗
s

ûs,i
.

By de!nition 4, qJ
SΩU,(U−1 b)s

satis!es

SΩUqJ
SΩU,(U−1b)s

(J)Jt(U−1b)s = 0, t = 0, 1, . . . , rJ
(U−1b)s

− 1. (22)

Note that (U−1b)s ∈ Es := P(λs; J) and therefore we can restrict J on Es, i.e., use
J|Es = λsIs + Ns instead of J. By the proof of lemma 4, we have qJ

SΩU,(U−1b)s
(J|Es ) =

N
rJ
SΩU,(U−1b)s

s , and the equations in (22) are equivalent to

SΩUN
rJ
SΩU,(U−1b)s

s (λsIs + Ns)t(U−1b)s = 0, t = 0, 1, . . . , rJ
(U−1b)s

− 1, (23)

which can be further simpli!ed as

SΩUN
rJ
SΩU,(U−1b)s

s Nt
s(U

−1b)s = 0, t = 0, 1, . . . , rJ
(U−1b)s

− 1. (24)

Representing each equation in (24) using the inner product, we obtain that, for i ∈ Ω

ûs,i ⊥ span{Nt
s(U

−1b)s, t = 0, 1, . . . , rJ
(U−1b)s

− 1}, (25)

where ûs,i = P(λs; J)U∗ei.
Note that span{Nt

s(U
−1b)s, t = 0, 1, . . . , rJ

(U−1b)s
− 1} = span{Nt

s(U
−1b)s, t =

0, 1, . . .}, and 〈ûs,i, Nt
s(U

−1b)s〉 = 〈N∗
s

tûs,i, (U−1b)s〉, claim 2 is followed by the fact
that

span{N∗
s

tûs,i, t = 0, 1, . . .} = span{N∗
s

tûs,i, t = 0, 1, ms,i − 1},

where ms,i = rN∗
s

ûs,i
is the least integer m such that N∗

s
m−1(U−1b)s -= 0 but

N∗
s

m(U−1b)s = 0.
• Claim 3: the equations in (22) are equivalent to

〈P∗(λs; A)ei, Atb〉 = 0, t = 0, 1, . . . , i ∈ Ω.

10
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Note that

〈ûs,i, Jt
s(U

−1b)s〉 = 〈P(λs; J)U∗ei, Jt
s(U

−1b)s〉

= 〈ei, UP(λs; J)Jt
s(U

−1b)s〉

= 〈ei, UP(λs; J)JtP(λs; J)U−1b〉

= 〈ei, UP(λs; J)JtU−1b〉

= 〈ei, UP(λs; J)U−1UJtU−1b〉

= 〈ei, P(λs; A)Atb〉 = 〈P∗(λs; A)ei, Atb〉,

where we used the facts that P(λs; J)2 = P(λs; J), P(λs; J)J = JP(λs; J) and P(λs; A) =
UP(λs; J)U−1. Then the conclusion follows in a similar way as in the proof of claim 2.

"
In theorem 1, we view Ω as a set of functionals {ei : i ∈ Ω} in the dual space. Part

(b) characterizes the recoverability of the eigenvalue λs by checking the local orthogonality
of the vector (U−1b)s with the Krylov subspace generated by N∗

s and {(U∗ei)s : i ∈ Ω}. Part (c)
provides an equivalent geometric characterization on the global Krylov subspace generated by
the trajectory of the system and the projection of the vectors {U∗ei : i ∈ Ω} onto the invariant
subspace Es. In this way, we !nd the interplay between A, b and Ω that allows the recovery of
the eigenvalue λs.

Remark 1. Theorem 1 also holds for a diagonalizable matrix A. Suppose that A = UDU−1

where D is a diagonal matrix as in (13). By setting Ns = 0, the part (b) in this case can be
simpli!ed as

(U−1b)s ⊥ (U∗ei)s,

for all i ∈ Ω, where (U−1b)s = P(λs; D)U−1b, and (U∗ei)s = P(λs; D)U∗ei. This condition was
proved in theorem 3.7 in [6]. In particular, when P(λs; D) is a rank one projection,λs is recover-
able if and only if (U−1b)s(U∗ei)s -= 0 for some i ∈ Ω, which was listed as a suf!cient condition
in theorem 2.1 in [36] for Ω = {ei}.

Universal constructions of Ω. From theorem 1, we know that if (U−1b)s =
P(λs; J)U−1b = 0, then λs can not be recovered no matter what choice of Ω is. However, the
set consisting of this kind of initial conditions is of measure zero. Let us consider a generic set
of Cd de!ned by S = {b ∈ Cd : (U−1b)s -= 0 for s = 1, . . . , n}. If the initial state b is sampled
from a non-degenerate probability measure on Cd , then b ∈ S almost surely. One may ask:
how to choose Ω such that all eigenvalues of A can be recovered from partial observations of
a single trajectory starting from b0 ∈ S. This question yields the following de!nition.

Definition 5 (Universal sampling set). A set Ω is said to be universal for the system
(19) if all eigenvalues of A can be recovered from the partial observation of the trajectory data
SΩxt for t = 0, 1 . . . , 2rA

SΩ,b − 1 with x0 = b ∈ S.

11
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Based on theorem 1, we derive various characterizations on universal sampling sets Ω that
can guide their constructions.

Theorem 2. Assume that the evolution matrix A ∈ Cd×d and its Jordan decomposition can
be written as A = UJU−1 where J is a Jordan matrix as in (10). The following statements are
equivalent

(a) Ω is universal for the system (19).
(b) The set of vectors {ei, A∗ei, . . . , (A∗)rA

ei
−1ei : i ∈ Ω} span Cd. In other words,∑

i∈ΩK∞(A∗; ei) = Cd.
(c) The set of vectors {PsU∗ei, i ∈ Ω} spans Range(Ps) for s = 1, . . . , n, where PJ = {Ps : s =

1, . . . , n} is the penthouse family for J introduced in de!nition 1, in other words, Ps is
the orthogonal projection onto the span of cyclic vectors corresponding to the nilpotent
block N∗

s .

Proof. Note that A∗ = (U∗)−1J∗U∗, we have that

∑

i∈Ω

K∞(A∗; ei) = Cd ⇐⇒
∑

i∈Ω

K∞(J∗; U∗ei) = Cd ,

which is also equivalent to

∑

i∈Ω

P(λ∗
s ; J∗)K∞(J∗; U∗ei) = Es := Range(P(λ∗

s ; J∗)), s = 1, . . . , n.

The !rst equivalence is due to the invertibility of U and the second equivalence is due to the
facts that

∑n
s=1P(λ∗

s ; J∗) = I and the projections are mutual orthogonal.
The equivalence between (a) and (b) can then be proved using part (c) of theorem 1. Note

that

〈P∗(λs; A)ei, Atb〉 = 〈P(λ∗
s ; A∗)ei, Atb〉

= 〈P(λ∗
s ; A∗)(A∗)tei, b〉

= 〈(U∗)−1P(λ∗
s ; J∗)U∗(U∗)−1(J∗)tU∗ei, b〉

= 〈P(λ∗
s ; J∗)(J∗)tU∗ei, U−1b〉

= 〈P(λ∗
s ; J∗)(J∗)tU∗ei, P(λ∗

s ; J∗)U−1b〉, (26)

where we used the facts that P(λ∗
s ; A∗) = P∗(λs; A), P(λ∗

s ; A∗)A∗ = A∗P(λ∗
s ; A∗), and

P(λ∗
s ; J∗) = P(λs; J).

(b) =⇒ (a): for any b ∈ S, and any s ∈ [n], we have that P(λs; J)U−1b = P(λ∗
s ; J∗)U−1b -=

0. From (26), we see that it is impossible to have

〈P∗(λs; A)ei, Atb〉 = 0 for all i ∈ Ω,

since
∑

i∈ΩP(λ∗
s ; J∗)K∞(J∗; U∗ei) = Es and P(λ∗

s ; J∗)U−1b is a nonzero vector in Es. Accord-
ing to part (c) of theorem 1, λs is a root of qA

SΩ,b. Therefore, all eigenvalues of A can be
recovered.

12
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(a) =⇒ (b): if there exists an s ∈ [n], such that
∑

i∈ΩP(λ∗
s ; J∗)K∞(J∗; U∗ei) is a proper sub-

space of Es. Let the nonzero vector fs ∈ Es be orthogonal to
∑

i∈ΩP(λ∗
s ; J∗)K∞(J∗; U∗ei). Then

for any b ∈ S, the vector b̃ = b − UP(λs; J)b + U fs ∈ S, and we have

〈P∗(λs; A)ei, Atb̃〉 = 0 for all i ∈ Ω,

which yields a contradiction for the universality of Ω.
Now we prove the equivalence of (b) and (c). We use theorem 6 in the appendix, which is

a slight modi!cation of the theorem 2.6 in [2]. "
Part (b) of theorem 2 relates the universal construction of Ω to the trajectory behavior of

a conjugate dynamical system to (19): consider trajectories starting with initial conditions
{ei : i ∈ Ω}, they should not belong to any proper subspace. Part (c) of theorem 2 indicates
that the universal construction only depends on the invertibility of certain submatrices of U.
It guides us to construct universal sampling sets according to the spectral structure of A. For
simplicity, we present an example for a diagonalizable matrix.

If A = UDU−1 where D is a diagonal matrix as in (13), then the part (c) can be simpli!ed as
{P(λs; D)U∗ei, i ∈ Ω} spans Range(P(λs; D)) = Es. That is to say, the submatrix of U∗ formed
by selecting column indices according to Ω and row indices according to Es needs to have full
row rank. If we know dim(Es) ≡ 1 for s = 1, . . . , d, then it suf!ces to !nd a column of U∗ which
is nonzero everywhere. This example can be immediate to generalize to the Jordan case where
there is only one cyclic vector for each nilpotent block. Below, we present a more complicated
example.

Example 2.1 (Diffusion process over circulant graphs). In this system, the dynam-
ics is generated by a circulant matrix A. It is well-known that A admits the spectral decomposi-
tion A = UDU−1, where U is the discrete Fourier matrix and D is a diagonal matrix, with eigen-
valuesλ1, . . . ,λn. Note that in this case, D is similar to the standard diagonal form in (13) up to a
permutation of the diagonal entries. Let Es := Range(P(λs; D)) and smax := maxs=1,...,n dim(Es).
Let us choose Ω = {1, . . . , smax}, and denote by (U∗)Ω the submatrix of U∗ formed by choos-
ing columns according to Ω. Then the matrix (U∗)Ω satis!es the full spark property: any smax

rows of (U∗)Ω will form a Vandermonde matrix with distinct nodes, and therefore is invertible.
As a result, {P(λs; D)U∗ei, i ∈ Ω} spans Es for s = 1, . . . , n and Ω is a universal construction.

Example 2.1 reveals a connection of universal sampling sets with full-spark submatrices of
U∗, and the latter problem has been extensively studied in the !eld of compressed sensing. For
discrete Fourier matrix, Chebotarëv showed that every square submatrix of the discrete Fourier
matrices is invertible if the dimension d is prime [46]. In this case, an arbitrary set Ω ⊂ [d] with
|Ω| = smax is universal. In general, deterministic constructions are very dif!cult. As is done in
compressed sensing, one can look for the random constructions of Ω at uniform such that any
smax rows of (U∗)Ω satis!es the restricted isometry property. It is shown that the cardinality of
Ω will be slightly more than smax, with proportional factor mainly depending on the coherence
of the columns U∗, a quantity measuring the dependence. The reader can refer to [15, 48] for
more details.

2.1.2. Case c -= 0. In this subsection, we deal with the af!ne systems with c -= 0. Inspired
by the idea in [21], we show that the af!ne systems can be transformed to a homogeneous
system by a linear transformation. In this way, we can extend the previous results to the af!ne
systems. For the sake of conciseness, we only state the generalization of theorem 1. Other
results in section 2.1.1 can be derived similarly.

13



Inverse Problems 38 (2022) 015004 J Cheng and S Tang

Now let us consider the af!ne system:

xt+1 = Axt + c, x0 = b, t = 0, 1, . . . .

Using the solution formula (16), we have xt+1 − xt = At((A − I)b + c). Now we denote
yt = xt+1 − xt, then we have.

yt = Aty0, t = 0, 1, 2, . . . , (27)

y0 = (A − I)b + c. (28)

Now we apply theorem 1 to the homogeneous system (27), we obtain the following theorem:

Theorem 3. Assume that the evolution matrix A ∈ Cd×d and its Jordan decomposition can
be written as A = UJU−1 where J is a Jordan matrix as in (10). Let b ∈ Cd be the initial state
and c be the force term of the system. De!ne the vector w = (A − I)b + c. Then the polyno-
mial qA

SΩ,w can be uniquely determined from {SΩxt : t = 0, 1, . . .}. In addition, the following
statements are equivalent: for each s ∈ [n]

(a) λs is not a root of qA
SΩ,w.

(b) ws ⊥K∞(N∗
s , ûs,i) for all i ∈ Ω where ws = P(λs; J)U−1w, ûs,i = P(λs; J)U∗ei.

(c) P∗(λs; A)ei ⊥ K∞(A; w) for all i ∈ Ω.

Now we compare theorem 3 with theorem 1. The only difference is to replace the vector b
in theorem 1 with w. Note that w = (A − I)b + c, so the nonzero external vector c changes the
geometry of vectors and Krylov spaces. As a result, for Ω ⊂ [d], λs could be recovered in the
af!ne system but may not in its homogeneous counterpart. In particular, when A is the identity
matrix, the initial condition b plays no role in determining the recoverability of the eigenvalues
in af!ne systems. This can also be seen from the solutions to the systems: the initial condition
b just adds a simple translation on the solutions. However, universal sampling sets for both
af!ne system and its homogeneous counterpart are the same, since they only depend on the
spectral matrix U by theorem 2.

2.2. Extension to continuous-time affine dynamical systems

In this section, we consider the continuous-time systems:

ẋ(t) = Ax(t) + c, t ! 0,

x(0) = b.

Suppose that observation time instances are uniform, without loss of generality, say at
t = 0, 1, 2, . . . , we de!ne B = eA, and introduce yt = xcont

t+1 − xcont
t , then we have

yt = Bty0, (29)

y0 = (B − I)b + g(1; A)c, (30)

where we used the properties

g(t; A) = tg(1; tA), (31)

(t + 1)g(1; (t + 1)A) − tg(1; tA) = etAg(1; tA). (32)

14
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Therefore, we can apply the results of discrete-time systems to system (29) generated by
the evolution matrix B. In general, the mapping A → eA does not preserve the Jordan decom-
position of A except for the case when A is similar to a diagonal matrix. For easy presentation,
we state the result for the diagonalizable case.

Theorem 4. Assume that the evolution matrix A = UDU−1 where D is a diagonal matrix.
Let b ∈ Cd be the initial state and c be force term of the system. De!ne the matrix B = eA and
the vector w = (B − I)b + g(1; A)c. Then the polynomial qB

SΩ,w can be uniquely determined
from {SΩxcont

t : t = 0, 1, . . .}. In addition, the following statements are equivalent: for each
s ∈ [n]

(a) eλs is not a root of qB
SΩ,w.

(b) (U−1w)s ⊥ span{ûs,i, i ∈ Ω}, where the vector

(U−1w)s =





(eλs − 1)P(λs; D)U−1

(
b +

1
λs

c
)

, if λs -= 0

P(λs; D)U−1c, otherwise,

and the vector ûs,i = P(λs; D)U∗ei.
(c) P∗(λs; B)ei ⊥ K∞(B; w) for all i ∈ Ω.

Proof. Since A = UDU−1, we have that B = UeDU−1. That is, the spectrum of B consists
of eλ1 , . . . , eλs . We !rst show the formula of (U−1w)s presented in part (b). Note that

(U−1w)s = P(λs; D)U−1w = P(λs; D)((eD − I)U−1b + g(1; D)U−1c).

We have P(λs; D)(eD − I) = P(λs; D)(eλs − 1)I. In particular, when λs = 0, P(λs; D)(eD −
I) = 0. P(λs; D)g(1; D) = eλs−1

λs
P(λs; D) if λs -= 0, and otherwise P(λs; D)g(1; D) = P(λs; D).

The formula is then proved. We next apply the arguments in remark 1 of theorem 1 to obtain
the desired conclusions. "

Furthermore, if A has a real eigenvalue λ, then one can recover λ from eλ. However, this
is not true for complex eigenvalues, since ez is not an injective mapping on the complex
domain C.

3. Numerical algorithms

In this section, we propose various algorithms to recover the eigenvalues of A from data. Recall
that proposition 1 in fact provides us with a Prony-type algorithm to reconstruct the annihilat-
ing polynomial qA

SΩ,b. The original Prony method was proposed centuries ago to recover a
vector with an s-sparse Fourier transform from 2s of its consecutive components. In recent
years, the Prony method has been widely applied to different inverse problems including the
approximation of Green functions in "uid dynamics [11], the inverse scattering problem [24],
the parameter estimation in signal processing [13]. The renaissance of Prony method originates
from its stabilized variants, such as the ESPRIT method [40], the matrix pencil method [27] or
the approximate Prony method [37, 39, 45]. Error estimates for the performance of Prony-type
methods with noisy measurements can be found in [9, 10, 22, 38, 47]. The robustness depends
on the minimal gap between parameters.

To apply Prony-type methods, we !rst construct Hankel-like matrix. Let Ω ⊂ [d] and given
the trajectory data {SΩAtb, t = 0, . . . , M − 1}, the rectangular Hankel-like matrices for some
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positive integer L < M is given by

HΩ,M−L,L+1 =




| | |

h0 h1 . . . hL

| | |



 ,

HΩ,M−L,L(t) = HΩ,M−L,L+1(:, t + 1 : t + L), t = 0, 1,

(33)

where the (M − L)|Ω| × 1 column vector is

hl =
[
SΩAlb, SΩAl+1b, . . . , SΩAM−L+l−1b

]T
, (34)

for l = 0, 1, . . . , L. Denote by r = rA
SΩ,b, the degree of minimal (SΩ, A, b) annihilator qA

SΩ,b.
As long as M ! L + r and L ! r, we have that rank(HM−L,L) = r and we can recover all Ω-
recoverable eigenvalues. A practical choice of L is L # M/2 (and L $ N/2), which is the
maximum value for L. In particular, when L = r, the Hankel-like matrix is full column rank.

Determining the number of Ω-recoverable eigenvalues. In applications, the degree r of
the annihilator qA

SΩ,b is sometimes not known as a priori. The information of r is crucial in
applying the Prony-typed method proposed in proposition 1.

Algorithm 1. Determining the number of Ω-recoverable eigenvalues.
Input: M ∈ N s.t. M > 3d, observed samples {SΩAtb, t = 0, . . . , M − 1}.

Step 1. Construct Hankel like matrix. Construct HΩ,M−d,d+1 from (33) and com-
pute its singular values in descending order by taking SVD as HΩ,M−d,d+1 =
UΩ,M−dDΩ,M−d,d+1W∗

Ω,d+1.
Step 2. Determine the numerical rank. We have different methods to determine the
numerical rank including: (i) count the maximum number of singular values r1 such that
σi ∈ R, i = 1, 2, . . . , r are greater than a given positive threshold ε. (ii) Compute the quo-
tient of singular values as qr = σr

σr+1
and !nd the maximum quotient index r2 = maxr qr.

(iii) Reorder the quotient qr in descending order as q̂r, !nd the maximum gap q̂r − q̂r+1,
and determine the original order of q̂r in quotients {qr} as r3.

Output: the number of recoverable eigenvalues r1, r2, r3 produced by three criterions.

We can estimate r by calculating the numerical rank of the Hankel matrix HΩ,M−L,L+1, given
suf!cient large L and M. For example, L = d and M ! 2d. We then compute the singular value
decomposition (SVD) of HΩ,M−L,L+1 and !nd r as the number of singular values being larger
than a threshold ε, which could be a !xed constant or the largest spectral gap among singular
values, see algorithm 1 for more details.

In the following subsections, we will further investigate the data structure of the Hankel-
like matrix HΩ,M−L,L+1 and present various algorithms based on the ideas from classical Prony,
matrix pencil method, and ESPRIT estimation method. The latter two classical methods are
well known for their better numerical stability than the original Prony method.

3.1. The Prony algorithm

The Prony-type method contained in the proof of proposition 1 is summarized as follows.

Algorithm 2. Prony LS method.
Input: M ∈ N, s.t. M > 3d, observed samples {SΩAtb, t = 0, . . . , M − 1} and the number

of recoverable eigenvalues r.
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Step 1. Construct and solve Hankel-like matrix equation. Construct HΩ,M−r,r+1 from
(33) and compute its SVD as HΩ,M−r,r+1 = UΩ,M−rDΩ,M−r,r+1W∗

Ω,r+1. Construct the linear
equation in (21): HΩ,M−r,r(0)%q = −hΩ,r from (33) and (34) and compute its least square
solution and total least square solution %q = (q0, q1, . . . , qr−1)0 as

%qLS = −HΩ,M−r,r(0)+hΩ,r+1.

Step 2. Find the roots of the polynomial. Compute all zeros zLS
j ∈ C, j = 1, 2, . . . , r of

q(z) =
∑r−1

k=0qkzk + zr with %qLS.

Output: {zLS
j ∈ C, j = 1, 2, . . . , r}.

3.2. Generalized matrix pencil method

In this section, we show that one can generalize the idea of matrix pencil to recover the eigen-
values of A. We !rst present a decomposition of Hankel matrices HΩ,M−L,L(t), t = 0, 1 for the
case when Ω has a single point.

Lemma 2. Let Ω = {i} ⊂ [d]. Denote by r = rA
SΩ ,b and rs = rA

SΩ ,bs
for s = 1, . . . , n. Then

the rectangular Hankel matrices can be factorized in the following form for t = 0, 1:

HM−L,L(t) = V T
r,M−LΛĴtVr,L, (35)

Vr,L :=





Vr1,L

Vr2,L
...

Vrn ,L




, Vrs ,L =





C0
0 C0

1λs . . . C0
rs−1λ

rs−1
s . . . C0

L−1λ
L−1
s

0 C1
1 . . . C1

rs−1λ
rs−2
s . . . C1

L−1 λL−2
s

...
...

. . . ...
. . . ...

0 0 . . . Crs−1
rs−1λ

0
s . . . Crs−1

L−1 λ
L−rs
s




∈ Crs×L,

and an r-by-r matrix Λ:

Λ :=





Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . .

...
0 0 . . . Λn




, Λs =





〈(U−1b)s, (U∗ei)s〉 . . . 〈Nrs−1
s (U−1b)s, (U∗ei)s〉

〈Ns(U−1b)s, (U∗ei)s〉 . . . 0
...

...
...

〈Nrs−1
s (U−1b)s, (U∗ei)s〉 . . . 0




∈ Crs×rs ,

and a Jordan matrix Ĵ:

Ĵ :=





λ1 + N̂1 0 . . . 0
0 λ2 + N̂2 . . . 0
...

...
. . . ...

0 0 . . . λn + N̂n




, N̂s =





0 0 . . . 0 0
1 0 . . . 0 0

0 1
. . . 0 0

...
...

. . . ...
...

0 0 . . . 1 0




∈ Crs×rs .

17



Inverse Problems 38 (2022) 015004 J Cheng and S Tang

Proof. We prove this lemma by the matrices in (35) are entrywise identical. The (m, l)th
entry of the Hankel matrix HΩ,M−L,L(0) is given by

〈Am+l−2b, ei〉 = 〈Jm+l−2(U−1b), U∗ei〉 =
n∑

s=1

〈Jm+l−2
s (U−1b)s, (U∗ei)s〉

=
n∑

s=1

rs−1∑

ks=0

(
m + l − 2

ks

)
λm+l−2−ks

s

× 〈Nks
s (U−1b)s, (U∗ei)s〉.

Then by using the identity

(
m + l − 2

ks

)
=

ks∑

i=0

(
m − 1

i

)(
l − 1
ks − i

)
,

and comparing the coef!cients for 〈Ni
s(U

−1b)s, (U∗ei)s〉 for i = 0, . . . , rs − 1, one can show
that it is the same with the (m, l)th entry of the matrix VT

r,M−LΛVr,L. Similarly, we can prove for
the Hankel matrix HΩ,M−L,L(1). "

Recall that the superscripts ‘∗’ and ‘+’ will denote the conjugate transpose and the pseu-
doinverse. The following lemma provides a theoretical foundation for the generalized matrix
pencil method.

Proposition 2. Let Ω = {i} ⊂ [d]. Denote by r = rA
SΩ ,b and rs = rA

SΩ,bs
for s = 1, . . . , n.

Without loss of generality, assume that rs ! 1. Let M, L be two postive integers such that
r $ L $ M − r. The solutions to the generalized singular eigenvalue problem:

(zHM−L,L(0) − HM−L,L(1))v = 0 (36)

subject to b ∈ Col(H∗
Ω,M−L,L(0)), denoting the column space of H∗

Ω,M−L,L(0), are

zs = λs,

v = the r1 + · · · + rsth column of V+
r,L,

for s = 1, . . . , n.

Proof. Using the factorization (35), we re-write the equation (36) as

VT
r,M−LΛ(z − Ĵ)Vr,Lv = 0.

Since the matrix Vr,L has linearly independent rows, every x in Col(H∗
Ω,M−L,L(0)) can be rep-

resented as v = V+
r,Lc for some vector c ∈ Cr due to the property of psuedo-inverse. We also

note that the matrix VT
r,M−L has linearly independent columns, and the matrix Λ is invertible

(by proposition 1). Therefore, it suf!ces to solve

(z − Ĵ)c = 0.
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We then know the possible values for z such that the linear equations have nonzero solu-
tions are λ1, . . . ,λn. The conclusion follows by solving the corresponding linear system of
equations. "

The general case. Let Ω = {i1, . . . , ik} ⊂ [d], and assume that rs = rSA
Ω,bs

! 1 for
s = 1, . . . , n. By appropriate permutations of rows, the Hankel-like matrix HΩ,M−L,L+1 de!ned
in (33) can be transformed as

H̃Ω,M−L,L+1 :=




H{i1},M−L,L+1

...
H{ik},M−L,L+1



 . (37)

Then each Hankel matrix H{i j},M−L,L+1 can be still factorized in the form of (35)

H{i j},M−L,L(t) = VT
r,M−LΛ{i j}ĴtVr,L, t = 0, 1. (38)

In particular, if rA
S{i j},bs

= 0, then the corresponding Λ{i j},s in (2) will be a rs × rs zero matrix.

The solutions to the generalized singular eigenvalue problem:

(zHΩ,M−L,L(0) − HΩ,M−L,L(1))v = 0, (39)

subject to x ∈ Col(H∗
Ω,M−L,L(0)), denoting the column space of H∗

Ω,M−L,L(0) are the same with
the problem

(zH̃Ω,M−L,L(0) − H̃Ω,M−L,L(1))ṽ = 0, (40)

subject to ṽ ∈ Col(H̃∗
Ω,M−L,L(0)), in the sense that ṽ is a permutation of v. Due to the factoriza-

tion (35) and that rs = max
j=1,...,k

rA
S{ik},bs

, we have that Col(H̃∗
Ω,M−L,L(0)) = Range(V+

r,L). Therefore

the solution to (40) is equivalent to

Λ{i j}(z − Ĵ)c̃ = 0, j = 1, . . . , k. (41)

Since for each s = 1, . . . , n, there is at least oneΛ{i j},s in (2) is invertible, therefore the values
of z to solve (41) with nonzero c̃ are λ1, . . . ,λn. We therefore obtain the following conclusion:

Theorem 5. Let Ω ⊂ [d], and denote r := rSA
Ω,b

. Let M, L be two postive integers such that

r $ L $ M − r. The L × L matrix H+
Ω,M−L,L(0)HΩ,M−L,L(1) has the same eigenvalues with

roots of qA
SΩ,b and L − r zeros as eigenvalues.

Proof. Left multiplying (39) by H+
Ω,M−L,L, we have

H+
Ω,M−L,L(0)HΩ,M−L,L(1)x = zH+

Ω,M−L,L(0)HΩ,M−L,L(0)x. (42)

By property of the pseudoinverse, H+
Ω,M−L,L(0)HΩ,M−L,L(0) is the orthogonal projection onto

Col(H∗
Ω,M−L,L(0)). Since x ∈ Col(H∗

Ω,M−L,L(0)), it is easy to see that λ1, . . . ,λn are n eigen-
values of H+

Ω,M−L,L(0)HΩ,M−L,L(1). Since the rank of H+
Ω,M−L,L(0)HΩ,M−L,L(1) is r $ L,

H+
Ω,M−L,L(0)HΩ,M−L,L(1) has L − rSA

Ω,b
zero eigenvalues. "

One advantage of the matrix pencil method is the fact that there is no need to compute the
coef!cients of the minimal annihilating polynomial qA

SΩ,b. In this way, we need only solve a

19



Inverse Problems 38 (2022) 015004 J Cheng and S Tang

standard eigenvalue problem of a square matrix H+
Ω,M−L,L(0)HΩ,M−L,L(1). In order to compute

H+
Ω,M−L,L(0)HΩ,M−L,L(1). Inspired by the idea of algorithm 5 in [28], we can employ the SVD

based matrix pencil method for Hankel-like matrices.

Proposition 3. In addition to the conditions of theorem 5, given the SVD of the Hankel-like
matrix,

HΩ,M−L,L+1 = UΩ,M−LΣΩ,M−L,L+1W∗
Ω,L+1,

then

H+
Ω,M−L,L(0)HΩ,M−L,L(1) =

(
W∗

Ω,L+1(1 : r, 1 : L)
)+ (

W∗
Ω,L+1(1 : r, 2 : L + 1)

)
.

We now summarize the generalized matrix pencil method as below.

Algorithm 3. Matrix pencil method
Input: M ∈ N s.t. M > 3d, observed samples {SΩAtb, t = 0, . . . , M − 1} and the number

of recoverable eigenvalues r.

Step 1. Construct and solve Hankel-like matrix equation. Construct the matrix equation
in as HΩ,M−L,L(0)C = HΩ,M−L,L(1) from equations (33) and (34) and compute SVD of
augmented matrix [HΩ,M−L,L(0) HΩ,M−L,L(1)] = U′

Ω,M−LD′
Ω,M−L,2LW ′∗

Ω,2L and compute its
least square solution, total least square solution and SVD-based solution by

CLS =
(
HΩ,M−L,L(0)

)+HΩ,M−L,L(1).

CSVD =
(
W∗

Ω,L+1(1 : r, 1 : L)
)+W∗

Ω,L+1(1 : r, 2 : L+1).

Step 2. Find the eigenvalues of companion matrix. Compute all eigenvaluesλLS
j ,λSVD

j ∈
C, j = 1, 2, . . . , L of the companion matrix CLS, CSVD, repectively.
Step 3. Remove redundant zeros. Remove the eigenvalues with suf!ciently small norm,
i.e., ‖λ j‖ $ η for a small positive number η ∈ R+.

Output: {z LS
j ∈ C, j = 1, 2, . . . , L|‖λ LS

j ‖ > η}, {z SVD
j ∈ C, j = 1, 2, . . . , L|‖λ SVD

j ‖ >
η}.

3.3. Generalized ESPRIT method

The original ESPRIT method relies on a particular property of Vandermonde matrices known
as rotational invariance [40]. By the factorization (35), and the permutation argument in (37),
we have seen that the Hankel-like data matrix HΩ,M−L,L+1 is rank-de!cient and that its range
space, spanned by columns of VT

Ω,r,M−L, satis!es a generalized rotation invariance property:

VT
Ω,r,M−L(2 : M−L, :) = VT

Ω,r,M−L(1 : M−L−1, :)ĴT, (43)

where the matrix VΩ,r,M−L and the Jordan matrix Ĵ is de!ned in (35). Hence, we can generalize
the ESPRIT algorithm based on SVD for estimating the eigenvalues of Ĵ in our setting. We
summarize this method below:

Algorithm 4. ESPRIT method
Input: M ∈ N s.t. M > 3d, observed samples {SΩAtb, t = 0, . . . , M − 1} and the number

of recoverable eigenvalues r.
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Figure 1. Example 1. (Left) State-time plot of observations of the trajectory with
Ω = {1, 2, 4, 7}. (Right) Spectrum quotient of Hankel-type matrix for the choice of
Ω = {1, 2, 4, 7}.

Step 1. Construct and solve matrix equation. Construct the generalized rotation
invariance matrix equation as in (43) and compute its solution by

Ĵ =
(
UΩ,M−L(1 : M−L−1, 1 : r)

)+
UΩ,M−L(2 : M−L, 1 : r).

Step 2. Find the eigenvalues of matrix. Compute all eigenvalues λ ES
j ∈ C,

j = 1, 2, . . . , r of matrix Ĵ.

Output: {λ ES
j ∈ C, j = 1, 2, . . . , r}.

4. Empirical evaluations

In this section, we examine and compare the performance of algorithms 1–4 on estimating
spectrum of various af!ne systems (see section 3). Our focus is the noise-free data and con-
sider the system matrix A whose operator norm is no greater than 1. Denote by r the number
of recoverable eigenvalues, and we let Λ = {λ1, . . . ,λr} be Ω-recovered eigenvalue set, and
Λ̂ = {λ̂1, . . . , λ̂r} be the eigenvalue set obtained by our numerical algorithms. The per-
formance of the algorithms is measured by the root mean squared error (RMSE) and the
in!nity norm error (INE) de!ned as.

RMSE(Ω, M, σ) =

√√√√1
r

r∑

i=1

(λi − λ̂i)2, (44)

RINF(Ω, M, σ) = max
i=1,...r

|λi − λ̂i|. (45)

In each example, we obtain the observational trajectory data of the form {SΩxt :
t = 0, 1, . . . , M − 1}, where Ω ⊂ [d]. In numerical experiments, we get an estimation r̂ of the
number of recoverable eigenvalues using algorithm 1 and then use the Hausdorff distance to
match the recoverable eigenvalues with the exact ones as

λi = arg min
λ∈Λ

(λ− λ̂i), for λ̂i ∈ Λ̂. (46)

The results and details are listed below.
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Table 1. Example 1. Numerical rank and errors for various algorithms and choices of Ω.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1} 24 1 1 3.9 × 10−17 1.1 × 10−16 3.9 × 10−17 1.1 × 10−16 2.0 × 10−17 5.6 × 10−17 2.0 × 10−17 5.6 × 10−17

{1, 4} 24 4 4 4.3 × 10−8 8.7 × 10−8 1.9 × 10−8 3.8 × 10−8 4.4 × 10−8 8.7 × 10−8 1.7 × 10−8 3.4 × 10−8

{1, 4, 7} 24 5 5 6.0 × 10−8 1.2 × 10−7 4.0 × 10−8 8.0 × 10−8 3.3 × 10−8 6.5 × 10−8 4.8 × 10−4 9.7 × 10−4

{1, 2, 4, 7} 24 6 6 5.5 × 10−8 9.9 × 10−8 1.5 × 10−8 2.9 × 10−8 5.7 × 10−8 9.5 × 10−8 4.8 × 10−4 9.7 × 10−4
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Table 2. Example 1. Errors for various algorithms and choices of M.

Prony Matrix pencil LS Matrix pencil SVD ESPRIT

Ω M r r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1, 2, 4, 7} 24 6 6 5.5 × 10−8 9.9 × 10−8 1.5 × 10−8 2.9 × 10−8 5.7 × 10−8 9.5 × 10−8 4.8 × 10−4 9.7 × 10−4

{1, 2, 4, 7} 32 6 6 8.7 × 10−8 1.5 × 10−7 9.1 × 10−8 1.7 × 10−7 6.2 × 10−8 1.2 × 10−7 4.3 × 10−6 8.7 × 10−6

{1, 2, 4, 7} 40 6 6 1.1 × 10−7 2.2 × 10−7 7.6 × 10−8 1.5 × 10−7 1.3 × 10−7 2.5 × 10−7 8.7 × 10−8 1.7 × 10−7

{1, 2, 4, 7} 48 6 6 1.1 × 10−7 2.0 × 10−7 8.3 × 10−8 1.6 × 10−7 1.1 × 10−7 2.1 × 10−7 8.3 × 10−8 1.6 × 10−7
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Table 3. Example 2. Numerical rank and errors of various algorithms and choices of Ω.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1} 60 10 2.8 × 10−2 8.1 × 10−2 4.0 × 10−5 1.3 × 10−4 2.8 × 10−2 8.1 × 10−2 2.7 × 10−2 7.8 × 10−2

{1, 2} 60 19 7.6 × 10−3 3.3 × 10−2 4.2 × 10−5 1.8 × 10−4 7.6 × 10−3 3.3 × 10−2 1.5 × 10−1 3.1 × 10−1

{1, 2, 3} 60 20 7.3 × 10−7 2.0 × 10−6 7.1 × 10−6 3.1 × 10−5 1.2 × 10−6 5.1 × 10−6 8.9 × 10−2 1.8 × 10−1

{1, 2, 3, 4} 60 20 2.0 × 10−7 7.7 × 10−7 6.3 × 10−7 2.7 × 10−6 1.1 × 10−7 3.9 × 10−7 6.7 × 10−2 1.3 × 10−1
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Table 4. Example 2. Errors of various algorithms and choices of M.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1, 2, 3, 4} 60 20 2.0 × 10−7 7.7 × 10−7 6.3 × 10−7 2.7 × 10−6 1.1 × 10−7 3.9 × 10−7 6.7 × 10−2 1.3 × 10−1

{1, 2, 3, 4} 80 20 2.7 × 10−7 1.1 × 10−6 1.3 × 10−7 5.8 × 10−7 4.9 × 10−7 2.2 × 10−6 6.3 × 10−2 1.3 × 10−1

{1, 2, 3, 4} 100 20 1.3 × 10−6 5.7 × 10−6 2.5 × 10−7 1.0 × 10−6 6.1 × 10−7 1.7 × 10−6 5.4 × 10−2 1.2 × 10−1

{1, 2, 3, 4} 120 20 8.5 × 10−7 3.7 × 10−6 2.9 × 10−6 1.3 × 10−5 1.7 × 10−6 7.6 × 10−6 4.6 × 10−2 8.8 × 10−2
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Table 5. Example 3. Numerical rank and errors of various algorithms and choices of Ω.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1} 90 6 6.5 × 10−3 2.7 × 10−2 1.8 × 10−3 7.2 × 10−3 6.0 × 10−3 2.4 × 10−2 5.7 × 10−3 2.2 × 10−2

{1, 2} 90 7 4.0 × 10−3 1.9 × 10−2 2.2 × 10−3 1.2 × 10−2 4.2 × 10−3 2.0 × 10−2 1.5 × 10−2 5.4 × 10−2

{1, 2, 3} 90 13 3.7 × 10−6 1.4 × 10−5 1.5 × 10−5 7.1 × 10−5 1.2 × 10−5 4.7 × 10−5 5.2 × 10−2 1.3 × 10−1

{1, 2, 3, 4} 90 12 3.6 × 10−3 1.2 × 10−2 1.3 × 10−5 6.2 × 10−5 4.1 × 10−3 1.7 × 10−2 1.6 × 10−2 5.4 × 10−2

{1, 2, 3, 4, 5} 90 13 1.8 × 10−7 8.4 × 10−7 2.3 × 10−6 1.2 × 10−5 1.7 × 10−6 8.8 × 10−6 1.8 × 10−2 6.3 × 10−2
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Table 6. Example 3. Errors of various algorithms and choices of M.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1, 2, 3, 4, 5} 90 13 1.8 × 10−7 8.4 × 10−7 2.3 × 10−6 1.2 × 10−5 1.7 × 10−6 8.8 × 10−6 1.8 × 10−2 6.3 × 10−2

{1, 2, 3, 4, 5} 120 13 1.2 × 10−6 5.9 × 10−6 3.0 × 10−6 1.4 × 10−5 2.4 × 10−6 1.2 × 10−5 1.4 × 10−2 4.8 × 10−2

{1, 2, 3, 4, 5} 150 13 2.2 × 10−6 1.1 × 10−5 1.0 × 10−6 5.4 × 10−6 3.1 × 10−6 1.5 × 10−5 1.1 × 10−2 3.0 × 10−2

{1, 2, 3, 4, 5} 180 13 5.1 × 10−7 2.1 × 10−6 2.8 × 10−6 1.4 × 10−5 3.1 × 10−6 1.6 × 10−5 8.3 × 10−3 2.4 × 10−2
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Example 1. Discrete af!ne system. Recall that a discrete state-time af!ne system is
given by

xt+1 = Axt + c.

We consider a system of dimension 8. Denote by J = diag(0.3I3 + N̂3, 0.5I2 +
N̂2, 0.6,−0.2I2), and U = diag(I3, toeplitz([1, 0, 0], [1, 1, 1]), hankel([1, 2], [2, 1])), where
Is denotes the s × s identity matrix, and N̂s denotes s × s nilpotent matrix with one cyclic
block as in lemma 2. We have that A = UJU−1 with the initial condition x0 = [8, 7, . . . , 1]T

and c = [1, 1, . . . , 1]T. To illustrate the reconstruction "ows, we !rst depict the observations
of the discrete af!ne system for the choice of Ω = {1, 2, 4, 7} in !gure 1 (left). Note that by
introducing yt = xt + (A − I8)−1c, the discrete af!ne system is reduced to the linear dynamical
system. We can then apply algorithm 1 to construct Hankel-type matrix HΩ,M−L,L and compute
its quotients of singular values σi/σi+1 for i = 1, 2, . . . , 8 as shown in !gure 1 (right). In this
case, six eigenvalues are Ω-recoverable, matching the analytical results in theorem 1. To fur-
ther compare the performance of various algorithms and investigate the impact of Ω, M, we
conduct the reconstruction with various choices of Ω and M as shown below in tables 1 and 2.

Dynamical processes on graphs. Graph learning arises in a wide range of applications. We
consider a weighted graph G = (V , E , W) in which V = {v1, . . . , vd} is set of d vertices and
E ⊂ V × V is a set of edges. The weighted adjacent matrix W is de!ned as

W(i, j) %
{
αi j if the directed pair(vi, v j) ∈ E

0 otherwise
;αi j ∈ R+; ∀vi, v j ∈ V . (47)

The degree deg(vi) of a vertex vi ∈ V is de!ned as deg(vi) =
∑n

j=1W(i, j). In the following,
we introduce important operators associated with the graph G.

Definition 6. The normalized diffusion operator of a graph G with the weighted adjacent
matrix W ∈ Rd×d is de!ned by A % (D−1)

1
2 W(D−1)

1
2 , where D := diag (deg(vi))vi∈V and D−1

denote its psedoinverse. The normalized graph Laplacian operator is L = I − A. The random
walk transition matrix P is de!ned by D−1W .

Remark 2. A weighted graph is called simple graph if W(i, j) ∈ {0, 1} and W(i, i) = 0. In
spectral graph theory, other types of Laplacian matrix are also considered. For example, the
combinatorial Laplacian matrix ˆ{L} = D − A. The signless Laplacian matrix |L| = D + A.
It is possible to use any type of Laplacian matrix in the heat kernel for the diffusion process.
In our numerical sections, we shall restrict our attention to the simple weighted graph and the
normalized graph Laplacian. Our theorems and algorithms can be also applied to other types
of Laplacian matrices too.

Note that if the vertex vi in a graph is isolated, then the degree matrix D(i, i) = 0. In this
case, we use psuedo-inverse of D to calculate the transition matrix P and set P(i, i) = 1.

(a) Random walk over graphs. A random walk on graph is a dynamical process comprised
of a series of random steps by moving to an adjacent vertex at each step: if v(t) represents the
vertex of the random walk at the timestep t then we moves to the next one v(t + 1) by picking
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Figure 2. Example 2. (Left) An illustration of vertices and edges in the directed
unweighted graph. (Right) Spectrum quotient of Hankel-type matrix for the choice of
Ω = {1, 2, . . . , 7}. In this case, 20 eigenvalues are Ω-recoverable.

Figure 3. Example 3. (Left) An illustration of vertices and edges in the ring-
shaped graph. (Right) Spectrum quotient of Hankel-type matrix for the choice of
Ω = {1, 2, . . . , 5}. In this case, 13 eigenvalues are Ω-recoverable.

one of its neighbors with probability,

P(v(t + 1)|v(t)) =






1
deg(v(t))

, if (v(t), v(t + 1)) ∈ E ,

0, otherwise,
(48)

where deg(v(t)) denotes the number of edges starting from v(t) in digraph G. Let xt denote the
probability distribution at time t

xt(i) = P(v(t) = vi).

By rule of random walk, we have the following linear evolution system,

xt = Atx0, A = PT.

The eigenvalues of A reveals useful information about the underlying graph: the multiplicity
of eigenvalue 1 is equal to the number of (strongly) connected components; the second largest
eigenvalue λ2 that describes the mixing rate of the random walks; the spectral gap |λ1 − λ2|
represents how well the graph is connected. The reader can refer to the book [17] for more
connections between them (tables 3, 4, 5 and 6).
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Figure 4. Example 4. (Top left) An illustration of vertices and edges in the sphere-
shaped graph. (Top right) Spectrum quotient of Hankel-type matrix for the choice of
Ω = {1, 2, 3, 4}. In this case, seven eigenvalues are Ω-recoverable. (Bottom left) The
eigenvalue of A when ∆t = 20. (Bottom right) The ground truth spectrum (!lled points)
and reconstructed spectrum (hollow points) for ∆t = 10 : 5 : 25 where we set the rank
r̂ = 10 in all cases.

Example 2. A directed unweighted graph. We consider a simple directed unweighted
graph of 20 nodes. Its weighted adjacent matrix W (its nonzero entries are all 1s) is ran-
domly generated with 80 edges and we then remove the self-loops. The initial state x0 is a
non-degenerate discrete probability distribution on {1, . . . , 20}. The matrix A in our example
is an invertible diagonalizable matrix with 20 distinct eigenvalues and its eigen-matrix U is
entrywise nonzero. We summarize the reconstruction results below. In particular, we recov-
ered the multiplicity of 1 in this case, indicating that the graph has only one strongly connected
component.

Example 3. Ring graph [35]. An undirected graph with 30 nodes uniformly distributed
on a ring-shaped structure and each vertex has eight neighbors. The edge weights are all equal
to 1. The matrix A in this example is a diagonalizable matrix with 13 distinct eigenvalues.
Unlike example 1, in this case, there are no repeating roots in the annihilating polynomial and
therefore we can not recover their geometric multiplicities by our algorithms. We summarize
the results below.

(b) Heat diffusion process over graphs. We consider a non-homogeneous heat diffusion
process over the graph G is governed by a continuous af!ne system

xcont
t+1 = e−tLxcont

t + c, t ! 0. (49)

We observe the system at uniform time instances 0,∆t, 2∆t, . . . . In this subsection, we explore
the reconstruction of eigenvalues when the system matrix is relatively large (!gures 2 and 3).
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Table 7. Example 4. Numerical rank and errors of various algorithms and choices of Ω for ∆t = 20.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1, 2} 450 5 8.8 × 10−4 8.3 × 10−3 2.4 × 10−4 2.8 × 10−3 8.8 × 10−4 8.3 × 10−3 7.3 × 10−4 6.3 × 10−3

{1, 2, 3} 450 6 1.5 × 10−4 1.8 × 10−3 1.8 × 10−3 1.6 × 10−2 1.5 × 10−4 1.8 × 10−3 1.5 × 10−4 1.8 × 10−3

{1, 2, 3, 4} 450 7 7.8 × 10−4 9.5 × 10−3 6.8 × 10−4 7.7 × 10−3 7.8 × 10−4 9.4 × 10−3 7.6 × 10−4 9.2 × 10−3

{1, 2, 3, 4, 5} 450 7 8.1 × 10−4 9.8 × 10−3 9.4× 10−4 1.1 × 10−2 8.1 × 10−4 9.8 × 10−3 7.8 × 10−4 9.5 × 10−3
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Table 8. Example 4. Errors of various algorithms and choices of M.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1, 2, 3, 4, 5} 450 7 8.1 × 10−4 9.8 × 10−3 9.4 × 10−4 1.1 × 10−2 8.1 × 10−4 9.8 × 10−3 7.8 × 10−4 9.5 × 10−3

{1, 2, 3, 4, 5} 600 7 8.1 × 10−4 9.8 × 10−3 9.4 × 10−4 1.1 × 10−2 8.1 × 10−4 9.8 × 10−3 7.8 × 10−4 9.5 × 10−3

{1, 2, 3, 4, 5} 750 7 8.1 × 10−4 9.8 × 10−3 9.4 × 10−4 1.1 × 10−2 8.1 × 10−4 9.8 × 10−3 7.8 × 10−4 9.5 × 10−3

{1, 2, 3, 4, 5} 900 7 8.1 × 10−4 9.8 × 10−3 9.4 × 10−4 1.1 × 10−2 8.1 × 10−4 9.8 × 10−3 7.8 × 10−4 9.5 × 10−3
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Table 9. Example 5. Numerical rank and errors of various algorithms and choices of Ω.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1} 30 3 7.7 × 10−13 1.3 × 10−12 2.7 × 10−13 4.2 × 10−13 9.7 × 10−13 1.6 × 10−12 8.8 × 10−14 1.5 × 10−13

{1, 2} 30 3 1.4 × 10−13 1.4 × 10−13 1.1 × 10−13 1.1 × 10−13 7.7 × 10−14 8.1 × 10−14 5.5 × 10−2 6.6 × 10−2

{1, 2, 3} 30 3 1.8 × 10−13 2.0 × 10−13 4.4 × 10−14 5.3 × 10−14 1.7 × 10−13 2.1 × 10−13 6.4 × 10−2 7.7 × 10−2
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Table 10. Example 6. Root Mean square errors and in!nity errors for various algorithms. In this table, r̂ is the estimator of algorithm 1 using (i) in
step 2 with relative threshold ε = 10−3.

Prony Matrix pencil Matrix pencil SVD ESPRIT

Ω M r̂ RMSE INE RMSE INE RMSE INE RMSE INE

{1} 316 10 2.2 × 10−1 7.9 × 10−1 2.3 × 10−1 9.8 × 10−1 1.6 × 10−2 5.7 × 10−2 2.0 × 10−2 9.1 × 10−2

{1, 3, 9} 316 12 2.6 × 10−1 8.3 × 10−1 3.5 × 10−1 9.7 × 10−1 1.9 × 10−2 7.2 × 10−2 3.6 × 10−2 1.6 × 10−1

{1, 2, 3, 9} 316 11 2.4 × 10−1 7.7 × 10−1 3.5×·10−1 9.7 × 10−1 2.6 × 10−2 1.3 × 10−1 2.2 × 10−2 8.8 × 10−2

{1, 2, 3, 5, 9} 316 12 2.4 × 10−1 7.3 × 10−1 3.5 × 10−1 9.7 × 10−1 2.6 × 10−2 9.0 × 10−2 3.2 × 10−2 1.4 × 10−1
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Example 4. Sphere graph [35]. An undirected graph with 150 nodes sampled on a hyper-
sphere and each vertex is connected to its 10 nearest neighbors. In this example, xcont

t (0) is
randomly generated from the uniform distribution and c is in the image of a random Gaus-
sian vector under the map e−tL. We observe the system at tl = l∆t for l = 0, . . . , M − 1 and
∆t = 20. The matrix A = e−20L is approximately low rank: only ten eigenvalues are greater
than 10−3 (see the left bottom panel of !gure 4). The largest gap happens between 7th eigen-
value 0.0455 and 8th eigenvalue 0.0097. We summarize the spectral plot of the numerical rank
estimation (the top right panel of !gure 4) and reconstruction results in the table 7 (various Ω)
and table 8 (various M). It shows that our algorithms can recover signi!cant eigenvalues very
well. We also investigate various choice of∆t. When∆t is relatively small, all eigenvalues of A
lie in [0, 1] and form clusters. Two eigenvalues in the same cluster are very close to each other
and can be identi!ed with the same value ‘numerically’. Below, we show that our algorithms
can recover the representative eigenvalues in each cluster (the right bottom panel of !gure 4).

Approximate discrete linear dynamical system. In the last subsection, we consider the
case where the time series data can be well-approximated by a discrete linear dynamical system
governed by A. We use partial observations of the original time series data and compare the
reconstruction results with the eigenvalues of A.

Example 5. Non-linear LIP model. In this example, we consider a three dimensional
discrete homogeneous dynamical system that serves as an approximation to the LIP model of
in"uenza virus in"ection model:






V̇ = rI − cV

Ḣ = −βHV

İ = βHV − δI

. (50)

Similar to the paper [21], here we also use a rescaled model for convenience, with parameters
β = 10.8, r = 12, c = 3, δ = 4 and initial state V(0) = 0.093/(4 × 105), H(0) = 1, I(0) = 0.
We use Matlab built-in function ode45 to obtain the solution. The code can be found in XX
(tables 9 and 10).

We consider the time series data when t ∈ [1.8, 2.1] as the underlying noise-free observa-
tions (with ∆t = 0.01), where the number of uninfected cells is rapidly decreasing due to the
increasing number of infected cells and their released virus (see the top right panel of !gure 5).
We consider the least square approximation to obtain a discrete homogeneous linear system as

A =




| | |

x0 x1 . . . xN−2

| | |




† 


| | |

x1 x2 . . . xN−1

| | |



 , (51)

where xt for t = 0, 1, . . . , N − 1 are the discrete time-state observation and N = 30. Then we
simulate the linear dynamical system with the initial state as x0 and the system matrix A. The
relative mean squared error is of O(1e − 3). Algorithms 1–4 are performed with the origi-
nal data from LIP, and we compare the estimated eigenvalues with those of A. The result is
presented as below.
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Figure 5. Example 5. Virus(V) infects susceptible cells(H) with rate β. Infected cells
are cleared with rate δ. Once cells are productively infected (I), they release virus at rate
r and virus are cleared at rate c. The susceptible cells (red line) are rapidly infected while
the virus (black line) and infected cells (blue line) peak at t = 2.2 approximately. The
viral growth is limited by the number of susceptible cells, decreasing the viral load and
the number of infected cells to undetectable levels.

Example 6. Human walk motion. In this example, we consider the captured motion of a
walking human3. We used the one that is available in Yuying Liu’s github. The data set is of size
54 × 316, which is collected by 18 sensors and each sensor provides (x, y, z) information of
motion. The total number of time frames is 316 (the gap between each time frame is 1/120 s).
We !rst normalize the real data set so their mean is 0 and the standard deviation is 1. We
then apply the dynamic decomposition method to obtain A. The relative mean square error
is O(10−3). We use the real motion data in our algorithm and compare the outputs with the
eigenvalues of A. We report its result as follows. We see that matrix-pencil-SVD algorithm has
the best performance.

Summary. In the case of noise-free data, we have seen that all algorithms provide an accu-
rate reconstruction of the eigenvalues of various af!ne systems in Λ, matching our theoretical
results developed in section 2. They can also provide a faithful approximation of eigenvalues
when the time series data is approximately generated by a linear system. For comparison of
algorithms, we found that the matrix pencil method has the best performance in most cases
when |Ω| is small and in the real human motion data, demonstrating its robustness. When |Ω|
increases and the data is exact, the Prony method has the best performance in most cases. In
particular,

• As |Ω| increases, more eigenvalues could be recovered and the reconstruction accuracy
got improved until |Ω| is suf!ciently large. This is because larger |Ω| would yield a larger
matrix that is sensitive to the perturbation caused by numerical round-off errors.

• For the temporal steps, setting M = 3d is typically enough since the dynamical systems
considered in our numerical examples have reached equilibrium (see the state plot in
example 1). In these cases, increasing more temporal samples does not bring any new
information and did not help in improving the accuracy. An exception case is that the
performance of ESPRIT still got improved.

3 The data set was obtained from mocap.cs.cmu.edu, which is the !rst trial of CMU Mocap subject 07 and created
with funding from NSF EIA-0196217.
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• The dif!culty that affects the reconstruction accuracy for large af!ne systems is caused by
the clustering phenomenon of eigenvalues, i.e., the minimal gap between eigenvalues is
close to zero. The round-off errors prevented us from recovering eigenvalues that prove in
theory, but the numerical example in the sphere graph shows that we can recover signi!cant
eigenvalues or representative eigenvalues in a cluster.

• Finally, we have also numerically demonstrated that the algebraic multiplicities of eigen-
values can be recovered when A is similar to a Jordan matrix (see example 1), while we
lost this information when A is diagonalizable (see example 3).

5. Conclusion and future work

This paper studied estimating the spectrum of af!ne systems from partial observations of a
single trajectory data. We derived various characterizations on the interplay among the obser-
vational locations, the behavior of the dynamical systems, and the spectral properties of the
system matrix for the recoverability of eigenvalues. We propose several algorithms, which
allow the usage of space–time samples with "exible temporal length and have been applied to
a wide variety of examples on both synthetic and real data sets.

Several interesting questions are left for future investigations. First, we would like to address
the ‘optimal selection’ of observational locations. Given a !xed number of sensors, some
choices of locations perform better than others in terms of numerical stability. We would like to
!nd a characterization. Second, devising denoising algorithm when the observation data is cor-
rupted by noise. One direction we would like to pursue is, when we have multiple observation
locations, how to make use of the temporal correlation between them to denoise the Hankel-
type matrix. Third, we only consider the recovery of eigenvalues in this paper. It would be
interesting to explore when the corresponding eigenspace projections can also be recovered.
This problem is related to the completion of the low-rank matrix. We would like to derive con-
ditions under which the recovery is feasible and propose robust algorithms to !nd a faithful
approximation to the original system.
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Appendix

Lemma 3. Let A = UJU−1 be its Jordan decomposition as in (10) and {Vs}n
s=1 be

its corresponding invariant subspaces. For any b ∈ Cd, we have qA
b =

∏n
s=1 qA

bs
, where
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bs = P(λs; A)b ∈ Vs with P(λs; A) the projection onto Vs and the polynomials {qA
bs
}n

s=1 are
coprime with each other.
Proof. One hand, we prove that

∏n
s=1 qA

bs
divides qA

b . Note the annihilating polynomials of
A of bs form an ideal generated by qA

bs
:

IA
bs

:= {p(z) ∈ C[z] | p(A)(bs) = 0} = 〈qA
bs
〉. (52)

Denote by A|Vs the restriction of A on the invariant space Vs and by As its matrix form under
standard basis. Let qAs(t) = (t − λs)rAs denote the minimal polynomial of As and then qAs(As) ≡
0, which implies

qAs(As)bs = 0, (53)

so from the ideal (52) property it follows that qA
bs

divides qAs . So qA
bs

(z) = (z − λi)
rA
bs . Since

eigenvalues {λs}n
s=1 are distinct, we know that qA

bs
are coprime to each other.

Note that
∑n

s=1 qA
b (A)bs = qA

b (A)b = 0 and qA
b (A)bs ∈ Vs. It follows that qA

b (A)bs = 0. By
the property of ideal (52), we know that qA

bs
divides qA

b for s = 1, . . . , n. Therefore,
∏n

s=1 qA
bs

divides qA
b .

On the other hand, we show that qA
b divides

∏n
s=1 qA

bs
. De!ne

IA
b = {p ∈ C[z] | p(A)b = 0} = 〈qA

b 〉. (54)

Note that

n∏

s=1

qA
bs

(A)b =
n∏

s=1

qA
bs

(A)
n∑

s=1

bs =
n∑

s=1

n∏

s=1

qA
bs

(A)bs = 0, (55)

it follows that qA
b divides

∏n
i=1 qA

bi
. Hence the conclusion follows. "

Lemma 4. For S ∈ Cm×d, we have that qA
S,b =

∏n
s=1 qA

S,bs
, where qA

S,bs
are coprime with each

other. As a result, r A
S,b =

∑n
s=1 rA

S,bs
.

Proof. First, for each s, we claim that (S, A, bs)-annihilating polynomial forms an ideal
generated by qA

S,b, i.e.,

IA
S,bs

= {p ∈ C[z] | Sp(A)KrA
S
(A, bs) = {0}} = 〈qA

S,bs
〉. (56)

This is due to the fact (see the proof of lemma 2.3 in [6]) that

SqA
S,bs

(A)KrA
S
(A, bs) = {0} ⇐⇒ SqA

S,bs
(A)h(A)bs = 0, for any polynomial h(z).

From the de!nition, it is straightforward to see that qA
S,bs

divides qA
bs

. So by lemma 3, we have

qA
S,bs

(z) = (z − λi)
rA
S,bs , (57)

and it follows that qA
S,bs

is coprime to qA
S,b j

if s -= j.
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Now for each s = 1, . . . , n, let ps(A) =
∏n

j=1 j-=s qA
bs

. Then ps(A)b = ps(A)bs. For any polyno-
mial h, we have

SqA
S,b(A)h(A)ps(A)bs = SqA

S,b(A)h(A)ps(A)b = 0, (58)

holds true. So from the property of idea (56), we have qA
S,bs

divides qA
S, f ps(A). Since qA

S,bs
is

coprime to ps(A), we have qA
S,bs

divides qA
S,b. Combining the fact that qA

S,bs
is coprime to qA

S,b j
if

s -= j, we have that
∏n

s=1 qA
S,bs

divides qA
S,b.

On the other hand, for (S, A, b)-annihilating polynomials, we have the ideal

IA
S,b = {p ∈ C[z] | Sp(A)KrA

S
(A, b) = 0} = 〈qA

S,b〉. (59)

Note that for any polynomial h[z], we have

S
n∏

j=1

qA
S,b j

(A)h(A)b = S
n∏

j=1

qA
S,b j

(A)h(A)
n∑

s=1

bs =
n∑

s=1

Sh(A)
n∏

s=1,s-= j

qA
S,bs

(A)qA
S,b j

(A)b j = 0, (60)

it follows that qA
S,b divides

∏n
s=1 qA

S,bs
.

Therefore

qA
S,b =

n∏

s=1

qA
S,bs

. (61)

"

Lemma 5. Let b ∈ Cd, A ∈ Cd×d and S ∈ Cm×d. Given r A
S,b, then qA

S,b is the unique monic
polynomial q satisfying deg(q) $ r A

S,b and the following system of linear equations:

Sq(A)Atb = 0, t = 0, . . . , r A
S,b − 1. (62)

Proof. First of all, we claim that the solutions to (62) is the same with the solutions to the
system of linear equations:

Sq(A)Atb = 0, t = 0, . . . , r A
b − 1. (63)

Suppose that q is a solution to (62), then for any j ! r A
S,b,

A j = pj(A)qA
S,b(A) + h j(A), deg(h j(A)) $ r A

S,b − 1.

Therefore,

Sq(A)A jb = Sq(A)pj(A)qA
f∗,b(A)b + Sq(A)h j(A)b

= SqA
S,b(A)q(A)pj(A)b + Sq(A)h j(A)b, (64)

= 0 + 0 = 0, (65)
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where we use the property of qA
S,b(A) in (58) to obtain that SqA

S,b(A)q(A)pj(A)b = 0. The claim
is proved. Therefore, q = qA

S,b by deg(q) $ r A
S,b and the de!nition of qA

S,b. "

Theorem 6 (Theorem 2.6 in [2]). Let J ∈ Cd×d be a matrix in Jordan form as in (10). Let
{ f i : i = 1, . . . , m} ⊂ Cd be a !nite subset of vectors, recall that r J

f i
is the degree of the (J, fi )-

annihilator, li = ri − 1, and PJ = {Ps : s = 1, . . . , n} be the penthouse family for J introduced
in de!nition 1.

Then the following statements are equivalent:

(a) The set of vectors {J j fi : i = 1, . . . , m, j = 0, . . . , li} spans Cd.
(b) The set of vectors {P(λ j; J)Nl j fi : i = 1, . . . , m, j = 0, . . . , li} spans V j for j = 1, . . . , n.
(c) For every s = 1, . . . , n, the set {Ps fi, i = 1, . . . , m} spans Es = PsCn.
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