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ABSTRACT
Networked systems that occur in various domains, such
as electric networks, the brain, and opinion networks, are
known to obey conservation laws. For instance, electric
networks obey Kirchoff’s laws, and social networks obey
opinion consensus. Conservation laws are often modeled
as balance equations that relate appropriate injected flows
and potentials at the nodes of the networks. A recent line
of work considers the problem of estimating the unknown
structure of such networked systems from observations
of node potentials (and only the knowledge of the statis-
tics of injected flows). Given the dynamic nature of the
systems under consideration, an equally important task is
estimating the change in the structure of the network from
data – the so called differential network analysis problem.
That is, given two sets of node potential observations, the
goal is to estimate the structural differences between the
underlying networks. We formulate this novel differential
network analysis problem for systems obeying conser-
vation laws and devise a convex estimator to learn the
edge changes directly from node potentials. We derive
conditions under which the estimate is unique in the high-
dimensional regime and devise an efficient ADMM-based
approach to perform the estimation. Finally, we demon-
strate the performance of our approach on synthetic and
benchmark power network data.

Index Terms— differential network analysis, struc-
ture learning, sparsity, convex optimization, ADMM.

1. INTRODUCTION

A networked system is said to obey a conservation law
if flows are neither created nor destroyed. Depending
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on the context, flows could represent current in electric
circuits, water in hydraulic networks, or opinion dynam-
ics in social networks [1]. Such systems are at the heart
of many natural, engineering, and societal networks [2].
These laws can be conveniently modeled as balance equa-
tions that posit a linear map between injected flows and
potentials at the network nodes. For finite-dimensional
networks, this linear map is the Laplacian matrix whose
sparsity pattern encodes the network structure—the edge
connectivity of the network.

In many practical problems of interest, one often does
not know the structure of the network, a key information
for learning, leveraging, and operating complex systems.
Consequently, a recent line of work (see, for example,
[3, 4, 5, 6, 7]) considers estimating the network structure
from observations of node potentials (and only the knowl-
edge of the statistics of injected flows). Given the dynamic
nature of the systems under consideration, an equally im-
portant task is estimating the change in the structure of
network from data. This problem, dubbed differential net-
work analysis, appears in many biological and genomics
networks [8, 9, 10, 11] and is the focus of the paper.

The differential network analysis problem we consider
is for systems obeying conservation laws and is stated as
follows: given node potential observations from a system
at two different time instants, estimate the sparse changes
in the network at these time instants. A generalized ver-
sion of this problem is to estimate the sparse changes in
two systems using two sets of node potential observations,
one from each system. We distinguish it from the exist-
ing differential network analysis in that we exploit the
relationship between the injected flows and the potentials.

A naïve approach to learning sparse changes is first
estimating the individual network structures and then
looking for differences in the estimates. Unsurprisingly,
such an indirect approach would be statistically inefficient
since it expends effort on estimating parameters that are
irrelevant to the task at hand (e.g., edges that do remain
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unchanged). To overcome these issues, we propose an
ℓ1-norm regularized convex estimator to learn the sparse
edge changes directly using samples from the node po-
tentials. Our estimator exploits the fact that the sparsity
pattern of the network is encoded in the square root of
the inverse covariance matrix of the node potential vector.
We derive conditions under which the estimate is unique
in the high-dimensional regime. Finally, we present an
ADMM approach to numerically solve the estimator and
evaluate the performance of our approach on synthetic
and benchmark power network data.

2. PRELIMINARIES AND BACKGROUND

Let G = (V,E) be an undirected connected graph on the
node set V ≜ {0, 1, 2, . . . , p} and edge set E ⊂ V × V .
To each edge (i, j) we associate a non-negative weight
ai,j . Let X and Y be p + 1-dimensional real-valued
vectors of injections (in-flows) and potentials (out-flows)
at the nodes. Then the basic conservation law between
these vectors is X − B∗Y = 0, where B∗ is a Lapla-
cian matrix such that Bi,j = −ai,j for i ̸= j and Bi,i =
−
∑

j,i̸=j ai,j for i = j. The key property of B∗ is that
edge (i, j) ∈ E if and only if Bi,j ̸= 0. The model above
is sometimes referred to as a generalized Kirchoff’s law.
It is flexible enough to describe the relationship between
flows and potentials in a variety of systems, including
electrical circuits, hydraulic networks, opinion consensus
in social networks, etc (see e.g., [4, 1] and references
therein). We work with the reduced graph obtained by
deleting the node 0 and its edges in G. This reduction is
standard in many problems (see e.g., [5, 12]). With an
abuse of notation, we denote the Laplacian of the reduced
graph as B∗. Importantly, B∗ is a p × p positive defi-
nite matrix; and hence, invertible [12]. The invertiblity
assumption ensures that B∗ is identifiable from Y .

2.1. Differential network analysis

Consider two networked systems G1 and G2 with same
node sets but different edge sets. Let X1 ∼ N (0,ΣX1

)
and X2 ∼ N (0,ΣX2

) be the injection vectors at the
nodes of G1 and G2. Then, the corresponding node po-
tentials Yi = (B∗

i )
−1Xi satisfy Yi ∼ N (0,Θ∗−1

i ) where
Θ∗

i = B∗
i Σ

−1
Xi

B∗
i and i ∈ {1, 2}. We model injections

as random vectors to account for unmodelled injections
in the system. For example, these injections could be
instantaneous consumer demands in power networks.

Our objective is to infer the changes in the network
structure. Formally, suppose that we have access to ni

i.i.d samples from Yi. Then, our main goal is to estimate
∆∗

B = B∗
2 −B∗

1 . This difference matrix captures changes

in the edge weights of G1 and G2. Of particular interest
is the sparsity pattern of ∆∗

B as it indicates how similar
(or dissimilar) the network systems are.

We next develop an expression for ∆∗
B as a function

of Θ∗
1 and Θ∗

2 which is a starting point for our algorithm
design and analysis. We assume that the injection covari-
ances ΣXi ≻ 0 are known (see Remark 1 for relaxing this
assumption). We recall an important fact that any positive
(semi) definite matrix has a unique square root that is also
a positive (semi) definite matrix. That is, for any C ⪰ 0,
there exists a unique M ⪰ 0 such that C = M2 [13].

Consider ΣXi
= M2

Xi
such that MXi

≻ 0 is unique.
Define Ỹi = MXiYi and set Θ̃∗

i = (Cov[Ỹi])
−1. Then

∆∗
B = MX2

(Θ̃∗
2)

1
2MX2

−MX1
(Θ̃∗

1)
1
2MX1

, (1)

where (Θ̃∗
i )

1
2 = M−1

Xi
B∗

i M
−1
Xi

≻ 0 is the unique square
root matrix of Θ̃∗

i . The expression in (1) follows by di-
rect substitution. The uniqueness is because (Θ̃∗

i )
−1 =

MXiΘ
∗−1
i MXi = (MXiB

∗
i
−1MXi)

2 ≻ 0.
Because ΣXi

are known, their square roots MXi
are

known. Therefore, a natural estimator for ∆∗
B is to replace

(Θ̃∗
i )

1
2 in (1) with its sample estimate—the square root of

the inverse of the sample covariance matrix of Ỹi. This
estimate is unfortunately highly sample inefficient. In fact,
the sample covariance matrix is non-invertible when p >
ni (the so-called high-dimensional regime). Alternatively,
we can estimate (Θ̃∗

i )
1
2 using well-known estimators such

as GLASSO or CLIME [14, 15, 16]. But these estimators
work well only when Θ∗

i is sparse. As shown in our prior
work [4], Θ∗

i need not be sparse even when B∗
i is sparse.

We overcome the challenges above by directly esti-
mating ∆∗

B assuming it is sparse. This assumption is mild
compared to the stringent assumption that B∗

i is sparse
and it is satisfied in several applications (see Introduction).
Remark 1. (Unknown covariance matrix ΣXi

.) If ΣXi
is

unknown, we can slightly modify ∆∗
B to estimate differ-

ences between the square roots (Θ∗
1)

1
2 and (Θ∗

2)
1
2 (given

in (1)). This approach works best if the sparsity of B∗
i

(approximately) equals the sparsity of (Θ∗
1)

1
2 , which for

instance happens when ΣXi
is (approximately) diagonal.

3. A CONVEX SQUARE ROOT ESTIMATOR

We introduce our square root difference estimator to esti-
mate a sparse ∆∗

B . Let Ψ̃i = M−1
Xi

(Θ̃∗
i )

− 1
2M−1

Xi
, where

(Θ̃∗
i )

− 1
2 = (Cov[Ỹi])

1
2 as defined in (1). Let ∆ ∈ Rp×p

and consider the following loss function:

L(∆) =
1

4
(⟨Ψ̃1∆,∆Ψ̃2⟩+ ⟨Ψ̃2∆,∆Ψ̃1⟩)− ⟨∆, Ψ̃1 − Ψ̃2⟩,

(2)
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where ⟨A,B⟩ ≜ tr(ABT). Such loss functions, dubbed
D-trace losses, have emerged as a computationally effi-
cient alternative to the log-det loss function and are related
to score-matching losses [17]. Understanding statistical
properties of estimators based on D-trace loss functions
is an active study of research [10, 18, 19].

A loss-function similar to (2) has been used in [10] to
learn the difference between two graphical models using
the covariance matrices. Instead, we learn the difference
between two networks using the square roots of the covari-
ance matrices. Using the arguments in [10], we can show
that the loss in (2) is convex in ∆. If Σi ≻ 0, the unique
minima for this loss function occurs at ∆∗

B = B∗
2 −B∗

1 .
So to obtain a sparse estimate of ∆∗

B using the samples
of Yi, we solve the ℓ1-regularized optimization problem:

∆̂B ∈ argmin
∆∈Rp×p

L(∆) + λn∥∆∥1,off, (3)

where λn≥ 0 and ∥∆∥1,off =
∑

i̸=j |∆ij | is the ℓ1-norm
applied on the off-diagonal elements of ∆. The estimate
Ψ̂i = M−1

Xi
S̃

1
2
i M

−1
Xi

, where S̃
1
2
i is the unique square root

of the sample covariance matrix of Ỹi and i ∈ {1, 2}.
In Section 4 we develop an iterative procedure to solve

(3). We conclude this section by stating a result on the
uniqueness of ∆̂B in (3). Because ∥ · ∥1 is convex, the
combined loss function in (3) is strongly convex provided
the Hessian of L(·) is positive definite. Then, we can
invoke KKT conditions for strongly convex functions to
conclude that ∆̂B is unique. However unfortunately, the
Hessian matrix H ≜ (Ψ̂1 ⊗ Ψ̂2 + Ψ̂2 ⊗ Ψ̂1)/2 is only
positive semi definite. This is because Ψ̂i is positive semi
definite when p > ni. Hence, ∆̂B is not unique.

Nonetheless, Lemma 1 below establishes the unique-
ness of ∆̂B by placing certain restrictions on the nullspace
of the Hessian matrix. Lemma 1 is in the spirit of unique-
ness results in compressed sensing. Let vec(A) be the
mn-dimensional vector obtained by stacking the columns
of A ∈ Rm×n on top of each other. Let vec−1(z), for any
z ∈ Rmn, be such that vec−1(vec(A)) = A. Define the
nullspace or kernel of A as Ker(A) = {d : Ad = 0}.

Lemma 1. Let H be defined as above and d ∈ Ker(H).
Then ∆̂B in (3) is unique if and only if dTvec(Ψ̂1−Ψ̂2) ≤
0 and ∥vec−1(d)∥1,off ≤ τ . Here, τ is given by the con-
strained (Lagrangian dual) form of (3) and d ̸= 0.

We sketch a few details of the proof here. Consider the
constrained form of (3): argmin∥∆∥1,off≤τ L(∆, Ψ̂1, Ψ̂2).
Now, rewriting the loss function in (2) in its quadratic
form we have: vec(∆)THvec(∆)/2−vec(∆)T(Ψ̂1−Ψ̂2).
The uniqueness result then follows from [20].

4. OPTIMIZATION ALGORITHM

We solve the optimization in (3) using the alternating di-
rection method of multipliers (ADMM) method proposed
in [10]. We give high level details of this method while
referring the reader to [10] for complete details.

Consider the following identity for the loss function
in (2): L(∆, Ψ̂1, Ψ̂2) = (L1(∆))/4+(L2(∆))/4, where
L1(∆) = ⟨Ψ̂1∆

∗
B ,∆

∗
BΨ̂2⟩ − 2⟨∆, Ψ̂1 − Ψ̂2⟩, and simi-

larly, L2(∆) = ⟨Ψ̂2∆
∗
B ,∆

∗
BΨ̂1⟩ − 2⟨∆, Ψ̂1 − Ψ̂2⟩. The

only change in these loss functions is the positioning of
Ψ̂1 and Ψ̂2. Consider three p × p matrices ∆1, ∆2, and
∆3. Then, the optimization in (3) is equivalent to

argmin
∆1=∆2=∆3

L1(∆1)+L2(∆2)+λn∥∆3∥1, (4)

where ∆̂B = ∆̂i for any i ∈ {1, 2, 3}. Let ρ > 0 be the
momentum constant, and Λ1, Λ2, and Λ3 be the matrix
multipliers of the augmented Lagrangian of (4) (see [10]
for a formula). Then, the ADMM iterates are

∆k+1
1 = G(Ψ̂1, Ψ̂2, 2ρ∆

k
3 + 2ρ∆k

2 + Ψ̂1 − Ψ̂2+

2Λk
1 − 2Λk

3 , 4ρ),

∆k+1
2 = G(Ψ̂2, Ψ̂1, 2ρ∆

k
3 + 2ρ∆k+1

1 + Ψ̂1 − Ψ̂2+

2Λk
3 − 2Λk

2 , 4ρ),

∆k+1
3 = S((ρ∆k+1

1 + ρ∆k+1
2 −Λk

1 + Λk
2)/(2ρ), λ/2ρ),

Λk+1
1 = Λk

1 + ρ(∆k+1
3 −∆k+1

1 ),

Λk+1
2 = Λk

2 + ρ(∆k+1
2 −∆k+1

3 ), and

Λk+1
3 = Λk

3 + ρ(∆k+1
1 −∆k+1

2 ).

The shrink function S(·) is defined as follows: S(A, λ) =
0 when |A| ≤ λ, and S(A, λ) = A− sign(A)λ. For any
symmetric matrices P , Q, and R, and a positive γ, the
function G(·) takes the following form: G(P,Q,R, γ) ≜
UP {O◦(UT

PRUQ)}UT
Q, where ◦ is the Hadamard product

of two matrices. Further, UPDPU
T
P and UQDQU

T
Q are

the eigendecompositions of P and Q. Finally, Oij =
[DP (j, j)DQ(i, i) + γ]−1. The formula for G(·) in [10]
is incorrect and the expression we state here is correct.

5. NUMERICAL SIMULATIONS

We illustrate the performance of our estimator on synthetic
and two benchmark power systems. We consider two per-
formance metrics: (i) the empirical probability (averaged
over 100 instances) of recovering the support of ∆∗

B and
(ii) the worst case error evaluated using ∥∆̂B −∆∗

B∥∞.
Recall that ∥A∥∞ = maxi,j |ai,j |. In the figures below,
we plot these error metrics as a function of the re-scaled
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sample size n/(d2 log(p)), where d is the maximum de-
gree of ∆∗

B . This scaling is theoretically justified in [10].
We set λn ∝

√
log(p)/n and the parameter ρ = 0.001.

Fig. 1: Estimation accuracy for synthetic networks.

Figure. 1 shows the estimation accuracy for ∆∗
B for

many dimensions (p). In each case, the graph underlying
∆∗

B is a grid graph with degree d = 4. We can visualize
this graph by letting the nodes correspond to the points
in the 2D-plane with integer coordinates. For this choice
of ∆∗

B , we set B∗
1 to be a random, invertible symmetric

matrix. We then define B∗
2 = B∗

1 +∆∗
B . Importantly, B∗

2

and B∗
1 are non-sparse. In Fig. 1(a) and (b), the accuracy

improves as a function of the re-scaled sample size. But
the accuracy deteriorates as the dimension (p) increases,
which is expected. Notably, for fixed d, ∥∆̂B −∆∗

B∥∞
behaves approximately as 1/

√
n/(log(p)), which agrees

with the support recovery results on sparse regression.

Fig. 2: Estimation accuracy for power networks.

Similar to Figure. 1, Figure. 2, shows the estimation
accuracy for different choices of ∆∗

B whose underlying
graphs are grids. But B∗

1 and the graph underlying it are
associated with an electric power network. Specifically,
we consider the radial IEEE 118 bus distribution network
and the loopy IEEE 118 bus transmission network [21].
As mentioned earlier, we reduced the networks by delet-
ing a node. Hence, p = 117. The panels on the right

visualize the sparsity patterns of the reduced networks.
For both networks, the support recovery rate in the left
panel increases with the re-scaled sample size. This result
again confirms that the sparsity of individual networks
plays no role in the estimation performance.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Fig. 3: Plug-in estimator vs proposed estimator.

Figure. 3 compares the support recovery rates of the
proposed estimator and the naive plug-in estimator. The
latter is obtained by plugging the inverse of the square
root of the sample covariance matrix in (1). So, for this
experiment, we assume that n > p = 60. We consider
three matrices for B∗

1 , with increasing number of zeros.
We regulate the number of zeros in B∗

1 using the parameter
s, which is defined as the ratio of the number of non-zeros
to the number of entries in the matrix. The smaller the
s, the sparser is the matrix. The graph underlying ∆∗

B is
grid and we let B∗

2 = B∗
1 +∆∗

B . As shown in Figure. 3,
for every choice of s, our estimator (called D-trace in the
figure), outperforms the plug-in estimator. Importantly,
our estimator works well even when n < p = 60, where
the plug-in estimator does not even exist.

6. CONCLUSION

In this paper, we consider differential network analysis
for systems obeying conservation laws. For random node
injections, we show that the sparsity pattern of the square
root of the inverse covariance matrix of the node potential
vector encodes the network structure. We exploit this prop-
erty to develop an estimator that directly estimates the dif-
ference of two network Laplacian matrices using the sam-
ples of potentials. We adapt the ADMM method in [10]
to numerically implement the proposed estimator. Our
numerical results demonstrate the superior performance
of our estimator over the standard plug-in estimator.
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